Efficient Implementation of Elliptic Curve Point Operations
Using Binary Edwards Curves

Richard Moloney*! Aidan O’Mahony,
School of Mathematical Sciences, Intel Shannon,
University College Dublin, Co Clare,
Ireland Ireland
richard.moloney@ucd.ie aidan.o.mahony@intel.com

Pierre Laurent,
Intel Shannon,
Co Clare,
Ireland
pierre.laurent@intel.com

Abstract

This paper presents a deterministic algorithm for converting points on an ordinary
elliptic curve (defined over a field of characteristic 2) to points on a complete binary Ed-
wards curve. This avoids the problem of choosing curve parameters at random. When
implemented on a large (512 bit) hardware multiplier, computation of point multipli-
cation using this algorithm performs significantly better, in terms of code complexity,
code coverage and timing, than the standard implementation. In addition, we propose
a simple modification to the birational equivalence detailed in the paper by Bernstein
et al. which both reduces the number of inversions required in the affine mapping and
has fewer exceptional points. Finally, we compare software implementations using this
efficient point multiplication for binary Edwards curves with computations on elliptic
curves in Weierstrass form.

*Research supported by Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006, and
the Irish Research Council for Science, Engineering and Technology

"This paper is a preprint of a paper submitted to IET Information Security and is subject to Institution
of Engineering and Technology Copyright. If accepted, the copy of record will be available at IET Digital
Library.

1 Introduction

Binary Edwards curves (BECs) were introduced by Bernstein et al. in [1]. If k is a field
of characteristic 2, d1, do € k with dy # 0, do # di% + d, the binary Edwards curve with
coefficients dy, ds is the affine curve

Epayd, - di(z+y) +do(a® +) = (z +2°)(y + y°)

The addition law is given by (x1,y1) + (z2,y2) = (z3,y3) where

di(z1 + 22) + do(z1 + y1) (22 + y2) + (21 + 12) (22(y1 + y2 + 1) + y192)
dy + (w1 + 212) (22 + y2)

xr3 =

di(y1 +y2) + da(z1 +y1) (@2 + y2) + (Y1 + 117 (2 (21 + 22 + 1) + 2132)
di+ (y1 + %) (@2 + y2)

Y3 =
An ordinary elliptic curve E over k expressed in the form
U2+uvzu3+a2u2+a6

is birationally equivalent to a complete binary Edwards curve with coefficients dy, do where

Tr(d1) =Tr(as)+1, Tr(\/ag/di?) = 1 and do = d1?+d1++/ag/d1*. Note that d; is generally

not unique.

1.1 Review of some basic concepts

The trace function Tr:Fom — Fa on a finite field of characteristic 2 is defined by [2]

m—1
o ZOZQZ :0{—{—()[2—|—---—|—()42m71
=0
Note that
Tr(a) = Tr(a?) = Tr(va)
and

Tr(a+ B) = Tr(a) + Tr(5)

for all at, 3 € Fom. If m is odd, Tr(1) = 1. If @ has minimal polynomial z‘4a; 12/~ +---+1
over [y, then Tr(a) = ay—1.

If m is odd, the half-trace function H:Fgm — Fom is defined by [2]
(m=1)/2
o Z o =a+at+al4 - ta
i=0

2m71

Given a € Fam, the square root of « is calculated as /o = o2 ' [2].

1.2 Aim of this paper

Several points need to be made about the constraints of our physical system. We assume
k = Fom where m is an odd prime (to avoid the Weil descent attack [2]). We assume E
is an ordinary elliptic curve, denoted in short Weierstrass form, over k, and that at least
one k-rational point of E, (uj,v1) is specified. Our purpose is to describe a method for
obtaining the results of point operations on £ by mapping E to a related complete binary
Edwards curve, Ep 4, 4, (with Tr(ds) = 1).

Other constraints of our system are that the computation of the trace of an element is
considered highly time—consuming, as is inversion of an element, and memory is assumed
to be minimal, so storage of lists, vectors, etc. is not feasible. We do not assume access to
a random number generator.

2 The birational equivalence

The birational equivalence from the binary Edwards curve Ep 4, 4, with coordinates (z,y)
to a Weierstrass curve v? + uv = u? + agu® + ag with coordinates (u,v) is given by

_di(d’ +di +dy)(x +y)
(zy + di(z +y))

v =dy(di* + dy + dy) <

(b+ 1)z + by
zy +di(z +y)
with one exceptional point (0,0) (identified with O, the identity of the Weierstrass curve).
We will make frequent use of b, denoting an element of k satisfying b% + b = di? + da +
ag.

+d1+1>

The inverse mapping is given by
dy(u+di? +dy + do)
(b4 Du+v+ (di? + dy)(di* + dy + da)
B di(u+ di? +dy + da)
S butv A (di?+dy)(di? A+ dy +dy)

Y

The exceptional points of this mapping are O, (di? +dy + da, (di? + dy + d2)(di% +dy +b))
and (di%+dy +do, (d12 +dy +ds)(di2 +dy +b+1)). These formulae are obtained by simply
composing the birational equivalence in section 2 of [1] with the isomorphism v — v + bu
which maps the curve v2 + uv = u® + (d12 + d2)u2 + ag to v2 + ww = u? + agu? + ag.

2.1 A modification of the birational equivalence

We present a modification of the birational equivalence from the Weierstrass curve to the
complete binary Edwards curve which has only one exceptional point and reduces the
number of inversions required. Define

z=((b+Du+v+ (dl2 + dl)(d12 +di +d2))(bu+v+ (ah2 + dl)(d12 +d1 +ds))
Then
di(u+ di® + dy + do)(bu 4+ v + (di% + dy)(di? + di + do))

z
di(u+di? +dy +do)((b+ Du+ v+ (di® 4+ dy)(di? + dy + do))

z

y =
But
z = (bu + v+ (d12 + dl)(d12 +dy + dg))Q + u(bu + v+ (d12 + d1)(d12 +dy + dQ))
= (® +b)u® + v +uv + (dy* + di2) (i * + di? + d3) + u(di® + dy)(di? + dy + dy)
Using b2 +b = di2 + da + ag, v2 + uv = u® + asu? + ag and ag = (d14 +di2 + d%) (from
[1])
2= (di? + do)u® + ud + di?(dy* + di® + d3) + w(dy® + di)(dy? + dy + do)
= (u+di? +dy + do)(u® + dyu+ di?(di® + di + do))
Thus
di(bu + v+ (di? + di)(di? + di + d))
u? + dyu + di2(di? + dy + da)
di((b+ Du+v+ (di* + d1)(di® + di + dy))
u? + dyu + di2(di % 4 di + do)

We claim that if Fp g, 4, is a binary Edwards curve with Tr(dz) = 1 (shown in [1] to be
a sufficient condition for completeness), this mapping has only one exceptional point, O.
For

u? + diju + d12(d12 +dy+d2)=0

di?
Tr(di? + dy + dy) = Tr(dy) + Tr(dy) + Tr(dy) = 1, by hypothesis.

to have a solution u € k, we require that Tr(w) :Tr(d12 +dy +dy) =0, but

3 Finding d;

To compute point operations on an elliptic curve in Weierstrass form using a BEC, we
need to find an appropriate d; parameter. The algorithms in this section carry this out in
a deterministic manner (as opposed to choosing d; at random).

We assume the following are known:

m, a prime integer and p, an irreducible polynomial in Fa[x] of degree m, defining a field
k. (We denote field elements as polynomials in x.)

a2, ag € k, ag # 0 defining an elliptic curve
E102+u1}:u3+a2u2+a6

over k. We precompute t = Tr(ag), r = Tr(ag)

The desired output is a point (or set of points), the result of some sequence of point
operations on F.

We need to find a d; € k such that Tr(d;+az) = 1, and Tr(y/ag/d1?) = 1 (as required in [1]).
We then define dy = di2+dy —1—\/%/(112, and find a b such that b2 +b = di2 + ds + as.

Observe that, using the properties listed in section 1.1, Tr(1) = 1 and Tr(z), Tr(z?),Tr(z4), ...
are known as the second coefficient of p. We denote w = z+Tr(z), noting that Tr(w) =
0.

Algorithm 1 terminates with guaranteed success in a finite number of steps, except in the
case t = r = 0. This case does not appear in any of the standards (e.g. NIST [3]) of which
the authors are aware; Koblitz curves always have » =Tr(1) = 1, and non-Koblitz curves
are chosen such that they have a minimal cofactor of 2 (forcing ¢ = 1, as per theorem 3.18
of [2]).

The other parameters of the mapping are ds, which is directly calculated as dy = dq? +
di + \/ag/di? and b, which satisfies b? + b = di* + da + az (b =H(di? + da + az)). If we
use algorithm 2 then the inversion used in computing do disappears and is replaced with
ds = (di-+e1)?+d;. Tt is also worth noting that the calculation of 1/(¢*+q+1), (¢*+q+1)/¢>
etc are actually trivial when ¢ is chosen to be z and do not require use of the extended
Euclidean algorithm!.

'"We extend the methods for modular inverse described in [4] to polynomials and fields of characteristic
two. We believe this to be well known but are unable to find reference to this method.

Input: m, p, t, r, ag, w
Postcondition: Tr(d;) =Tr(az) + 1 and Tr(,/ag/d1?) = 1
if t=0and r =1 then
Let d1 =1.
else
if t=1and r =0 then
Let d1 = %.
else
if t=r=1and ag # 1 then
if Tr(1/(ag+1)) =1 then
Let dl = \/676-1- \4/%.
else
Let dy = {/ag + 1.
else
if t=1 and ag = 1 then
if Tr(1/w) =1 then
Let di = w.
else
if Tr(1/(w+1)) =0 then
Let dj =1/(w+1).
else
Let dy =1+ 1/(w+1).
else
if t=r =0 then
if Tr(1/(ag + 1)) =0 then
Let d; = %‘F 1.
else
Let =1
Let s = \/ag
while Tr(ag? ™) = 0 do
Let s = s2
i=1+1
Let dy =1/(s+1)
Algorithm 1: Algorithm to generate a suitable d;

Input: ag, as, choose ¢ =z, f
Output: dy = F,e1 = F
Let A = ag/ (¢ +q+ 1)
Let B = ¢’A
Let C =qA
if tr(A) = tr(az) + 1 then
output(d; = A,e; = (¢*> + ¢+ 1))
if tr(B) = tr(a2) + 1 then
output(d; = B,e1 = (¢* + ¢+ 1)/¢?)
if tr(A) + tr(B) = tr(az) + 1 then
output(dy = A+ B,e; = (¢> + ¢+ 1)/(¢*> + 1))
if tr(C) =1 then
output(dy = 1,e1 = Yas)
else
/* Tr(az) =Tr(ag) =0
choose r with 0 < deg(r) < deg(f)
if tr(1/(r+1)) =1 then
D=r,E=1/(r+1
else
D=1/r,E=r/(r+1)
Let dstart = D
Let F' = {ag(D +1)
while ¢r(F) =0 do
Let D = D?, E = E?
if D = dstart then
if tr(1/r) =1 then
D=r+1,E=1/r
else
D=1/(r+1L,E=(r+1)/r
Let F = /ag(D + 1)
Algorithm 2: Alternative algorithm to generate a suitable dy

*/

4 Summary of procedure

We summarize the procedure used to carry out point operations on an ordinary elliptic
curve over Fom using a complete binary Edwards curve.

Find dy, ds and b as described in section 3.

Map the point (u,v) to a point(x : y : z) on the projective binary Edwards curve:

xr = dl(bu +v+ (d12 + d1)(d12 +di + dg))
y=x+diu
2z =u?+ dyu+ d12(d12 +di + da)

Or, using dy = di> + d; + \/%/df,

l’:dlbu—i-dl’l)-f—(dl-i-l)\/%
y=x+diu
z=u? +diu+ \/ag

Carry out point addition, doubling etc., in projective Edwards coordinates as de-
scribed in [1]. Call the result (z' :y : 2")

/

Map the resulting points (z" : 3 : z') back to the points (u',v") on the affine
Weierstrass-form elliptic curve:

d1$/y/+d12($/+y/)zl
b+ 1)’z +by'2 1
(b+1) Y N)

uI:\/@((x +y)z)

dlx/y/ + dlz(l'/ + y')z/ dq

v,:\/@(

5 Current Implementations

To fully understand the problem that is being solved by this approach, it is worthwhile
examining existing implementations of elliptic curve cryptography (ECC) over GF(2™). It
is also important to consider that in order to develop a secure cryptosystem it is prudent
to work alongside relevant standards such as [5]. We examine three implementations of
ECC over GF(2™).

5.1 Crypto++

Crypto++ [6] provides implementations of modular arithmetic, point arithmetic, ECDSA,
ECDH, ECIES, ECNR and ECMQV over both GF(p) and GF(2™). In the case of GF(2™),
the user is permitted to use elliptic curves from the FIPS standards or curves that the user
may have selected themselves.

Internally, the basic point operations (point multiplication, point addition etc.) are based
on points represented in affine coordinates on short Weierstrass curves only.

5.2 Miracl

Miracl [7] provides implementations of modular arithmetic and point arithmetic over both
GF(p) and GF(2™) and also supplies sample code for ECDH and ECDSA. In the case of
GF(2™), the user is permitted to use elliptic curves from the FIPS standards or curves
the user may have created themself, however the field polynomial is restricted to either a
pentanomial or trinomial.

Internally, the basic point operations are based on points represented in either affine coor-
dinates or projective coordinates on short Weierstrass curves also.

5.3 A hardware implementation of ECC over a binary Edwards curve

The only implementation available that incorporates binary Edwards curves is found in [8].
In this thesis, the use of BECs is described and is implemented in the GEZEL hardware
design language [9]. This implementation does not take into account the curves from the
FIPS standards and therefore does not have the issue of mapping between short Weierstrass
and binary Edwards curves.

6 Hardware

The hardware available to us is described in [10]. A simplified diagram of the hardware is
shown in figure 1. This hardware consists of a very large multiplier, shifter, alu, memory
(data and control), flags and FIFOs. As described in [10] section [0075], it is crucial for
efficient operation to keep the pipeline of the multiplier full. This means that branches
and testing operands are very costly as they break the multiplier pipeline.

7 Results

7.1 Our chosen implementation

For the purposes of comparing complexity and coverage metrics, we examined an imple-
mentation of elliptic curve operations using non-adjacent form (NAF) [11] [12] [13] as well
as the right to left binary method for point multiplication described in [2] (algorithm 3.26).
Implementation of NAF on our device proved impossible due to control store constraints
until we were able to dramatically reduce instructions by using BECs.

7.2 Effect on Complexity

Code complexity can be considered a measure of the difficulty of providing an algorithm
and is a common source of defects within source code [14]. One measure of complexity
that is in common usage is that of “Cyclomatic Complexity” [15], which represents the
complexity of an artifact by a number called a “McCabe number”. It is recommended that
for any given module, its McCabe complexity should not exceed 10 [14] (where a higher
number indicates higher complexity). We use this measurement in our implementations
of ECC. The tool we used in this paper to measure complexity is “CCCC” [16], and the
results can be seen in table 1.

7.3 Effect on Coverage

Code coverage is a measure of how well an artifact of code is tested (and therefore gives
some indication as to how reliable the code is [17]). We will concern ourselves mostly
with block coverage and decision coverage. These terms “block coverage” and “decision
coverage” are explained in some detail with examples in [18].

It seems natural that code related to security be 100% covered. Implementing ECC from the
textbooks leaves us with incredibly complex code, which includes computationally intensive
trace conditions. While there are many articles available detailing why complete code
coverage can give false confidence, as [17] explains, we expect that as coverage increases, so
does reliability. Therefore, it is our goal to reach 100% block and decision coverage.

Implementing the operations as described in [1] augmented with a deterministic binary
Edwards curve coefficient generation described in this paper, the McCabe complexity de-
creases dramatically from 51 to 31. If we choose only points on the curves detailed in
[5] the complexity decreases even further to 28. The comparisons can be seen in table 1.

10

Type Coverage (in percent) | Complexity
Binary Edwards with NAF (all curves) 100 31
Binary Edwards with NAF (only curves from [5]) 100 28
Without Binary Edwards and with NAF (all curves) 77 51

Table 1: Coverage and complexity comparison

Curve Multiplications | Squarings | Additions
Binary Edwards 5 6 9
Weierstrass 8 3 4

Table 2: Comparison between cost of doubling on BEC and Weierstrass curves

7.4 Comparison between BEC and Weierstrass

It is worthwhile to compare the number of modular operations required to conduct a point
addition and point doubling using both BECs and Weierstrass curves where the points are
represented using projective coordinates. We further make the assumption that we do not
know in advance that any of the z coordinates are 1 (to use this assumption we would need
to implement two different versions of the addition and doubling). These figures come from
the Explicit-Formulas Database (EFD)[19].

It is significant to note that on our hardware [10], an addition can execute in parallel
with a multiplication. Therefore, it is reasonable to remove the additions from the below
table. Also, a square operation is carried out by the multiplier. This means that the cost
of a square is equal to that of a multiplication. This means we can compare the cost of
doubling and addition in terms of (number operations = number of squares + number of
multiplications).

We then see that the cost of a point double on our device using BECs is 11 multiplications
versus Weierstrass which also needs 11 multiplications. However, the cost from the EFD
does not take into account the cost of checking that if the operations is attempting to
double the point at infinity.

It is preferable, therefore, to double using the BEC method. The same logic can be applied
to the addition which required even more checks in code before the addition itself can be
carried out. Table 2 and table 3 show the multiplication cost between the two addition
methods and the two doubling methods.

11

Curve Multiplications | Squarings | Additions
Binary Edwards 25 1 15
Weierstrass 15 1 7

Table 3: Comparison between cost of addition on BEC and Weierstrass curves

Curve Operation Weierstrass | Binary Edwards
(ms per op) (ms per op)
B-163 | ECDH offline, with precomputation 0.22 0.26
B-163 ECDSA Verify 1.18 1.45
B-233 | ECDH offline, with precomputation 0.36 0.43
B-233 ECDSA Verify 1.85 2.27
B-283 | ECDH offline, with precomputation 0.51 0.65
B-283 ECDSA Verify 2.64 3.44
B-571 | ECDH offline, with precomputation 1.79 2.60
B-571 ECDSA Verify 9.62 13.12

Table 4: Performance of Weierstrass and binary Edwards operations on i7

7.5 Comparison between BEC and Weierstrass on TA

As a further comparison, we integrated BECs into the cryptography library “Miracl” [7].
The results are in table 2 and were carried out on a Intel(R) Core(TM) i7 920 CPU 2.67GHz
eight core 64-bit machine with 6GB RAM. The tests were carried out using the “bmark”
program supplied with “Miracl”.

As we can see from table 4, on a standard IA the binary Edwards curves do not perform as
well as the Weierstrass curves. However, it is still important to remember that the coverage
for the binary Edwards implementation is still considerably higher and less complex then
the alternative. Also, we shall see in the next section how the performance is significantly
different if implemented on a different processor.

7.6 Comparison between BECs and Weierstrass on EP80579

Our device, which is a member of the Intel(R) EP80579 Integrated Processor product line,
accelerates certain ellipic curve operations and acceleration is offloaded to a cryptographic
engine (Intel(R) QuickAssist Technology) similar to that described in [10]. We are able to
take advantage of better pipelining of instructions (allowing us to parallelize the similar
trace, half trace and modular square root operations over characteristic two) and a dedi-
cated polynomial multiplier. It is also important to note that the computation of a trace or
half trace or square root cost less then computing the extended Fuclidean algorithm. These

12

Curve Cycles | Number of instructions
Binary Edwards | 1859356 378
Weierstrass 2405558 385

Table 5: Cycle comparison between BEC and Weierstrass point multiplication on a member
of the EP80579 family of embedded processors

advantages, used together with BECs actually make a difference in performance when com-
pared to a Weierstrass implementation. Due to the fact that we do not have to break the
pipeline with checks for the point of infinity, and the reduced control store allowed us to
integrate non-adjacent form, we are able to increase the performance of BECs such that it
is approximately 25% faster than the equivalent Weierstrass version. Table 5 gives a cycle
comparison between a point multiplication using BECs and a point multiplication using
Weierstrass curves (point multiplication is [2209 + 287]P on NIST curve K-409).

8 Future Work

We are investigating the possibility that the selection of dy might come from the solution
of some quadratic equation. We are also attempting to find dy, d2 pairs such that ds/d;
is optimised for faster computations on the curves listed in the NIST standards [3]. This
would be useful to implementers of ECC.

9 Acknowledgements

The authors would like to thank Catriona Lucey, Gary McGuire and other reviewers for
taking the time to review this paper and providing helpful comments.

10 Conclusion

There is significant benefit to using BECs as is demonstrated by the reduced complexity
(McCabe complexity decreases dramatically from 51 to 31) and increased test coverage
(from 77% to 100%). These factors alone are of huge importance to implementors of
cryptographic algorithms. We have also seen that, while on an Intel(R) TA32 processor
there is some minimal speed impact, if implemented with a large multiplier on a different
architecture there is a 25% performance increase. Finally, our work has shown that there
exists a modified birational equivalence with fewer exceptional points, and that it is possible

13

for us to deterministically map points from Weierstrass representation to binary Edwards
representation with minimal effort.

14

11 Figures

v v

—] R

Memory A Memory B
Instruction v v
store
Control and
execution logic
ALU
Flags - i'
Flags = " > Shift

o

:EI!OI » Fifo A <ubmp Fifo B o

7 Y L
Multiplier

Cryptegraphy
= component -

Figure 1: Cryptographic processor

References

[1] D. J. Bernstein, T. Lange, and R. Rezaeian Farashahi, “Binary edwards curves,” in
CHES ’08: Proceeding sof the 10th international workshop on Cryptographic Hardware
and Embedded Systems, (Berlin, Heidelberg), pp. 244-265, Springer-Verlag, 2008.

[2] S. V. D. Hankerson, A. Menezes, Guide To Elliptic Curve Cryptography. Springer,
2004.

[3] N. I. of Standards and Technology, “Recommended elliptic curves for fed-
eral government use.” http://csrc.nist.gov/groups/ST/toolkit/documents/
dss/NISTReCur.pdf, 1999.

15

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

[4]

O NN

H. S. Warren, Hacker’s Delight. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2002.

NIST, “Fips 186-3.” http://csrc.nist.gov/publications/PubsDrafts.html.
NSA, “Crypto++ cryptographic library 5.6.0.” http://www.cryptopp.com/.
M. Scott, “Miracl.” http://www.shamus.ie.

U. Kocabas, “Hardware Implementations Of ECC Over A Binary Edwards Curve,”
Master’s thesis, Katholieke Universiteit Leuven, Belgium, 2009.

“Gezel 2.4.” http://rijndael.ece.vt.edu/gezel2/index.php/Main_Page.

W. K. Feghali, W. C. Hasenplaugh, G. M. Wolrich, D. F. Cutter, V. Gopal,
and G. Gaubatz, “Multiplier european patent application ep1966680.” http://www.
freepatentsonline.com/EP1966680A2.html, September 2008.

K. Okeya, K. Schmidt-samoa, C. Spahn, and T. Takagi, “Signed binary representations
revisited,” in Advances in Cryptology CRYPTO 2004, Lecture Notes in Computer
Science 3152 (2004), 123139. 151, pp. 123-139, Springer, 2004.

B. Qin, M. Li, F. Kong, and D. Li, “New left-to-right minimal weight signed-digit
radix-r representation,” Computers & FElectrical Engineering, vol. 35, no. 1, pp. 150 —
158, 2009.

M. Joye and S.-M. Yen, “New minimal modified radix-r representation with applica-
tions to smart cards,” in PKC ’02: Proceedings of the 5th International Workshop
on Practice and Theory in Public Key Cryptosystems, (London, UK), pp. 375-384,
Springer-Verlag, 2002.

NIST, “Nist structured testing methodology.” http://hissa.nist.gov/HHRFdata/
Artifacts/ITLdoc/235/sttoc.htm.

T. McCabe, “A complexity measure,” Software Engineering, IEEE Transactions on,
vol. SE-2, pp. 308-320, Dec. 1976.

T. Littlefair, “C and c++ code counter.” http://sourceforge.net/projects/cccc.

F. Del Frate, P. Garg, A. Mathur, and A. Pasquini, “On the correlation between code
coverage and software reliability,” in Software Reliability Engineering, 1995. Proceed-
ings., Sixzth International Symposium on, pp. 124-132, Oct 1995.

J. Horgan and A. Mathur, “Assessing testing tools in research and education,” Soft-
ware, IEEE, vol. 9, pp. 61-69, May 1992.

D. J. Bernstein and T. Lange, “Explicit-formulas database.” http://wuw.
hyperelliptic.org/EFD/index.html.

16

http://csrc.nist.gov/publications/PubsDrafts.html
http://www.cryptopp.com/
http://www.shamus.ie
http://rijndael.ece.vt.edu/gezel2/index.php/Main_Page
http://www.freepatentsonline.com/EP1966680A2.html
http://www.freepatentsonline.com/EP1966680A2.html
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/sttoc.htm
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/sttoc.htm
http://sourceforge.net/projects/cccc
http://www.hyperelliptic.org/EFD/index.html
http://www.hyperelliptic.org/EFD/index.html

	Introduction
	Review of some basic concepts
	Aim of this paper

	The birational equivalence
	A modification of the birational equivalence

	Finding d1
	Summary of procedure
	Current Implementations
	Crypto++
	Miracl
	A hardware implementation of ECC over a binary Edwards curve

	Hardware
	Results
	Our chosen implementation
	Effect on Complexity
	Effect on Coverage
	Comparison between BEC and Weierstrass
	Comparison between BEC and Weierstrass on IA
	Comparison between BECs and Weierstrass on EP80579

	Future Work
	Acknowledgements
	Conclusion
	Figures

