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Abstract. Modular Multiplication based Block Cipher (MMB) is a block
cipher designed by Daemen et al. as an alternative to the IDEA block ci-
pher. In this paper, we give a practical-time attack on the full MMB with
adaptive chosen plaintexts and ciphertexts. By the constructive sandwich
distinguisher for 5 of the 6 rounds of MMB with amazingly high prob-
ability 1, we give the key recovery attack on the full MMB with data
complexity 240 and time complexity 213.4 MMB encryptions. Then a
rectangle-like sandwich attack on the full MMB is presented, with 266.5

chosen plaintexts, 264 MMB encryptions and 270.5 memory bytes. By the
way, we show an improved differential attack on the full MMB with data
complexity of 296 chosen plaintexts and ciphertexts, time complexity 264

encryptions and 266 bytes of memory.

Key words: MMB block cipher, sandwich distinguisher, practical at-
tack, differential attack.

1 Introduction

Modular Multiplication based Block Cipher (MMB) [5] was designed by Daemen,
Govaerts and Vandewalle in 1993. It uses the cyclic multiplication in Z232−1 and
it was proposed as an alternative to the IDEA block cipher [7]. The number of
rounds is 6. The block size and key size of MMB are both 128 bits. The key
schedule of the original MMB, say MMB version 1.0, is successive rotated the
last subkey by 32 bits to the left. A tweaked key-schedule against the related-key
attack was designed by xoring a constant value to the subkey after each rotation,
and the new cipher is called MMB version 2.0 [6]. The only cryptanalysis on
MMB version 2.0 was proposed by Wang et al. [10], they proposed a differential
attack on the full 6-round MMB with 2118 chosen plaintexts, 295.61 encryptions

⋆ Supported by 973 Project (No.2007CB807902), the National Natural Science Foun-
dation of China (Grant No.60910118) and Tsinghua University Initiative Scientific
Research Program (2009THZ01002).
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Table 1. Summary of the Attacks on MMB

#Rounds Type Time Data Memory Source

3 LC 2126 EN 2114.56 KP - [10]
4 SQ 2126.32 EN 234 CP 264 [10]
6 DC 295.91 EN 2118 CP 264 [10]

6 SW 213.4EN 240 ACP,ACC 218 this paper
6 SR 264 EN 266.5 CP 270.5 this paper
6 SR 213.4 EN 266.5 CP,CC 270.5 this paper
6 DC 264 EN 296 CP 266 this paper
6 DC 244 EN 296 CP,CC 266 this paper

LC: Linear Cryptanalysis; DC: Differential Cryptanalysis;
SQ: Square Attack; SW: Sandwich Attack; SR: Rectangle-like Sandwich Attack;
EN: MMB Encryption; CP: Chosen Plaintexts;
ACP,ACC: Adaptive Chosen Plaintexts and Ciphertexts;
CP,CC: Chosen Plaintexts and Ciphertexts; KP: Known Plaintexts.

and 264 memory blocks. They also presented linear and square attacks on the
reduced-round MMB in [10].

In this paper, we construct a wonderful sandwich distinguisher of 5-round
MMB with probability 1. Using the distinguisher, we present a practical-time
attack on the full MMB. The data complexity of our attack is 240 adaptively
chosen plaintexts and ciphertexts, and the time complexity is 213.4 MMB en-
cryptions. Then we give a rectangle-like sandwich attack on the full MMB, with
266.5 chosen plaintexts and 264 encryptions. The memory complexity is 270.5

bytes. Meanwhile, we introduce an improved differential attack on the full MMB
with data complexity of 296 chosen plaintexts, time complexity of 264 MMB en-
cryptions and 266 bytes of memory. Both our attack and the attacks in [10] are
independent of the key schedule algorithm. We summarize the existing results
on MMB version 2.0 in Table 1.

2 Description of the Block Cipher MMB

MMB is a block cipher with 128-bit text block and 128-bit key. It has a Substitution-
Permutation Network (SPN) structure and iterates 6 rounds. We use the no-
tions in [10] to give a description of MMB. Let the 128-bit key of MMB as
K = (k0, k1, k2, k3), then the key schedule of MMB version 2.0 can be de-
scribed as: kj

i = k(i+j) mod 4 ⊕ (B ≪ j), where kj is the j-round subkey,

kj = (kj
0, k

j
1, k

j
2, k

j
3), kj

i (i = 0, . . . , 3) are 32-bit words, and j = 0, . . . , 6. The
round transformation of MMB is denoted as ρ, then the j-th round can be de-
scribed as:

ρ[kj ](X) = θ ◦ η ◦ γ ◦ σ[kj ](X),
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where X is the 128-bit input value to the j-th round. The full MMB encryption
is described as

E(P ) = σ[k6] ◦ ρ[k5] ◦ ρ[k4] ◦ ρ[k3] ◦ ρ[k2] ◦ ρ[k1] ◦ ρ[k0](P ),

where P is the plaintext and k6 is a post-whitening key. The 4 transformations
σ, γ, η, θ of the round function are described as follows:

1. σ[kj ]: XOR the intermediate value with the round key,

σ[kj ](a0, a1, a2, a3) = (a0 ⊕ kj
0, a1 ⊕ kj

1, a2 ⊕ kj
2, a3 ⊕ kj

3),

where ⊕ denotes bitwise exclusive-or, ai(i = 0, 1, 2, 3) are 32-bit words, and
(a0, a1, a2, a3) is the 128-bit intermediate value. The operation σ[kj ] is a
involution, namely σ[kj ]−1(x) = σ[kj ](x).

2. γ: modular multiplication of each word of the intermediate value with fixed
32-bit constants Gi,

γ(a0, a1, a2, a3) = (a0 ⊗G0, a1 ⊗G1, a2 ⊗G2, a3 ⊗G3).

For 0 < y < 232 − 1, let

x⊗ y =

{
x× y mod 232 − 1 if x < 232 − 1,
232 − 1 if x = 232 − 1.

G0 = 0x025f1cdb, G1 = 2⊗G0 = 0x04be39b6, G2 = 23⊗G0 = 0x12f8e6d8,
G3 = 27⊗G0 = 0x2f8e6d81, and the inverse values are G−1

0 = 0x0dad4694,
G−1

1 = 0x06d6a34a, G−1
2 = 0x81b5a8d2, G−1

3 = 0x281b5a8d. There are two
fixed points for any Gi: 0⊗Gi = 0, and (232−1)⊗Gi = 232−1. γ is invertible
but not an involution.

3. η: operating on two of the four input words,

η(a0, a1, a2, a3) = (a0 ⊕ (lsb(a0)× δ), a1, a2, a3 ⊕ ((1⊕ lsb(a3))× δ)),

where ‘lsb’ means the least significant bit, and δ = 0x2aaaaaaa. η is an
involution and a non-linear operation. But we can know that if there is a
difference in the lsb of a0, then the difference of a0 after the transformation
η will change, otherwise it will remain the same. It is the same to a3.

4. θ: the only diffusion operation in MMB.

θ(a0, a1, a2, a3) = (a3 ⊕ a0 ⊕ a1, a0 ⊕ a1 ⊕ a2, a1 ⊕ a2 ⊕ a3, a2 ⊕ a3 ⊕ a0).

θ is an involution.

3 Boomerang Attack and Sandwich Attack

3.1 Boomerang Attack

The boomerang attack was first introduced by Wagner [11]. It is an adaptive
chosen plaintext and ciphertext attack. And it was further developed by Kelsey
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et al. [4] into a chosen plaintext attack called the amplified boomerang attack (
Biham et al. independently introduced as the rectangle attack [2]) .

The boomerang attack bases on the differential attack [1], which joins two
short differential characteristics with high probabilities in a quartet instead of a
long differential to get a distinguisher with more rounds and higher probability.
Let E be a block cipher with block size n, that is considered as a cascade of
two sub-ciphers: E = E1 ◦ E0. For the sub-cipher E0 there is a differential
characteristic α → β with probability p, and for E1 there is differential path
γ → ζ with probability q. E−1, E0

−1 and E1
−1 stand for the inverse of E, E0, E1

respectively. The boomerang distinguisher can be constructed as follows:

– Randomly choose a pair of plaintexts (P, P ′) such that P ′ ⊕ P = α.
– Encrypt P, P ′ to get C = E(P ), C′ = E(P ′).

– Compute C̃ = C ⊕ ζ, C̃′ = C′ ⊕ ζ. Decrypt C̃, C̃′ to get P̃ = E−1(C̃),

P̃ ′ = E−1(C̃′).

– Check whether P̃ ′ ⊕ P̃ = α.

The quartet (P, P ′, P̃ , P̃ ′), whose corresponding ciphertexts (C, C′, C̃, C̃′), is
a right quartet when it passes the boomerang distinguisher. That is to say, it
satisfies the following conditions besides P ′ ⊕ P = α and P̃ ′ ⊕ P̃ = α,

E0(P
′)⊕ E0(P ) = β (1)

E1
−1(C̃)⊕ E1

−1(C) = E−1
1 (C̃′)⊕ E1

−1(C′) = γ (2)

If a quartet satisfies the two equations above, we have E1
−1(C̃′)⊕E1

−1(C̃) = β.
Since we have a differential α→ β in E0 and P ′⊕P = α, the probability of equa-
tion (1) is p. Similarly, the probability of equation (2) is q2, as the probabilities
of γ → ζ and ζ → γ are the same. Finally, there is another probability of p to get
P̃ ′⊕ P̃ = α from E1

−1(C̃′)⊕E1
−1(C̃) = β. As a result, the probability to get a

right quartet is p2q2. The quartets that pass the distinguisher but don’t satisfy
equations (1) and (2) are called wrong quartets. It’s known that for a random

permutation, P̃ ′⊕ P̃ = α with probability 2−n. Therefore, the probability of the
boomerang distinguisher should be greater than 2−n, i.e., pq > 2−n/2.

The rectangle (amplified boomerang) attack works in a chosen plaintext sit-

uation, with a birthday-paradox to make the condition E0(P )⊕E0(P̃ ) = γ hold.
For details about rectangle attack and amplified boomerang attack, we refer to
citation [2], [4].

3.2 Sandwich Attack

Based on boomerang attack, Dunkelman et al. proposed a new attack named
sandwich attack [8]. They divided the cipher into three sub-ciphers: E = E1 ◦
EM ◦E0. See Fig. 1. X = E0(P ), Y = EM (X), C = E1(Y ). There is a differential
path α → β with probability p in E0 and γ → ζ with probability q in E1. The
attack manner is also the same as the boomerang attack, the only difference
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is that there is a EM in the middle. Given (Y ⊕ Ỹ = γ), (Y ′ ⊕ Ỹ ′ = γ) and
(X ⊕X ′ = β), calculate the probability

r = Pr((X̃ ⊕ X̃ ′ = β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)).

Then the probability of the sandwich distinguisher is p2q2r. In [8] the authors
computed the probability using the properties of the feistel structure, and the
same phenomenon is introduced in [11]. The SPN structure can also apply the
sandwich attack, as used in [3] with a name “ladder switch”. In this paper, we
also mount the sandwich attack on MMB, which is a block cipher with SPN
structure.

4 5-Round Sandwich Distinguisher with Probability 1

In this section, we construct a sandwich distinguisher for 5-round MMB, and
surprisingly, the distinguisher has probability 1.

As mentioned in the previous section, we decompose 5-round MMB into
E = E1 ◦ EM ◦ E0. E0 contains the first 2 rounds, EM is the third round and
E1 contains the last 2 rounds. See Fig. 1.

E0
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EM

E0

E1

EM
X

Y

C

P

fP ′

fX ′

fY ′

fC′

P ′

X ′

Y ′

C′

eP

eX

eY

eC

γ

γ

ζ

ζ

α α

ββ

Fig. 1. 5 rounds sandwich distinguisher

We use the following 2-round differential characteristic with probability 1
proposed by Wang et al. [10] both in E0 and E1:

(0, 0̄, 0̄, 0)
σ[ki ]
−→ (0, 0̄, 0̄, 0)

γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄)

σ[ki+1]
−→ (0̄, 0, 0, 0̄)

γ
−→ (0̄, 0, 0, 0̄)

η
−→ (0̄⊕ δ, 0, 0, 0̄⊕ δ)

θ
−→ (0, 0̄⊕ δ, 0̄⊕ δ, 0),

where ‘0’ denotes a 32-bit zero difference word and 0̄ = 232− 1 = 0xffffffff .
So α = γ = (0, 0̄, 0̄, 0), β = ζ = (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), and Pr(α → β) = 1,
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Pr(γ → ζ) = 1. Now it remains to estimate the probability r = Pr((X̃ ⊕ X̃ ′ =

β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)). In the rest of this section, we
will give the deduction of r.

Let’s denote the i-th word of X, X ′, X̃, X̃ ′ by Xi, X ′
i, X̃i, X̃ ′

i, i = 0, 1, 2, 3.
The subkey of the third round is denoted k = (k0, k1, k2, k3).

We have

Y ⊕ Ỹ = (0, 0̄, 0̄, 0),

Y ′ ⊕ Ỹ ′ = (0, 0̄, 0̄, 0),

X ⊕X ′ = (0, 0̄⊕ δ, 0̄⊕ δ, 0). (3)

Since θ and η are involutions, and θ is linear, we have

(η−1 ◦ θ−1(Y ))⊕ (η−1 ◦ θ−1(Ỹ )) = (0̄⊕ δ, 0, 0, 0̄⊕ δ), (4)

(η−1 ◦ θ−1(Y ′))⊕ (η−1 ◦ θ−1(Ỹ ′)) = (0̄⊕ δ, 0, 0, 0̄⊕ δ). (5)

Besides,

Y = θ ◦ η ◦ γ ◦ σ[k](X),

Y ′ = θ ◦ η ◦ γ ◦ σ[k](X ′),

Ỹ = θ ◦ η ◦ γ ◦ σ[k](X̃),

Ỹ ′ = θ ◦ η ◦ γ ◦ σ[k](X̃ ′). (6)

We can get the following equations from equations (4), (5) and (6),

((X1 ⊕ k1)⊗G1)⊕ ((X̃1 ⊕ k1)⊗G1) = 0,

((X2 ⊕ k2)⊗G2)⊕ ((X̃2 ⊕ k2)⊗G2) = 0,

((X ′
1 ⊕ k1)⊗G1)⊕ ((X̃ ′

1 ⊕ k1)⊗G1) = 0,

((X ′
2 ⊕ k2)⊗G2)⊕ ((X̃ ′

2 ⊕ k2)⊗G2) = 0.

So X1 = X̃1, X2 = X̃2, X ′
1 = X̃ ′

1, X ′
2 = X̃ ′

2. And we have X1 ⊕ X̃1 =

X ′
1 ⊕ X̃ ′

1, X2 ⊕ X̃2 = X ′
2 ⊕ X̃ ′

2. Then we conclude

X̃1 ⊕ X̃ ′
1 = X1 ⊕X ′

1 = 0̄⊕ δ,

X̃2 ⊕ X̃ ′
2 = X2 ⊕X ′

2 = 0̄⊕ δ. (7)

Also from equation (4), (5) and (6), we have

((X0 ⊕ k0)⊗G0)⊕ ((X̃0 ⊕ k0)⊗G0) = 0̄⊕ δ,

((X3 ⊕ k3)⊗G3)⊕ ((X̃3 ⊕ k3)⊗G3) = 0̄⊕ δ,

((X ′
0 ⊕ k0)⊗G0)⊕ ((X̃ ′

0 ⊕ k0)⊗G0) = 0̄⊕ δ,

((X ′
3 ⊕ k3)⊗G3)⊕ ((X̃ ′

3 ⊕ k3)⊗G3) = 0̄⊕ δ.
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Then

((X0 ⊕ k0)⊗G0)⊕ ((X̃0 ⊕ k0)⊗G0) = ((X ′
0 ⊕ k0)⊗G0)⊕ ((X̃ ′

0 ⊕ k0)⊗G0),

((X3 ⊕ k3)⊗G3)⊕ ((X̃3 ⊕ k3)⊗G3) = ((X ′
3 ⊕ k3)⊗G3)⊕ ((X̃ ′

3 ⊕ k3)⊗G3).

From equation (3), we have X0 = X ′
0 = 0, X3 = X ′

3 = 0, so

((X̃0 ⊕ k0)⊗G0) = ((X̃ ′
0 ⊕ k0)⊗G0),

((X̃3 ⊕ k3)⊗G3) = ((X̃ ′
3 ⊕ k3)⊗G3).

Then X̃0 = X̃ ′
0, and X̃3 = X̃ ′

3. Finally, we have

X̃0 ⊕ X̃ ′
0 = 0,

X̃3 ⊕ X̃ ′
3 = 0. (8)

Combining equation (7) and (8), we have

X̃ ⊕ X̃ ′ = (0, 0̄⊕ δ, 0̄⊕ δ, 0) = β.

So

r = Pr((X̃ ⊕ X̃ ′ = β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)) = 1.

As a result, the probability of our 5-round sandwich distinguisher is 1.

5 Practical Sandwich Attack on the Full MMB

In this section, we use the distinguisher described in Sec. 6 to rounds 2-6 and
recover some subkey bits of the first round. Then we apply the distinguisher
to rounds 1-5 and recover some subkey bits of the last round. The key can be
deduced from the recovered subkey bits.

5.1 The Key Recovery Attack

1. Getting Right Quartets

Choose 237 plaintexts P at random, compute P ′ = P⊕(0xfdff77ef, 0,
0, 0xdffbfeef), and encrypt P , P ′ to get ciphertexts pairs C, C′. Calcu-

late C̃ = C⊕ (0, 0̄⊕β, 0̄⊕β, 0), C̃′ = C′⊕ (0, 0̄⊕β, 0̄⊕β, 0), and decrypt C̃,

C̃′ to get P̃ , P̃ ′. Store quartets (P, P ′, P̃ , P̃ ′) only when P̃ ⊕ P̃ ′ = (∗, 0, 0, ∗),
where ‘*’ stands for any non-zero 32-bit value.
We know the differential characteristic

(0xfdff77ef, 0, 0, 0xdffbfeef)
σ[ki]
−→ (0xfdff77ef, 0, 0, 0xdffbfeef)

γ
−→

(0̄ ⊕ δ, 0, 0, 0̄⊕ δ)
η
−→ (0̄, 0, 0, 0̄)

θ
−→ (0, 0̄, 0̄, 0)



8 Keting Jia et al.

holds with probability 2−36, as the probability of 0xfdff77ef
G0−→ 0̄ ⊕ δ

and 0xdffbfeef
G3−→ 0̄ ⊕ δ are both 2−18. Thus, there are 237 · 2−36 = 2

pairs of (P, P ′) satisfying the differential characteristic above, and we call it

a right pair. Once a pair (P, P ′) is a right pair, the corresponding (P̃ , P̃ ′)

must satisfy P̃ ⊕ P̃ ′ = (∗, 0, 0, ∗), that is because the probability of our

distinguisher is 1. So the quartet (P, P ′, P̃ , P̃ ′) is a right quartet.

For a wrong quartet (P, P ′, P̃ , P̃ ′), P̃⊕P̃ ′ = (∗, 0, 0, ∗) holds with probability
2−64. Therefore, there are 237 ·2−64 = 2−27 wrong quartets left, so we regard
the quartets which satisfy P̃ ⊕ P̃ ′ = (∗, 0, 0, ∗) as right quartets.

2. Partial Key Recovery

In order to make the attack faster, we use a pre-computation. Construct two
tables T0 and T3, and each is about 216 bytes. Because there are at most

214.28 32-bit words x to make the difference character 0xfdff77ef
G0−→ 0̄⊕ δ

hold. It is the same to the difference character of G3.

T0 = { x | (x⊗G0)⊕ ((x ⊕ 0xfdff77ef)⊗G0) = 0̄⊕ δ },
T3 = { x | (x⊗G3)⊕ ((x⊕ 0xdffbfeef)⊗G3) = 0̄⊕ δ }.

(a) For each quartet (P, P ′, P̃ , P̃ ′) stored, we calculate 32-bit values of k0
0 =

P ⊕ x, x ∈ T0, and filter the wrong keys with the following equations.

((P0 ⊕ k0
0)⊗G0)⊕ ((P ′

0 ⊕ k0
0)⊗G0) = 0̄⊕ δ, (9)

((P̃0 ⊕ k0
0)⊗G0)⊕ ((P̃ ′

0 ⊕ k0
0)⊗G0) = 0̄⊕ δ. (10)

There are 232 · 2−36 = 2−4 keys to make equations (9) and (10) hold, so
a wrong key satisfies the equations with probability 2−36.
There are 2 quarters and 2−27 wrong pairs left, so the expect number
of the right key is 2 + 2−36 · 2−27 ≈ 2. For a wrong key, it will be left
with probability at most 2−36, so the total numbers of wrong keys are
(2 · 2−36 + 2−36 · 2−27) · 232 = 2−3, and the expect number of a wrong
key is 2−3/232 = 2−35. Then by Poisson distribution, the success rate is
about 0.91.

(b) Similarly, in use of the table T3, we can recover 32-bit value k0
3 with the

same complexity and success rate as in (a).
After recovering 64 bits of the first round subkey, we mount the distinguisher
to rounds 1-5, and recover 64 bits of the subkey of last round.

3. Recovering 64 Bits of the Last Round Subkey

Construct two tables T1 and T2, and each is about 216 bytes.

T1 = { x | (x⊗G−1
1 )⊕ ((x ⊕ 0xfcfbdfff)⊗G−1

1 ) = 0̄⊕ δ},
T2 = { x | (x⊗G−1

2 )⊕ ((x ⊕ 0xf3ef7fff)⊗G−1
2 ) = 0̄⊕ δ}.

(a) We use the method similar to that described in Step 1 to gain right

quartets. But this time, we choose 237 ciphertexts C, calculate C̃ =
C ⊕ (0xfcfbdfff, 0x0f14a000, 0x0f14a000, 0xf3ef7fff). Decrypt C,
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C̃ to get P , P̃ . Calculate P ′ = P ⊕ (0, 0̄, 0̄, 0), P̃ ′ = P ′ ⊕ (0, 0̄, 0̄, 0),

then encrypt them to get C′, C̃′. And store the quartet with C′ ⊕ C̃′ =
(V1, V1 ⊕ V2, V1 ⊕ V2, V2), where V1, V2 are non-zero 32-bit words. There
are about 2 quartets to be stored, which are the right quartets, for the
following differential characteristic has probability 2−36.

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
σ−1[k5]
←− (0, 0̄⊕ δ, 0̄⊕ δ, 0)

γ−1

←−

(0, 0xfcfbdfff, 0xf3ef7fff, 0)
η−1

←−

(0, 0xfcfbdfff, 0xf3ef7fff, 0)
θ−1

←−
((0xfcfbdfff, 0x0f14a000, 0x0f14a000, 0xf3ef7fff))

The probability of 0xfcfbdfff
G−1

1−→ 0̄⊕ δ and 0xf3ef7fff
G−1

2−→ 0̄⊕ δ are
both 2−18.

(b) Then we recover 64 bits of the equivalent key k6′

of k6, i.e., k6′

1 = k6
0 ⊕

k6
1 ⊕ k6

2 and k6′

2 = k6
1 ⊕ k6

2 ⊕ k6
3 . As above, we calculate 32-bit value

of k6′

1 = C0 ⊕ C1 ⊕ C2 ⊕ x, x ∈ T1, and filter the wrong key with the
following equation.

(G−1
1 ⊗ (C̃0 ⊕ C̃1⊕ C̃2⊕ k6′

1 ))⊕ (G−1
1 ⊗ (C̃′

0⊕ C̃′
1⊕ C̃′

2⊕ k6′

1 )) = 0̄⊕ δ.

In the similar way, we calculate 32-bit value of k6′

2 = C1⊕C2⊕C3⊕x, x ∈
T2, and filter the wrong key with the following equation

(G−1
2 ⊗ (C̃1 ⊕ C̃2⊕ C̃3⊕ k6′

2 ))⊕ (G−1
2 ⊗ (C̃′

1⊕ C̃′
2⊕ C̃′

3⊕ k6′

1 )) = 0̄⊕ δ.

According to the key schedule algorithm, k0
0=k0 ⊕ B, k0

3 = k3 ⊕ B, k6′

1 =
k0 ⊕ k2 ⊕ k3 ⊕ (B ≪ 6), k6′

2 = k0 ⊕ k1 ⊕ k3 ⊕ (B ≪ 6). As a result, we
recover the whole 128 bits of the key.

The data complexity is 240 adaptive chosen plaintexts and ciphertexts. The
time complexity is about 2 · 2 · 214 = 216 one round MMB encryptions, which
are equivalent to 213.4 MMB encryptions. The memory complexity is about 218

bytes.

5.2 Rectangle-Like Sandwich Attack on the Full MMB

We can transform the 5-round sandwich distinguisher into a rectangle-like sand-
wich distinguisher by only choosing the plaintexts. In the rectangle-like sand-
wich distinguisher, we can choose P ⊕ P ′ = (0, 0̄, 0̄, 0), P̃ ⊕ P̃ ′ = (0, 0̄, 0̄, 0), so

X ⊕X ′ = (0, 0̄⊕ δ, 0̄⊕ δ, 0), X̃ ⊕ X̃ ′ = (0, 0̄⊕ δ, 0̄⊕ δ, 0) with probability 1. But

there is a probability of 2−128 to get Y ⊕ Ỹ = (0, 0̄, 0̄, 0). Once we have Y ⊕ Ỹ =

(0, 0̄, 0̄, 0), Pr((Y ′ ⊕ Ỹ ′ = γ)|(Y ⊕ Ỹ = γ)∧ (X̃ ⊕ X̃ ′ = β) ∧ (X ⊕X ′ = β)) = 1.
So using the birthday-paradox, if we randomly choose 264 pairs of (P, P ′) with

P ⊕ P ′ = (0, 0̄, 0̄, 0) and 264 pairs of (P̃ , P̃ ′) with P̃ ⊕ P̃ ′ = (0, 0̄, 0̄, 0), there

will be one quartet (P, P ′, P̃ , P̃ ′) passing the distinguisher. Then we can use the
5-round distinguisher to attack the full MMB.
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The Rectangle-Like Sandwich Attack. We choose 265.5 plaintexts P at
random, construct the structure

S = { (P, P ′) | P ⊕ P ′ = (0, 0̄, 0̄, 0) },

and encrypt each (P, P ′) ∈ S to get (C, C′). Store the ciphertext pairs with index
(C0 ⊕ C1 ⊕ C2, C1 ⊕ C2 ⊕ C3). There are 265.5 · 265.5 · 2−1 · 2−128 = 4 quartets

(P, P ′, P̃ , P̃ ′) satisfying the conditions of the distinguisher, and they are right

quartets, where the pair (P̃ , P̃ ′) ∈ S, whose ciphertexts are denoted as (C̃, C̃′).

If a quartet is a right quartet, then it must satisfy C⊕ C̃ = (V1, V1⊕V2, V1⊕

V2, V2) and C′ ⊕ C̃′ = (W1, W1 ⊕ W2, W1 ⊕ W2, W2), because it satisfies the
output differences of the distinguisher, where V1, V2, W1, W2 are non-zero 32-bit
words. That is to say

(C0 ⊕ C1 ⊕ C2)⊕ (C̃0 ⊕ C̃1 ⊕ C̃2) = 0,

(C1 ⊕ C2 ⊕ C3)⊕ (C̃1 ⊕ C̃2 ⊕ C̃3) = 0,

(C′
0 ⊕ C′

1 ⊕ C′
2)⊕ (C̃′

0 ⊕ C̃′
1 ⊕ C̃′

2) = 0,

(C′
1 ⊕ C′

2 ⊕ C′
3)⊕ (C̃′

1 ⊕ C̃′
2 ⊕ C̃′

3) = 0.

Furthermore, for a right quartet the input difference of the 6-th round is (0, 0̄⊕
δ, 0̄ ⊕ δ, 0), the number of possible output difference values given the input dif-
ference 0̄⊕ δ for G1 or G2 is about 228.56. So we use all these conditions to sieve
(C, C′),(C̃, C̃′), if a quartet doesn’t pass the distinguisher, the probability for it
to satisfy these conditions is 2−64 ·2−64 ·2(28.65−32)×4 = 2−141.76. So the number
of wrong quartets is 265.5 · 265.5 · 2−1 · 2−141.76 = 2−11.76.

With the right quartets stored, we recover the equivalent key k6′

1 and k6′

2

as in Subsection 5.1 with 217 bytes memory and 212.4 MMB encryptions by
constructing the table T1 and T2. Then we guess the rest 64-bit keys, and filter
the wrong keys by encrypting a plaintext whose ciphertext is known. It is about
264 MMB encryptions. The data complexity of the attack is 2 · 265.5 = 266.5

chosen plaintexts, the memory complexity is dominated by the complexity of
storing the ciphertexts, that is 266.5 128-bit words, i.e., 270.5 bytes.

The rest 64-bit key can be recovered with the 5-round rectangle-like sandwich
distinguisher to rounds 2-6 by chosen ciphertexts attack. In this case the data
complexity is 266.5 chosen plaintexts and ciphertexts, the memory complexity is
270.5 bytes too, and the time complexity is 213.4 MMB encryptions.

6 The Improved Differential Cryptanalysis of MMB

In this section, we give a 6-round differential path for MMB. The differential
path is described in the following,

(0, 0̄, 0̄, 0)
ρ[k0]
−→ (0̄, 0, 0, 0̄)

ρ[k1]
−→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)

ρ[k2]
−→ (τ, 0, 0, τ)

ρ[k3 ]
−→

(0, 0̄, 0̄, 0)
ρ[k4]
−→ (0̄, 0, 0, 0̄)

ρ[k5 ]
−→ (0, 0̄⊕ δ, 0̄⊕ δ, 0),
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where τ belong to the sets of the differences, which is chosen to make the differ-

ential characteristic 0̄⊕ δ
G1−→ τ

G0−→ 0̄ and 0̄⊕ δ
G2−→ τ

G3−→ 0̄ hold.
We search all τ satisfying the above differentia characteristic, which are used

to produce the 5-round differential path. The probability for the differential path
is 2−94.

Then we use the last five rounds of the differential path, i.e.

(0̄, 0, 0, 0̄)
ρ[k0]
−→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)

ρ[k1 ]
−→ (τ, 0, 0, τ)

ρ[k2]
−→ (0, 0̄, 0̄, 0)

ρ[k3 ]
−→

(0̄, 0, 0, 0̄)
ρ[k4]
−→ (0, 0̄⊕ δ, 0̄⊕ δ, 0),

to attack the full round MMB. We mount the 5-round differential path to rounds
1-5 of the 6 rounds. In the rest of the section, we give the attack algorithm.
The Key Recovery Attack. We choose 296 pairs of plaintext with difference
(0̄, 0, 0, 0̄), then there are 4 right pairs. The output difference of the 5-th round
for a right pair is (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), so the difference of the ciphertext should
be (V1, V1 ⊕ V2, V1 ⊕ V2, V2), where V1, V2 are non-zero 32-bit words. We use
this to sieve the ciphertext pairs, and there will be 296 · 2−64 = 232 pairs left.
Furthermore, the input difference of the 6-th round is (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), the
number of possible output difference values given the input difference 0̄ ⊕ δ for
G1 or G2 is about 228.56. So there are 232 · 2(28.56−32)×2 = 225.12 pairs satisfying
the output difference.

As the key recovery attack in Subsection 5.1. We construct two tables T1 and
T2

T1 = { x | (x⊗G−1
1 )⊕ ((x⊕ 0xfcfbdfff)⊗G−1

1 ) = 0̄⊕ δ },
T2 = { x | (x⊗G−1

2 )⊕ ((x⊕ 0xf3ef7fff)⊗G−1
2 ) = 0̄⊕ δ }.

to recover the equivalent subkey words k6′

1 , k6′

2 with the remaining ciphertext
pairs (C, C′), where C = (C0, C1, C2, C3) and C′ = (C′

0, C
′
1, C

′
2, C

′
3). Calculate

the 32-bit words k6′

1 = C0⊕C1⊕C2⊕x, x ∈ T1, k6′

2 = C1⊕C2⊕C3⊕x, x ∈ T3,
and increase the counter corresponding to (k6′

1 , k6′

2 ) by 1. For G1 and G2, the
number of pairs with input difference 0̄⊕ δ and any given output difference is at
most 214.28, so the maximum count per counted pair of the wrong subkey words
will be 214.28 · 214.28 = 228.56. The signal-to-noise ratio is :

S/N =
p · 2k

α · β
=

2−96 × 264

2−64−6.88 × 228.56
= 210.32.

According to citation [9], the success probability is

Ps =

∫ ∞

−
√

µS/N−Φ−1(1−2−a)√
S/N+1

Φ(x)dx = 0.9542,

where a = 64 is the number of subkey bits guessed, µ is the number of right
pairs and µ = 4.

The data complexity of the attack is 296 chosen plaintexts. The time complex-
ity is about 2 · 214.28 · 225.12 = 240.40 XOR operations and 214.28 · 214.28 · 225.12 =
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253.68 counts, equivalent to 243 MMB encryptions. The memory complexity is
264 64-bit counters, equivalent to 266 bytes. The rest 64 bits of the key can be re-
covered by exhaustive search, which determine the time complexity is 264 MMB
encryptions.

We can mount the 5 round differential characteristic to round 2-6. Then we
use the chosen ciphertext attack to recover the 64 bits subkey of the first round.
Then we can compute the key. The data complexity is 296 chosen plaintexts and
ciphertexts, the memory complexity is 266 bytes and the time complexity is 244

MMB encryptions.
Note that we can even use the 6-round differential path to attack 7-round

MMB with the same complexity as the 6-round attack. It means that even if
MMB has 7 rounds it is still vulnerable to the differential attack.

7 Conclusion

In this paper, we construct a 5-round sandwich distinguisher for MMB with
amazingly high probability 1. With the distinguisher, we recover the 128-bit
key on the full MMB with 240 adaptive chosen plaintexts and ciphertexts, 213.4

MMB encryptions and 218 bytes memory. On this bases, we present a rectangle-
like sandwich attack to the full MMB, with 266.5 chosen plaintexts, 264 MMB
encryptions and 270.5 bytes memory. Besides, we improve the differential attack
on the full MMB in [10]. The data complexity is 296 chosen plaintexts, the time
complexity is 264 MMB encryptions and the memory complexity is 266 bytes.
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