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Abstract

Side-channel attacks have often proven to have a devastating effect on the security of cryptographic
schemes. In this paper, we address the problem of storing cryptographic keys and computing on them in
a manner that preserves security even when the adversary is able to obtain information leakage during
the computation on the key.

Using the recently achieved fully homomorphic encryption, we show how to encapsulate a key and
repeatedly evaluate arbitrary functions on it so that no adversary can gain any useful information from a
large class of side-channel attacks. We work in the model of Micali and Reyzin, assuming that only the
active part of memory during computation leaks information. Similarly to previous works, our construc-
tion makes use of a single “leak-free” hardware token that samples from a globally-fixed distribution that
does not depend on the key.

Our construction is the first general compiler to achieve resilience against polytime leakage functions
without performing any leak-free computation on the underlying secret key. Furthermore, the amount
of computation our construction must perform does not grow with the amount of leakage the adver-
sary is able to obtain; instead, it suffices to make a stronger assumption about the security of the fully
homomorphic encryption.

1 Introduction

Leakage resilient cryptographic constructions – constructions that remain secure even when internal state
information leaks to the adversary – have received much recent interest. Traditionally, security models have
treated such internal state information as perfectly hidden from the adversary. However, the development of
various side-channel attacks has made it clear that this traditional view is inconsistent with physical reality.
In a side-channel attack, an adversary obtains information about the internal state of a device by measuring
such things as power consumption, computation time, and emitted radiation.

Cryptographic primitives with long term keys, such as encryption and signature schemes, are often
targeted by such attacks. An adversary observing information leakage from computation on the key can
potentially accumulate enough data over time to compromise the security of the scheme. Consequently,
storing keys and computing on them in adversarial environments has been an important goal both in theory
and practice. Indeed, many operating systems provide cryptographic facilities that allow programs to access
keys only through designated functions, such as signing and encrypting. Smart cards provide a similar
∗Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
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interface in hardware. In both cases, the goal is to limit any adversary to interacting with the scheme through
designated channels. Nevertheless, information leakage through physical side-channels is often sufficient to
overcome such barriers and break the scheme.

In this paper, we propose an approach for protecting cryptographic keys and computing on them repeat-
edly in a manner that preserves the secrecy of the key even when information about the state of the device
continuously leaks to the adversary. Towards this goal, we define a new primitive called a key proxy, which
encapsulates a key K and provides a structured way of evaluating arbitrary functions on K. This allows,
for example, the conversion of any pseudorandom function, signature scheme, or public key encryption
scheme into a leakage resilient variant of itself. Our construction withstands a bounded amount of leakage
per invocation (where an invocation occurs each time a function is evaluated on K), but the total amount of
leakage is unbounded. Previously, only stream ciphers, signature schemes, and identification scheme have
been made resilient to an unbounded total amount of leakage.

For our construction, we make use of the recently achieved fully homomorphic encryption [12, 27], and
an additional “leak-free” component. We describe two ways of instantiating this component, and in both
cases the component samples from a globally fixed distribution that does not depend on K.

Leakage resilient cryptography. The problem of executing code in an adversarial environment has al-
ways been on the minds of cryptographers. Still, most cryptographic schemes are designed assuming that
the hardware on which they will be implemented is a black box device, and information is accessible to
the adversary only through external communication channels. Goldreich and Ostrovsky [15] consider the
problem of protecting software from malicious users, and define the concept of an oblivious RAM – a CPU
that is capable of evaluating encrypted programs using a constant amount of leak-free memory and an un-
bounded amount of memory that is fully visible to the adversary. The oblivious RAM is initialized with a
secret key, which is used to decrypt encrypted instructions, execute them, and re-encrypt the output. The
encrypted state of the program is stored in the clear. Oblivious RAMs provide the strong security guarantee
that even if an adversary can keep track of the memory locations accessed by the computation, she is still
unable to gain any additional information about the program over what would normally be revealed through
black box access.

Since the work of Goldreich et al, the focus in leakage resilient cryptography has been steadily shift-
ing towards allowing the adversary ever-growing freedom in observing the computation of cryptographic
primitives. Ishai, Sahai, and Wagner [18] introduce “private circuits” – a generic compiler that transforms
any circuit into one that is resilient to probing attacks. In a probing attack, the adversary selects a subset
(of some fixed size) of the wires of the circuit and obtains the values of these wires. Goldwasser, Kalai,
and Rothblum [17] define one-time programs – programs that come with small secure hardware tokens, and
can be executed a bounded number of times without revealing anything but the output, even if the adversary
observes the entire computation. The secure tokens are the hardware equivalent of oblivious transfer – each
token stores two keys and reveals one of them upon request, while the second key is erased.

Micali and Reyzin [21] outline a framework for defining and analyzing cryptographic security against
adversaries that perform side channel attacks. They introduce an axiom: only computation leaks informa-
tion. That is, at any point during the execution of an algorithm, only the part of memory that is actively
computed on may leak information. This allows for convenient modeling of leakage: an algorithm is de-
scribed as a sequence of procedures and the set of variables that is accessed by the procedure. The adversary
may then obtain leakage separately from the contents of each set of variables as they are accessed during the
execution of the algorithm. The only-computation-leaks model (OCL) has since been used to obtain stream
ciphers [9, 22] and signature schemes [10] that remain secure even if the adversary obtains leakage from the
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active state each time the primitive is used, and the total amount of leakage is unbounded. We refer to such
leakage as “continuous leakage” for the rest of the paper.

Faust et al [11] propose an alternative restriction on side-channel adversaries: restricting the computa-
tional power of the leakage function but allowing leakage on the entire state. Faust et al describe a circuit
transformation that immunizes any circuit against leakage functions that can be described as AC0 circuits1.
The transformed circuit can leak information from the entire set of wires at each invocation, and makes use
of a polynomial number of leak-free components that generate samples from a fixed distribution that does
not depend on the computation of the circuit. We make use of a similar leak-free component, although the
distribution generated by our component is significantly more complex than the one in [11] due to the fact
that we must defend against leakage functions that are not restricted to circuits of small depth.

Very recently, specific leakage resilient cryptographic primitives have been constructed under even more
general continuous leakage models. Dodis, Haralambiev, Lopez-Alt, and Wichs [7] have constructed several
primitives, including signature schemes and authenticated key agreement protocols, that remain secure even
if the entire state (and not just the active part) leaks information continuously, assuming that there is a secure
(leak-free) update procedure that can be performed on the key. The public key of the scheme remains fixed
throughout the lifetime of the system. Brakerski, Kalai, Katz, and Vaikuntanathan [3] construct a public key
encryption scheme that allows continuous (length bounded) leakage on the entire state, and does not require
a leak-free key update procedure. As in our work, both above works provide protection against leakage that
can be described by arbitrary polynomial-time computable functions with sufficiently short output.

In addition to the recent work on cryptographic constructions that are resilient to continuous leakage,
there has been significant progress on obtaining resilience to “memory attacks” – side channel attacks where
the adversary obtains a bounded amount of information about the memory contents of the device throughout
its lifetime. Perhaps due to the bounded nature of this type of leakage, constructions secure against memory
attacks tend to be quite efficient and do not require the algorithm to maintain a state. Akavia, Goldwasser,
and Vaikuntanathan [1] show that the public key encryption scheme of Regev [23] and the identity based
encryption scheme of Gentry, Peikert, and Vaikuntanathan [13] remain secure as long as the adversary does
not obtain more than n/polylog(n) bits of information about the private key. Alwen, Dodis, and Wichs [2]
construct identification schemes, signature schemes, and authenticated key agreement so that the primitive
is resilient to an arbitrary but bounded amount of leakage. Naor and Segev [24] construct a public key
encryption scheme based on any hash proof system [4]. Their scheme is quite efficient, and remains secure
even if the adversary learns n − o(n) bits of information about the private key. Katz and Vaikuntanathan
[20] construct a signature scheme that tolerates a loss of up to n− nε bits of information for every ε.

Finally, a separate line of research [8, 6] describes private and public key encryption schemes that remain
secure even if the adversary obtains a sufficiently hard to invert function of the secret key.

On leak-free components. When constructing leakage resilient cryptographic primitives, one has to take
care in the nature and amount of components that are assumed not to leak any information. It is preferable,
but may not always be possible, to avoid such components altogether. For example, one can protect any
functionality against leakage given an arbitrary number of leak-free gates that can decrypt a ciphertext,
perform a logical operation on the plaintext, and re-encrypt the result. Such a component can be used to
evaluate the circuit F on K gate by gate, keeping all intermediate values encrypted, and thereby rendering
leakage useless. However, building such leak-free components may be as difficult as constructing a leak-
free computer and forgetting all about side-channels. Consequently, the focus of research in this area has

1AC0 circuits have constant depth and unbounded fan-in
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always been to reduce the power and amount of computation that is assumed to be a-priori insulated from
side-channel attacks.

Our construction uses a leak-free component that produces random encryptions of some fixed message
(in our case – 0̄) under a given public key in the fully homomorphic encryption scheme. More specifically,
our construction can be instantiated with one of the following leak-free components: an input-less random-
ized component that produces tuples of the form (pub, pri, C, C ′) where C and C ′ are encryptions of 0̄, or a
randomized component that given pub produces two random encryptions of 0̄.

In both cases above, the computation performed by the component does not depend onK or the function
F that is evaluated on it. Indeed, most side-channel attacks exploit the adversary’s ability to feed inputs to
the device and then collect measurements from the side-channels. Our components are not influenced by any
adversarially chosen inputs, which rules out a large class of side-channel attacks. Perhaps more importantly,
this allows for rigorous testing of the device in a controlled environment. To obtain an accurate simulation
of the component’s behavior in practice, the designer of the component simply needs to feed it a sequence
of random bits.

Faust et al [11] use a similar type of component – one that generates strings from a fixed distribution.
The distribution generated by their component is much simpler than ours. However, this simplicity comes
with a price – the construction provides protection against leakage functions that can be described as AC0

circuits. Such circuits cannot, for example, compute linear functions, which are very common in side-
channel attacks. Furthermore, in contrast to previous general compilers that achieve leakage resilience, we
use only one leak-free component, regardless of the size of the circuit that is evaluated on K or the amount
of information leakage per invocation. Thus, our construction does not require the number of leak-free
components to grow with the amount of leakage.

Our contributions. We study the problem of computing on a cryptographic key in an environment that
leaks information each time a computation is performed. We show that in the OCL model with a single leak-
free randomized token, a cryptographic key can be protected in a manner that allows repeated computation
on it while making sure that the adversary gains no information from side-channel information leakage.

More precisely, we propose a tool which we call a key proxy – a stateful cryptographic primitive that is
initialized once with a key K, and then given any circuit F computes F (K). Any leakage obtained by an
adversary from the computation of the key proxy can be computed given just F and F (K). Using any fully
homomorphic encryption (FHE) we construct a key proxy with the following properties:

Resilience to adaptive polynomial time leakage. During each invocation of the key proxy, we allow
the adversary to adaptively select leakage functions that are modeled as arbitrary circuits with a sufficiently
short output. The exact amount of round leakage that our construction can withstand depends on the level
of security of the underlying FHE. Assuming the most basic security for the FHE (i.e. against polynomial
time adversaries) permits security against O(log n) bits of leakage each time a function is evaluated on K.
More generally, given a 2l(n)-secure FHE, our construction can withstand roughly l(n) bits of leakage per
invocation.

Independent complexity. The starting point of leakage resilient cryptography is that computation leaks
information. It does not require a large leap of faith to suspect that more computation leaks more informa-
tion. In fact, to the best of our knowledge, this is indeed the case for many side-channel attacks in practice.
The amount of computation performed by our key proxy construction does not depend on the amount of
leakage that the adversary is assumed to obtain per invocation. Instead, to get resilience to larger amounts
of leakage, a stronger assumption about the security of the underlying fully homomorphic encryption is
used. This allows us to avoid a circular dependency where, in order to obtain resilience to larger amounts of
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leakage, one must build a more complex device, which in turn leaks more information.
One-time programs with efficient refresh. The one-time programs of [17] can be implemented without

leak-free one-time memory tokens by storing the contents of the tokens in memory, and then accessing only
the needed values during computation. The one-time programs can then be refreshed occasionally in a secure
environment to allow continuous use. Currently, the refresh procedure performs as much computation as
the evaluation of the program that it protects. If one is willing to trade resilience against complete exposure
of the active memory (achieved by [17]) for resilience length bounded leakage then by pre-computing the
outputs of the leak-free tokens in our construction and storing them in memory we obtain one-time programs
with an update procedure of fixed complexity that does not depend on the protected program.

Our approach. The underlying building block for our construction is fully homomorphic encryption.
An FHE is a public key encryption scheme that allows computation on encrypted data. That is, given a
ciphertext with corresponding plaintext M , the public key, and a circuit F , there is an efficient algorithm
that computes an encryption of F (M).

For our construction, we partition the state of the key proxy into two parts, A andB (or equivalently two
devices). Given a keyK, the key proxy is initialized as follows. An FHE key pair (pri, pub) is generated and
is stored in memory A. Then, a random encryption C of K under pub is computed and is stored in memory
B. To evaluate a function F (described as a circuit) on K, the following actions are performed. First, a new
pair of keys (pri′, pub′) is generated and stored in memory A, and an encryption Cpri = Encpub′(pri) of the
old private key is written to a public channel. Then, computing on memory B and the public channel, the
following two ciphertexts are generated homomorphically from C and Cpri: an encryption Cres of F (K)
and a fresh encryption Ckey of K. Note that both Cres and Ckey are encryptions under the new public key
pub′. The ciphertext Cres is then sent back to memory A where it is decrypted, and F (K) is returned as the
output of the program. This basic approach is described in Figure 1.

It is clear that without leakage, the above construction is secure. Of course, the main difficulty is
showing that leakage does not provide the adversary with any useful information. Below we provide an
informal description of two main technical issues that arise.

Leakage on private keys. It is easy to see that without refreshing the encryption C of K, a leakage
adversary will eventually learn all of K by gradually leaking all of C and pri and then simply decrypting.
Therefore, it is clear that an update procedure is necessary. The algorithm described in Figure 1 performs
such an update: After each invocation, memory A contains a freshly generated private key and memory B
contains an encryption of K under the corresponding public key. However, we cannot directly claim that
this refreshing procedure provides the necessary level of security. The main difficulty stems from the fact
that the adversary obtains leakage on the private key in memory A both before and after she obtains leakage
on the encryption C of K under the corresponding public key. In particular, if the adversary could obtain
the entire ciphertext C, she would be able to hardcode it into the second leakage function that is applied to
the private key. The leakage function would then decrypt C and leak bits of information about K.

This requires us to make use of the fact that the adversary obtains only a bounded amount of leakage
on the ciphertext C, and never sees it completely. We argue that any leakage function that provides enough
information about the ciphertext in order to later learn something about the plaintext given the private key,
essentially acts as a distinguisher and can be used to break the semantic security of the FHE.
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Memory A Memory B

Contents of memory: prii
Contents of memory: C = Encpubi

(K),
Input: circuit F

Compute (prii+1, pubi+1) = KeyGen(1n)
Encrypt Cpri = Encpubi+1

(prii)
Set memory to prii+1

pubi+1,Cpri−−−−−−→
Homomorphically compute using C, Cpri:
Cres = Encpubi+1

(F (K))
and Ckey = Encpubi+1

(K)
Set memory to Ckey

Cres←−−−−−−
Compute Y = Decprii+1

(Cres)
Return Y

Figure 1: Informal description of construction

History carrying FHE. Fully homomorphic encryption on its own does not guarantee exactly the security
properties that we need. The main issue is that ciphertexts produced by homomorphic encryption may carry
information about the homomorphic computation that was performed to obtain them. For instance, it is
possible that the ciphertext Cres is actually first decrypted to a string of the form (F (K),K) and then the
decryption algorithm ignores the second element in the pair. In this case, the adversarial leakage function is
clearly not forced to follow the honest decryption algorithm and can make use of the intermediate values of
the decryption process to leak information about K. Similarly, the ciphertext Ckey may contain information
about the function F that was evaluated on K. For some applications, such as encryption where F encodes
in plain text the message to be encrypted, this is undesirable since the adversary may use future leakage
functions to gain information about the message.

Fortunately, the homomorphic encryption schemes of Gentry [12] and of van Dijk et al [27] have the
following additional property: given any encryption C of a message M and a random encryption C ′ of M ′,
the ciphertextC+C ′, where the addition is performed over the appropriate group of ciphertexts, is a random
encryption ofM+M ′. Consequently, to address the issue described above, we randomize bothCres andCkey

by adding random encryptions of zero to both ciphertexts. In order to make use of the property described
above the encryptions of zero need to be generated without leakage; otherwise, the leaked information
maintains a correlation between the randomized ciphertext and the history of the computation that was used
to produce the original ciphertext.

In our construction, the encryptions of zero can either be generated in a leak-free manner together
with the private and public key and written to the appropriate locations in memory (pri to memory A, and
pub and the encryptions of zero to memory B), or sampled separately given the public key and written
to memory B. The main advantage of the first solution is that the leak-free component that generates the
tuple (pri, pub,Encpub(0),Encpub(0)) has no inputs, and in fact can be implemented in practice as a token
that keeps outputting stored tuples that were computed in advance. The second solution is more useful in a
setting where the key proxy is implemented on two separate devices that are connected by a public channel,
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such as the scenario where the key proxy is used to defend against cold boot attacks.
We note that in the FHE schemes of [12] and [27], C ′ has to be generated in a special way in order to

have enough noise to annihilate any dependence between C + C ′ and the computation history of C. For
simplicity of exposition we ignore this distinction, and instead remark that the randomization procedures of
both FHE schemes satisfy the properties needed for our construction.

Function privacy in key proxies. In the above description of key proxies, we require that the leakage
obtained by the adversary can be simulated given just F and F (K). However, in some applications, such as
private key encryption, the function F itself also needs to be hidden. In the case of encryption, F contains the
message M , so an adversary can break semantic security simply by leaking information about F , ignoring
K completely. This raises a subtle modeling issue: the message M must exist somewhere as plaintext, and
if the adversary obtains leakage on that computation, she will trivially break semantic security. Therefore,
irrespective of the definition of leakage resilient key proxies, semantic security cannot be achieved when
every invocation of every algorithm leaks information.

There are several ways in which this issue can be addressed. One solution is to weaken the definition of
semantic security by requiring that the plaintexts have high pseudo-entropy2 given the leakage obtained by
the adversary. We avoid this approach both because it leads to complex definitions, and because it does not
seem to have a clear advantage over the following much cleaner solution. Instead, we allow the adversary
to obtain leakage both before and after the challenge ciphertext is generated, but not on the computation
of the challenge ciphertext itself. This essentially means that while leakage can compromise individual
encryptions, the long-term key remains safe. Under this restriction, our definition of key proxies provides the
needed level of security. This approach is consistent with previous definitions of leakage resilient semantic
security (see e.g. [9, 24, 8, 6]), and allows us to avoid additional complexity in our definition. This is
desirable especially given the fact that for some applications of key proxies, such as signature schemes,
function privacy is not necessary.

We mention briefly that another option is to define a leakage model for private key encryption which
allows the encryption algorithm to perform some leak-free pre-processing that is independent of the key.
Then, the encryptor can generate an encrypted version of the circuit F , which can be safely given to the
adversary without compromising security.

Organization. In Section 3, we describe the computational and leakage models that we use, and define
a leakage resilient key proxy. In Section 4, we provide our main construction, and analyze its security. In
Section 5, we describe several variants of our model and construction, and provide several applications of
leakage resilient key proxies.

2 Preliminaries

Notation. We write PPT to denote Probabilistic Polynomial Time. When we wish to fix the random bits of
a PPT algorithmM to a particular value, we writeM(x; r) to denote runningM on input x and randomness
r. We write timen(M) to denote the running time of algorithm M on security parameter n. We use x ∈R S
to denote the fact that x is sampled according to a distribution S. Similarly, when describing an algorithm
we may write x←R S to denote the action of sampling an element from S and storing it in a variable x.

2A distribution has pseudo-entropy≥ k if it is computationally indistinguishable from some distribution with min-entropy≥ k.
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It is common in cryptography to describe probabilistic experiments that test the ability of an adversary
to break a primitive. Given such an experiment Exp, and an adversary A, we write A � Exp to denote the
random variable representing outcome of Exp when run with the adversary A.

2.1 Fully Homomorphic Encryption

The main tool in our construction is a fully homomorphic public key encryption (FHE) system. Intuitively,
such a system has the usual semantic security properties of a public key encryption (PKE) scheme, but
in addition, can perform arbitrary computation on encrypted data. The outcome of this computation is of
course also encrypted. The first construction of FHE was given by Gentry in [12], and is based on ideal
lattices. Recently another construction was proposed by van Dijk et al [27].

We do not go into the details of the FHE constructions, but rather present the result with respect to an
arbitrary FHE with an additional randomization property, which is satisfied by both constructions.

Definition 2.1. Let FHE = (KeyGen,Enc,Dec,EncEval,Add, Subtract) be a tuple of PPT algorithms, and
let l : N→ N. We say that HPKE is an l(n)-secure fully homomorphic public key encryption scheme if the
following conditions hold:

1. The triple (KeyGen,Enc,Dec) is a public key encryption scheme. We assume without loss of gener-
ality that the private key is always the random bits of KeyGen.

2. The algorithm EncEval(pub,C, F ), where pub is a public key, C = (C1, . . . , Cn) is a vector of
ciphertexts with plaintexts (m1, . . . ,mn), and F is a circuit on n inputs, outputs a string C ′ which is
a valid encryption of F (m1, . . . ,mn).

3. The algorithms Add and Subtract have the following properties:

(a) For all pri, for pub = KeyGen(pri), for all messages M1 and M2, for a random encryption
C1 of M1 under pub and for every encryption C2 of M2 under pub, Add(pub, C1, C2) is dis-
tributed identically to Encpub(M1 +M2), and Subtract(pub, C1, C2) is distributed identically to
Encpub(M1 −M2).

(b) For all ciphertexts C1 and C2, Add(pub,Subtract(pub, C2, C1), C1) = C2. That is, subtracting
a ciphertext is the inverse of adding it.

4. For every probabilistic adversary A running in time at most l(n), the advantage of A in breaking the
semantic security of FHE is at most 1/l(n).

Remark 2.2. The algorithms Add and Subtract may be implemented as addition and subtraction over the
space of ciphertexts, though we do not require this. In some fully homomorphic encryption schemes, Add
and Subtract may not achieve the exact requirement of step 3 above. Specifically, Add and Subtract may
produce an encryption that cannot be computed on homomorphically using EncEval. We note that this is
not a problem for our construction since we only use EncEval on encryptions of pri, which are ephemeral
and never the output of Add or Subtract. We avoid formalizing this issue to improve exposition.

3 Models and Definitions

In this section, we present the definition of a leakage resilient key proxy (LRKP). We start with a syntactic
description of the primitive, and then describe the security experiment and the leakage model.
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Stateful Algorithms. Due to the continuous nature of side-channel attacks, it is necessary for an LRKP to
maintain a state in order to achieve security. We model stateful algorithms by considering algorithms with a
special input and output structure. A stateful randomized algorithm takes as input a triple (x;R,S) where x
is the query to the algorithm, R is a random string, and S is a state (when R is clear from context we omit
it, and denote the input by (x;S)). It then outputs (y, Snew) where y is the reply to the query, and Snew is
the new state.

Definition 3.1. A key proxy is a pair KP = (KPInit,KPEval), where KPInit is an algorithm, and KPEval
is a stateful algorithm. For fixed c ∈ N and for all n ∈ N, K ∈ {0, 1}nc

, KPInit(1n,K) outputs an
initial state S. For every circuit F : {0, 1}|K| → {0, 1}n, and random coins R, the stateful algorithm
KPEval(1n, F ;R,S) outputs F (K).

We now describe the security experiment of LRKPs. This experiment is parameterized by the leakage
structure on a single invocation of the KPEval algorithm. However, for clarity we start with the description
of the general experiment, and then provide details on the leakage that occurs at each invocation. We model
the the leakage resilience of a key proxy by requiring the leaked information to be simulatable. That is, we
require the existence of a simulator Sim that, given F and F (K), can simulate the leakage and messages
obtained by the adversary during the computation of KPEval(1n, F ;R,S). No efficient adversary should
be able to tell whether she is getting actual leakage and messages, or interacting with a simulator. We now
describe the real and ideal security experiments:

Let KP = (KPInit,KPEval) be a key proxy. Let A and Sim be PPT algorithms, n ∈ N, and consider
the following two experiments:

ExpReal (Real Interaction). The interaction of the adversary with the key proxy proceeds as follows:

1. A key K is chosen by the adversary, and KPInit(1n,K) is used to generate an initial state S.
2. The adversary repeats the following steps an arbitrary number of times:

(a) The adversary submits a circuit F , which is evaluated on K by KPEval. During the com-
putation, the adversary acts as a single invocation leakage adversary (described below in
Definition 3.4) for KPEval.

(b) At the end of the computation of KPEval, the adversary is given F (K).
3. After the adversary is done making queries, it outputs a bit b.

ExpIdeal (Ideal Interaction). The interaction of the adversary with simulated leakage proceeds as follows:

1. The adversary submits a key K, which is not revealed to the simulator.
2. The adversary then repeats the following steps an arbitrary number of times:

(a) The adversary submits a circuit F , and Sim is given F and F (K). The adversary then
acts as a single invocation leakage adversary according to Definition 3.4, except that the
leakage functions are submitted to the simulator, which returns simulated leakage values
and messages.

(b) Eventually the adversary stops submitting leakage functions, and is given F (K).
3. After the adversary is done making queries, it outputs a bit b.

Definition 3.2. We say that KP is a Leakage Resilient Key Proxy if for every PPT A there exists a PPT S
and a negligible function neg(·) such that

|Pr[(A � ExpReal) = 1]− Pr[(A � ExpIdeal) = 1]| ≤ neg(n)
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The above definition describes the security of an LRKP relative to some unspecified procedure which
allows the adversary to obtain leakage during each invocation of KPEval. The exact procedure for a single-
invocation leakage depends on the leakage model and on the structure of the implementation of KPEval.
Below we formalize the structure of our solution, and describe the leakage obtained by the adversary during
a single invocation of KPEval.

Our construction of KPEval is described as a protocol between two parties EvalA and EvalB that leak
information separately, and where the messages between EvalA and EvalB are public. In this format, our
construction requires two flows between the parties: one from EvalA to EvalB and one from EvalB to EvalA.
The following definition formalizes this structure.

Definition 3.3. A 2-round split state key proxy is a key proxy KP = (KPInit,KPEval) such that the state S
is represented as a pair S = (MemA,MemB) ∈ ({0, 1}nd

)2 for some fixed d ∈ N, and the algorithm KPEval
is described as four algorithms (LeakFree,EvalA1,EvalB,EvalA2), each running in time polynomial in n,
where

1. LeakFree is given randomness RandLF, and outputs strings OutLFA and OutLFB .

2. EvalA1 takes as input MemA, OutLFA, and randomness RandA, and outputs an updated state MemA′ ∈
{0, 1}nd

and a message MAB to EvalB.

3. EvalB takes as input MemB, randomness RandB, OutLFB , the message MAB , and a circuit F :
{0, 1}|K| → {0, 1}n of arbitrary size. It then outputs an updated state MemB′ ∈ {0, 1}nd

and a
message MBA to EvalA.

4. EvalA2 takes as input MemA′, the message MBA and outputs an updated state MemA′′ and the result
F (K).

The output of KPEval is F (K), and the updated state is (MemA′′,MemB′).

Recall that our construction requires a leak-free component. This leak-free component is modeled by
algorithm LeakFree above. A crucial point here is that LeakFree receives only randomness as input, and,
in particular, receives neither F nor the saved state (MemA,MemB) as inputs; therefore, regardless of the
actual construction, the above definition prevents LeakFree from carrying out the evaluation of F on K,
which would make the construction trivial.

We are now ready to describe the leakage structure on a single invocation of a 2-round split state key
proxy. The leakage model we use, commonly known as “only computation leaks information” (OCL), lets
the adversary obtain leakage only on the active part of memory during each computation.

Definition 3.4. Let l : N → N and let KP be a 2-round split state key proxy. A single invocation leak-
age adversary in the only-computation-leaks model chooses a circuit f1, sees f1(MemA,OutLFA,RandA)
and MAB , chooses circuit f2, sees f2(MemB,OutLFB,RandB) and MBA, chooses a circuit f3, and sees
f3(MemA′). The adversary is l-bounded if for all n the range of f1, f2, f3 is {0, 1}l(n).

Note that in the above definition, the leakage functions can compute any internal values that appear
during the computations of EvalA1, EvalB, and EvalA2. This means, for example, that it is unnecessary to
explicitly provide MAB to f1 or MBA to f2.
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History freeness. In Definition 3.2 we allow information about the functions Fi that are evaluated on K
to leak to the adversary. In particular, it is possible that during some invocation j the adversary can obtain
through leakage information about some previously queried function Fi. In the introduction we mentioned
that leakage resilient variants of some applications, such as private key encryption, are defined to allow
leakage both before and after the generation of the challenge ciphertext, but not on the challenge itself.
However, if the state of LRKP keeps a history of some of the functions that were applied to K, then by
leaking on it after the challenge was computed, the adversary may be able to break the semantic security
of the encryption. We note that the above definition is sufficient as-is to obtain security in the presence
of what we call “lunch-time leakage” attacks. That is, if the adversary obtains leakage only before the
challenge ciphertext is generated, but not after, then leakage on the history of the computation does not help
the adversary to break security.

To address the above issue, and allow full leakage in applications such as encryption, we introduce an
additional information theoretic property that requires that the state of the LRKP is distributed identically
after all sequences of functions that are evaluated on K. This property is satisfied by our construction, and
prevents the above mentioned “history attack”.

Definition 3.5. An LRKP (KPInit,KPEval) is called history free if for all n ∈ N, K ∈ {0, 1}poly(n), there
exists a distribution D over the states of the LRKP such that for all j ∈ N, all sequences of functions
F1, . . . , Fj : {0, 1}|K| → {0, 1}n, and all sequences of random tapes R0, . . . , Rj−1, the random variable
{Sj+1|S1, . . . , Sj} over Rj is distributed according to D, where S1 = KPInit(1n,K;R0) and Si is the
updated state after KPEval(1n, Fi−1;Ri, Si−1).

4 Leakage Resilient Key Proxies From Homomorphic Encryption

Given a fully homomorphic public key encryption scheme FHE = (KeyGen,Enc,Dec,EncEval,Add, Subtract)
we construct a leakage-resilient 2-round split state key proxy LRKP = (KPInit,KPEval).

KPInit(1n,K): The algorithm KPInit(1n,K) first runs KeyGen(1n) to obtain a public-private key pair
(pub1, pri1) for the FHE. It then generates a ciphertextCkey = Encpub1

(K) and assigns MemA← pri1
and MemB← Ckey. The output is an initial state that consists of two parts (MemA,MemB).

KPEval(1n, F ; (MemA,MemB)): The algorithm KPEval consists of four subroutines: 〈LeakFree,EvalA1,EvalB,EvalA2〉
that are used as follows: on input circuit F first generate (OutLFA,OutLFB) ←R LeakFree(1n).
Then, follow the protocol described in Figure 2 by computing

(MAB,MemA′)←R EvalA1(MemA,OutLFA);
(MBA,MemB′)←R EvalB(MemB,OutLFB,MAB);
Y ← EvalA2(MemA′,MBA)

The final state after one evaluation of KPEval is (MemA′,MemB′), and the output is Y .

We now describe the subroutines 〈LeakFree,EvalA1,EvalB,EvalA2〉 of KPEval:

LeakFree(1n): Parse randomness as (prii+1, r
i
LF1, r

i
LF2), and compute

pubi+1 = KeyGen(1n, prii+1); CR0,i = Encpubi+1
(0̄; riLF1); CR1,i = Encpubi+1

(0̄; riLF2)

OutLFB ← (pubi+1, CR0,i, CR1,i); OutLFA ← (prii+1, pubi+1)

and output (OutLFA,OutLFB).
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The subroutines EvalA1, EvalB, and EvalA2 are described in Figure 2 as a two round two party protocol
where EvalA1 and EvalA2 specify the actions of party A and EvalB specifies the actions of party B. In the
definition of EvalB we use subroutines Evaluate and Refresh that are defined as follows:

Evaluate(F,C, pri): Compute and output F (Decpri(C))
Refresh(C, pri): Compute and output Decpri(C)

Party A Party B

Contents of MemA: prii
Contents of OutLFA: prii+1, pubi+1

Randomness: prii+1, r
i
pri

Contents of MemB: C ′key,i = Encpubi
(K)

Contents of OutLFB: pubi+1, CR0,i, CR1,i

Randomness: riB1, riB2

Input: Fi

EvalA1:
Encrypt Cipri = Encpubi+1

(prii; r
i
pri)

Assign MemA← prii+1
Ci

pri−−−−−−→
EvalB:

Cres,i = EncEval(pubi+1, C
i
pri,

Evaluate(Fi, C ′key,i, ·); riB1)
Ckey,i+1 = EncEval(pubi+1, C

i
pri,

Refresh(C ′key,i, ·); riB2)
C ′res,i = Add(pubi+1, CR0,i, Cres,i)
C ′key,i+1 = Add(pubi+1, CR1,i, Ckey,i+1)
Assign MemB← C ′key,i+1

C′res,i←−−−−−−−
EvalA2:

Compute Yi = Decprii+1
(C ′res,i)

Output Yi

Figure 2: The algorithm KPEval in its ith invocation.

The correctness of this construction follows in a straightforward manner from the correctness of the
underlying FHE. We also note that our construction is history free according to Definition 3.5. This is due
to the fact that the values assigned to MemA and MemB at the end of KPEval are independent from the
function F . In particular, MemA is simply a random private key, and MemB contains an encryption of K
which was obtained by a homomorphic evaluation of Refresh on the previous contents of MemB and an
encryption of the previous private key, neither of which depends on F .

The bulk of the analysis is in showing that our construction is in fact leakage resilient according to
Definition 3.2, where during each invocation the leakage structure on the computation of KPEval is given in
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Definition 3.4. We now state our main theorem. Due to space limitations, we defer the proof to Appendix
B.

Theorem 1. Let LRKP be the 2-round split state key proxy described in the above construction, and let
l : N → N. If FHE is a 2O(l(n))-secure fully homomorphic encryption then LRKP is leakage resilient
against all O(l(n))-bounded adversaries in the OCL model.

5 Extensions and Applications

Below we describe several variants of our scheme that provide various tradeoffs in security and functionality.
In Appendix E, we describe some of the definitional issues that arise when dealing with semantic security
in a setting with leakage, and then define and construct a leakage resilient private key encryption scheme,
providing a complete proof of security. In Appendix F, we describe informally how one may construct a
leakage resilient CCA-PKE. The construction of the CCA-PKE is quite simple, and the proof of security
follows the same principles as the proof for the private key scheme.

An alternative leak-free component. In the construction depicted in Figure 2, the leak-free component is
randomized but input-less, and produces tuples of the form (pub, pri, C, C ′), whereC andC ′ are encryptions
of 0 under pub. As an alternative, we can use a leak-free component that is randomized, takes pub as input,
and generates two random encryptions of 0. We note that the component’s input is independent of Fi andK.
To modify the construction to use such a component, we let party A generate pub and pri itself; then, party
A includes pub in its message to B, who gives pub to the leak-free component. The leak-free component
then produces two encryptions of 0 as before, giving these to B. It is straightforward to modify the proof of
Theorem 1 to handle this alternative leak-free component – it suffices to to make some small modifications
to the proof of Claim B.3, and the parameters in the theorem remain unchanged.

Resilience against complete compromise. Using the above alternative leak-free component allows us to
view the scheme as a protocol between two devices that communicate over a public channel. In this case,
the key remains hidden even if the memory contents of one the devices are leaked completely (for example,
in a cold boot attack), provided that the compromise is detected and no further computation is performed
using the counterpart device. The argument is a straightforward adaptation of the ideas in Claim B.5 and
Claim B.6.

One-time programs. Our construction can be modified to work without any leak-free components by pre-
computing a large number of tuples of the form (pri, pub, C, C ′) where C and C ′ are encryptions of 0 under
pub, and storing the tuples in memory. Then, at each invocation, one such tuple is used (first pri and pub are
used by EvalA1, and then C,C ′ are used by EvalB). Assuming that only computation leaks information, the
remaining tuples remain hidden until they are accessed. Therefore, security is obtained following essentially
the same argument as the proof of Theorem 1. The number of invocations in this case is bounded by the
number of pre-computed tuples. This approach provides a weaker security guarantee than the one time
programs of [17] (i.e. only security against leakage), but has the advantage that the pre-computing phase is
independent from the functionality that is being protected.

Acknowledgements. We thank Charles Rackoff for many hours of discussion.
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A Probabilistic Lemmas

Lemma A.1 (Chernoff Bound). Let 0 ≤ p ≤ 1, and let X1, . . . , Xn be independent 0-1 random variables,
so that Pr[Xi = 1] = p for each i. Then, for all ε > 0, we have

Pr
[∣∣∣∣∑n

i=1Xi

n
− p
∣∣∣∣ > ε

]
< 2 · e−2nε2

B Proof of Theorem 1

The theorem follows as a corollary from the following lemma:

Lemma 1. Consider the experiment ExpReal instantiated using scheme LRKP . Then, for every function
ε(n) > 0, every d > 0, every l : N→ N, and every l-bounded PPT adversary A that makes nd queries and
gets leakage according to the only-computation-leaks model, there exists a PPT simulator S such that if

|Pr[(A � ExpReal) = 1]− Pr[(A � S) = 1]| ≥ ε(n)

for infinitely many n, then for every function ε′(n) > 0 there exists an adversary A′ that runs in time

23l(n)+5

ε′(n)2

(
3l(n) + 4 + log

1
ε′(n)

)
(4 · timen (Enc) + timen (LRKP ↔ A)) + timen(KeyGen)

and breaks the semantic security of (KeyGen,Enc,Dec) with advantage ε(n)

3·22l(n)(nd+1)
− 2ε′(n) for infinitely

many n. Specifically, S runs in time timen(LRKP ↔ A).

Let A be a PPT adversary according to Definition 3.2 that makes nd function evaluation queries and
gets leakage according to the only-computation-leaks model described in Definition 3.4. We describe a
sequence of experiments where the initial experiment Hyb0 is the real security experiment ExpReal, and the
final experiment Hyb3 is such that the leakage obtained by the adversary for each KPEval query F can be
simulated given only (F, F (K)). We then show that A cannot distinguish between interacting with Hyb0

and Hyb3.
We first introduce some notation. We denote by MemAi and MemBi the saved state of party A and

party B before round i. We denote by Fi the ith function that the adversary submits to be evaluated
on K, we denote by f ji the jth leakage query during the computation of KPEval on Fi, and we de-
note by λji the response to the leakage query f ji . For our construction, j ∈ {1, 2, 3}. Specifically, λ1

i is
the initial leakage on EvalA1 from (prii, pubi+1, prii+1, r

i
pri) in round i, λ2

i is the leakage on EvalB from
(C ′key,i, pubi+1, CR0,i, CR1,i, r

i
B1, r

i
B2), and λ3

i is the final leakage on EvalA2 from (prii+1). In addition to
seeing leakage, the adversary also gets all communication between party A and party B. Specifically, after
seeing λ1

i but before submitting f2
i , the adversary is given Cipri, and after seeing λ2

i but before submitting
f3
i , the adversary is given C ′res,i.

B.1 Hybrid Experiment Structure

We now describe the sequence of hybrid experiments:

Experiment Hyb0. Hyb0 is the real security experiment ExpReal.
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Experiment Hyb1. Experiment Hyb1 is the same as Hyb0, except that a dummy round is added at the
beginning and at the end of the experiment. More precisely, before the first evaluation query of the
adversary, the initialization algorithm KPInit is run, and then a single round of KPEval is performed
with a dummy function (e.g. one that always outputs 0̄). Similarly, after the adversary makes the last
evaluation query, another dummy round of KPEval is performed.

Note that (MemA1,MemB1) are distributed identically in Hyb0 and Hyb1, and the additional dummy
round nd+1 has no effect on the view of the adversary. Thus, the above changes are purely conceptual.

We now describe a second hybrid experiment, where the changes are more substantial.

Experiment Hyb2. In experiment Hyb2 we remove the key K from all variables that are exposed to
the adversary. In particular, MemB will now contain an encryption of 0̄ instead of K. This change, by
itself, would corrupt the output of KPEval, which depends on the contents of MemB. We correct this error
by changing the way we compute the ciphertext CR0,i so that when this ciphertext is added to Cres,i, the
resulting ciphertext C ′res,i contains the intended output Fi(K). More formally: experiment Hyb2 proceeds
in the same way as Hyb1 with the following changes.

1. During the initialization process, C ′key,1 is computed as Encpub1(0̄).

2. In each round 0 < i ≤ nd, CR0,i is computed as Encpubi+1
(Fi(K)− Fi(0̄)).

Observe that aside from in the initialization round, the only information about K that is needed to carry
out Hyb2 are the values Fi(K) for each query Fi produced by the adversary. It is easy to see that, in fact, the
initialization round can be modified so thatK is not needed, without changing the distribution of the leakage
values and communication seen by the adversary during the experiment. This modification is described by
the following hybrid experiment:

Experiment Hyb3. Experiment Hyb3 proceeds in the same way as Hyb2, except that dummy round nd + 1
is omitted and the initialization process is done differently: dummy round 0 is omitted, and C ′key,1 is set
directly to Encpub1(0̄). The entire modified initialization is as follows:

1. Run KeyGen to obtain (pub1, pri1).

2. Compute C ′key,1 = Encpub1(0̄).

3. Set MemA1 = pri1 and MemB1 = C ′key,1.

Note that (MemA1,MemB1) are distributed identically in Hyb2 and Hyb3. Furthermore, omitting dummy
round n+ 1 has no effect on the view of the adversary. Thus, the above change is purely conceptual.

Our simulator S interacts with the adversary as in Hyb3. Note that S runs in time at most timen(LRKP ↔
A). To show that the adversary is unable to distinguish between leakage produced according to Hyb3, and
therefore between simulated leakage and real leakage, we show that each pair of consecutive hybrid experi-
ments is indistinguishable.

To facilitate the analysis, we denote by Xi the random variable corresponding to the output of the
adversary in experiment Hybi. We have already mentioned the following two facts:

Fact B.1. Pr[X0 = 1] = Pr[X1 = 1]

Fact B.2. Pr[X2 = 1] = Pr[X3 = 1]
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The crux of the proof is comparing experiments Hyb1 and Hyb2. For this purpose, we first define a
sequence of intermediate hybrids that are between Hyb1 and Hyb2. For 0 ≤ i ≤ nd + 1, Hybi12 behaves the
same as Hyb1 up to round i− 1, behaves the same as Hyb2 from round i+ 1 onward, and behaves specially
in round i. More specifically, for 0 ≤ i ≤ nd, Hybi12 is defined as follows.

Experiment Hybi12.

1. For 0 ≤ j ≤ i− 1, round j proceeds the same as in Hyb1.

2. Round i proceeds the same as Hyb1, except that CR1,i is set to Encpubi+1
(K).

3. For i+ 1 ≤ j ≤ nd + 1, round j proceeds the same as in Hyb2.

Note that the dummy round 0 that takes place during the initialization process proceeds identically to Hyb2

if i = 0, and to Hyb1 otherwise. Also, note that dummy round nd + 1 always proceeds identically in both
Hyb1 and Hyb2. Consequently, Hyb1 is identical to Hybn

d+1
12 , and Hyb2 is identical to Hyb0

12.
We now show that if there exists an adversaryA that distinguishes Hyb0

12 and Hybn
d+1

12 , then there exists
an adversary A′ that succeeds in the following experiment Exp1.

Experiment Exp1. Say that on inputs of length n, the output of Enc has length n′.

1. The adversary submits two messages m0,m1 such that m0 6= m1.

2. A pair of public and private keys are generated (pub, pri) = KeyGen(1n), and pub is given to the
adversary.

3. The adversary submits a leakage function leak1 : {0, 1}n → {0, 1}l(n), and sees leak1(pri).

4. A random bit b is chosen, and an encryption C = Encpub(mb) is computed.

5. The adversary submits a leakage function leak2 : {0, 1}n′ → {0, 1}l(n), and sees leak2(C).

6. The adversary submits a leakage function leak3 : {0, 1}n → {0, 1}l(n), and sees leak3(pri).

7. A new pair of public and private keys are generated (pub′, pri′) = KeyGen(1n), and a random string
rpri′ is chosen. The public key pub′ is given to the adversary.

8. The adversary submits a leakage function leak4 : {0, 1}3n → {0, 1}l(n), and sees leak4(pri, pri′, rpri′).

9. The adversary sees C ′ = Encpub′(pri; rpri′).

10. The adversary submits a leakage function leak5 : {0, 1}n′ → {0, 1}l(n), and sees leak5(C).

11. The adversary sees pri, pri′, and outputs a bit b̂.

We say that an adversary A′ succeeds with advantage ε(n) in Exp1 if |Pr[(A′ � Exp1) = 1|b =
1]− Pr[(A′ � Exp1) = 1|b = 0]| ≥ ε(n).

Claim B.3. Let A be an adversary and define, for all n, ε(n) = |Pr[(A � Hyb0
12) = 1] − Pr[(A �

Hybn
d+1

12 ) = 1]|. Then there exists an adversary A′ that, for all n, runs in time 4 · timen(Enc) +
timen(LRKP ↔ A) and succeeds with advantage ε(n)/(nd + 1) in Exp1.
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Proof. We first summarize the construction of A′. A′ randomly selects an i, 0 ≤ i ≤ nd, and then simulates
A according to Hyb1 up to round i − 1. Then, A′ submits the two messages m0 = K and m1 = 0̄, and
uses the leakage queries permitted by Exp1 to answer the queries of A during the ith and i + 1st rounds.
During the simulation, pub plays the role of pubi+1, pub′ the role of pubi+2, C the role of C ′key,i+1 and C ′

the role of Ci+1
pri = Encpubi+2

(prii+1). A′ uses C and the properties of Add to “work backwards” and obtain
correctly distributed values for CR1,i, CR0,i+1, and CR1,i+1. Then, from round i+ 2 onward, A′ simulates A
according to Hyb2, and outputs whateverA outputs. By construction, we have that if C is an encryption of 0̄
then A′ simulates A perfectly in Hybi12, and if C is an encryption of K, A is simulated perfectly in Hybi+1

12 .
The details follow.

A′ begins by randomly selecting i such that 0 ≤ i ≤ nd. We first handle the case 1 ≤ i ≤ nd − 1.
Our adversary A′ simulates A according to Hyb1 up to round i − 1 (note that Hybi12 and Hybi+1

12 proceed
identically up to that round). Then, A′ submits the two messagesm0 = K andm1 = 0̄, and obtains a public
key pub. A′ starts simulating A in round i by obtaining the first leakage function f1

i . A′ then generates
uniformly ripri, and creates the following leakage function:

• leak1(pri): Compute and return f1
i (prii, pub, pri, ripri).

A′ submits the above leakage function in step 3, and obtains a string λ1
i . A′ also computes Cipri =

Encpub(prii; r
i
pri), and gives the pair (λ1

i , C
i
pri) to A. A then outputs leakage functions f2

i . A′ generates
an encryption C ′res,i = Encpub(Fi(K)), and randomly selects riB1 and riB2. ThenA′ constructs the following
leakage function:

• leak2(C):

– Compute Cres,i = EncEval(pub, Cipri,Evaluate(Fi,MemBi, ·); riB1).

– Compute Ckey,i+1 = EncEval(pub, Cipri,Refresh(MemBi, ·); riB2).

– Compute CR0,i = Subtract(pub, C ′res,i, Cres,i).

– Compute CR1,i = Subtract(pub, C, Ckey,i+1).

– Compute and return f2
i (MemBi, pub, CR0, CR1, r

i
B1, r

i
B2).

A′ submits the leakage function in step 5, and obtains λ2
i . A

′ gives (λ2
i , C

′
res,i) to A. A then outputs f3

i . A′

sets:

• leak3(pri): Compute and return f3
i (pri).

A′ is now given λ3
i and pub′. Using λ3

i , A
′ obtains the first leakage function f1

i+1 for round i+ 1, and sets:

• leak4(pri, pri′, ri+1
pri ): Compute and return f1

i+1(pri, pub′, pri′, ri+1
pri ).

A′ is now given λ1
i+1 and a ciphertext C ′. Using the pair (λ1

i+1, C
′) A′ obtains from A a leakage function

f2
i+1. A′ also computes encryptions C ′key,i+2 = Encpub′(0̄) and C ′res,i+1 = Encpub′(Fi+1(K)), and randomly

selects ri+1
B1 and ri+1

B2 . A′ sets

• leak5(C):

– Compute Cres,i+1 = EncEval(pub′, C ′,Evaluate(Fi+1, C, ·); ri+1
B1 ).

– Compute Ckey,i+2 = EncEval(pub′, C ′,Refresh(C, ·); ri+1
B2 ).
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– Compute CR0,i+1 = Subtract(pub′, C ′res,i+1, Cres,i+1).

– Compute CR1,i+1 = Subtract(pub′, C ′key,i+2, Ckey,i+2).

– Compute and return f2
i+1(C, pub′, CR0, CR1, r

i+1
B1 , r

i+1
B2 ).

and obtains a value λ2
i+1. A′ uses (λi+1, C

′
res,i+1) to obtain f3

i+1 from A. A′ is then given pri′. From this
point onward, A′ simulates A according to Hyb2. Note that the only value which is not generated by A′ that
is needed to perform this simulation is pri′. At the end of the simulation A outputs a bit b̂, which A′ also
outputs. By construction, we have that if C is an encryption of 0̄ then A′ simulates A perfectly in Hybi12,
and if C is an encryption of K, A is simulated perfectly in Hybi+1

12 .
Notice that since A′ simulates A along with the experiment with which A is interacting, and does some

additional work in rounds i and i+ 1, A′ runs it time at most 4 · timen(Enc) + timen(LRKP ↔ A).
It remains to handle the cases i = 0 and i = nd. These are handled similarly to the first case, except we

have to take into account the fact that A sees no leakage or communication during “rounds” 0 and nd + 1.
More specifically, for the case i = 0, A′ proceeds as in the first case except that it does not submit leak1,
leak2, or leak3 in round i (or, alternatively, it submits constant functions and ignores their output), nor does it
produce C ′res,0 or give anything to A during round i; for round i+ 1, A′ proceeds as in the first case, starting
by obtaining leakage function f1

i+1 from A. For the case i = nd, A′ proceeds as in the first case except that
it does not submit leak4 or leak5 (or, alternatively, it submits constant functions and ignores their output),
nor does it produce C ′

res,nd+1
or give anything to A during round i+ 1.

Once again, for both these cases, we have by construction that ifC is an encryption of 0̄ thenA′ simulates
A perfectly in Hybi12, and if C is an encryption of K, A is simulated perfectly in Hybi+1

12 . It then follows by
standard arguments that A′ succeeds with advantage ε(n)/(nd + 1) in Exp1.

B.2 Analysis of Exp1

We shall now prove an upper bound on the advantage of adversaries in Exp1. Let A1 be an adversary
in Exp1 and let ε be its advantage. Then, we show that there exists an adversary A2 that succeeds with
advantage ε(n)/2l(n) in the following experiment Exp2.

Experiment Exp2. Exp2 proceeds identically to Exp1, except steps 8-11 are modified as follows

8. The adversary submits a leakage function leak4 : {0, 1}3n → {0, 1}l(n)+1, and sees leak4(pri, pri′, rpri′).

9. The adversary sees C ′ = Encpub′(pri; rpri′) and C.

10. The adversary outputs a bit b̂.

Claim B.4. Let A1 be an adversary and define, for all n, ε(n) to be the advantage of A1 in Exp1. Then
there exists an adversary A2 that, for all n, runs in time at most 3 · timen(A1) + timen(Enc) and succeeds
in Exp2 with advantage ε(n)/2l(n).

Proof. A2 randomly selects a string rsim to use as the randomness of A1. Then, using rsim, A2 simulates
A1 up to and including step 7 without any modifications. In step 8, A2 obtains a leakage function leak4 from
A1, and randomly selects guessed leakage value λ̂5 ∈ {0, 1}l(n). A2 then constructs a new leakage function:

• leak′4(pri, pri′, rpri′): First, compute λ4 = leak4(pri, pri′, rpri′). Then, computeC ′ = Encpub′(pri; rpri′),
and use (λ4, C

′, λ̂5) to complete the simulation ofA1 (using randomness rsim). Let b̂ be the bit output
by A1. The output of leak′4 is then (λ4, b̂).
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A2 submits leak′4 in step 8, and is given (λ′4, C
′, C) where λ′4 = (λ4, b̂). Using (λ4, C

′), A2 obtains
from A1 the leakage function leak5. Now, A2 checks whether leak5(C) = λ̂5, and if so it outputs b̂.
Otherwise, A2 flips an unbiased coin and outputs the outcome. Observe that A2 runs in time at most
3 · timen(A1) + timen(Enc).

Notice that if A2 guesses the leakage λ̂5 correctly then it simulates A1 perfectly, and that the leakage is
guessed correctly with probability 1/2l(n). We therefore conclude:

|Pr[(A2 � Exp2) = 1|b = 0]− Pr[(A2 � Exp2) = 1|b = 1]| ≥
1

2l(n)
|Pr[(A1 � Exp1) = 1|b = 0]− Pr[(A1 � Exp1) = 1|b = 1]|

We now simplify the experiment further. For clarity, we describe the modified experiment completely:

Experiment Exp3. The new experiment proceeds as follows:

1. The adversary submits two messages m0,m1 such that m0 6= m1.

2. Private keys pri, pri′ are randomly chosen, and public keys pub = KeyGen(pri), pub′ = KeyGen(pri′)
are computed, and given to the adversary.

3. The adversary submits a leakage function leak1 : {0, 1}3n → {0, 1}3l(n)+1, and sees leak1(pri, pri′, rpri′).

4. A random bit b is chosen, and an encryption C = Encpub(mb) is computed.

5. The adversary sees C ′ = Encpub′(pri; rpri′) and C.

6. The adversary outputs a bit b̂.

Claim B.5. Let A2 be an adversary and define, for all n, ε(n) to be the advantage of A2 in Exp2. Then
there exists an adversary A3 that, for all n, runs in time at most 4 · timen(A2) that succeeds in Exp3 with
advantage ε(n)/2l(n).

Proof. The basic idea is the same as in the proof of Claim B.4. A3 guesses a response λ̂2 ∈ {0, 1}l(n)

to A2’s leak2 query, uses this guess to simulate A2 within the leakage function that A3 submits, and then
verifies its guess. The details follow.

A3 randomly selects a string rsim to use as the randomness ofA2. Then, using rsim,A3 starts simulating
A2, obtaining a leakage function leak1. A3 randomly selects a guessed leakage value λ̂2 ∈ {0, 1}l(n), and
then constructs a new leakage function:

• leak′1(pri, pri′, rpri′): First, compute λ1 = leak1(pri). Simulate A2, using randomness rsim and
using (λ1, λ̂2) as the responses to the first two leakage queries. A2 then produces a leakage function
leak3. Compute λ3 = leak3(pri), and continue simulating A2 using λ3. A2 produces a leakage
function leak4. Compute λ4 = leak4(pri, pri′, rpri′). The output of leak′1 is then (λ1, λ3, λ4).

A3 submits leak′1, and is given (λ′1, C
′C), where λ′1 = (λ1, λ3, λ4). A3 continues its simulation ofA2, using

λ1 as the response to the first leakage query. A2 then produces a leakage function leak2. Now, A3 checks
whether leak2(C) = λ̂2; if not, A3 outputs a randomly selected bit. Otherwise, A3 continues simulating
A2, using λ3 and λ4 as the responses to the next two leakage queries. Then, A3 gives C ′ and C to A2, and
outputs the bit output by A2. Observe that A3 runs in time at most 4 · timen(A2).
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Notice that if A3 guesses the leakage λ̂2 correctly then it simulates A2 perfectly, and that the leakage is
guessed correctly with probability 1/2l(n). We therefore conclude:

|Pr[(A3 � Exp3) = 1|b = 0]− Pr[(A3 � Exp3) = 1|b = 1]| ≥
1

2l(n)
|Pr[(A2 � Exp2) = 1|b = 0]− Pr[(A2 � Exp2) = 1|b = 1]|

We again simplify the experiment, this time moving to a leakage-free setting.

Experiment Exp4. Exp4 proceeds identically to Exp3, except step 3 is omitted.

Claim B.6. For all functions ε′(n) > 0 and ε(n) > 0, and for every adversary A3 that succeeds in
Exp3 with advantage ε′(n) for infinitely many n, there exists an adversary A4 that runs in time at most
23l(n)+1

ε(n)2
(3l(n)+4+log 1

ε(n))(timen(A3)+timen(Enc)) and succeeds inExp4 with advantage ε′(n)−6ε(n)
for infinitely many n.

Proof. The key observation is that the response toA3’s leakage query is independent of bit b and the random-
ness used when producing encryptionC = Encpub(mb). This allows us to use the observation of Akavia et al
[1] that for every public key encryption system, every adversary that breaks semantic security given leakage
on KeyGen can be simulated by an adversary that is not given leakage but instead guesses the leakage and
then tests whether the guessed leakage is good. Specifically, given pub, pub′, andC ′ = Encpub′(pri), we can
find a good response λ̂1 ∈ {0, 1}3l(n)+1 to A3’s leakage query that (almost) maximizes the distinguishing
advantage of A3 conditioned on pri, pri′, and C ′. To do so, we define an adversary A4 that tests all strings
λ̂1 ∈ {0, 1}l(n) until it finds a leakage value that maximizes the gap between A3’s probability of outputting
1 on an encryption of m0, and on an encryption of m1. This is done by sampling, for each value λ̂1, many
encryptions of m0 and of m1, and recording A3’s output. The details follow.

Without loss of generality, suppose

Pr[(A3 � Exp3) = 1|b = 1]− Pr[(A3 � Exp3) = 1|b = 0] ≥ ε′(n)

for infinitely many n. A4 behaves as follows. A4 randomly selects a string rsim to use as the randomness
of A3. Then, using rsim, A4 starts simulating A3. A3 submits messages m0 and m1, which are in turn sub-
mitted by A4. Then, A4 is given (pub, pub′, C ′, C), where C ′ = Encpub′(pri, rpri′) and C = Encpub(mb).
A4 continues simulating A3, giving it pub and pub′, and obtaining a leakage function leak1. Recall from
Exp3 that leak1 takes input (pri, pri′, rpri′). This means that the correct response to this leakage query
is independent of bit b and the randomness used when producing C. Since A4 cannot make any leakage
queries, it runs experiments in order to determine the response that (almost) maximizes the distinguishing
advantage of A3 (conditioned on rsim, pri, pri′, and rpri′).

Specifically, for each λ̂1 ∈ {0, 1}3l(n)+1 and b̂ ∈ {0, 1}, A4 does the following m = 1
2ε(n)2

(3l(n) + 3 +
log 1

ε(n)) times: A4 produces a random encryption C ′′ = Encpub(mb), runs A3 with randomness rsim on

(pub, pub′, λ̂1, C
′, C ′′), and notes the output of A3. This allows A4 to obtain an estimate pλ̂1,b̂

of the prob-

ability that A3 outputs 1 conditioned on rsim, pri, pri′, rpri′ , λ̂1, and b̂. Then, for each λ̂1 ∈ {0, 1}3l(n)+1,
A4 computes ελ̂1

= pλ̂1,1
− pλ̂1,0

to obtain an estimate of the distinguishing advantage of A3 (conditioned

on rsim, pri, pri′, and rpri′) when λ̂1 is used as the response to the leakage query.
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A4 then continues its original simulation ofA3, letting the response to the leakage query be the λ̂1 which
maximizes ελ̂1

. A4 then givesC ′ andC toA3, and outputs the bit output byA3. Observe thatA4 runs in time

timen(A3) +m(timen(A3) + timen(Enc)) ≤ 23l(n)+1

ε(n)2
(3l(n) + 4 + log 1

ε(n))(timen(A3) + timen(Enc)).

Now, fix an n such that Pr[(A3 � Exp3) = 1|b = 1] − Pr[(A3 � Exp3) = 1|b = 0] ≥ ε′(n)
and consider the advantage A4 in Exp4 for such n. Note that A4 produces 2(23l(n)+1) estimates. Using
Chernoff bounds, each estimate pλ̂1,b̂

is within additive error ε(n) of its true value with probability at least

1 − 2e−2mε(n)2 = 1 − 2e−3l(n)−3−log 1
ε ≥ 1 − 2−3l(n)−2−log 1

ε = 1 − ε(n)

23l(n)+2 . Then, by the union bound,
all estimates pλ̂1,b̂

are within ε(n) of their true values with probability at least 1− ε(n). Observe that when

this happens, all estimates ελ̂1
are within 2ε(n) of their true values. In this case, the λ̂1 chosen by A4

results in A3 having true distinguishing advantage within 4ε(n) of whichever response yields the best true
distinguishing advantage conditioned on rsim, pri, pri′, and rpri′

Putting this all together, conditioned on each rsim, pri, pri′, and rpri′ , we have that with probability
at least 1 − ε(n), A4 has distinguishing advantage within 4ε(n) of the distinguishing advantage of A3

(subject to the same conditioning). It follows that overall (without conditioning), with probability at least
1− ε(n), A4 has distinguishing advantage within 4ε(n) of the distinguishing advantage of A3. That is, A4

has distinguishing advantage at least (1− ε(n))(ε′(n)− 4ε(n))− ε(n) ≥ ε′(n)− 6ε(n).

It is easy to see that an adversary that succeeds in experiment Exp4 can be used to break the semantic
security of (KeyGen,Enc,Dec). The idea is that such an adversary must either distinguish Encpub′(pri)
from Encpub′(0̄), or must succeed at guessing b even when given Encpub′(0̄) instead of Encpub′(pri). The
proof of Claim B.7 is deferred to Appendix C.

Claim B.7. For every function ε(n) > 0 and for every adversary A4 that succeeds in Exp4 with ad-
vantage ε(n) for infinitely many n, there exists an adversary A5 that runs in time at most timen(A4) +
timen(KeyGen) + timen(Enc) and breaks the semantic security of (KeyGen,Enc,Dec) with advantage
ε(n)/3 for infinitely many n.

Combining all the claims, we see that for all functions ε(n) > 0 if there exists an adversary A such that
|Pr[(A � Hyb0

12) = 1]− Pr[(A � Hybn
d+1

12 ) = 1]| > ε(n) for infinitely many n, then for every function
ε′(n) > 0 there exists an adversary A′ that runs in time

23l(n)+5

ε′(n)2

(
3l(n) + 4 + log

1
ε′(n)

)
(4 · timen (Enc) + timen (LRKP ↔ A)) + timen(KeyGen)

and breaks the semantic security of (KeyGen,Enc,Dec) with advantage ε(n)

3·22l(n)(nd+1)
−2ε′(n) for infinitely

many n.

C Proof of Claim B.7

Proof. Let experiment Exp5 be identical to Exp4 except C ′ is set to Encpub′(0̄) instead of Encpub′(pri).
There are two cases to consider:

Case 1: For infinitely many n, A4 has advantage at least ε(n) inExp4 and has advantage at least ε(n)/3
in Exp5.
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Let A5 behave as follows. A5 starts simulating A4. A4 submits messages m0 and m1, which are in turn
submitted by A5. Then, A5 is given (pub, C), where C = Encpub(mb). A5 randomly selects pri′, and lets
pub′ = KeyGen(pri′). Then A5 produces C ′ = Encpub′(0̄), gives (pub, pub′, C ′, C) to A4, and outputs the
bit output by A4.

Notice thatA5 simulatesA4 � Exp5 perfectly, and hence has the same distinguishing advantage asA4.
That is, A5 breaks the semantic security of (KeyGen,Enc,Dec) with advantage ε(n)/3 for infinitely many
n. Observe that A5 runs in time timen(A4) + timen(KeyGen) + timen(Enc).

Case 2: For infinitely many n, A4 has advantage at least ε(n) is Exp4 and has advantage less than
ε(n)/3 in Exp5. Without loss of generality, suppose

Pr[(A4 � Exp4) = 1|b = 1]− Pr[(A4 � Exp4) = 1|b = 0] ≥ ε(n) (1)

and

Pr[(A4 � Exp5) = 1|b = 1]− Pr[(A4 � Exp5) = 1|b = 0] <
ε(n)

3
(2)

for infinitely many n. Let A5 behave as follows. A5 randomly selects pri, and lets pub = KeyGen(pri).
A5 submits m′0 = 0̄ and m′1 = pri. Then, A5 is given (pub′, C ′), where C ′ = Encpub′(m′b′) for some
b′ ∈ {0, 1}. Now, A5 starts A5 starts simulating A4. A4 submits messages m0 and m1. A5 randomly selects
b ∈ {0, 1}, produces C = Encpub(mb), and gives (pub, pub′, C ′, C) to A4. Then, A4 outputs a bit. If this
bit is b, A5 outputs 1, and otherwise A5 outputs 0.

Now, fix an n such that (1) and (2) both hold, and consider the advantage of A5 in breaking the semantic
security of (KeyGen,Enc,Dec). The key observation is that when b′ = 0, A5 simulates A4 � Exp5

perfectly, and when b′ = 1, A5 simulates A4 � Exp4 perfectly. Then we have

Pr[A5 outputs 1|b′ = 0] =
1
2

Pr[(A4 � Exp5) = 1|b = 1] +
1
2

Pr[(A4 � Exp5) = 0|b = 0]

=
1
2

(Pr[(A4 � Exp5) = 1|b = 1] + 1− Pr[(A4 � Exp5) = 1|b = 0])

<
1
2

(
1 +

ε(n)
3

)
where the inequality is by (2). We also have

Pr[A5 outputs 1|b′ = 1] =
1
2

Pr[(A4 � Exp4) = 1|b = 1] +
1
2

Pr[(A4 � Exp4) = 0|b = 0]

=
1
2

(Pr[(A4 � Exp4) = 1|b = 1] + 1− Pr[(A4 � Exp4) = 1|b = 0])

≥ 1
2

(1 + ε(n))

where the inequality is by (1). But this means that

Pr[A5 outputs 1|b′ = 1]− Pr[A5 outputs 1|b′ = 0] >
1
2

(1 + ε(n))− 1
2

(
1 +

ε(n)
3

)
=
ε(n)

3

That is, A5 breaks the semantic security of (KeyGen,Enc,Dec) with advantage ε(n)/3 for infinitely many
n. Observe that A5 runs in time timen(A4) + timen(KeyGen) + timen(Enc).

24



D Concurrent Composition

We have shown that an adversary interacting with a single LRKP gains no information about the underlying
key. However, for some applications, such as private key encryption where several parties compute on
the same agreed upon key, this may not suffice. It is quite possible that the adversary is performing side-
channel attacks on several parties simultaneously, and is coordinating his leakage functions adaptively. In
this section we show that an adversary interacting with several instances of LRKP concurrently still gains
no information through leakage. This allows us to obtain some of the applications described in Section 5.
We start with a definition.

Definition D.1. Let A and S be PPT algorithms, n ∈ N, and consider the following two experiments:

ExpConcurrentReal. The adversary chooses n keys K1, . . . ,Kn and interacts with n instances of ExpReal
where in instance i, Ki is protected by LRKPi. At the end, the adversary outputs a bit b. During the
interaction the adversary controls the schedule of the queries completely, and in particular leakage
queries on LRKPi may depend on leakage obtained from LRKPj for i 6= j.

ExpConcurrentIdeal. The adversary chooses n keys K1, . . . ,Kn interacts with a single simulator S, and
eventually outputs a bit b.

Then, we say that LRKP is a Concurrent-Leakage Resilient Key Proxy (C-LRKP) if for every PPT A
there exists a PPT S and a negligible function neg(·) such that

|Pr[(A � ExpConcurrentReal) = 1]− Pr[(A � ExpConcurrentIdeal) = 1]| ≤ neg(n)

We now show that any LRKP is also concurrent-LRKP. This follows due to the strong security guarantee
of LRKP: even when the adversary herself selects the key K, she still cannot distinguish between simulated
and actual leakage.

Theorem D.2. Let LRKP be a leakage resilient key proxy. Then, LRKP is also concurrent leakage resilient.

Proof. Suppose that LRKP is insecure according to Definition D.1. Then, there exists an adversary A such
that for every simulator, A distinguishes between ExpConcurrentReal and ExpConcurrentIdeal. Let S be
the simulator of LRKP in the non-concurrent setting, and consider a simulator S′ that runs n copies of S in
parallel. Copy i is used to simulate leakage from LRKPi.

Consider a sequence of hybrid experiments Hybi, 0 ≤ i ≤ n such that in Hybi the adversary obtains
leakage from the actual state of LRKPj for 1 ≤ j ≤ i, and obtains simulated leakage for i+1 ≤ j ≤ n. Note
that Hyb0 is ExpConcurrentIdeal and Hybn is ExpConcurrentReal. Thus, there exists an i such that if A
distinguishes between ExpConcurrentReal and ExpConcurrentIdeal with probability ε then A distinguishes
Hybi from Hybi+1 with probability at least ε/n.

We now construct an adversary A′ that simulates A and breaks the non-concurrent security of LRKP.
The simulation proceeds as follows: A′ starts simulating A, which chooses n keys K1, . . . ,Kn. A′ then
initializes LRKPj for 1 ≤ j ≤ i− 1 with Kj , submits Ki as its own key in the LRKP security experiment,
and chooses the initial randomness independently for n− i copies of S.

A′ then continues simulating A, answering queries as follows: leakage queries about LRKPj for 1 ≤
j ≤ i−1 are answered by applying the leakage function to the actual state of LRKPj . For i+1 ≤ j ≤ n the
leakage queries are forwarded to the j − ith copy of S. Leakage queries for LRKPi are forwarded by A′ as
her own queries. At the end of the simulation A′ outputs what A outputs. It is not hard to see that when A′

is interacting with ExpReal and ExpIdeal it is simulating A perfectly in Hybi and Hybi+1 respectively.
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E Application: Private Key Encryption

E.1 Semantic Security Under Leakage

Encryption is one of the most important products of cryptography. In the classical setting, where side-
channel attacks are not taken into account, there are widely accepted definitions of security for both the
private and the public key setting. For a rigorous exposition, we direct the reader to [14, 19]. Informally,
the accepted notion of privacy, which is commonly referred to as “semantic security”, is to require that no
efficient adversary can distinguish between the encryptions of two messages of her choice.

Extending the traditional notions of semantic security to the leakage setting is non-trivial. In particular,
suppose that we assume that every invocation of the encryption algorithm leaks information. Then, since the
message plaintext is an input to that algorithm, the adversary can trivially break semantic security by simply
leaking a bit that differentiates the two messages in question. Consequently, in the setting where “everything
leaks”, traditional semantic security cannot be achieved. This leads us to consider several alternatives to the
naive definition, which permit non-trivial results. Below, we outline some of the possible approaches for
dealing with privacy under leakage, and describe the choice that we made in this paper.

Leak-free challenge. One approach to dealing with the trivial impossibility described above is to weaken
the requirement that “everything leaks” to allowing everything to leak except the computation of the
actual ciphertext that the adversary is trying to distinguish. This solution has been adopted by several
works on leakage-resilient encryption (see e.g. [9, 24, 8, 5]). These works all deal with what we call
“bounded leakage”, that is, the amount of information that the adversary obtains on the key during its
entire lifetime is bounded. Still, the issue that we mentioned about semantic security applies, but for
a different reason. In most constructions in the bounded leakage model, the key remains fixed after it
is generated; such constructions are clearly insecure in the “everything leaks” model since the entire
key eventually leaks. In the bounded leakage model, such constructions turn out to be insecure when
there is leakage on the challenge ciphertext.

The problem is that if the adversary is allowed to obtain leakage on the key after she has seen the
challenge ciphertext, she can simply use the key to decrypt the ciphertext within the leakage function,
and leak the information that distinguishes the two messages in question, thereby breaking semantic
security. Consequently, as in our setting, some restrictions on the leakage, or a weakening of the
definition of security are necessary.

We adopt the leak-free challenge approach for our applications. We prefer this solution to the ones
listed below because it permits fairly clean definitions while allowing the other notions to be achieved
through simple transformations and reductions.

Leakage on random messages. Instead of weakening the requirement that everything leaks, we can relax
the definition of semantic security so that it is still meaningful in the leakage setting. Instead of
requiring that the adversary fail to distinguish between the encryption of two messages, we can require
that she does not learn too much about a message, if it is sampled from a distribution with a sufficiently
high min-entropy. That is, we can ask for essentially the best that can be hoped for: that the adversary
obtains no more information through leakage on the encryption process than what she would be able
to obtain through leakage only on the message that is being encrypted. This notion of security seems
to capture accurately what is achievable in terms of privacy in a setting with leakage. However,
we choose not to adopt this notion both because it is more cumbersome than assuming a leak free
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challenge, and, more importantly, because it does not seem to be easily usable in applications which
require semantically secure private key encryption as an underlying tool.

E.2 Leakage-Resilient Private Key Encryption Using Key Proxies

We extend the standard definition of semantic security to the leakage setting with a leak-free challenge. One
issue that arises in the private key setting is that in a typical application, several parties will hold the same key
K which is used both for encryption and decryption. In order to maintain generality, it is therefore important
to allow a leakage adversary to obtain leakage on each of the parties according to her own schedule. With
this in mind, we now define a leakage resilient private key encryption scheme.

A stateful private key encryption scheme consists of three PPT algorithms (KeyGen,Enc,Dec). The key
generation algorithm KeyGen(1n) outputs n initial states S0

1 , . . . , S
0
n that are held by n individual parties.

These states correspond to the initial encodings of some key K. For j ∈ N, the encryption algorithm
Enc(M,Sji ) outputs a ciphertext C, and an updated state Sj+1

i . The decryption algorithm Dec(C, Sji )
outputs a message M , and an updated state Sj+1

i .

Definition E.1. A triple of PPT algorithms (KeyGen,Enc,Dec) is a correct stateful private key encryp-
tion scheme if for all random tapes R, for all 1 ≤ i, i′ ≤ n, all j, j′ ∈ N, and all M ∈ {0, 1}n,
Dec(Enc(M,Sji ;R), Sj

′

i′ ) = M .

We can now describe the experiment ExpSemSec(b), for b ∈ {0, 1}, of semantic security under leakage.

1. Initialization. The key generation algorithm KeyGen(1n) is run to obtain S0
1 , . . . , S

0
n.

2. Encryption Queries. The adversary may initiate an arbitrary number of encryption processes by sub-
mitting a message M , and an index 1 ≤ i ≤ n. An encryption C = Enc(M,Sji ) is then computed,
where j is the number of times party i encrypted until now, and the adversary concurrently obtains
single invocation leakage on all the active encryption processes (the single invocation leakage model
for private key encryption is described in Section E.2.2). The adversary is then given C.

3. Challenge. At some point the adversary submits two messages M0,M1, and an index 1 ≤ i ≤ n for
which there is no current active encryption process, and obtains C∗ = Enc(Mb, S

j
i ).

4. Encryption Queries. The adversary continues to initiate encryption processes, and concurrently obtain
leakage on these processes.

5. Guess. The adversary outputs a bit b′.

Definition E.2. A stateful private key encryption scheme (KeyGen,Enc,Dec) is semantically secure under
leakage, if for all PPT adversaries A,

|Pr[(A � ExpSemSec(0)) = 1]− Pr[(A � ExpSemSec(1)) = 1]| ≤ neg(n)
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E.2.1 Construction

Let F = {Fn}n∈N be a family of pseudorandom functions (when n is clear from context we write F instead
of Fn) such that Fn : {0, 1}n×{0, 1}n → {0, 1}n for all n ∈ N. Let LRKP be a leakage resilient key proxy.
Our stateful private key encryption scheme PRI− ENC = (KeyGen,Enc,Dec) works as follows:

Key Generation. The key generation algorithm, KeyGen(1n), first chooses a key K ∈R {0, 1}n at random,
and runs KPInit(1n,K) n times with independently chosen randomness to obtain n initial states
S1, . . . , Sn. The states S1, . . . , Sn are the output of KeyGen.

Encryption. For a message M ∈ {0, 1}n, the encryption algorithm Enc(M,S) chooses a random string
R ∈R {0, 1}n, and generates a circuit H(x) that computes the function Fx(R) ⊕M . It then runs
KPEval(H,S) to obtain an output Y , and an updated state S′. The ciphertext is then C = (Y,R), and
output of Enc is (C, S′).

Decryption. The decryption algorithm Dec(C, S) parses C as (Y,R), and generates a circuit G(x) that
computes the function Fx(R)⊕ Y . It then runs KPEval(G,S) to obtain an output M , and an updated
state S′. The output of Dec is then (M,S′).

E.2.2 Single Invocation Leakage Model

The single invocation leakage for our construction is quite simple: during encryption, the adversary is given
R and M , and then proceeds to interact in a single invocation leakage experiment with the computation
of KPEval. During decryption, the adversary simply interacts in a single invocation leakage experiment
with KPEval. In other words, for both encryption and decryption the adversary obtains leakage on the
computation of KPEval, and obtains all the other inputs completely.

We note that although it may seem more reasonable to allow the adversary to learn only part of the
randomness and message of the encryption, it would give us a weaker theorem. The fact that our construction
is secure in the above leakage model implies security in other more realistic but weaker models.

E.2.3 Security Analysis

We show that any adversary that breaks the semantic security of PRI− ENC can be used to break either the
concurrent leakage resilience of LRKP or the pseudorandomness of F . We start by stating the theorem:

Theorem E.3. Let A be a PPT adversary for the semantic security under leakage of PRI− ENC, let LRKP
be a concurrently leakage resilient key proxy such that all adversaries running in time at most timen(A) can
distinguish real and simulated leakage with advantage at most εc−lrkp, and let F = {Fn}n∈N be a family
of PRFs such that all adversaries running in time at most timen(A) · (timen(KPEval) + timen(Enc)) +
timen(KeyGen) can distinguish Fn from random with advantage at most εprf . Then, A breaks the semantic
security of PRI− ENC with advantage at most εc−lrkp + εprf + timen(A)

2n .

To prove security we define several hybrid experiments where the first hybrid Hyb0 is the original exper-
iment of semantic security with leakage, and in the final hybrid the adversary obtains no information about
the bit b.
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Experiment Hyb1. Experiment Hyb1 proceeds as Hyb0 except that the computation of the challenge is
performed differently. Instead of using KPEval to compute it, the challenge ciphertext is computed directly
by choosing a random string R∗ ∈R {0, 1}n and outputting (FK(R∗)⊕Mb, R

∗). The LRKP is evaluated on
some constant function (e.g. one that always outputs 0̄) in order to refresh its state.

Experiment Hyb2. In this experiment, the leakage obtained by the adversary is replaced by simulated
leakage. More precisely, let S be the simulator for concurrent leakage that is guaranteed by Theorem D.2 to
exist for LRKP. In experiment Hyb2, whenever the adversary initiates an encryption process, the simulator S
is given the corresponding circuit H , and the ciphertext C. Then, the adversary interacts with the simulator
to obtain leakage on the underlying invocation of LRKP.

Experiment Hyb3. In this experiment we replace the pseudorandom function F with a random one.
Namely, for each new encryption process started by the adversary, the simulator S is given the circuit
H , and a ciphertext of the form C = (F̂ (R) ⊕M,R) where F̂ : {0, 1}n → {0, 1}n is a random function.
The challenge ciphertext is also computed using the random function F̂ .

Let A be PPT adversary for the semantic security under leakage of PRI− ENC. We define Xi to be the
random variable that is 1 if A guesses the bit b correctly in experiment Hybi, for 0 ≤ i ≤ 3.

Claim E.4. Pr[X0 = 1] = Pr[X1 = 1]

Proof Sketch. This follows directly from the fact that LRKP is history free according to Definition 3.5. In
particular, it makes no difference whether we refresh the state of LRKP during the challenge by evaluating
the actual circuit that is needed to compute the challenge, or a circuit that always outputs 0̄.

Claim E.5. |Pr[X1 = 1]− Pr[X2 = 1]| ≤ εc−lrkp

Proof Sketch. Suppose that the claim is false, then we can use the adversary A to distinguish between
simulated and real leakage in the concurrent LRKP experiment. Our adversary A′ initializes n copies of
LRKPs with some random PRF key K, and then simply acts as a middleman between A and the security
experiment of the concurrent LRKP.

Claim E.6. |Pr[X2 = 1]− Pr[X3 = 1]| ≤ εprf

Proof Sketch. Suppose that the claim is false, then we can use the adversary A to distinguish between an
oracle for FK and an oracle for a random function F̂ . To see this, note that in both Hyb2 and Hyb3 the
leakage is simulated. Therefore, we can construct an adversary A′ that simulates A given an oracle O. If
O ≡ FK then A is simulated perfectly in Hyb2. If O is a random function, then it is a correct simulation in
Hyb3.

Claim E.7. Pr[X3 = 1] ≤ timen(A)
2n

Proof Sketch. This follows from the fact that F̂ is a random function, and that the simulated leakage is
independent from the randomness of the challenge.
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F Application: Chosen Ciphertext Secure Public Key Encryption

Constructions of public key encryption schemes that are resilient to an a-priori bounded amount of leakage
were recently given by [24, 2, 5]. However, no constructions are known of PKEs that remain secure under
the Chosen Ciphertext Attack, if the adversary can obtain leakage during each decryption query. Chosen
Ciphertext security is considered the right notion of security for PKE in practice, and providing schemes
that satisfy this notion of security even under side-channel attacks is an important open problem.

LRKPs provide a convenient way of immunizing any CCA-PKE against leakage. More precisely, given
a CCA-PKE scheme (KeyGen,Enc,Dec), we construct a new PKE (KeyGen′,Enc,Dec′) where the en-
cryption algorithm stays the same; the key generation KeyGen′ runs KeyGen to obtain (pub, pri) and then
initializes an LRKP with pri. The public key is pub, and the private key is the initial state state1 of the
LRKP. The decryption algorithm is stateful, and to decrypt a ciphertext C, Dec′ generates a circuit H(x)
that computes that function Decx(C), and then uses KPEval to evaluate it on the private key pri.
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