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Abstract

We motivate, define and construct quantum proofs of knowledge, that is, proofs of
knowledge secure against quantum adversaries. Our constructions are based on a new
quantum rewinding technique that allows us to extract witnesses in many classical
proofs of knowledge. We give criteria under which a classical proof of knowledge
is a quantum proof of knowledge. Combining our results with Watrous’ results on
quantum zero-knowledge, we show that there are zero-knowledge quantum proofs of
knowledge for all languages in NP (assuming quantum 1-1 one-way functions).
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1 Introduction

Cryptographic protocols, with few exceptions, are based on the assumption that certain
problems are computationally hard. Typical examples include specific number-theoretic
problems such as the difficulty of finding discrete logarithms, and general problems such
as inverting one-way functions. It is well-known, however, that many such problems



would become easy in the advent of quantum computers. For example, Shor’s algorithm
[Sho94] efficiently solves the discrete logarithm problem and allows to factor large integers.
While quantum computers do not exist today, it is not unreasonable to expect quantum
computers to be available in the future. To meet this threat, we need cryptographic
protocols that are secure even in the presence of an adversary with a quantum computer.
We stress that this does not necessarily imply that the protocol itself should make use
of quantum technology; instead, it is preferable that the protocol itself can be easily
implemented on today’s readily-available classical computers.

Finding such quantum-secure protocols, however, is not trivial. Even when we
have found suitable complexity-theoretic assumptions such as the hardness of certain
lattice problems, a classical protocol based on these assumptions may fail to be secure
against quantum computers. The reason for this is that many cryptographic proofs use a
technique called rewinding. This technique requires that it is possible, when simulating
some machine, to make snapshots of the state of that machine and then later to go back
to that snapshot. As first observed by van de Graaf [vdG98], classical rewinding-based
proofs do not carry over to the quantum case. Two features unique to the quantum
setting prohibit (naive) rewinding: The no-cloning theorem [WZ82] states that quantum-
information cannot be copied, so we cannot make snapshots. Furthermore, measurements
destroy information, so interacting with a simulated machine may destroy information
that would be needed later.

This leads to the following observation: Even if a classical protocol is proven secure
based on the hardness of some problem, and that problem is hard even for quantum
computers, we have no guarantee that the protocol is secure against quantum computers.
The reduction of the protocol’s security to the problem’s hardness may be based on
inherently classical features such as the possibility of rewinding.

An example of a protocol construction that suffers from this difficulty are zero-
knowledge proofs. Zero-knowledge proofs are interactive proofs with the special property
that the verifier does not learn anything except the validity of the proven statement. Zero-
knowledge proofs are inherently based on rewinding (at least as long as we do not assume
additional trusted setup such as so-called common-reference strings). Yet, zero-knowledge
proofs are one of the most powerful tools available to the cryptographer; a multitude of
protocol constructions use zero-knowledge proofs. These protocol constructions cannot be
proven secure without using rewinding. To resolve this issue, Watrous [Wat09] introduced
a quantum rewinding technique. This technique allows to prove the quantum security of
many common zero-knowledge proofs. One should note, however, that Watrous’ technique
is restricted to a specific type of rewinding: If we use Watrous’ technique, whenever some
machine rewinds another machine to an earlier point, the rewinding machine forgets
everything it learned after that point (we call this oblivious rewinding). That is, we
can use Watrous’ technique to backtrack when the rewinding machine made a mistake
that should be corrected, but it cannot be used to collect and combine information from
different branches of an execution.

Constructing quantum zero-knowledge proofs solves, however, only half of the problem.
In many, if not most, applications of zero-knowledge proofs one needs zero-knowledge
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proofs of knowledge. A proof of knowledge [GMR85, BG93] is a proof system which
does not only show the truth of a certain statement, but also that the prover knows
a witness for that statement. This is made clearer by an example: Assume that Alice
wishes to convince Bob that she (the prover) is in possession of a signature issued by some
certification authority. For privacy reasons, Alice does not wish to reveal the signature
itself. If Alice uses a zero-knowledge proof, she can only show the statement “there exists a
signature with respect to the CA’s public key”. This does not, however, achieve anything:
A signature always exists in a mathematical sense, even if it has never been computed.
What Alice wishes to say is: “I know a signature with respect to the CA’s public key.”
To prove such a statement, Alice needs a zero-knowledge proof of knowledge; a proof of
knowledge would convince Bob that Alice indeed knows a witness, i.e., a signature. Very
roughly, the definition of a proof of knowledge is the following: Whenever the prover can
convince the verifier, one can extract the witness from the prover given oracle access to
the prover. Here oracle access means that one can interact with the prover and rewind
him. Thus, we have the same problem as in the case of quantum zero-knowledge proofs:
To get proofs of knowledge that are secure against quantum adversaries, we need to use
quantum rewinding. Unfortunately, Watrous’ oblivious rewinding does not work here;
proofs of knowledge use rewinding to produce two (or more) different protocol traces
and compute the witness by combining the information from both traces. Thus, we are
back to where we started: to make classical cryptographic protocols work in a quantum
setting, we need (in many cases) quantum zero-knowledge proofs of knowledge, but we
only have constructions for quantum zero-knowledge proofs.

Our contribution. We define and construct quantum proofs of knowledge. Our proto-
cols are classical (i.e., honest parties do not use quantum computation or communication)
but secure against quantum adversaries. Our constructions are based on a new quantum
rewinding technique (different from Watrous’ technique) that allows us to extract wit-
nesses in many classical proofs of knowledge. We give criteria under which a classical
proof of knowledge is a quantum proof of knowledge (“special soundness” and “strict
soundness”). Combining our results with Watrous’ results on zero-knowledge, we can
show that there are zero-knowledge quantum proofs of knowledge for all languages in NP
(assuming quantum 1-1 one-way functions). (We leave it as an open question whether
unconditionally secure protocols exist for more restricted languages related, e.g., to
lattice-problems.)

We believe that the use of our rewinding technique is not limited to QPoKs. It (or a
variation of it) could find application whenever we need to show that the ability to provide
any of several values implies the ability to provide all of those values simultaneously.

As a side contribution, we also generalized Watrous’ analysis [Wat09] of the zero-
knowledge property of Σ-procols. While Watrous applied his technique to selected
examples, we have spelled out the exact requirements for a Σ-protocol to be computa-
tionally/statistically quantum zero-knowledge.

Related work. Most related work has already been discussed in the introductory
paragraphs. Crépeau, Salvail, Simard, and Tapp [CSST11] independently developed
a rewinding technique similar to ours for analyzing a specific two-prover commitment
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scheme. Their result can be used to improve our bounds for protocols where the verifier
sends only one bit (i.e., Σ-protocols with challenge space of size 2), see Section 3.1.

Follow-up work. In subsequent work, Lunemann and Nielsen [LN11] and Hallgren,
Smith, and Song [HSS11] developed zero-knowledge QPoKs with the additional advantage
of allowing to simultaneously simulate an interaction with the malicious prover and extract
the witness; this property is necessary in some multi-party computations. (In contrast, in
our setting the initial state of the prover could be lost after extracting.) We stress, however,
that this powerful feature comes at a cost: They need strong assumptions, namely quantum
mixed commitments (while we only need quantum 1-1 one-way functions). Both their
zero-knowledge property and their extractability hold only against quantum-polynomial-
time adversaries. In contrast, we get unconditional extractability and computational
zero-knowledge. Finally, we note that the protocols from [LN11, HSS11] are much more
involved than their classical counterparts while we only slightly modify existing classical
protocols. Thus, [LN11, HSS11] give valuable alternatives to our protocols but do not
supersede them. A transformation from Σ-protocols (even without strict soundness) to
non-interactive zero-knowledge arguments of knowledge was given by Unruh [Unr14].
However, their construction is shown secure only in the random oracle model. Ambainis,
Rosmanis, and Unruh [ARU14] show that the condition of strict soundness introduced in
this paper is probably necessary: relative to some oracle, Σ-protocols with only special
soundness are not always proofs of knowledge. Unruh [Unr15] extends our techniques to
construct quantum arguments of knowledge from computationally binding commitments.
Unruh [Unr13] used our protocols for constructing everlastingly secure quantum UC
protocols.

Organization. In Section 1.1, we give an overview over the techniques underlying
our results. In Section 2 we present and discuss the definition of quantum proofs of
knowledge (QPoKs). In Section 3, we give criteria under which a proof system is a
QPoK. In Section 4, we review and generalize Watrous’ rewinding technique for quantum
zero-knowledge [Wat09]. In Section 5, we show that zero-knowledge QPoKs exist for all
languages in NP.

1.1 Our techniques

Defining proofs of knowledge. In the classical setting, proofs of knowledge are defined
as follows:1 A proof system consisting of a prover P and a verifier V is a proof of knowledge
(PoK) with knowledge error κ if there is a polynomial-time machine K (the extractor)
such that the following holds: For any prover P∗, if P∗ convinces V with probability
PrV ≥ κ, then KP∗ (the extractor K with rewinding black-box access to P∗) outputs a
witness with probability PrK ≥ 1

p(PrV − κ)d for some polynomial p and some constant
d > 0. In order to transfer this definition to the quantum setting, we need to specify

1This is one of different possible definitions, loosely following [HM98]. It permits us to avoid the use
of expected polynomial-time. We discuss alternatives in Section 2.2 “On the success probability of the
extractor”.
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what it means that K has quantum rewinding black-box access to P∗. We choose the
following definition: Let U denote the unitary transformation describing one activation of
P∗ (if P∗ is not unitary, we use a purification of P∗). K may invoke U (this corresponds
to running P∗), K may invoke the inverse U † of U (this corresponds to rewinding P∗ by
one activation), and K may read/write a shared register N used for exchanging messages
with P∗. But K cannot make snapshots of the state of P∗. Allowing K to invoke U † is
justified by the fact that all quantum circuits are reversible; given a circuit for U , we
can efficiently apply U †. Note that previous black-box constructions such as Watrous’
rewinding technique and Grover’s algorithm [Gro96] also make use of this fact. We can
now define quantum proofs of knowledge: (P,V) is a quantum proof of knowledge (QPoK)
with knowledge error κ iff there is a quantum-polynomial-time quantum algorithm K
such that for all malicious provers P∗, KP∗ (the extractor K with quantum rewinding
black-box access to P∗) outputs a witness with probability PrK ≥ 1

p(PrV − κ)d for some
polynomial p and constant d > 0. Details are given in Section 2.1.

We illustrate that QPoKs according to this definition are indeed useful for analyzing
cryptographic protocols. Assume the following toy protocol: In phase 1, a certification
authority (CA) signs the pair (Alice, a) where a is Alice’s age. In phase 2, Alice uses
a zero-knowledge QPoK with negligible knowledge error κ to prove to Bob that she
possesses a signature σ on (Alice, a′) for some a′ ≥ 21. That is, a witness in this QPoK
would consist of an integer a′ ≥ 21 and a signature σ on (Alice, a′) with respect to the
CA’s public key. We can now show that, if Alice is underage, i.e., if a < 21, Bob accepts
the QPoK only with negligible probability: Assume that Bob accepts with non-negligible
probability ν. Then, by the definition of QPoKs, KAlice will, with probability 1

p(ν − κ)d,

output an integer a′ ≥ 21 and a signature σ on (Alice, a′) with respect to the CA’s
public key (KAlice is given the information learned in phase 1 as auxiliary input). Notice
that 1

p(ν − κ)d is non-negligible. However, the CA only signed (Alice, a) with a < 21.

This implies that KAlice can produce with non-negligible probability a valid signature σ
of a message that has never been signed by the CA. This contradicts the security of the
signature scheme (assuming, e.g., existential unforgeability [GMR88]). This shows the
security of our toy protocol.

This toy protocol gives a first indication that our definition is usable in practical
settings. For an example of a more complex setting where our definition is used successfully,
see the commitment protocol from [Unr13] which uses quantum arguments of knowledge
according as per our definition.

Relation to classical proofs of knowledge. Notice that a quantum proof of knowledge
according to our definition is not necessarily a classical PoK because the quantum extractor
might have more computational power. (E.g., in a proof system where the witness is a
factorization, a quantum extractor could just compute this witness himself.) We stress
that this “paradox” is not particular to our definition, it occurs with all simulation-based
definitions (e.g., zero-knowledge [Wat09], universal composability [Unr10]). If needed,
one can avoid this “paradox” by requiring the extractor/simulator to be classical if the
malicious prover/verifier is. (This would actually be equivalent to requiring that the
scheme is both a classical ZK PoK and a quantum one.)
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Amplification. Our toy example shows that QPoKs with negligible knowledge error can
be used to show the security of protocols. But what about QPoKs with non-negligible
knowledge error? In the classical case, we know that the knowledge error of a PoK can
be made exponentially small by sequential repetition. Fortunately, this result carries over
to the quantum case; its proof follows the same lines.

Elementary constructions. In order to understand our constructions of QPoKs, let
us first revisit a common method for constructing classical PoKs. Assume a protocol that
consists of three messages: the commitment (sent by the prover), the challenge (picked
from a set C and sent by the verifier), and the response (sent by prover). Such a protocol
is called a Σ-protocol. Assume that there is an efficient algorithm K0 that computes
a witness given two conversations with the same commitment but different challenges;
this property is called special soundness. Then we can construct the following (classical)
extractor K: KP∗ runs P∗ using a random challenge ch. Then KP∗ rewinds P∗ to the
point after it produced the commitment, and then KP∗ runs P∗ with a random challenge
ch ′. If both executions lead to an accepting conversation, and ch 6= ch ′, K0 can compute
a witness. The probability of getting two accepting conversations can be shown to be
Pr2

V, where PrV is the probability of the verifier accepting P∗’s proof. From this, a simple
calculation shows that the knowledge error of the protocol is 1/#C.

If we translate this approach to the quantum setting, we end up with the following
extractor: K runs one step of P∗, measures the commitment com, provides a random
challenge ch, runs the second step of P∗, measures the response resp, runs the inverse of
the second step of P∗, provides a random challenge ch ′, runs the second step of P∗, and
measures the response resp′. If ch 6= ch ′, and both (com, ch, resp) and (com, ch ′, resp′)
are accepting conversations, then we get a witness using K0. We call this extractor the
canonical extractor. The problem is to bound the probability of getting two accepting
conversations. In the classical setting, one uses that the two conversations are essentially
independent (given a fixed commitment), and each of them is, from the point of view
of P∗, the same as an interaction with the honest verifier V. In the quantum setting,
this is not the case. Measuring resp disturbs the state of P∗; hence we cannot make any
statement about the probability that the second conversation is accepting.

How can we solve this problem? Note that we cannot use Watrous’ oblivious rewinding
since we need to remember both responses resp and resp′ from two different execution
paths of P∗. Instead, we observe that, the more information we measure in the first
conversation (i.e., the longer resp is), the more we disturb the state of P∗ used in the
second conversation. Conversely, if would measure only one bit, the disturbance of P∗’s
state would be small enough to still get a sufficiently high success probability. But if resp
would contain only one bit, it would clearly be too short to be of any use for K0. Yet, it
turns out that this conflict can be resolved: In order not to disturb P∗’s state, we only
need that the response resp information-theoretically contains little information. For
K0, however, even an information-theoretically determined resp is still useful; it might,
for example, reveal some value that P∗ was already committed to. To make use of this
observation, we introduce an additional condition on our proof systems, strict soundness.
A proof system has strict soundness if for any commitment and challenge, there is at
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most one response that makes the conversation accepting. Given a proof system with
special and strict soundness, we can show that measuring resp does not disturb P∗’s
state too much; the canonical extractor is successful with probability approximately Pr3

V.
A precise calculation shows that a proof system with special and strict soundness has
knowledge error 1/

√
#C.

QPoKs for all languages in NP. Blum [Blu86] presents a classical zero-knowledge
PoK for showing the knowledge of a Hamiltonian cycle. Using a suitable commitment
scheme (it should have the property that the opening information is uniquely determined
by the commitment), the proof system is easily seen to have special and strict soundness,
thus it is a QPoK. By sequential repetition, we get a QPoK for Hamiltonian cycles. Using
Watrous’ rewinding technique, we get that the QPoK is also zero-knowledge. Using the
fact that the Hamiltonian cycle problem is NP-complete, we get zero-knowledge QPoKs
for all languages in NP (assuming quantum 1-1 one-way functions).

1.2 Preliminaries

General. A non-negative function µ is called negligible if for all c > 0 and all sufficiently
large k, µ(k) < k−c. A non-negative function µ is called non-negligible if it is not
negligible. E[X] denotes the expected value of X. #C is the cardinality of the set C.
η > 0 always refers to the security parameter, an integer that controls the level of security
of our protocols. The set {0, 1}∗ is the set of all bitstring, and {0, 1}≤` the set of bitstrings
of length at most `.

Quantum systems. We can only give a terse overview over the formalism used in
quantum computing. For a thorough introduction, we recommend the textbook by Nielsen
and Chuang [NC10, Chap. 1–2]. A (pure) state in a quantum system is described by a
unit vector |Φ〉 in some Hilbert space H. We always assume a designated orthonormal
basis for each Hilbert space, called the computational basis. The tensor product of
several states (describing a joint system) is written |Φ〉 ⊗ |Ψ〉. We write 〈Ψ| for the linear
transformation mapping |Φ〉 to the scalar product 〈Ψ|Φ〉. The norm ‖|Φ〉‖ is defined as√
〈Φ|Φ〉. A unit vector is a vector with ‖|Φ〉‖ = 1. The Hermitean transpose of a linear

operator A is written A†. A is called positive if A = A† and 〈Φ|A|Φ〉 ≥ 0 for all |Φ〉. The
operator norm of A is |||A||| := sup|Φ〉‖A|Φ〉‖ with |Φ〉 ranging over unit vectors; we call A
bounded if |||A||| exists.

2 Quantum Proofs of Knowledge

2.1 Definitions

Interactive machines. Intuitively, an interactive quantum machine M (machine, for
short) is a machine that maintains two quantum registers: a register S for the internal
state of M, and a register N for sending and receiving messages (the network register).
Upon each activation, M expects some message in N , and the state of the preceding
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invocation in S. After the activation, S contains the new state of M, and N contains
the message that M sends. A machine M gets as input: a security parameter η, a
classical input x, and a quantum input |Φ〉. For simplicity, we assume that the number of
messages a machine sends and receives is determined by the security parameter and the
classical input. The quantum input is initially stored in S. More formally, a quantum
machine is described by a family of quantum circuits (Mηx)η∈N,x∈{0,1}∗ and a family of

integers (rMηx)η∈N,x∈{0,1}∗ . Mηx determines the unitary operation that is performed on

the quantum registers S and N , and rMηx determines the number of messages. Note that
all our machines perform only unitary operations. This does not, however, constitute a
restriction since a machine with measurements can be transformed into a unitary machine
by a standard purification argument. We call a machine M quantum-polynomial-time if
the circuit Mηx has polynomial size in η + |x|, rMη,x is polynomially-bounded in η + |x|,
and rMη,x and the circuit’s description can be computed in deterministic polynomial time
in η + |x| given η, x.

Execution of interactive machines. Given a pair of machines M and M′, the security
parameter η, a pair of quantum states |Φ〉 and |Φ′〉, and a pair of classical bitstrings
x, x′ ∈ {0, 1}∗, we define the execution 〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 by the following process:2

Initialize quantum registers S, S′, N with |Φ〉, |Φ′〉, |0〉, respectively. Alternatingly, apply
the circuit Mηx to S,N and the circuit M′ηx′ to S′, N . Stop applying Mηx after rMηx
applications and stop applying M′ηx′ after rM

′
ηx′ applications.3 Then measure S′ in the

computational basis. The random variable 〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 denotes the result of
that measurement. In other words, 〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 is the classical output of M′

in an interaction where M is activated first. Often, we will omit the quantum input |Φ〉
or |Φ′〉. In this case, we assume the input |0〉.
Oracle algorithms with rewinding. A quantum oracle algorithm A is an algorithm
that has access to a quantum interactive machine that is given as an oracle. Besides
the security parameter η and its own (classical) input x, the algorithm gets access to an
interactive quantum machine M running on classical input x′ and quantum input |Φ〉. We
allow A to provide messages to and read messages from Mηx′ and to execute the (unitary)
quantum circuit Mηx′ that describes M. Furthermore, A may execute the inverse of
Mηx′ , this corresponds to the classical notion of rewinding the machine M. We also allow
that A is in a superposition between executing Mηx′ and not executing it.4 We will not,
however, allow A to directly access the state of M or to its quantum input. (I.e., A has
no access to the internal state and the quantum input of the prover. Any access to this
information is done by communicating with M.) Formally, a quantum oracle algorithm A
is described by a family of circuits (Aηx)η∈N,x∈{0,1}∗ operating on three quantum registers
SA, N and SM. (SA and SM contain the states of A and M, respectively. N is used for

2Note that we keep the security parameter η implicit in this notation for brevity. The reader should
keep in mind that the behavior of M and M′ depends on η.

3If rMx and rM
′

x′ do not match, it may happen that the circuit of one machine is executed several times
in a row after the other machine already stopped.

4The ability of A to execute Mηx in superposition is not, however, necessary for the results presented
in this work.
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communication between A and M.) The circuit Aηx may contain normal gates (from
some fixed universal set of gates) operating on SA and N (but not SM), as well as two
special gates � and �†. (These represent an application of the oracle given to A.) Both
operate on one qubit of SA (the control qubit) and on the whole of (N,SM). We define
an execution AM(x′,|Φ〉)(x) as follows:5 Initialize SA, N, SM with |0〉, |0〉, |Φ〉. Execute the
circuit Aηx. When the gate � is to be applied on C,N, SM where C is a qubit in SA,
apply the unitary transformation U defined by U(|0〉 ⊗ |ψ〉 ⊗ |ϕ〉) := |0〉 ⊗ |ψ〉 ⊗ |ϕ〉 and
U(|1〉 ⊗ |ψ〉 ⊗ |ϕ〉) := |1〉 ⊗Mηx′(|ψ〉 ⊗ |ϕ〉) where Mηx′ is the unitary transformation
describing one activation of M. (Intuitively, Mηx′ is applied if C contains |1〉.) The gate

�† is treated analogously, except that we use M†ηx′ instead of Mηx′ . Finally, we measure

SA in the computational basis. The random variable AM(x′,|Φ〉)(x) describes the outcome
of that measurement. We call an algorithm A quantum-polynomial-time if the circuit Aηx
has polynomial-size in |x|+ η and its description can be computed in deterministic time
in |x|+ η given η, x.

Proof systems. In the following, we consider relations parametrized by the security
parameter η. That is, a relation in our sense R is actually a family (Rη)η∈N of relations
Rη ⊆ {0, 1}∗×{0, 1}∗. A quantum proof system for a relation R is a pair of two machines
(P,V). We call P the prover and V the verifier. The prover expects a classical input
(x,w) with (x,w) ∈ R, the verifier expects only the input x. We call (P,V) complete iff
there is a negligible function µ such that for all η ∈ N and all (x,w) ∈ R, we have that
Pr[〈P(x,w),V(x)〉 = 1] ≥ 1 − µ(η). (Remember that, if we do not explicitly specify a
quantum input, we assume the quantum input |0〉.) Although we allow P and V to be
quantum machines, and in particular to send and receive quantum messages, we will not
need this property in the following; all protocols constructed in this paper will consist of
classical machines. We call a (P,V) sound with soundness error s iff for all malicious
provers P∗, all η ∈ N, all auxiliary inputs |Φ〉, and all x with @w : (x,w) ∈ R, we have
Pr[〈P∗(x, |Φ〉),V(x)〉 = 1] ≤ s(η).

Quantum Proofs of Knowledge. We can now define quantum proofs of knowledge
(QPoKs). Roughly, a quantum proof system (P,V) is a QPoK iff there is a quantum
oracle algorithm K (the extractor) that achieves the following: Whenever some malicious
prover P∗ convinces V that a certain statement holds, the extractor KP∗ with oracle
access to P∗ is able to return a witness for that statement. Here, we allow a certain
knowledge error κ: if P∗ convinces V with a probability smaller than κ, we do not require
anything. Furthermore, we also do not require that the success probability of KP∗ is as
high as the success probability of P∗; instead, we only require that it is polynomially
related. Finally, to facilitate the use of QPoKs as subprotocols, we give the malicious
prover an auxiliary input |Φ〉. We get the following definition:

Definition 1 (Quantum Proofs of Knowledge) We call a proof system (P,V) for
a relation R quantum extractable with knowledge error κ iff there exists a constant
d > 0, a polynomially-bounded function p > 0, and a quantum-polynomial-time oracle

5Again, the security parameter η is left implicit. The behavior of both A and M may depend on η.
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machine K such that for any interactive quantum machine P∗, any polynomial `, any
security parameter η ∈ N, any state |ψ〉, and any x ∈ {0, 1}≤`(η), we have that

Pr[〈P∗(x, |ψ〉),V(x)〉 = 1] ≥ κ(η) =⇒

Pr[(x,w) ∈ R : w ← KP∗(x,|ψ〉)(x)] ≥ 1
p(η)

(
Pr
[
〈P∗(x, |ψ〉),V(x)〉 = 1

]
− κ(η)

)d
.

A quantum proof of knowledge for R with knowledge error κ (QPoK, for short) is a
complete quantum extractable proof system for R with knowledge error κ.

Note that by quantifying over all unitary provers P∗, we implicitly quantify over all
purifications of all possible non-unitary provers. Note that extractability with knowledge
error κ implies soundness with soundness error κ. We thus do not need to explicitly
require soundness in Definition 1. The knowledge error κ can be made exponentially
small by sequential repetition, see Section 2.3.

2.2 Discussion

In this section, we motivate various design choices made in the definition of QPoKs.

The security parameter. All our definitions include a security parameter η, and the
behavior of all machines, and even the relation R can depend on it. All bounds (e.g.,
the runtimes, the soundness error s(η), the knowledge error κ) also depend on η. In
complexity theory, it is more common not to have an explicit security parameter, but
to let all bounds depend on |x|. E.g., (P,V) is sound with soundness error s iff for all
malicious provers P∗, all auxiliary inputs |Φ〉, and all x with @w : (x,w) ∈ R, we have
Pr[〈P∗(x, |Φ〉),V(x)〉 = 1] ≤ s(|x|). E.g., [Wat09, Unr12] use this convention. This makes
notation simpler, but may necessitate artificial padding, leading to unnatural protocols,
especially if a proof is used as a subprotocol of a larger protocol. We remark that our
definitions also captures the definitions without explicit security parameter if we use
the relation Rη := {(x,w) ∈ R : |x| = η}, and let P(x,w) and V(x) abort (return 0) for
|x| 6= ⊥.

Access to the black-box prover’s state and input. The extractor has no access to
the prover’s state nor to its quantum input. (This is modeled by the fact that an oracle
algorithm may not apply any gates except for �,�† to the register containing the oracle’s
state and quantum input.) In this, we follow [BG93] who argue in Section 4.3 that a
proof of knowledge is supposed to “capture the knowledge of the prover demonstrated by
the interaction” and that thus the extractor is not supposed to see the internal state of
the prover. We stress, however, that our results are independent of this issue; they also
hold if we allow the extractor direct access to the prover’s state.

Unitary & invertible provers – technical view. Probably the most important
design choice in our definition is to require the prover to be a unitary operation, and
to allow the extractor to also execute the inverse of this operation. We begin with a
discussion of this design choice from a technical point of view. First, we stress that
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it seems that these assumptions are necessary: Since in a quantum world, making a
snapshot/copy of a state is not possible or even well-defined, we have to allow the
extractor to run the prover “backwards”. But the inverse of a non-unitary quantum
operation does not, in general, exist. Thus rewinding seems only possible with respect to
unitary provers. Second, the probably most important question is: Does the definition,
from an operational point of view, make sense? That is, does our definition behave well
in cryptographic, reduction-based proofs? A final answer to this question can only be
given when more protocols using QPoKs have been analyzed. The toy protocol discussed
on page 5 gives a first indication that our definition can be used in a similar fashion
to classical proofs of knowledge. Third, we would like to remind the reader that any
non-unitary prover can be transformed into a unitary one by purification before applying
the definition of QPoKs. Thus, allowing only unitary malicious provers does not seem to
be a restriction in practice.

Unitary & invertible provers – “philosophical” view. Intuitively, a QPoK should
guarantee that a prover that convinces the verifier “knows” the witness.6 The basic idea
is that if an extractor can extract the witness using only what is available to the prover,
then the prover “knew” the witness (or could have computed it). In particular, we may
allow the extractor to run a purified (unitary) version of the prover because the prover
himself could have done so. Similarly for the inverse of that operation. Of course, this
leaves the question why we give these two capabilities to the extractor but not others
(e.g., access to the circuit of the prover)? We would like to stress that analogous questions
are still open (from a philosophical point) even in the classical case: Why is it natural
to allow an extractor to rewind the prover? Why is it natural to give a trapdoor for a
common reference string to the extractor? We would like to point out one justification
for the assumption that the prover is unitary, though: [BG93] suggests that we “capture
the knowledge of the prover demonstrated by the interaction”. A prover that performs
non-unitary operations is identical in terms of its interaction to one that is purified. Thus,
by restricting to unitary provers, we come closer to only capturing the interaction but
not the inner workings of the prover.

On the success probability of the extractor. We require the extractor to run in
quantum-polynomial-time and to succeed with probability 1

p(PrV − κ)d where PrV is the
probability that the prover convinces the verifier. This follows [HM98]. An alternative
definition would be to require the prover to run in expected time p/(PrV − κ)d and to
extract a witness with probability 1 (or negligibly to 1). In the classical setting, the
former definition is easily seen to imply the latter: to increase the success probability
to 1, one repeatedly runs the extractor until it succeeds. This multiplies the expected
running time with the inverse success probability, as required.

However, in the quantum setting, this does not seem possible. If the extractor fails
on the first run, we do not have access to the original initial state to run the extractor
again.7 Even for the specific constructions analyzed in Section 3, we do not know how to

6We believe, though, that this issue is secondary to the technical suitability; it is much more important
that a QPoK is useful as a cryptographic subprotocol.

7The oblivious rewinding technique by Watrous [Wat09] would seem to help here, but when trying to
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amplify the success probability of the extractor.
There are applications where our definition is not strong enough and one needs an

extractor that succeeds at least with overwhelming probability. For example, when we use
the proof of knowledge property in the construction of a simulator who needs the witness
to perform his simulation correctly. One such case is the graph non-isomorphism proof
from [GMW91] where the zero-knowledge property of the graph non-isomorphism proof
relies on the proof of knowledge property of the graph isomorphism proof. A similar case
is the GMW-compiler for multi-party computation (as presented in [Gol04, Chapter 7]).

Arguments of knowledge. Definition 1 considers computationally unlimited malicious
provers P. In many situations it is useful to weaken security and to consider only
quantum-polynomial-time provers. This leads to the notion of quantum arguments of
knowledge (a.k.a. quantum computationally sound proofs of knowledge). In this article,
we do not investigate quantum arguments of knowledge. In fact, as shown in [ARU14], the
constructions of proofs of knowledge described here (Section 3) do not directly translate
to quantum arguments of knowledge. They show that relative to a suitable oracle, in the
computational case, the constructions from Section 3 do not even constitute quantum
arguments (and thus in particular not quantum arguments of knowledge).8 However, for
completeness, we state the definition of quantum arguments of knowledge here:

Definition 2 (Quantum Argument of Knowledge) We call a proof system (P,V)
for a relation R quantum-computationally extractable with knowledge error κ iff there
exists a constant d > 0, a polynomially-bounded function p > 0, and a quantum-polynomial-
time oracle machine K such that for any quantum-polynomial-time machine P∗ and any
polynomial `, there exists a negligible function µ, such that any security parameter η ∈ N,
any state |ψ〉, and any x ∈ {0, 1}≤`(η), we have that

Pr[〈P∗(x, |ψ〉),V(x)〉 = 1] ≥ κ(η) =⇒

Pr[(x,w) ∈ R : w ← KP∗(x,|ψ〉)(x)] ≥ 1
p(η)

(
Pr
[
〈P∗(x, |ψ〉),V(x)〉 = 1

]
− κ(η)

)d
− µ(η).

A quantum argument of knowledge for R with knowledge error κ is a complete quantum-
computationally extractable proof system for R with knowledge error κ.

Note that in comparison to Definition 1, we added an additional negligible error µ that
may depend on the malicious prover P∗. This is because κ is not allowed to depend on
the choice of P∗, but there usually is a negligible attack probability µ that depends on
P∗ (e.g., µ = 2−ηT where T is the runtime of P∗).

Unruh [Unr15] generalizes our technique using“collapse-binding”commitments instead
of “strict binding” commitments to construct quantum arguments of knowledge.

apply that technique one gets the requirement that the invoked extractors’ success probability must be
independent of the auxiliary input. This condition is not necessarily fulfilled.

8More precisely (using language from Section 3): A Σ-protocol that has quantum-computational
special soundness and quantum-computational strict soundness is not necessarily a quantum argument.
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2.3 Amplification

In some cases, elementary constructions only yield QPoKs with constant knowledge
error κ. Yet, in most cases we need QPoKs with negligible knowledge error. One
possibility to construct these is to sequentially iterate a QPoK with constant knowledge
error, the knowledge error of the resulting QPoK then becomes exponentially small. This
result is well-known in the classical case [BG93]; the proof in the quantum case follows
the same lines.

Theorem 3 Let n = n(η) be a polynomially bounded and efficiently computable function.
Let (P,V) be extractable with knowledge error κ. Let (P′,V′) be the proof system consisting
of n sequential executions of (P,V). Then (P′,V′) is extractable with knowledge error κn.

Proof. We write short n, κ, p for n(η), κ(η), p(η). We call (P,V) the atomic proof and
(P′,V′) the composed proof. Fix a malicious prover P∗ (that is supposed to interact
with V ′), a security parameter η, a statement x, and an auxiliary input |Φ〉 for P∗. In
the execution of the composed proof with prover P∗, we call each execution of the atomic
proof a round. Without loss of generality, we can assume that P∗ consists of n sequentially
executed provers P∗i such that P∗i executes the i-th round of the composed proof. For i ≥ 2,
P∗i expects as quantum input the state that was output by P∗i−1. Let K be the knowledge
extractor for the atomic proof. We construct a knowledge extractor K′ for the composed
proof as follows: First, K′ picks a random i ∈ {1, . . . , n}. Then K′ internally simulates
the first i− 1 rounds of the composed proof (with provers P∗1, . . . ,P

∗
i−1). Let |Φ′〉 denote

the state output by P∗i−1. (And |Φ′〉 := |Φ〉 if i = 1.) Then K′ runs w ← KP∗i (x,|Φ′〉)(x)
and outputs w.9

For the remainder of the proof, fix the security parameter η. We use the following
notation: ai is the probability that the first i rounds of the composed proof succeed (with
prover P∗). We stress that ai−1 is also the probability that in an execution of K′, the
internal simulation of the first i− 1 rounds succeeds. Let ci denote the probability that
the i-th round of the composed proof succeeds, conditioned on the event that the first
i− 1 rounds succeed. We have a0 = 1 and ai = ciai−1 for i = 1, . . . , n.

Let PrV′ denote the probability that the composed proof succeeds, and let PrK′

denote the probability that K′ succeeds (i.e., returns a valid witness). Fix some i. Let

Pr
(i)
K′ denote the probability that K′ succeeds, conditioned on the fact that K′ chooses

that i. Then, by construction of K′, we have that PrK′ =
∑n

i=1
1
n Pr

(i)
K′ ≥ maxi

1
n Pr

(i)
K′ .

We will show that there exists an i (dependent on P∗, |Φ〉, η, and x), as well as a
polynomially-bounded p > 0 and an integer d > 0 (independent of i, P∗, |Φ〉, η, and x)

such that Pr
(i)
K′ ≥

1
p(PrV′ −κn)d if PrV′ ≥ κn. This implies that PrK′ ≥ 1

pn(PrV′ −κn)d.

Thus (P′,V′) has knowledge error κn.

We proceed to bound Pr
(i)
K′ in terms of ai−1 and ci. Let |Φ′〉 be the output state

of P∗i−1 in the event that the first i − 1 rounds of the composed proof succeed. Let

9Note that K as defined and analyzed here is not a unitary algorithm, but instead performs random
choices and measurement. Since any such K can be converted into a unitary one by purification, we can
use a non-unitary K without loss of generality.
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Pr
(i)
K (|Φ′〉) denote the probability that KP∗(x,|Φ′〉)(x) succeeds (outputs a witness), and

Pr
(i)
V (|Φ′〉) the probability that the atomic proof with prover P∗ and auxiliary input |Φ′〉

succeeds. Then the probability that K′ succeeds, conditioned on the event that the first

i− 1 rounds succeed, is Pr
(i)
K (|Φ′〉). Hence Pr

(i)
K′ = ai−1 Pr

(i)
K (|Φ′〉). Since the atomic proof

has knowledge error κ, there are a polynomially-bounded p > 0 and an integer d > 0

such that Pr
(i)
K (|Φ′〉) ≥ 1

p

(
Pr

(i)
V (|Φ′〉)− κ

)d
for all |Φ′〉. Without loss of generality, we can

pick d ≥ 1. We stress that p and d are independent of i, P∗, |Φ〉, η, and x. It follows that

Pr
(i)
K′ = ai−1 Pr

(i)
K (|Φ′〉) ≥ ai−1

1
p

(
Pr

(i)
V (|Φ′〉)− κ

)d
= ai−1

1
p

(
ci − κ

)d
.

Summarizing, at this point we know that PrK′ ≥ maxi
1
n Pr

(i)
K′ ≥ maxi

ai−1

pn

(
ci − κ

)d
, that

ai = ciai−1 for all i, and that PrV′ = an.
Let δ := PrV′ −κn. Assume that δ > 0 and κ ≤ 1, otherwise nothing needs to be

shown. Since a0 ≤ 1 = κ0 + 0δ
n and an ≥ PrV′ = κn + nδ

n , we have that for some

i ∈ {1, . . . , n}, ai−1 ≤ κi−1 + (i−1)δ
n and ai ≥ κi + iδ

n . For that i, we have

ai−1(ci − κ) = ai − ai−1κ ≥ (κi + iδ
n )− (κi + (i−1)δκ

n )
(κ≤1)

≥ (κi + iδ
n )− (κi + (i−1)δ

n ) = δ
n

and hence

PrK′ ≥ max
i

ai−1

pn

(
ci − κ

)d (d≥1)

≥ max
i

1

pn
adi−1

(
ci − κ

)d ≥ 1

pn
( δn)d =

1

pnd+1
(PrV′ −κn)d.

Since pnd+1 is polynomially-bounded in η, it follows that the composed proof (P′,V′) has
knowledge error κn. �

Parallel amplification. We have no results whether the knowledge error of quantum
proofs of knowledge decreases in general under parallel composition. (This is not even clear
in the classical case.) However, the knowledge error in the constructions from Section 3
decreases exponentially under parallel composition. This is because the assumptions for
the construction (special soundness and strict soundness) are easily seen to be preserved
under parallel composition, and the size of the challenge space increases exponentially.
Unfortunately, the zero-knowledge property is not preserved under parallel composition.
Still, parallel composition can be useful if only witness indistinguishability is required.

In particular, this implies (using the constructions from Section 5 below) that quantum-
computationally witness indistinguishable three-round QPoK with negligible knowledge
error exist.

3 Elementary constructions

In this section, we show that under certain conditions, a classical PoK is also a QPoK
(i.e., secure against malicious quantum provers). The first condition refers to the outer
form of the protocol; we require that the proof systems is a protocol with three messages
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(commitment, challenge, and response) with a public-coin verifier. Such protocols are
called Σ-protocols. Furthermore, we require that the proof system has special soundness.
This means that given two accepting conversations between prover and verifier that have
the same commitment but different challenges, we can efficiently compute a witness.
Σ-protocols with special soundness are well-studied in the classical case; many efficient
classical protocols with these properties exist. The third condition (strict soundness) is
non-standard. We require that given the commitment and the challenge of a conversation,
there is at most one response that would make the verifier accept. We require strict
soundness to ensure that the response given by the prover does not contain too much
information; measuring it will then not disturb the state of the prover too much. Not
all known protocols have strict soundness (the proof for graph isomorphism [GMW91] is
an example). Fortunately, many protocols can be modified to satisfy strict soundness; a
slight variation of the proof for Hamiltonian cycles [Blu86] is an example (see Section 5).

Definition 4 (Σ-protocol) A proof system (P,V) is called a Σ-protocol iff P and V
are classical, the interaction consists of three messages com, ch, resp (sent by P, V, and
P, respectively, and called commitment, challenge, and response), and ch is uniformly
chosen from some set Cηx (the challenge space) that may only depend on the statement x
and the security parameter η. Furthermore, the verifier decides whether to accept or not by
a deterministic polynomial-time computation on x, com, ch, resp. (We call (com, ch, resp)
an accepting conversation for x if the verifier would accept it.) We also require that it is
possible in probabilistic polynomial time to sample uniformly from Cηx up to negligible
error,10 and that membership in Cηx should be decidable given η, x in deterministic
polynomial time in η + |x|.

Definition 5 (Special soundness) We say a Σ-protocol (P,V) for a relation R has
special soundness iff there is a deterministic polynomial-time algorithm K0 (the spe-
cial extractor) such that the following holds: For any two accepting conversations
(com, ch, resp) and (com, ch ′, resp′) for x such that ch 6= ch ′ and ch, ch ′ ∈ Cηx, we
have that w := K0(x, com, ch, resp, ch ′, resp′) satisfies (x,w) ∈ R.

Definition 6 (Strict soundness) We say a Σ-protocol (P,V) has strict soundness iff
for any two accepting conversations (com, ch, resp) and (com, ch, resp′) for x, we have
that resp = resp′.

Canonical extractor. Let (P,V) be a Σ-protocol with special soundness and strict
soundness. Let K0 be the special extractor for that protocol. We define the canonical
extractor K for (P,V). K will use measurements, even though our definition of quantum

10That is, there should be a probabilistic Turing machine M that runs in polynomial time in |x|+ η
such hat the output of M(η, x) has negligible (in η) statistical distance from the uniform distribution on
Cηx.

We allow negligible error since otherwise it is not even possible to sample from, say, Cηx. See [KSU13]
for more discussion of this issue.
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oracle algorithms only allows for unitary operations. This is only for the sake of presenta-
tion; by purifying K one can derive a unitary algorithm with the same properties. Given
a malicious prover P∗, KP∗(x,|Φ〉)(x) operates on two quantum registers N,SP∗ . N is used
for communication with P∗, and SP∗ is used for the state of P∗. As described in the
definition of quantum oracle machines, the registers N,SP∗ are initialized with |0〉, |Φ〉.
Let P∗ηx denote the unitary transformation describing a single activation of P∗. First, K
applies P∗ηx to N,SP∗ . (This can be done using the special gate �.) This corresponds to
running the first step of P∗; in particular, N should now contain the commitment. Then
K measures N in the computational basis; call the result com. Then K initializes N with
|0〉. Then K chooses uniformly random values ch, ch ′ ∈ Cηx. Let Uch denote the unitary
transformation operating on N such that Uch |x〉 = |x⊕ ch〉. (Here ⊕ denotes the bitwise
XOR of bitstrings.) Then K applies P∗ηxUch . (Now N is expected to contain the response
for challenge ch.) Then K measures N in the computational basis; call the result resp.
Then K applies (P∗ηxUch)† (we “rewind” the prover). Then P∗ηxUch ′ is applied.11 (Now
N is expected to contain the response for challenge ch ′.) Then N is measured in the
computational basis; call the result resp′. Then (P∗ηxUch ′)

† is applied. Finally, K outputs
w := K0(x, com, ch, resp, ch ′, resp′).

Analysis of the canonical extractor. In order to analyze the canonical extractor
(Theorem 9 below), we first need a lemma that bounds the probability that two consecutive
binary measurements Pch and Pch ′ with random ch 6= ch ′ succeed in terms of the
probability that a single such measurement succeeds. In a classical setting, the answer is
simple: the outcomes of the measurements are independent; thus the probability that two
measurements succeed is the square of the probability that a single measurement succeeds.
(And similar reasoning applies in the quantum case if the measurements commute.) In
the general quantum case, however, the first measurement may disturb the state; this
makes the analysis considerably more involved. We first prove some inequalities needed
in the proof:

Lemma 7 Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors on a
Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑
i∈C

1
c‖Pi|Φ〉‖

2 and F :=∑
i,j∈C

1
c2
‖PiPj |Φ〉‖2. Then F ≥ V 3.

Proof. To prove the lemma, we first show two simple facts:

Claim 1 For any positive operator A on H and any unit vector |Φ〉 ∈ H, we have that
(〈Φ|A|Φ〉)3 ≤ 〈Φ|A3|Φ〉.

Since A is positive, it is diagonalizable. Thus we can assume without loss of generality
that A is diagonal (by applying a suitable basis transform to A and |Φ〉). Let ai be the
i-th diagonal element of A, and let fi be the i-th component of |Φ〉. Then

(〈Φ|A|Φ〉)3 =
(∑

i

|fi|2ai
)3 (∗)
≤
∑
i

|fi|2a3
i = 〈Φ|A3|Φ〉.

11This step has no effect on the observable behavior of K, but it makes the analysis of K more pleasant.
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Here (∗) uses Jensen’s inequality [Jen06] and the facts that ai ≥ 0, and that ai 7→ a3
i is a

convex function on nonnegative numbers, and that
∑

i|fi|2 = 1. This concludes the proof
of Claim 1.

Claim 2 For vectors |Ψ1〉, . . . , |Ψc〉 ∈ H, it holds that
∥∥1
c

∑
i|Ψi〉

∥∥2 ≤ 1
c

∑
i

∥∥|Ψi〉
∥∥2

.

To show the claim, let |Ψ̄〉 :=
∑

i
1
c |Ψi〉. Then∑

i

(∥∥|Ψi〉
∥∥2 −

∥∥|Ψ̄〉∥∥2
)

=
∑
i

(∥∥|Ψi〉
∥∥− ∥∥|Ψ̄〉∥∥)(∥∥|Ψi〉

∥∥− ∥∥|Ψ̄〉∥∥+ 2
∥∥|Ψ̄〉∥∥)

=
∑
i

(∥∥|Ψi〉
∥∥− ∥∥|Ψ̄〉∥∥)2

+ 2
∥∥|Ψ̄〉∥∥∑

i

(∥∥|Ψi〉
∥∥− ∥∥|Ψ̄〉∥∥)

≥ 2
∥∥|Ψ̄〉∥∥∑

i

(∥∥|Ψi〉
∥∥− ∥∥|Ψ̄〉∥∥) = 2

∥∥|Ψ̄〉∥∥(∑
i

∥∥|Ψi〉
∥∥− ∥∥c|Ψ̄〉∥∥)

= 2
∥∥|Ψ̄〉∥∥(∑

i

∥∥|Ψi〉
∥∥− ∥∥∥∑

i

|Ψi〉
∥∥∥) (1)

From the triangle inequality, it follows that
∑

i‖|Ψi〉‖ ≥ ‖
∑

i|Ψi〉‖, hence with (1), we have∑
i

(
‖|Ψi〉‖2−‖|Ψ̄〉‖2

)
≥ 0. Then 1

c

∑
i‖|Ψi〉‖2−‖1

c

∑
i|Ψi〉‖2 = 1

c

∑
i

(
‖|Ψi〉‖2−‖|Ψ̄〉‖2

)
≥

0. Claim 2 follows.
We proceed to prove Lemma 7. Let A :=

∑
i

1
cPi, let |Ψij〉 := PjPi|Φ〉. Then A is

positive. Furthermore,

V 3 =
(∑

i

1
c 〈Φ|Pi|Φ〉

)3
=
(
〈Φ|A|Φ〉

)3 (∗)
≤ 〈Φ|A3|Φ〉 =

∑
i,j,k

1
c3
〈Φ|PiPjPk|Φ〉

=
∑
i,j,k

1
c3
〈Ψij |Ψkj〉 =

∑
j

1
c

(∑
i

1
c 〈Ψij |

)(∑
k

1
c |Ψkj〉

)
=
∑
j

1
c

∥∥∥∑
i

1
c |Ψij〉

∥∥∥2

(∗∗)
≤
∑
j

1
c

∑
i

1
c

∥∥|Ψij〉
∥∥2

= F.

Here (∗) uses Claim 1 and (∗∗) uses Claim 2. Thus we have F ≥ V 3 and Lemma 7
follows.

Lemma 8 Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors on a
Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑
i∈C

1
c‖Pi|Φ〉‖

2 and E :=∑
i,j∈C,i6=j

1
c2
‖PiPj |Φ〉‖2. Then, if V ≥ 1√

c
, we have E ≥ V (V 2 − 1

c ).

Proof. Let F be as in Lemma 7. Then

E =
∑
i,j∈C
i 6=j

1
c2

∥∥PiPj |Φ〉∥∥2
=
∑
i,j∈C

1
c2

∥∥PiPj |Φ〉∥∥2 −
∑
i∈C

1
c2

∥∥PiPi|Φ〉∥∥2

(∗)
=
∑
i,j∈C

1
c2

∥∥PiPj |Φ〉∥∥2 −
∑
i∈C

1
c2

∥∥Pi|Φ〉∥∥2
= F − V

c

(∗∗)
≥ V 3 − V

c = V (V 2 − 1
c ).
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Here (∗) uses that Pi = PiPi since Pi is a projection, and (∗∗) uses Lemma 7. �

Theorem 9 Let (P,V) be a Σ-protocol for a relation R with challenge space Cηx. Fix
a function c such that for all η ∈ N, x ∈ {0, 1}∗ we have #Cηx ≥ c(η). Assume that
(P,V) has special soundness and strict soundness. Then (P,V) is quantum extractable
with knowledge error 1/

√
c.

Proof. To show that (P,V) is extractable, we will use the canonical extractor K. Fix
a malicious prover P∗, a statement x, and an auxiliary input |Φ〉. Let PrV denote
the probability that the verifier accepts when interacting with P∗. Let PrK denote
the probability that KP∗(x,|Φ〉)(x) outputs some w with (x,w) ∈ R. We will show that
PrK ≥ PrV · (Pr2

V − 1
#Cηx

) for PrV ≥ 1√
#Cηx

. Hence for PrV ≥ 1√
c(η)
≥ 1√

#Cηx
, we have

that

PrV(PrV
2− 1

#Cηx
) ≥ PrV(PrV

2− 1
c(η)) = PrV

(
PrV+ 1√

c(η)

)(
PrV− 1√

c(η)

)
≥
(
PrV− 1√

c(η)

)3
.

Since furthermore K is quantum-polynomial-time, this implies that (P,V) is extractable
with knowledge error 1/

√
c.

In order to show PrK ≥ PrV ·(Pr2
V− 1

#Cηx
), we will use a short sequence of games. Each

game will contain an event Succ, and in the first game, we will have Pr[Succ : Game 1] =
PrK. For any two consecutive games, we will have Pr[Succ : Game i] ≥ Pr[Succ :
Game i+ 1], and for the final game, we will have Pr[Succ : Game 7] ≥ PrV · (Pr2

V− 1
#Cηx

).
This will then conclude the proof. The description of each game will only contain the
changes with respect to the preceding game.

Game 1. An execution of KP∗(x,|Φ〉)(x). Succ denotes the event that K outputs a valid
witness for x. By definition, PrK = Pr[Succ : Game 1].

Game 2. Succ denotes the event that (com, ch, resp) and (com, ch ′, resp′) are accepting
conversations for x and ch 6= ch ′. (The variables (com, ch, resp) and (com, ch ′, resp′) are
as in the definition of the canonical extractor.) Since (P,V) has special soundness, if Succ
occurs, K outputs a valid witness. Thus Pr[Succ : Game 1] ≥ Pr[Succ : Game 2].

Game 3. Before K measures resp, it first measures whether measuring resp would yield
an accepting conversation. More precisely, it measures N with the orthogonal projector
Pch projecting onto Vch := span{|resp〉 : (com, ch, resp) is accepting}. Analogously for
the measurement of resp′ (using the projector Pch ′ .) Since a complete measurement (of
resp and resp′, respectively) is performed on N after applying the measurement Pch

and Pch ′ , introducing the additional measurements does not change the outcomes resp
and resp′ of these complete measurements, nor their post-measurement state. Thus
Pr[Succ : Game 2] = Pr[Succ : Game 3].

Game 4. Succ denotes the event that ch 6= ch ′ and both measurements Pch and
Pch ′ succeed. By definition of these measurements, this happens iff (com, ch, resp) and
(com, ch ′, resp′) are accepting conversations and ch 6= ch ′. Thus Pr[Succ : Game 3] =
Pr[Succ : Game 4].
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Game 5. We do not execute K0, i.e., we stop after applying (P∗ηxUch ′)
†. Since at that

point, Succ has already been determined, Pr[Succ : Game 4] = Pr[Succ : Game 5].

Game 6. We remove the measurements of resp and resp′. Note that the outcomes of
these measurements are not used any more. Since (P,V) has strict soundness, Vch =
span{|resp0 〉} for a single value resp0 (depending on com and ch, of course). Thus if the
measurement Pch succeeds, the post-measurement state in N is |resp0〉. That is, the state
in N is classical at this point. Thus, measuring N in the computational basis does not
change the state. Hence, the measurement of resp does not change the state. Analogously
for the measurement of resp′. It follows that Pr[Succ : Game 5] = Pr[Succ : Game 6].

Game 7. First, N and SP∗ are initialized with |0〉 and |Φ〉. Then the unitary transfor-
mation P∗ηx is applied. Then com is measured (complete measurement on N), and N
is initialized to |0〉. Random ch, ch ′ ∈ Cηx are chosen. Then P∗ηxUch is applied. Then

the measurement Pch is performed. Then (P∗ηxUch)† is applied. Then P∗ηxUch ′ is applied.

Then the measurement Pch ′ is performed. Then (P∗ηxUch ′)
† is applied. The event Succ

holds if ch 6= ch ′ and both measurements succeed. Games 6 and 7 are identical; we have
just recapitulated the game for clarity. Thus, Pr[Succ : Game 6] = Pr[Succ : Game 7].

In Game 7, for some value d , let pd denote the probability that com = d is measured.
Let |Φd〉 denote the state of N,SP∗ after measuring com = d and initializing N with
|0〉. (I.e., the state directly before applying P∗ηxUch .) Let Kd denote the probability that
starting from state |Φd〉, both measurements Pch and Pch ′ succeed and ch 6= ch ′. Then
we have that Pr[Succ : Game 7] =

∑
d pdKd and

Kd =
∑

ch,ch ′∈Cηx
ch 6=ch ′

1

#Cηx
2

∥∥(P∗ηxUch ′)
†Pch ′(P

∗
ηxUch ′)(P

∗
ηxUch)†Pch(P∗ηxUch)|Φd〉

∥∥2

=
∑

ch,ch ′∈Cηx
ch 6=ch ′

1

#Cηx
2

∥∥P ∗ch ′P ∗ch |Φd〉
∥∥2

where P ∗ch := (P∗ηxUch)†Pch(P∗ηxUch). Since Pch is an orthogonal projector and

P∗ηxUch is unitary, P ∗ch is an orthogonal projector. Let ϕ(v) := v(v2 − 1
#Cηx

) for

v ∈
[

1√
#Cηx

, 1
]

and ϕ(v) := 0 for v ∈ [0, 1√
#Cηx

]. Then, by Lemma 8, Kd ≥ ϕ(Vd)

for Vd :=
∑

ch∈Cηx
1

#Cηx
‖P ∗ch |Φd〉‖2.

Furthermore, by construction of the honest verifier V, we have that

PrV =
∑
d

pd
∑

ch∈Cηx

1
#Cηx

∥∥PchP
∗
ηxUch |Φd〉

∥∥2

(∗)
=
∑
d

pd
∑

ch∈Cηx

1
#Cηx

∥∥(P∗ηxUch)†Pch(P∗ηxUch)|Φd〉
∥∥2

=
∑
d

pdVd.

where (∗) uses that (P∗ηxUch)† is unitary. Finally, we have

PrK = Pr[Succ : Game 1] ≥ Pr[Succ : Game 7] =
∑
d

pdKd ≥
∑
d

pdϕ(Vd)
(∗)
≥ ϕ(PrV).
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Here (∗) uses Jensen’s inequality [Jen06] and the fact that ϕ is convex on [0, 1]. As
discussed in the beginning of the proof, PrK ≥ ϕ(PrV) = PrV · (Pr2

V − 1
#Cηx

) for PrV ≥
1√

#Cηx
implies that (P,V) is a QPoK with knowledge error 1/

√
c. �

Arguments of knowledge. On might be tempted to think that the results from this
section carry over directly to the computational case. That is, if a Σ-protocol has
computational special soundness and computational strict soundness,12 then it is an
argument of knowledge. Unfortunately, this is not true. In the proof of Theorem 9, in
the transition from Game 5 to Game 6, we used that a measurement of resp will not
disturb the state. This was the case because strict soundness implied that there exists
only one such resp. However, if we only use computational strict soundness, the register
might contain several different resp in superposition. (Computational strict soundness
merely implies that we cannot simultaneously find two of those resp.) Hence measuring
resp could disturb the state.

In fact, [ARU14] shows that, relative to some oracle, this indeed happens. More
precisely, a proof system with special soundness and computational strict soundness exists
that is not a quantum argument of knowledge. And a proof system with computational
special soundness and computational strict soundness exists that is not even a quantum
argument. This excludes, at the very least, any relativizing proof of our results in the
computational case. Most likely, the requirements will need to be strengthened.

3.1 On using existing bounds from the literature

A rewinding technique similar to ours has occurred in [CSST11] in the context of a
specific two-prover commitment-scheme. Their proof is specific to the case where there
are only two possible measurements (i.e., #C = 2 in our language). However, in that
specific case, their calculations allow us to derive a better bound also for our setting.

The following lemma is implicitly proven in [CSST11] in the proof of their Lemma 1:

Lemma 10 (Rewinding of mBQKW commitment [CSST11]) Consider two pro-

jectors P0 and P1 of the form Pi = U †i (|ŵi〉〈ŵi| ⊗ I)Ui. (Here U0, U1 are unitaries, and
ŵ0, ŵ1 ∈ {0, 1}n for some n.) Consider a state |ψ〉. Let pi := ‖Pi|ψ〉‖2. (That is, pi
is the probability of measuring ŵi in the first register after applying Ui to |ψ〉.) Let
p⊕ := ‖P1P0|ψ〉‖2. (That is, p⊕ is the probability of measuring ŵ0 after applying U0 to

|ψ〉 and subsequently measuring ŵ1 after applying U1U
†
0 .)

Assume that p0 + p1 ≥ 1 + ε for some ε ≥ 0. Then p⊕ ≥ ε2/4.

We can restate this in a form analogous to Lemma 8:

12Computational special soundness means that it is computationally hard to find a tuple
(x, com, ch, resp, ch ′, resp′) with ch 6= ch ′ such that K0 does not output a valid witness. Computational
strict soundness means that it is computationally hard to find accepting conversations (com, ch, resp)
and (com, ch, resp′) with resp 6= resp′. For precise definitions see [ARU14].
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Lemma 11 Let C = {0, 1}. Let P0, P1 be projectors as in Lemma 10. Let |Φ〉 be a unit
vector. Let V :=

∑
i=0,1

1
2‖Pi|Φ〉‖

2 and E := ‖P1P0|Φ〉‖2. Then, if V ≥ 1
2 , we have

E ≥ (V − 1
2)2.

Proof. Let ε := 2V − 1 and observe that p0 + p1 = 2V = 1 + ε and E = p⊕ ≥ ε2/4. �

We can use this lemma to show a variant of Theorem 9 for #C = 2 with knowledge
error 1

2 (and not 1√
2

as in Theorem 9).

Corollary 12 Let (P,V) be a Σ-protocol for a relation R with challenge space Cηx.
Assume #Cηx = 2 for all η, x. Assume that (P,V) has special soundness and strict
soundness. Then (P,V) is extractable with knowledge error 1/2.

Proof. Without loss of generality, we can assume that Cηx = {0, 1}. Instead of using the
canonical extractor, we use the extractor K that always chooses ch = 0, ch ′ = 1 (instead
of randomly from {0, 1}).13 Besides that, K behaves like the canonical extractor.

Almost identically as in Theorem 9, we get Kd = ‖P ∗1P ∗0 |Φd〉‖2 (instead of Kd =∑
ch,ch ′∈Cηx

ch 6=ch ′

1
#Cηx

2 ‖P ∗ch ′P ∗ch |Φd〉‖2). Let ϕ(v) := (v− 1
2)2 for v ≥ 1

2 and ϕ(v) := 0 for v < 1
2 .

By Lemma 11, we get Kd ≥ ϕ(Vd) for Vd :=
∑

ch=0,1
1
2‖P

∗
i |Φ〉‖2.

Note: Lemma 11 applies only to projectors of the special form from Lemma 10.
However, the projectors P ∗0 , P

∗
1 are of that form since Pch is a rank-1 projector on the

register N (by strict soundness), and P ∗ch = (P∗ηxUch)†Pch(P∗ηxUch).
Finally, by convexity of ϕ and Jensen’s inequality, we get as in Theorem 9:

PrK =
∑
d

pdKd ≥
∑
d

pdϕ(Vd) ≥ ϕ
(∑

d

pdVd

)
= ϕ(PrV).

Hence PrK ≥ (PrV − 1
2)2 if PrV ≥ 1

2 . Thus (P,V) is extractable with knowledge error 1/2.
�

Other bounds in the literature that bound the disturbance of a state after a measure-
ment are the “Almost As Good As New Lemma” [Aar05, Lemma 2.2] and the “Tender
Measurement Lemma” [Win99, Lemma 1.5]. However, we did not get better bounds
using those lemmas.

And in the case #C = c � 2, all of [CSST11, Aar05, Win99] seem only to give
bounds where the knowledge error does not decrease much with increasing c.

4 Zero knowledge

In the preceding sections, we have studied the question what quantum proofs of knowledge
are, and when a Σ-protocol is a quantum proof of knowledge. However, a protocol that is
just a proof of knowledge is not very useful, one usually additionally requires the protocol

13We could also use the canonical extractor here, but that would yield only half the success probability
because we have ch = ch ′ with probability 1

2
. The knowledge error would not be affected by this, however.
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to be zero-knowledge. In this section, we study the zero-knowledge property. Basically,
we somewhat generalize the result from [Wat09]. The rewinding technique we use in this
section is the one from [Wat09]. The difference to [Wat09] is that [Wat09] applies the
technique to selected examples while we make the requirements explicit that a Σ-protocol
needs to have. (In addition, we present the reasoning in more detail, leaving out less of
the computations. See in particular Footnote 15 below.)

The property that we will require from a Σ-protocol is honest-verifier zero-knowledge
(HVZK), which is fully analogous to the classical definition:

Definition 13 (Honest-verifier zero-knowledge (HVZK)) We call Σ-protocol
(P,V) honest-verifier zero-knowledge (HVZK) iff there is a quantum-polynomial-time
algorithm SΣ (the simulator) such that the transcript of the interaction 〈P(x,w),V(x)〉 is
quantum computationally indistinguishable from the output of SΣ(x). More precisely,
we require that there exists a quantum-polynomial-time SΣ such that for any quantum-
polynomial-time algorithm DΣ (the distinguisher) and any polynomial `, there is a
negligible µ such that for all (x,w) ∈ R with |x|, |w| ≤ `(η), and for all states |Ψ〉:∣∣Pr[b = 1 : (com, ch, resp)← 〈P(x,w),V(x)〉, b← DΣ(|Ψ〉, com, ch, resp)]

−Pr[b = 1 : (com, ch, resp)← SΣ(x), b← DΣ(|Ψ〉, com, ch, resp)]
∣∣ ≤ µ(η)

Here (com, ch, resp)← 〈P(x,w),V(x)〉 means that com, ch, resp are the messages sent in
an interaction between P and V.

Note that we allow SΣ to be quantum here. The resulting notion is sufficient for
our purposes because it implies quantum computational zero-knowledge (see below).
Alternatively, one can strengthen the definition by requiring SΣ to be classical. Then
HVZK will also imply classical zero-knowledge. For the purposes of this work, it does
not matter which definition is chosen.

We also consider a statistical variant of HVZK:

Definition 14 (Statistical honest-verifier zero-knowledge (SHVZK)) We call
Σ-protocol (P,V) statistical honest-verifier zero-knowledge (SHVZK) iff there
is a quantum-polynomial-time algorithm SΣ (the simulator) such that the transcript of
the interaction 〈P(x,w),V(x)〉 is statistically indistinguishable from the output of SΣ(x).
That is, the definition is like Definition 13, except that we quantify over all (possibly
unlimited) DΣ.

We can now state the definition of quantum computational zero-knowledge:

Definition 15 (Quantum computational zero-knowledge) An interactive proof
system (P,V) for relation R is quantum computational zero-knowledge iff for every
quantum-polynomial-time algorithm (verifier) V∗ there is a quantum-polynomial-time
algorithm (simulator) S such that for any quantum-polynomial-time D (distinguisher) and
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any polynomial ` there is a negligible µ such that for any (x,w) ∈ R with |x|, |w| ≤ `(η),
and for any quantum state |Ψ〉, we have:∣∣∣Pr[b = 1 : ZE ← |Ψ〉, 〈P(x,w),V∗(Z)〉, b← D(Z,E)]

−Pr[b = 1 : ZE ← |Ψ〉, S(x, Z), b← D(Z,E)]
∣∣∣ ≤ µ(η).

Here ZE ← |Ψ〉 denotes that the quantum registers Z,E are initialized jointly with
state |Ψ〉. And 〈P(x,w),V∗(Z)〉 denotes an interaction between prover P and verifier V∗

where V∗ gets access to the quantum register Z. Note that after that execution V∗ may
have changed the state of Z. S(x, Z) also gets access to and may change Z.

There is one important modifications in this definition with respect to the one from
[Wat09]: We give the honest prover access to the witness P while in [Wat09] the honest
prover is required to find the witness himself (i.e., in [Wat09] we cannot have efficient
honest provers except for trivial languages).

We again have a statistical variant:

Definition 16 (Quantum statistical zero-knowledge) Like quantum statistical
zero-knowledge, except that we quantify over all (possibly unlimited) distinguishers D.

The following corollary is a reformulation of Watrous’ quantum rewinding tech-
nique [Wat09].

Corollary 17 (Quantum Rewinding Lemma with small perturbations) Let C,
Z,E, Y be quantum registers, where C is one qubit. Let S1 be a unitary operation operating
on C,Z, Y . Let M be a measurement in the computational basis on register C.

For a quantum state |Ψ〉, let p(|Ψ〉) := Pr[succ = 1 : S1(CZY ), succ ←M(C)] where
Z,E are jointly initialized with |Ψ〉 and Y,C are initialized with |0〉. In the same situation,
let the density operator ρ1

Ψ denote the state of ZE in the case of succ = 1.
Let ε ∈ (0, 1/2). Let q ∈ (ε, 1/2]. Assume that for all |Ψ〉, |p(|Ψ〉)− q| ≤ ε.
Then there is a quantum circuit S operating on Z of size O

( log(1/ε)size(S1)
(q−ε)(1−q+ε)

)
. (S is a

general quantum circuit, that it, S may create auxiliary qubits, destroy them, and perform
measurements.) The description of S can be computed in time O

( log(1/ε)size(S1)
(q−ε)(1−q+ε)

)
given

the description of S1. And for any |Ψ〉,

TD(ρ1
Ψ, ρ

2
Ψ) ≤ 4

√
ε

log(1/ε)

(q − ε)(1− q + ε)

where the density operator ρ2
Ψ denotes the state of ZE after execution of S when ZE is

initialized with |Ψ〉.

Proof. By [Wat09, Lemma 9], with p0 := q − ε and Q := S1, we get in time

O
( log(1/ε)size(S1)

p0(1−p0)

)
a quantum circuit R of size O

( log(1/ε)size(S1)
p0(1−p0)

)
operating on CZEY

such that:
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Let the density operator ρ(Ψ) denote final state of CZEY after executing R. Let the

pure state |φ(Ψ)〉 denote the state of CZEY after executing S1(ZY ), succ
R←M(Z) and

getting succ = 1. Then

F (ρ(Ψ), |φ(Ψ)〉〈φ(Ψ)|)2 ≥ 1− 16ε
log2(1/ε)

p2
0(1− p0)2

where F (·, ·) denotes the fidelity. Furthermore, by inspection of the construction from
[Wat09] we see that if Q = S1 applies no gates to E, neither does R. Thus R is a circuit
on CZY .

By [NC10, (9.101)] this implies

TD(ρ(Ψ), |φ(Ψ)〉〈φ(Ψ)|) ≤ 4
√
ε

log(1/ε)

p0(1− p0)
.

From R we construct the circuit S operating on ZE by first initializing auxiliary register
C,E with |0〉, running R, and then destroying C,E. Then ρ2

Ψ = trCE ρ(Ψ). And by
definition, ρ1

Ψ = trCE |φ(Ψ)〉〈φ(Ψ)|. Since the trace distance cannot increase under
application of partial trace, we get

TD(ρ1
Ψ, ρ

2
Ψ) ≤ 4

√
ε

log(1/ε)

p0(1− p0)
= 4
√
ε

log(1/ε)

(q − ε)(1− q + ε)
. �

We can now state the main result of this section:

Theorem 18 Let (P,V) be a Σ-protocol. Assume that P gives a fixed response error

when receiving a challenge ch /∈ Cηx.14

If |Cηx| is polynomially-bounded in η + |x| and Σ is SHVZK, then (P,V) is quantum
statistical zero-knowledge.

If |Cηx| is polynomially-bounded in η + |x| and Σ is HVZK, then (P,V) is quantum
computational zero-knowledge.

Proof. We do the proof of both parts of the theorem simultaneously. The text contains
the wording for the statistical case, with annotations giving the changes needed for the
computational case, like 〚this〛.

Without loss of generality, we can assume that V∗ never sends ch /∈ Cηx. Namely,
if V∗ does send ch /∈ Cηx, we can transform it into a verifier Ṽ∗ that runs V∗, with the
following modification: When V∗ sends ch /∈ Cηx, then Ṽ∗ sends some ch0 ∈ Cηx. In
this case, instead of the prover’s response resp, Ṽ∗ passes error to V∗. We then have
that 〈P(x,w),V∗(Z)〉 and 〈P(x,w), Ṽ∗(Z)〉 have the same final state in Z, hence Ṽ∗ is as
successful as V∗, and Ṽ∗ never sends ch /∈ Cηx. Thus we can assume V∗ never to send
ch /∈ Cηx.

14The HVZK/SHVZK property does not guarantee anything when ch /∈ Cηx. So P could be
HVZK/SHVZK but still reveal the witness when sent an invalid challenge.

24



By Definition 16 〚Definition 15〛, to show that Σ is quantum statistical 〚computational〛
zero-knowledge, for any quantum-polynomial-time V∗ and polynomial `, we need to find
a quantum-polynomial-time simulator S such that for any 〚quantum-polynomial-time〛 D,
the following is negligible for |x|, |w| ≤ `(η):∣∣∣Pr[b = 1 : ZE ← |Ψ〉, 〈P(x,w),V∗(Z)〉, b← D(Z,E)]

−Pr[b = 1 : ZE ← |Ψ〉, S(x, Z), b← D(Z,E)]
∣∣∣. (2)

Since a sigma protocol is a three round protocol, we can represent the prover P as two
quantum-polynomial-time algorithms P1, P2 such that: The commitment com sent by
the prover P is computed by com ← P1(x,w), and the prover’s response resp to the
challenge ch is computed by resp ← P2(x,w, ch). P1 and P2 may share state. Similarly,
the malicious verifier V∗ can be represented by two quantum-polynomial-time algorithms
V ∗1 , V ∗2 such that the challenge ch is produced by V ∗1 (com, Z), and, given the response
resp, the verifier runs V ∗2 (resp, Z). (Note that V ∗2 does not give output because V∗ does
not. However, both V ∗1 , V

∗
2 can have side effects on the quantum register Z.) V ∗1 , V

∗
2 may

share state.
With that notation,

〈P(x,w),V∗(Z)〉 is the same as

com ← P1(x,w), ch ← V ∗1 (com, Z), resp ← P2(x,w, ch), V ∗2 (resp, Z). (3)

Σ is SHVZK 〚HVZK〛. Hence there is a quantum-polynomial-time simulator SΣ such
that for any 〚quantum-polynomial-time〛 DΣ:∣∣Pr[b = 1 : com ← P1(x,w), ch

R← Cηx, resp ← P2(x,w, ch), b← DΣ(|Ψ〉, com, ch, resp)]

−Pr[b = 1 : (com, ch, resp)← SΣ(x), b← DΣ(|Ψ〉, com, ch, resp)]
∣∣ ≤ εD (4)

where εD = εD(η) is a negligible function depending on DΣ.
Let [ch = ch∗] := 1 iff ch = ch∗.
Then:

Pr[succ = 1 ∧ b = 1 : ZE ← |Ψ〉, 〈P(x,w),V∗(Z)〉, b← D(Z,E),

ch∗
R← Cηx, succ := [ch = ch∗]]

(3)
= Pr[succ = 1 ∧ b = 1 : ZE ← |Ψ〉, com ← P1(x,w), ch ← V ∗1 (com, Z), resp ← P2(x,w, ch),

V ∗2 (resp, Z), b← D(Z,E), ch∗
R← Cηx, succ := [ch = ch∗]]

(∗)
= Pr[succ = 1 ∧ b = 1 : com ← P1(x,w), ch∗

R← Cηx, resp ← P2(x,w, ch∗), ZE ← |Ψ〉,
ch ← V ∗1 (com, Z), succ := [ch = ch∗], V ∗2 (resp, Z), b← D(Z,E)]

ε
≈ Pr[succ = 1 ∧ b = 1 : (com, ch∗, resp)← SΣ(x), ZE ← |Ψ〉,

ch ← V ∗1 (com, Z), succ := [ch = ch∗], V ∗2 (resp, Z), b← D(Z,E)]

= Pr[succ = 1 ∧ b = 1 : ZE ← |Ψ〉, Y, C ← |0〉, S1(x,CZY ), succ ←M(C), b← D(Z,E)]
(5)
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Here (∗) uses the fact that P2(x,w, ch) and P (x,w, ch∗) get the same arguments when

succ = 1. And
ε
≈ means a difference of at most ε. The

ε
≈ follows from (4) with the

quantum-polynomial-time adversary DΣ(|Ψ〉, com, ch∗, resp) that runs “ZE ← |Ψ〉, ch ←
V ∗1 (com, Z), succ := [ch = ch∗], V ∗2 (resp, Z), b ← D(Z,E)” and returns b ∧ succ. And
ε := εD is negligible with εD as in (4). And in the last line, S1 is the unitary quantum
circuit (depending on x) constructed as follow: Transform the steps “(com, ch∗, resp)←
SΣ(x), ch ← V ∗1 (com, Z), succ := [ch = ch∗], V ∗2 (resp, Z)]” into a unitary quantum circuit
S1 operating on registers C,Z and Y (using Y for auxiliary qubits). The value of succ
is stored in the one-qubit quantum register C. succ ←M(C) then retrieves succ by a
measurement M on C in the computational basis.

Furthermore, for all quantum states |Ψ〉,

1

|Cηx|
= Pr[succ = 1 : ZE ← |Ψ〉, 〈P(x,w),V∗(Z)〉, ch∗

R← Cηx, succ := [ch = ch∗]]

ε′

≈ Pr[succ = 1 : ZE ← |Ψ〉, Y, C ← |0〉, S1(x,CZY ), succ ←M(C)] (6)

Here
ε′

≈ is shown analogously to (5) for negligible ε′ = ε′(η). Without loss of generality,
we can choose ε′ ≥ 2−η.

Note that, since |Cηx| is polynomially-bounded in η + |x|, and |x| ≤ `(η), we have
that q := 1/|Cηx| is noticeable in η.

By (6) and Corollary 17 (with q := 1/|Cηx|) we get that there is an algorithm S such
that for sufficiently large η:15

TD(ρ1
Ψ, ρ

2
Ψ) ≤ 4

√
ε′

η

(q − ε′)(1− q + ε′)
=: δ (7)

Here ρ1
Ψ is the final state of ZE after executing S1(x,CZY ), succ ←M(C) and getting

succ = 1. And ρ2
Ψ is the final state of ZE after executing S(x,CZY ). (Corollary 17

requires q > ε. Since q is noticeable and ε is negligible, this is the case for sufficiently
large η.)

The algorithm has running time O
( log(1/ε)size(S1)

(q−ε)(1−q+ε)
)
, which is polynomially-bounded

since S1 has polynomially-bounded size and q − ε is noticeable and q ≤ 1
2 .

From (7) and the fact that two states cannot be distinguished better than their trace
distance, we get

Pr[b = 1 : ZE ← |Ψ〉, Y, C ← |0〉, S1(x,CZY ), succ ←M(C), b← D(Z,E) | succ = 1]

δ
≈ Pr[b = 1 : ZE ← |Ψ〉, Y, C ← |0〉, S(x,CZY ), b← D(Z,E)]. (8)

Before we continue, we prove an auxiliary claim:

15Note here that to apply Corollary 17 we indeed need (6) to hold for all quantum states |Ψ〉. In
particular, that means that Corollary 17 would not be applicable in the computational case if HVZK was
defined uniformly (i.e., with |ψ〉 being chosen by a quantum-polynomial-time algorithm). We leave the
security guarantees obtained from uniform HVZK for future research.
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Claim 3 Consider two probability spaces Pr1,Pr2 with events B, S each. Assume that in

Pr1, B and S are independent. Let N := 1/Pr1[S]. Assume that Pr1[B ∧S]
ε
≈ Pr2[B ∧S]

and Pr1[S]
ε′

≈ Pr2[S]. Then Pr1[B]
Nε+Nε′

≈ Pr2[B|S].

The claim follows from the following calculation:∣∣Pr1[B]− Pr2[B|S]
∣∣ (∗)

=
∣∣∣Pr1[B ∧ S]

Pr1[S]
− Pr2[B ∧ S]

Pr2[S]

∣∣∣
=
∣∣∣Pr1[B ∧ S]

Pr1[S]
− Pr2[B ∧ S]

Pr1[S]
+

Pr2[B ∧ S]

Pr1[S]
− Pr2[B ∧ S]

Pr2[S]

∣∣∣
≤
∣∣∣Pr1[B ∧ S]

Pr1[S]
− Pr2[B ∧ S]

Pr1[S]

∣∣∣+
∣∣∣Pr2[B ∧ S]

Pr1[S]
− Pr2[B ∧ S]

Pr2[S]

∣∣∣
=

1

Pr1[S]︸ ︷︷ ︸
=N

∣∣Pr1[B ∧ S]− Pr2[B ∧ S]
∣∣︸ ︷︷ ︸

≤ε

+ Pr2[B ∧ S]︸ ︷︷ ︸
≤Pr2[S]

∣∣∣ 1

Pr1[S]
− 1

Pr2[S]

∣∣∣
≤ Nε+

∣∣∣Pr2[S]

Pr1[S]
− 1
∣∣∣ = Nε+

∣∣Pr2[S]− Pr1[S]
∣∣

Pr1[S]
≤ Nε+Nε′.

Here (∗) uses that B and S are independent in Pr1. This shows the claim.
We now instantiate the claim. B is the event b = 1, and S the event succ = 1. Pr1

refers to the probability space defined by ZE ← |Ψ〉, 〈P(x,w),V∗(Z)〉, b← D(Z,E), ch∗
R←

Cηx, succ := [ch = ch∗], and Pr2 refers to the probability space defined by the game
ZE ← |Ψ〉, Y, C ← |0〉, S1(x,CZY ), succ ←M(C), b← D(Z,E). Then B and S are

obviously independent in Pr1. The condition Pr1[B ∧ S]
ε
≈ Pr2[B ∧ S] is satisfied by (5).

And the condition Pr1[S]
ε′

≈ Pr2[S] by (6) (using that the invocation b← D(Z,E) does

not influence succ). And N = 1/Pr1[S] = |Cηx|. Then Claim 3 implies the
Nε+Nε′

≈ step
of the following calculation:

Pr[b = 1 : ZE ← |Ψ〉, 〈P(x,w),V∗(Z)〉, b← D(Z,E)]

= Pr[b = 1 : ZE ← |Ψ〉, 〈P(x,w),V∗(Z)〉, b← D(Z,E),

ch∗
R← Cηx, succ := [ch = ch∗]]

Nε+Nε′

≈ Pr[b = 1 : ZE ← |Ψ〉, Y, C ← |0〉, S1(x,CZY ),

succ ←M(C), b← D(Z,E) | succ = 1]

δ
≈ Pr[b = 1 : ZE ← |Ψ〉, Y, C ← |0〉, S(x,CZY ), b← D(Z,E)]

= Pr[b = 1 : ZE ← |Ψ〉, S(x, Z), b← D(Z,E)].

Here we defined the simulator S(x,Z) to run “Y,C ← |0〉, S(x,CZY )”. And the
δ
≈ step

follows from (8).
Since S is quantum-polynomial-time, ε, ε′, and δ are negligible, and N is polynomially-

bounded, we have that (2) is bounded by the negligible Nε+Nε′ + δ. This shows that Σ
is quantum statistical 〚computational〛 zero-knowledge. �
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5 QPoKs for all languages in NP

In Section 3, we saw that complete proof systems with strict and special soundness
are QPoKs. The question that remains to be asked is: do such proof systems, with
the additional property of being zero-knowledge, exist for interesting languages? In
this section, we will show that for any language in NP (more precisely, for any NP-
relation), there is a zero-knowledge QPoK. (Assuming the existence of quantum 1-1
one-way functions.) Here and in the following, by zero-knowledge we mean quantum
computational zero-knowledge.

The starting point for our construction will be the Blum’s zero-knowledge PoK for
Hamiltonian cycles [Blu86]. In this Σ-protocol, the prover commits to the vertices of a
graph using a perfectly binding commitment scheme. In the prover’s response, some of
these commitments are opened. That is, the response contains the opening information
for some of the commitments. The problem is that standard definitions of commitment
schemes do not guarantee that the opening information is unique; only the actual content
of the commitment has to be determined by the commitment. This means that the
prover’s response is not unique. Thus, with a standard commitment scheme we do not
get strict soundness. Instead, we need a commitment scheme such that the sender of the
commitment scheme is committed not only to the actual content of the commitment, but
also to the opening information.

Definition 19 (Strict binding) A commitment scheme COM is a deterministic
polynomial-time function taking two arguments a, y, the opening information a (a.k.a. the
randomness) and the message y. We say COM is strictly binding if for all a, y, a′, y′

with (a, y) 6= (a′, y′), we have that COM(a, y) 6= COM(a′, y′).

Furthermore, in order to get the zero-knowledge property, we will need that our
commitment schemes are quantum computationally concealing. We refer to [Wat09] for
a precise definition of this property. In [AC02], an unconditionally binding, quantum
computationally concealing commitment scheme based on quantum 1-1 one-way function
is presented.16 (We discuss the existence of quantum 1-1 one-way functions on page 30
below.) Their definitions differ somewhat from those of [Wat09], but as mentioned in
[Wat09], their proof carries over to the definitions from [Wat09]. Furthermore, in the
scheme from [AC02], the commitment contains the image of the opening information
under a quantum 1-1 one-way function. Thus the strict binding property is trivially
fulfilled. Thus strictly binding, quantum computationally concealing commitment schemes
exist under the assumption that quantum 1-1 one-way functions exist.

Given such a commitment scheme COM, we construct the proof system (P,V) pre-
sented in Figure 1. Besides using a strictly binding commitment, (P,V) differs in one

16In [AC02], the result is stated for quantum one-way permutations f : {0, 1}n → {0, 1}n. (To the best
of our knowledge, no candidates for quantum one-way permutations are known.) Inspection of their proof
reveals, however, that the result also holds for families of quantum 1-1 one-way functions fi : {0, 1}n → D
for arbitrary domain D and efficiently samplable indices i, assuming that given an index i, it can be
efficiently verified that fi is injective.

28



Inputs: A directed graph x (the statement) with vertices W , and a Hamiltonian cycle
w in x (the witness).
Subprotocols: A strictly binding, quantum computationally concealing commitment
scheme COM.
Protocol:
1. P picks a random permutation π on W . Let A be the adjacency matrix of the graph
π(x). Let H := {(π(i), π(j)) : (i, j) ∈ w}. Using COM, P commits to π, H, and to
each entry Aij of A. P sends the resulting commitments to V.

2. V picks ch ∈ {0, 1} and sends ch to P.
3. If ch = 0, P opens the commitments to π and A. If ch = 1, P opens the commitments

to H and to all Aij with (i, j) ∈ H.
4. If ch = 0, V checks that the commitments are opened correctly, that π is a per-

mutation, and that A is the adjacency matrix of π(x). If ch = 1, V checks that
the commitments are opened correctly, that H is a cycle, that exactly the Aij with
(i, j) ∈ H are opened, and that Aij = 1 for all (i, j) ∈ H. If all checks succeed, V
outputs 1.

Figure 1: A QPoK (P,V) for Hamiltonian cycles.

other aspect from the proof system in [Blu86]: The prover does not only commit to the
vertices in the graph π(x), but also to the permutation π and the cycle H. Without
these additional commitments, we would not get strict soundness; there might be several
permutations leading to the same graph, or the graph might contain several Hamiltonian
cycles.

Theorem 20 Let (x,w) ∈ R iff w is a Hamiltonian cycle of the graph x. Assume that
COM is a strictly binding, quantum computationally concealing commitment scheme.
Then the proof system (P,V) is a quantum computational zero-knowledge QPoK for R
with knowledge error 1

2 .

Proof. We need to show completeness, extractability (via special and strict soundness),
and zero-knowledge (via HVZK). Completeness is straightforward by inspection of the
protocol.

Special soundness. Let (com, ch, resp) and (com, ch ′, resp′) be two accepting conver-
sations for x with ch 6= ch ′. Without loss of generality, ch = 0 and ch ′ = 1. Then resp
contains a permutation π and the adjacency matrix A of π(x). And resp′ contains a cycle
H such that Ãij = 1 for all (i, j) ∈ H where Ãij are the committed values opened in resp′.
Since ch is strictly binding, 1 = Ãij = Aij for all (i, j) ∈ H, thus H is a Hamiltonian
cycle of π(x). Then w := K0(x, com, ch, resp, ch ′, resp′) := π−1(H) is a Hamiltonian cycle
of x, i.e., (x,w) ∈ R.

Strict soundness. Fix an accepting conversation (com, ch, resp). If ch = 0, resp
consists only of the opening of commitments. Since COM has strict binding, it follows
that resp is uniquely determined by com, ch. If ch = 1, COM consists of an opening
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of the commitment to H, and of the commitments to Aij with (i, j) ∈ H. Hence H
and its opening information are uniquely determined since COM has strict binding, and
thus it is also determined which Aij are opened. Again by strict binding, the values Aij
and corresponding opening information are uniquely determined. Thus resp is uniquely
determined by com, ch.

Extractability. Since (P,V) has special and strict soundness, and a challenge space of
size 2, by Corollary 12, we have that (P,V) is extractable with knowledge error 1

2 .

Honest-verifier zero-knowledge. We describe the simulator SΣ (cf. Definition 13).
SΣ(x) first picks a random ch ∈ {0, 1}. If ch = 0, SΣ chooses a random permutation π,
computes the adjacency matrix A of π(x), and picks an arbitrary H. If ch = 1, SΣ

chooses a random permutation π, sets A to be the all-one matrix, and lets H be a random
cycle. Let com consist of the commitments to π,A,H. Let resp be the openings as
specified in Figure 1, Step 4. Then SΣ outputs (com, ch, resp).

Since COM is quantum computationally conceiling, we easily see that the output
from SΣ is indistinguishable from 〈P,V〉 in the sense of Definition 13. Thus (P,V) is
HVZK.

Zero-knowledge. The challenge space Cηx is {0, 1}, hence |Cηx| = 2 is polynomially-
bounded. As shown above, (P,V) is HVZK. By Theorem 18, this implies that (P,V) is
quantum computational zero-knowledge.

Corollary 21 (QPoKs for all languages in NP) Let R be an NP-relation.17 Then
there is a zero-knowledge QPoK for R with negligible knowledge error.

Proof. Using the fact that the Hamiltonian cycle problem is NP-complete, from Theo-
rem 20 it follows that there is a zero-knowledge QPoK for R with knowledge error 1

2 . By
sequential repetition, we get a QPoK for R with negligible knowledge error (Theorem 3).
Sequential repetition preserves the zero-knowledge property (see [Wat09]). �

Quantum 1-1 one-way functions. Our construction relies on quantum 1-1 one-way
functions. Classical 1-1 one-way functions include the RSA function (assumping the RSA
assumption) and exponentiation in a finite group (assuming the hardness of discrete
logarithms in that group). Both are not secure in the quantum setting due to Shor’s
algorithm [Sho94]. To the best of our knowledge, these are all the candidates for 1-1
one-way functions described in the literature. However, we present the following two
functions as candidates for quantum 1-1 one-way functions:

• f1(x) := H(1‖x)‖ . . . ‖H(n‖x) for a hash function H (say, SHA-3) and n large
enough so that f1 becomes injective.

• f2(k) := E(k,m1)‖ . . . ‖E(k,mn) for a block cipher E (say, AES). Here m1, . . . ,mn

is a sufficiently long fixed list of publicly known plaintexts such that there are no
two keys encrypting them to the same list of ciphertexts. (I.e., n should be the
unicity distance of E.)

17An NP-relation is a relation R such that (x,w) ∈ R is decidable in deterministic polynomial time,
and there is a polynomial p such that for all (x,w) ∈ R, |w| ≤ p(|x|).
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One easily verifies that f1 and f2 are one-way if H(·‖x) and E(k, ·), respectively, are
quantum pseudorandom functions. (This is a common assumption since functions like
SHA-3 and AES do not seem to have algebraic structure that can be exploited by quantum
algorithms.) Proving that f1 and f2 are actually injective seems hard (due to that same
lack of structure). But for sufficiently large n, it seems a reasonable assumption that
both functions are injective. We therefore propose those two constructions as candidates
for quantum 1-1 one-way functions.

Note however, that f1 and f2 are not quantum one-way permutations. In fact, we
do not know any candidates for those, since the only known candidates in the classical
setting are RSA and exponentiation. Adcock and Cleve [AC02] and Watrous [Wat09] both
assume quantum one-way permutations in their constructions. However, an inspection of
their proofs shows that they actually only require quantum 1-1 one-way functions. Note
however that not all schemes stay secure when replacing a one-way permutation by a
1-1 one-way function. For example, the commitment from [DMS00] loses the conceiling
property if the underlying one-way function is not a permutation.

6 Open questions

We list several natural open questions related to the results of this paper:

Tight bounds on the knowledge error. In this work, we show that a Σ-protocol with
strict and special soundness has knowledge error 1/

√
c where c is the size of the challenge

space. In the classical setting, the knowledge error is 1/c. Can we improve the quantum
bound to match the classical bound?18 Possibly by using a different construction for the
extractor? Or can we show the bound to be tight? (At least relative to some oracle.)
And related, we achieve an exponent d = 3 in Definition 1, while in the quantum case,
the exponent is d = 2. Is d = 3 tight? (Note that, at least for the case c = 2, we have a
better bound in Corollary 12.)

Arguments and arguments of knowledge. We show that Σ-protocols with special
and strict soundness are quantum proof of knowledge. But if the Σ-protocol has only
computational special soundness and computational strict soundness? Do we get an
argument of knowledge? [ARU14] gives evidence against this; at least relative to some
oracle the resulting scheme will not always be a quantum argument of knowledge (nor
even a quantum argument). Does this result also hold in a non-relativised setting? Or can
we somewhat modify the definition of computational strict soundness to get arguments
of knowledge? In the case of a polynomially-bounded challenge space, Unruh [Unr15]
gives a positive answer to the last question, using “collapse-binding” commitments.

Specific protocols without strict soundness. [ARU14] shows that strict soundness
seems necessary (with respect to some oracle) to get quantum proof of knowledge. But
this does not mean that specific protocols might not be quamtum proofs of knowledge.

18The classical bound can easily be seen to be tight: If the Σ-protocol is HVZK, then a malicious
prover can succeed in the protocol with probability 1

2
± negligible by executing the simulator and sending

the commitment and response provided by the simulator.
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For example, the protocol for graph isomorphism [GMW91]: is that one a quantum proof
of knowledge?

Amplifying the success probability of the extractor. Our constructions show the
existence of an extractor with success probability PrK ≥ 1

p(PrV −κ)d where PrV is the
success probability of the prover. If κ is negligible, this implies that a non-negligible
PrV implies a non-negligible extraction success probability PrE. However, sometimes
it is needed to have a success probability close to 1. For example, when using the
proof of knowledge property in the construction of a simulator who needs the witness to
perform his simulation correctly. One such case is the graph non-isomorphism proof from
[GMW91] where the zero-knowledge property of the graph non-isomorphism proof relies
on the proof of knowledge property of the graph isomorphism proof. A similar case is
the GMW-compiler for multi-party computation (as presented in [Gol04, Chapter 7]).
In the classical setting, the success probability of the extractor can be increased at the
expense of runtime by running the extractor many times. This does not work in the
quantum setting: if the extractor fails upon the first invocation, its initial state will be
destroyed. Is there a possibility to amplify the success probability of extractors in the
quantum setting? Can we show the graph non-isomorphism protocol from [GMW91] to
be zero-knowledge?

Quantum 1-1 one-way functions. Our construction from Section 5 assume quantum
1-1 one-way functions. (And so does [Wat09].) We gave one candidate for such functions.
Are there more candidates? Can we modify our results to avoid the use of quantum 1-1
one-way functions? (Basically, this boils down to finding other constructions of quantum
conceiling strict binding commitment schemes.)
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