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Abstract. In identity-based public-key cryptography, an entity’s public key can be easily derived
from its identity. The direct derivation of public keys in identity-based public-key cryptography
eliminates the need for certificates and solves certain public key management problems in traditional
public-key cryptosystems. Recently, the notion of asymmetric group key agreement was introduced,
in which the group members merely negotiate a common encryption key which is accessible to any
entity, but they hold respective secret decryption keys. In this paper, we first propose a security
model for identity-based authenticated asymmetric group key agreement (IB-AAGKA) protocols.
We then propose an IB-AAGKA protocol which is proven secure under the Bilinear Diffie-Hellman
Exponent assumption. Our protocol is also efficient, and readily adaptable to provide broadcast
encryption.

Keywords: Identity-Based Public-Key Cryptography, Group Key Agreement, Asymmetric Group
Key Agreement, Bilinear Map.

1 Introduction

Group Key Agreement (GKA) protocols are widely employed in many modern collaborative
and distributed applications such as multi-party computations, audio/video conference and chat
systems. Their main goal is to implement secure broadcast channels. In the conventional GKA
definition, a group of members interact over an open network to establish a common secret
key to be used to achieve secure broadcast. This secret key is shared by all group members. A
limitation of conventional GKA systems is that only group members are allowed to broadcast
to other group members. However, in practice, anyone is likely to be a potential sender, just as
anyone can encrypt a message in public-key encryption. Observing this fact, recently, Wu et al.
[25] introduced the notion of Asymmetric Group Key Agreement (AGKA). By their definition,
instead of a common secret key, the group members merely negotiate a common encryption key
which is accessible to any entity, but they hold respective secret decryption keys.

1.1 Motivation and Contribution of This Paper

In the real world, sometimes the bandwidth is not critical for GKA protocols but the round
efficiency is. One-round key agreement protocols have several advantages [19,25] over key agree-
ment protocols in two or more rounds. For instance, imagine a group of friends who wish to
share their personal documents via the open network. If a two-round key agreement protocol is
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employed to establish a secure channel, all friends should be online at the same time. However, if
this group of friends live in different time zones, it is difficult for them to be online concurrently.

A trivial way to achieve one-round AGKA is for each member in the group to publish a
public key and reserve the respective secret key. To send a message to this group, a sender
separately encrypts for each member and generates the final ciphertext by concatenating all the
underlying individual ones. It is easy to see that this trivial solution leads to a long ciphertext
and forces the sender to store all the public keys of the group members. Instead of this trivial
solution, Wu et al. [25] proposed a one-round AGKA protocol from scratch, which means that
the protocol participants do not hold any secret values prior to the execution of the protocol.

Though the protocols from scratch are efficient, they are only secure against passive ad-
versaries who just eavesdrop the communication channel. Active adversaries are more powerful
since they are assumed to have a complete control over the communication channel. They have
the ability to relay, delay, modify, interleave or delete the message flows during the execution of
the protocol. In particular, an active adversary is able to mount well-known man-in-the-middle
attacks. Hence, it is vital for an AGKA protocol to withstand the attacks from active adversaries.
This calls for authenticated key agreement protocols.

An authenticated key agreement protocol is a key agreement protocol which aims to en-
sure that no entities aside from the intended ones can possibly compute the session key agreed.
Authenticated key agreement protocols may be designed under different public-key cryptosys-
tems. A number of key agreement protocols have been proposed under the traditional PKI-based
public-key paradigm. In that paradigm, key agreement protocols rely on the entities obtaining
each other’s certificates, extracting each other’s public keys, checking certificate chains (which
may involve many signature verifications) and finally generating a shared session key. Further-
more, the management of public-key certificates requires a large amount of computation, storage,
and communication. To eliminate such costs, Identity-Based Public Key Cryptography (IB-PKC)
was introduced by Shamir [24] in 1984. The main feature of IB-PKC is that the public key of
an entity can be easily derived from its identity, such as its telephone number or email address;
the corresponding private key can only be derived by a trusted Private Key Generator (PKG)
who owns the master secret of the system.

In this paper, we first specify a security model that an Identity-Based Authenticated Asym-
metric Group Key Agreement (IB-AAGKA) protocol should satisfy. Our model allows an adver-
sary to adaptively choose his targets, and it captures the IB version of the (modified) common
security requirements (e.g., secrecy, known-key security and forward secrecy), which are usu-
ally considered in GKA protocols. These newly defined security requirements are described as
follows:

– Secrecy requires that only the legitimate participants (group members) can read the messages
encrypted by the negotiated public key.

– Known-key security means that, if an adversary learns the group encryption/decryption keys
of other sessions, he cannot compute subsequent group decryption keys.

– Forward secrecy ensures that the disclosure of long-term private keys of group members
must not compromise the secrecy of the decryption keys established in earlier protocol runs.
Specifically, we say a key agreement protocol offers perfect forward secrecy if the long-term
private keys of all the group members involved may be compromised without compromising
any group decryption key previously established by these group members. We say a key
agreement offers partial forward secrecy if compromise of the long-term keys of one or more
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specific group members does not compromise the group decryption keys established by these
group members.

We also propose a non-trivial one round IB-AAGKA protocol satisfying our security require-
ments, which we prove in the random oracle model [3].

Our protocol is based on a specific identity-based multi-signature scheme which we call
identity-based batch multi-signature (IB-B-MS), which may itself be interesting in its own right.
Our scheme allows x signers to sign t messages in such a way that the length of the batch multi-
signature consists only of t + 1 group elements. Furthermore, the batch multi-signature can be
separated into t individual multi-signatures.

1.2 Related Work

Since Diffie and Hellman published their solution to key agreement [14], much attention has been
paid to this primitive. Joux [19] was the first who extended key agreement to three parties. We
notice that both the Diffie-Hellman and Joux protocols are one-round key agreement protocols.
However, when the protocol participants are more than three, it seems knotty to construct key
agreement protocols without additional rounds. Over the years, many attempts have been made
at extending the Diffie-Hellman and Joux protocols to n parties. Among them, the Burmester-
Desmedt protocol [11] is one of the best-known. This protocol requires two rounds and is the
most efficient existing GKA protocol in round efficiency without constraints on n.

For a key agreement protocol to be usable in open networks, it should be resistant against ac-
tive adversaries. However, the basic Diffie-Hellman and Joux protocols as well as the Burmester-
Desmedt protocol do not authenticate the communication entities. Hence they are not suited
for hostile networks where man-in-the-middle attacks may happen. Several protocols have been
proposed to add authentication [13,22,23]; among those, the GKA protocol in [13] is based on
IB-PKC. This protocol refers to Katz and Yung’s results [20] for an authenticated version and
requires two rounds.

The paradigm of provable security subsumes an abstract formalization that considers the
protocol environment and identifies its security goals. Bresson et al. [10] were the first to formalize
the security model for group key agreement protocols. Their model is based on the previous
security model for key agreement protocols between two or three parties [1,2,4]. Later, this
model was refined by Bresson et al. [8,9] and some variants [20,21] of it appeared. These models
are widely accepted in proving the security of GKA protocols. In this paper, we will borrow
some ideas from these models to define the security model for IB-AAGKA protocols.

1.3 Paper Outline

We organize the rest of the paper as follows. Section 2 reviews bilinear maps and some complexity
assumptions. Section 3 defines the security of IB-AAGKA protocols. Our identity-based batch
multi-signature is introduced in Section 4. Section 5 describes our IB-AAGKA protocol. Finally,
we conclude in Section 6.

2 Bilinear Maps and Complexity Assumptions

We review bilinear maps and related complexity assumptions in this section. Let G1 and G2 be
two multiplicative groups of prime order q, and g be a generator of G1. A map ê : G1×G1 → G2

is called a bilinear map if it satisfies the following properties:
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1. Bilinearity: ê(gβ, gγ) = ê(g, g)βγ for all β, γ ∈ Z∗q .
2. Non-degeneracy: There exists u, v ∈ G1 such that ê(u, v) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(u, v) for any u, v ∈ G1.

The security of our protocol is based on the hardness of the computational Diffie-Hellman
(CDH) problem and the k-Bilinear Diffie-Hellman Exponent (BDHE) problem [5], which are as
follows:

CDH Problem: Given g, gα, gβ for unknown α, β ∈ Zq, compute gαβ .
CDH Assumption: Let B be an algorithm which has advantage

Adv(B) = Pr
[
B(g, gα, gβ) = gαβ

]

in solving the CDH problem. The CDH assumption is that Adv(B) is negligible for any polynomial-
time algorithm B.

k-BDHE Problem: Given g, h, and yi = gαi
in G1 for i = 1, 2, ..., k, k + 2, ..., 2k as input,

compute ê(g, h)αk
. Since the input vector is missing the term gαk+1

, the bilinear map does not
seem to help computing e(g, h)αk+1

.
k-BDHE Assumption: Let B be an algorithm which has advantage

Adv(B) = Pr
[
B(g, h, y1, ..., yk, yk+2, ..., y2k) = e(g, h)αk+1

]

in solving k-BDHE problem. The k-BDHE assumption is that Adv(B) is negligible for any
polynomial-time algorithm B.

3 Security Model

The first security model for AGKA protocols was presented by Wu et al. [25], derived from the
security model for conventional GKA protocols [10]. We note that the security model in [25]
only considers passive attackers. In the sequel, we will extend this model to capture the ability
of active attackers and integrate the notion of IB-PKC.

3.1 Participants and Notations

Let P be a set with polynomial-size of potential protocol participants. Each participant in P
has an identity and a private key. Any subset U = {U1, ...,Un} ⊆ P may decide at any point to
establish a confidential channel among them. We use Ππ

Ui
to represent instance π of participant

Ui involved with partner participants {U1, ...,Ui−1,Ui + 1,Un} in a session. Each instance Ππ
Ui

holds the variables pidπ
Ui

, sidπ
Ui

, msπUi
, ekπ

Ui
, dkπ

Ui
and stateπ

Ui
which are defined below:

– pidπ
Ui

is the partner ID of instance Ππ
Ui

. It is a set containing the identities of the partici-
pants in the group with whom Ππ

Ui
intends to establish a session key including Ui itself. For

simplicity, we assume that the identities in pidπ
Ui

are lexicographically ordered.
– sidπ

Ui
is the session ID of instance Ππ

Ui
. We follow [21] in assuming that unique session IDs

are provided by some higher-level protocol when the group key-exchange protocol is first
initiated. Therefore, all members taking part in a given execution of a protocol will have the
same session ID.
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– msπUi
is the concatenation of all messages sent and received by Ππ

Ui
during its execution,

where the messages are ordered by round, and within each round lexicographically by the
identities of the purported senders.

– ekπ
Ui

is the encryption key held by Ππ
Ui

.
– dkπ

Ui
is the decryption key held by Ππ

Ui
.

– stateπ
Ui

represents the current (internal) state of instance Ππ
Ui

. When an instance has ter-
minated, it is done sending and receiving messages. We say that an IB-AAGKA protocol
has been successfully terminated (accepted) in the instance Ππ

Ui
if it possesses ekπ

Ui
(6= null),

dkπ
Ui

(6= null), pidπ
Ui

and sidπ
Ui

.

Definition 1 (Partnering). We say instances Ππ
Ui

and Ππ′
Uj

(with i 6= j) are partnered iff (1)

they are successfully terminated; (2) pidπ
Ui

= pidπ′
Uj

; and (3) sidπ
Ui

= sidπ′
Uj

.

3.2 The Model

In GKA protocols, secrecy is the core security definition. In conventional GKA protocols, secrecy
is defined by the indistinguishability of the shared common secret key from a random string in
the secret key space. However, in our IB-AAGKA, what is negotiated is only a common public
encryption key while the group members’ secret decryption keys are different. Observe that both
conventional GKAs and our IB-AAGKA have the similar final goal of establishing a confidential
broadcast channel among users. Hence, we directly use the confidentiality of the final broadcast
channel to define the secrecy of an IB-AAGKA protocol. That is, secrecy is defined by the
indistinguishability of a message encrypted under the negotiated public key from a random
string in the ciphertext space. Specifically, we use the following game which is run between a
challenger C and an adversary A who has full control of the network communications to define
the security of IB-AAGKA protocols. This game has three stages which are described in detail
as follows:

Initial: At this stage, the challenger C first runs Setup(`) to generate the system parameters
params and master-secret, then gives the resulting params to the adversary A while keeping
master-secret secret.

Training: C is probed by A who can make the following queries:

– Send(Ππ
Ui

,∆)4: Send message ∆ to instance Ππ
Ui

, and output the reply generated by this
instance. If ∆ = (sid, pid), this query prompts Ui to initiate the protocol using session ID sid
and partner ID pid. Note that the identity of Ui should be in pid, and if ∆ is incorrect the
query returns null.

– Corrupt(Ui): Output the private key of participant Ui. We will use it to model (partial)
forward secrecy.

– Ek.Reveal(Ππ
Ui

): Output the encryption key ekπ
Ui

.
– Dk.Reveal(Ππ

Ui
): Output the decryption key dkπ

Ui
. We will use it to model known-key security.

4 Some models allow the adversary to make Execute queries. This feature is used to model passive attacks,
where the adversary eavesdrops on honest execution of a group key agreement protocol. One may note that,
if a GKA protocol is secure against active adversaries, the protocol is also secure against passive adversaries.
Furthermore, as mentioned in [20], the Execute query can be simulated via repeated calls to the Send queries.
Hence, in this paper, we do not consider Execute queries.
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– Test(Ππ
Ui

): At some point, A returns two messages (m0,m1) (|m0| = |m1|) and an instance
Ππ
Ui

. It is required that Ππ
Ui

be fresh (see Definition 2). C chooses a bit b ∈ {0, 1} uniformly
at random, encrypts mb under ekπ

Ui
to produce the ciphertext c, and returns c to A. Notice

that A can submit this query only once, and we will use this query to model Secrecy.

Response: A returns a bit b′. We say that A wins if b′ = b. A’s advantage is defined to be
Adv(A) = |2Pr[b = b′]− 1|.
Definition 2 (Freshness). An instance Ππ

Ui
is fresh if none of the following happens:

1. At some point, A queried Dk.Reveal(Ππ
Ui

) or Dk.Reveal(Ππ′
Uj

), where Ππ′
Uj

is partnered with
Ππ
Ui

.
2. A query Corrupt(Ui) was asked before a query of the form Send(Ππ

Ui
,∆).

3. All the private keys of the participants with sidπ
Ui

are corrupted. Since we do not allow A to
corrupt all the participants in the same session, our game captures partial forward secrecy.

Definition 3. An IB-AAGKA protocol is said to be secure against semantically indistinguish-
able chosen identity and plaintext attacks (Ind-ID-CPA), if no randomized polynomial-time
adversary has a non-negligible advantage in the above game. In other words, any randomized
polynomial-time Ind-ID-CPA adversary A has an advantage

Adv(A) = |2Pr[b = b′]− 1|
that is negligible.

In this paper, we only consider security against chosen-plaintext attacks (CPA) for our IB-
ASGKA protocol. To achieve security against chosen-ciphertext attacks (CCA), there are some
generic approaches that convert a CPA secure encryption scheme into a CCA secure one, such
as the Fujisaki-Okamoto conversion [16,6].

4 Building Block

In this section, we propose the signature scheme which will be used in our IB-AAGKA protocol.
Our signature scheme can be viewed as a special identity-based multi-signature scheme which we
call identity-based batch multi-signature (IB-B-MS) scheme. In our scheme, each signer will use
a single random value to generate t signatures on t different messages. This way, the resulting
signature (referred to as batch signature) on t messages of a signer only consists of t + 1 group
elements. Furthermore, our scheme allows signatures on the same message from x signers to be
aggregated into an IB-B-MS of t + 1 group elements. We notice that, when t = 1, our scheme
degenerates into the multi-signature of Gentry and Ramzan [17].

4.1 Definition

An IB-B-MS scheme consists of the following five algorithms:

– BM.Setup: This algorithm takes as input a security parameter ` to generate a master-secret
and a list of system parameters.

– BM.Extract: This algorithm takes as input an entity’s identity IDi, and the master-secret to
produce the entity’s private key.
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– Sign: On input t messages, a signer’s identity IDi and private key si, this algorithm outputs
a batch signature.

– Aggregate: On input a collection of x batch signatures on t messages from x signers, this
algorithm outputs a batch multi-signature.

– BM.Verify: This algorithm is used to check the validity of a batch multi-signature. It outputs
“all valid” if the batch multi-signature is valid; otherwise, it outputs an index set, which
means that the multi-signatures on the messages with indices in that set are invalid.

4.2 The Model

The security of an IB-B-MS scheme is modeled via the following game between a challenger C
and an adversary A.

Initial: C first runs BM.Setup to obtain a master-secret and the system parameter list params,
then sends params to the adversary A while keeping the master-secret secret.

Training: The adversary A can perform a polynomially bounded number of the following types
of queries in an adaptive manner.

– Extract: A can request the private key of an entity with identity IDi. In response, C outputs
the private key of this entity.

– Sign: A can request an entity’s batch signature on n messages. On receiving such a query, C
outputs a batch signature on those messages.

Forgery: A outputs a set of x entities whose identities form the set L∗ID = {ID∗
1, ..., ID∗

x},
a message m∗ and a multi-signature σ∗. We say that A wins the above game if the following
conditions are satisfied:

1. σ∗ is a valid multi-signature on message m∗ under identities {ID∗
1, ..., ID∗

x}.
2. At least one of the identities in L∗ID has never been submitted during the BM.Extract queries

and m∗ together with that identity is not involved in the Sign queries.

Definition 4. An IB-B-MS scheme is existentially unforgeable under adaptively chosen-message
attack if and only if the success probability of any polynomially bounded adversary in the above
game is negligible.

4.3 The Scheme

The construction comes as follows.

– BM.Setup: On input a security parameter `, the KGC chooses two cyclic multiplicative groups
G1 and G2 with prime order q, where G1 is generated by g and there exists a bilinear map
ê : G1 × G1 −→ G2. The KGC also chooses a random κ ∈ Z∗q as the master-secret and sets
g1 = gκ, and chooses cryptographic hash functions H1,H2 : {0, 1}∗ −→ G1. The system
parameter list is params = (G1,G2, ê, g, g1,H1,H2).

– BM.Extract: This algorithm takes as input master-secret κ and an entity’s identity IDi ∈
{0, 1}∗. It generates the private key for the entity as follows:
1. Compute idi = H1(IDi).
2. Output the private key si = idκ

i .
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– Sign: To sign t messages m1, ..., mt, a signer with identity IDi and private key si performs
the following steps:
1. Choose a random ηi ∈ Z∗q and compute ri = gηi .
2. For 1 ≤ j ≤ t, compute fj = H2(mj).
3. For 1 ≤ j ≤ t, compute zi,j = sif

ηi
j .

4. Output the batch signature σi = (ri, zi,1, ..., zi,t).
– Aggregate: Anyone can aggregate a collection of signatures {σi = (ri, zi,1, ..., zi,t)}1≤i≤x on

the messages {mj}1≤j≤t from x signers into a batch multi-signature. In particular, {σi =
(ri, zi,1, ..., zi,t)}1≤i≤x can be aggregated into (w, d1, ..., dt), where

w =
x∏

i=1

ri, dj =
x∏

i=1

zi,j .

– BM.Verify: To check the validity of the above batch multi-signature (w, d1, ..., dt), the verifier
computes Q = ê(

∏s
i=1 H1(IDi), g1) and for 1 ≤ j ≤ t checks

ê(dj , g) ?= ê(fj , w) ·Q.

If all the equations hold, the verifier outputs “all valid”; otherwise, it outputs an index set
I, which means the multi-signatures with indices in that set are invalid.

The following result relates the security of the IB-B-MS primitive with the difficulty of solving
the CDH problem.

Theorem 1. Suppose an adversary A who asks at most qH1 times H1 queries, qH2 times H2

queries, qe times Extract queries, qs times Sign queries with maximal message size N , and wins
the game in Section 4.2 with advantage Adv(A) in time τ . Then there exists an algorithm to
solve the CDH problem with advantage

4
(qe + qs + x + 1)2e2

Adv(A)

in time τ +O(2qH1 + qH2 + 4Nqs)τG1.

Proof. See Appendix A.

5 ID-Based Authenticated Asymmetric Group Key Agreement Protocol

In this section, we propose our IB-AAGKA protocol from bilinear maps.

5.1 The Proposal

In the sequel, we will consider a group of n participants who wish to establish a broadcast
channel.

– Setup: The same as BM.Setup, except that an identity-based signature scheme and a crypto-
graphic hash function H3 : G2 −→ {0, 1}ς are chosen, where ς is the bit-length of plaintexts.

– Extract: The same as BM.Extract.
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– Agreement: A protocol participant Ui, whose identity is IDi and private key is si, performs
the following steps:

1. Choose a random ηi ∈ Z∗q , compute ri = gηi .
2. For 1 ≤ j ≤ n, compute fj = H2(j).
3. For 1 ≤ j ≤ n, compute zi,j = sif

ηi
j .

4. Publish σi = (ri, %i, {zi,j}j∈{1,...,n},j 6=i), where %i is the identity-based signature on ri.
To keep the whole protocol efficient, one may choose an identity-based signature scheme
that supports batch verification [12] to generate %i. The material used to generate the
encryption/decryption key is described in Table 1, in which zi,i = zi,i is not published,
but is kept secret by Ui.

Table 1. Material used to generate the encryption/decryption key

Required for U1 U2 U3 · · · Un All

U1 ⇒ z1,1 z1,2 z1,3 · · · z1,n (r1, %1)

U2 ⇒ z2,1 z2,2 z2,3 · · · z2,n (r2, %2)

U3 ⇒ z3,1 z3,2 z3,3 · · · z3,n (r3, %3)

...
...

...
...

. . .
...

...

Un ⇒ zn,1 zn,2 zn,3 · · · zn,n (rn, %n)

Key d1 d2 d3 · · · dn (w, Q)

– Enc.Key.Gen: To get the group encryption key, an entity first checks the n message-signature
pairs (r1, %1), ..., (rn, %n). If all of these signatures are valid, then the entity computes

w =
n∏

i=1

ri, Q = ê(
n∏

i=1

H1(IDi), g1),

and sets the group encryption key as (w, Q).
– Dec.Key.Gen: Each participant Ui checks the n message-signature pairs (r1, %1), ..., (rn, %n).

If all of these signatures are valid, Ui computes di =
∏n

j=1 zj,i, and checks

ê(di, g) ?= ê(fi, w) ·Q.

If the equation holds, Ui accepts di as the group decryption key; otherwise, it aborts.
– Enc: For a plaintext m, an entity5 generates the ciphertext by the following steps:

1. Select ρ ∈ Z∗q , compute c1 = gρ, c2 = wρ, c3 = m⊕H3(Qρ).
2. Output the ciphertext c = (c1, c2, c3).

5 Unlike the conventional GKA protocols, not only the protocol participants can send a ciphertext to the group,
but also any outsider who learns the group encryption key.



10 Lei Zhang, Qianhong Wu, Bo Qin, Josep Domingo-Ferrer

– Dec: To decrypt the ciphertext c = (c1, c2, c3), Ui, whose group decryption key is di, computes

m = c3 ⊕H3(ê(di, c1)ê(f−1
i , c2)).

Theorem 2. Suppose an adversary A who asks at most qH1 times H1 queries, qH2 times H2

queries, qH3 times H3 queries, qc times Corrupt queries, qs times Send queries, qer times Ek.Reveal
queries and qdr times Dk.Reveal queries, and wins the game with advantage Adv(A) in time τ .
Then there exists an algorithm to solve the k-BDHE problem with advantage

4(1− kAdvsig(A))
qH3(qc + qdr + k + 1)2e2

Adv(A).

in time τ +O(qer)τê +O(2qH1 + qH2 + kqs)τG1 , where Advsig(A) is the advantage for A to forge
a valid identity-based signature in time τ , τê is the time to compute a pairing and τG1 is the
time to compute a scalar multiplication in G1.

Proof. See Appendix B.

6 Conclusion

We have defined a security model for IB-AAGKA protocols and proposed a one-round IB-
AAGKA protocol from bilinear maps based on the k-BDHE assumption in the random oracle
model. The new protocol allows an adversary to adaptively choose his targets, and it offers
the key secrecy, known-key security and partial forward secrecy properties. This design is also
readily adaptable to provide broadcast encryption [7,15].
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A Proof of Theorem 1

Proof. Let C be a challenger, A be an adversary who can break the proposed IB-B-MS scheme
under an adaptive chosen-message attack. Suppose that C is given an instance (g, gα, gβ) of the
CDH problem in G1. We show how C can use A to solve the CDH problem, i.e., to compute
gαβ .

Initial: Firstly, C sets g1 = gα, then selects the system parameters params = (G1,G2, ê, g, g1,H1,H2),
and gives params to A. In the following, we treat H1 and H2 as random oracles which are con-
trolled by C.
Training: C answers A’s queries as follows:

H1 queries: C maintains an initially empty list H list
1 . On input IDi, C does the following

– If there is a tuple (IDi, µi, idi, si,H1coini) on H list
1 , return idi as the answer.

– Else flip a coin H1coini ∈ {0, 1} that yields 1 with probability δ and 0 with probability 1−δ,
pick a random µi ∈ Z∗q and proceed as follows
• If H1coini = 0, set idi = gµi , si = gµi

1 , add (IDi, µi, idi, si,H1coini) to H list
1 and respond

with idi.
• Else set idi = gβµi , si = null, add (IDi, µi, idi, si,H1coini) to H list

1 and respond with idi.

H2 queries: C keeps an initially empty list H list
2 . On input mi, C does the following:

– If there is a tuple (mi, νi, fi,H2coini) on H list
2 , return fi as the answer.
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– Else flip a coin H2coini that yields 1 with probability δ and 0 with probability 1−δ, randomly
select βi ∈ Z∗q and do the following
• If H2coini = 0, set fi = gνigα, add (mi, νi, fi,H2coini) to H list

2 and return fi as the
answer.

• Else compute fi = gνi , add (mi, νi, fi,H2coini) to H list
2 and return fi as the answer.

Extract queries: On input an identity IDi, C first makes an H1 query on IDi, then recovers
(IDi, µi, idi, si,H1coini) from H list

1 . If H1coini = 0, C returns si as the answer; otherwise, it
aborts.

Sign queries: On input (IDi,m1, ..., mn) with n ≤ N , C first asks an H1 query on IDi and
finds (IDi, µi, idi, si,H1coini) on H list

1 , and for 1 ≤ j ≤ n, asks an H2 on mj and recovers
(mj , νj , fj ,H2coinj) from H list

2 ; then C does the following:

– If H1coini = 0, use the Sign algorithm to generate a batch signature.
– Else if H2coinj = 0 for all 1 ≤ j ≤ n, select ηi ∈ Z∗q , compute ri = gηig−βµi , zi,j = r

νj

i gηi
1 ,

and output (ri, zi,1, ..., zi,n).
– Else abort.

Forgery: Finally, A outputs an identity set L∗ID = {ID∗
1, ..., ID∗

x}, a message m∗ and a multi-
signature σ∗ = (w∗, d∗), where σ∗ is a valid multi-signature on m∗ under (ID∗

1, ..., ID∗
x).

In order to get the solution of the CDH problem, C now proceeds with the following steps:

1. For 1 ≤ i ≤ x, ask an H1 query on ID∗
i , and recover (ID∗

i , µ
∗
i , id

∗
i , si,H1coin

∗
i ) from H list

1 .
2. Ask an H2 query on m∗, and recover (m∗, ν∗, f∗,H2coin

∗) from H list
2 .

In the following, for simplicity, we will only consider the case that H1coin
∗
1 = H2coin

∗ = 1
and H1coin

∗
i = 0 for 2 ≤ i ≤ t; otherwise, C aborts. If C does not abort, this implies id∗1 =

gβµ∗1 , f∗ = gν∗ , and for 2 ≤ i ≤ t, id∗i = gµ∗i . Since σ∗ should be valid, we have

ê(d∗, g) = ê(f∗, w∗)ê(
t∏

i=1

H1(ID∗
i ), g1).

It is easy to get

gαβ = (d∗ · w∗−ν∗ · g−
Pt

i=2 µ∗i
1 )µ∗1

−1

as the solution of CDH problem.
To complete the proof, it remains to compute the probability that C solves the given instance

of the CDH problem. First, we analyze the three events needed for C to succeed:

– E1: C does not abort as a result of any of A’s queries.
– E2: σ∗ is a valid and nontrivial multi-signature on m∗ under (ID∗

1, ..., ID∗
x).

– E3: Event E2 occurs, and also H1coin
∗
1 = H2coin

∗ = 1 and for 2 ≤ i ≤ x H1coin
∗
i = 0.

C succeeds if all of these events happen. The probability Pr[E1∧E2∧E3] can be decomposed
as

Pr[E1 ∧ E2 ∧ E3] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∧ E2].
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From the above simulation, it is easy to get Pr[E1] ≥ (1− δ)qe+qs , Pr[E2|E1] ≥ Adv(A) and
Pr[E3|E1 ∧ E2] = δ2(1− δ)x−1. Hence, we have

Pr[E1 ∧ E2 ∧ E3] ≥ δ2(1− δ)qe+qs+x−1Adv(A)

≥ 4
(qe + qs + x + 1)2e2

Adv(A).

The time complexity is
τ +O(2qH1 + qH2 + 4Nqs)τG1 .

¤

B Proof of Theorem 2

Proof. Let C be a challenger, and A be an adversary who can break the proposed protocol.
Suppose C is given an instance (g, h, y1, ..., yk, yk+2, ..., y2k) of the k-BDHE problem, where
yi = gαi

, i ∈ {1, ..., k, k + 2, ..., 2k} with some unknown α ∈ Z∗q . We show how C can use A to
solve the problem, i.e., to compute the required ê(g, h)αk+1 .

In the following, we assume that in each session the participants involved in the group are
at most of scale k. As defined in Section 3.1, when a new session is first initiated, it will have a
unique session ID. We assume that the session ID will be sidι. At the same time, C will also flip
a coin csidι so that Pr[csidι = 1] = δ,Pr[csidι = 0] = 1− δ. The tuple (sidι, csidι) is recorded by C.
Initial: When the game begins, C selects the system parameters params = (G1,G2, ê, g, g1, ς, H1,
H2,H3, sig), where g1 = y1 = gα, sig is a secure identity-based signature scheme. params is
passed to A. In the following, we treat H1, H2 and H3 as random oracles which are controlled
by C.
Training: C answers A’s queries as follows:

H1 queries: C maintains an initially empty list H list
1 . On input IDi, C does the following:

– If IDi already appears on the H list
1 in a tuple (IDi, µi, idi, si, cHi

1
), return idi as the answer.

– Else, pick a random µi ∈ Z∗q , generate a random coin cHi
1

so that Pr[cHi
1

= 1] = δ,Pr[cHi
1

=
0] = 1− δ and proceed as follows:
• If cHi

1
= 0, set idi = gµi , si = gµi

1 , add (IDi, µi, idi, si, cHi
1
) to H list

1 and respond with idi.
• Else, set idi = gµiyk, si = null, add (IDi, µi, idi, si, cHi

1
) to H list

1 and respond with idi.

H2 queries: C keeps an initially empty list H list
2 . On input j, C does the following:

– If there is a tuple (j, νj , fj) on H list
2 , return fj as the answer.

– Else if j ≤ k, randomly select νj ∈ Z∗q , set fj = yjg
νj , add (j, νj , fj) to H list

2 and return fj

as the answer.
– Else, randomly select νj ∈ Z∗q , set fj = gνj , add (j, νj , fj) to H list

2 and return fj as the
answer.

H3 queries: C maintains an initially empty list H list
3 . On input a message Ωi, if there is a tuple

(Ωi, $i) on H list
3 , C returns $i as the answer; otherwise, C randomly selects $i ∈ {0, 1}ς , adds

(Ωi, $i) to H list
3 and responds with $i.

Corrupt(Ui): Suppose the identity of Ui is IDi. On receiving the corrupt query, C first submits
IDi to the H1 oracle if this query has never been asked before, recovers (IDi, µi, idi, si, cHi

1
) on

H list
1 , and does the following:
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– If cHi
1

= 1, abort (Event 1).
– Otherwise, return si as the answer.

Send(Ππ
Ui

,∆): C maintains an initially empty list Slist. Assume pidπ
Ui

= {ID1, ...., IDn}. To
answer this query, C first recovers csidπ

Ui
corresponding to sidπ

Ui
, submits IDi to the H1 oracle if

this query has never been asked before, recovers (IDi, µi, idi, si, cHi
1
) from H list

1 , submits j to
the H2 oracle and recovers (j, νj , fj) from H list

2 for 1 ≤ j ≤ n; then C simulates this oracle as
follows:

– If csidπ
Ui

= 0 and cHi
1

= 0, simulate this query normally:
1. Choose a random ηi ∈ Z∗q and compute ri = gηi .
2. For 0 ≤ j ≤ n, compute zi,j = sif

ηi
j .

3. Add (IDi, sid
π
Ui

, ηi, zi,i) to Slist and publish (ri, %i, {zi,j}j∈{1,...,n},j 6=i).
– Else if csidπ

Ui
= 0 and cHi

1
= 1, generate the answer as follows:

1. Select ηi ∈ Z∗q and compute ri = gηi
∏n

l=1 y−1
k−l+1,

2. For 1 ≤ j ≤ n, zi,j = fηi
j gµi

1

∏n,l 6=j
l=1 y−1

k−l+1+j .
3. Add (IDi, sid

π
Ui

, ηi, zi,i) to Slist and publish (ri, %i, {zi,j}j∈{1,...,n},j 6=i).
– Else if csidπ

Ui
= 1 and cHi

1
= 0, perform the following steps:

1. Select ηi ∈ Z∗q at random and compute ri = gηi
1 yk−i+1.

2. For 1 ≤ j ≤ n, i 6= j, compute zi,j = r
νj

i gµi
1 yηi

j yk−i+1+j .
3. Add (IDi, sid

π
Ui

, ηi, null) to Slist and respond with (ri, %i, {zi,j}j∈{1,...,n},j 6=i).
– Else, csidπ

Ui
= 1 and cHi

1
= 1, do the following:

1. Randomly select ηi ∈ Z∗q and compute ri = gηi
1

∏n,l 6=i
l=1 y−1

k−l+1.

2. For 1 ≤ j ≤ n, i 6= j, compute zi,j = r
νj

i gµi
1 yηi

j

∏n,l/∈{i,j}
l=1 y−1

k−l+1+j .
3. Add (IDi, sid

π
Ui

, ηi, null) to Slist and respond with (ri, %i, {zi,j}j∈{1,...,n},j 6=i).

Ek.Reveal(Ππ
Ui

): Assume msπUi
= {σ1, ..., σn}, where σl = (rl, %l, {zl,j}j∈{1,...,n},j 6=l). If stateπ

Ui
=

successfully terminated, C computes w =
∏n

l=1 rl, Q = ê(
∏n

l=1 H1(IDl), g1), and returns
(w, Q); otherwise, it returns null.

Dk.Reveal(Ππ
Ui

): C first finds csidπ
Ui

corresponding to sidπ
Ui

and then does the following:

– If csidπ
Ui

= 1, abort (Event 2).
– Else if Ui

π is not successfully terminated, return null.
– Else, recover the corresponding zi,i from Slist and msπUi

= {σ1, ..., σn}, where σl = (rl, %l,
{zl,j}j∈{1,...,n},j 6=l); compute and output di =

∏n
l=1 zl,i.

Test(Ππ
Ui

): At some point, A chooses a fresh Ππ
Ui

and two messages m0,m1 on which it wishes to
be challenged. Assume pidπ

Ui
= {ID∗

1, ..., ID∗
n}, msπUi

= {σ∗1, ..., σ∗n}, where σ∗l = (r∗l , %
∗
l , {z∗l,j}j∈{1,...,n},j 6=l)

and %∗l is a valid signature on r∗l . C does the following:

1. For 1 ≤ l ≤ n, recover (ID∗
l , µ

∗
l , id

∗
l , s

∗
l , c

∗
Hl

1
) from H list

1 .
2. If csidπ

Ui
= 1, and, there exists one and only one c∗

Hl
1

= 1, and, {%∗l }l∈{1,...,n} is not a forgery,
turn to Step 3. Otherwise, abort (Event 3).
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3. For 1 ≤ l ≤ n, recover η∗1, ..., η
∗
n from Slist, where η∗l is the random value chosen to generate

r∗l . Note that, since %∗l is a valid signature on r∗l , ekπ
Ui

= (w∗, Q∗) equals (g
Pn

l=1 η∗l , g
Pn

l=1 µ∗l yk).
4. Set c1 = h, c2 = h

Pn
l=1 η∗l , randomly choose θ ∈ {0, 1}ς , and compute c3 = mb ⊕ θ, where

b ∈ {0, 1}.
5. Return c = (c1, c2, c3). Note that A cannot recognize that c is not a proper ciphertext unless

she queries H3 on ê(g
Pn

l=1 µ∗l
1 gαk+1

, h).

Response: Once A finishes querying and returns its guess b′ ∈ {0, 1}, C randomly chooses a
tuple (Ωi, $i) from H list

3 and returns the value Ωi ·ê(g−
Pn

l=1 µ∗l
1 , h) as the response to the k-BDHE

challenge.

We note that the above simulations of all the random oracles are valid and the messages of
the oracles are uniformly distributed in the message space. Hence, the adversary cannot find
inconsistence between the simulation and the real world. Therefore, Pr[b = b′] ≥ Adv(A). It
remains to determine the probability that C outputs the required Ωi. It is easy to see that C
will abort if Event 1 or Event 2 or Event 3 happens. We must calculate Pr[¬Event 1∧¬Event 2∧
¬Event 3].

By our setting, it is easy to get Pr[¬Event 1] ≥ (1 − δ)qc , Pr[¬Event 2] ≥ (1 − δ)qdr ,
Pr[¬Event 3] ≥ δ2(1 − δ)n−1(1 − nAdvsig(A)). Since these probabilities are independent, the
overall probability that C does not abort is

δ2(1− δ)qc+qdr+n−1(1− nAdvsig(A)) ≥ δ2(1− δ)qc+qdr+k−1(1− kAdvsig(A)).

This value is maximized at δ = 2
qc+qdr+k+1 . Hence, we have

Pr[¬Event 1 ∧ ¬Event 2 ∧ ¬Event 3] ≥ 4(1− kAdvsig(A))
(qc + qdr + k + 1)2e2

.

In conclusion, we have the probability for C to solve the k-BDHE problem is

4(1− kAdvsig(A))
qH3(qc + qdr + k + 1)2e2

Adv(A).

The time complexity is
τ +O(qer)τê +O(2qH1 + qH2 + kqs)τG1 .

¤


