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Abstract

We describe Heraclitus as an example of a stream cipher that uses a

128 bit index string to specify the structure of each instance in real time:

each instance of Heraclitus will be a stream cipher based on mutually

clocked shift registers.

Ciphers with key-dependent structures have been investigated and are

generally based on Feistel networks. Heraclitus, however, is based on

mutually clocked shift registers. Ciphers of this type have been extensively

analysed, and published attacks on them will be infeasible against any

instance of Heraclitus.

The speed and security of Heraclitus makes it suitable as a session

cipher, that is, an instance is generated at key exchange and used for one

session.

1 Introduction

This paper describes Heraclitus, a proof of concept cipher demonstrating the
existence of sound dynamic ciphers. It is a stream cipher that uses a 128 bit
string to specify each instance in real time.It can be considered to be a stream
cipher with an index dependent structure which can be set up in real time, and
can therefore also be a session cipher, that is, a cipher used for a single session
and then discarded.

Ciphers with key/index dependent structures, including stream ciphers, have
been discussed theoretically [4, 19] and several have been implemented [14, 16,
21]. These ciphers, including the stream cipher Mir-1, use Feistel networks,
s-boxes (non-linear transformations) and p-boxes (permutations). In general,
the s- and p- boxes are the only key-dependent elements of the cipher. The rest
of the structure, such as the number of s- and p-boxes, and the network are
considered to be fixed. We construct in this paper a ciphers whose structure
completely dependent on the index by using it to determine the number of
registers, their lengths and their associated polynomials. As with session keys,
any given ‘instance’ of the cipher is used for a period and then transformed into
another instance of the cipher in an unpredictable manner.
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Note that the cipher described in this paper can be implemented in a number
of ways. The initial description provides the most general implementation that
can be extended, both in terms of the number of registers used and the regis-
ter lengths. However, we also present alternative approaches to implementing
Heraclitus and variants.

In the next section, we give the background to A5.1. In Sections 3 to 5,
we give a detailed construction of Heraclitus. In Section 7 we propose two
initialisation modes for Heraclitus, one being suitable in resource constrained
environments. Section 8 briefly discusses the security of Heraclitus, with a more
complete discussion in Appendix A.

2 Background

2.1 Linear Feedback Shift Registers

A shift register of length n at discrete time t is a system based on a sequence
of bits {rt[i]}ni=1 that:

1. has state at time t, rt[1], . . . , rt[n];

2. has a one bit input at time t, st; and

3. at time t+ 1:

rt+1[i] =

{

rt[i− 1] 2 ≤ i ≤ n, and
s(t) i = 1.

A linear feedback shift register (LFSR) is a shift register that takes its input as
a linear combination of the bits of the register; that is:

s(t+ 1) =

n
∑

i=1

cir
t[i],

where {ci}
n
i=1 are fixed constants, either 0 or 1. The set φ = {i|ci = 1} is the

set of feedback bits of the LFSR.
Associated with each LFSR is a feedback polynomial, which is related to the

feedback bits. The feedback polynomial is

∑

k∈φ

xk + 1.

Every LFSR has a period, which is the time it takes for the LFSR to return
to its initial state. If the feedback polynomial is irreducible, the period will be
2n − 1, which is the maximum period.

In most cases, and the cases in which we will be interested, the output of the
LFSR is: f(rt[1], . . . , rt[n]) = rt[n]. Note that the output may be a nonlinear
function of the bits of the LFSR.
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2.2 Description of A5.1

Each instance of Heraclitus is similiar in structure to the A5.1 cipher, which
will be now described.

A5.1 is a linear feedback shift register (LFSR) stream cipher using three shift
registers. The registers are clocked in an irregular fashion which determines the
algebraic complexity of the output of the cipher.

This description of A5.1 is based on [3]. A5.1 is an linear feedback shift
register (LFSR) based stream cipher. A5.1 has three LFSRs, R1, R2, and R3,
of lengths 19, 22 and 23 respectively, which is denoted by ‖Ri‖. The bits of Ri

are denoted Ri[j] for 1 ≤ j ≤ ‖Ri‖. Table 1 details the feedback bits and the
clock bits. The output z at time t is:

zt = rt1[19] + rt2[22] + rt3[23].

A5.1 is irregularly clocked, that is, each register does not necessarily move for
each clock cycle. Rather, the register has a clock bit, which is close to the
middle of the register — for each register the clock bit is ri[‖Ri‖]. The register
is only moved if the the clock bit is in the majority: that is, the clock bit has
the same value as one of the other two clock bits. That is if

St
i = cti + rt1[9] · r

t
2[11] + rt1[9] · r

t
3[11] + rt2[11] · r

t
3[11] + 1 = 1,

then Ri is clocked, where cti is the clock bit of Ri at time t. Observe that on
average each register will move 5 times for every 8 clock cycles.

Al-Hinai et al. [1] derived the following algebraic expression for the values
of the registers at time t+ 1:

rt+1
i [j] =

{

St
i · r

t[j − 1] + (St
i + 1) · rt[j] j > 1, and

St
i · F

t
i + (St

i + 1) · rt[j] j = 1,
(1)

where F t
i is the value of the feedback polynomial of Ri at time t.

Note that the irregular clocking introduces nonlinearity into the cipher. Also
note that in an algebraic representation of the cipher, the clocking also intro-
duces a large number of monomial terms.

Register Feedback Feedback Clock

Bits Polynomial Bit

R1 r1[19], r1[18], r1[17], r1[14] x19 + x18 + x17 + x14 + 1 r1[9]
R2 r2[22], r2[21]] x22 + x21 + 1 r1[11]
R3 r3[23], r3[22], r3[21], r3[8], x23 + x22 + x21 + x8 + 1 r1[11]

Table 1: Summary of A5.1

2.3 Attacks on A5.1

Many attacks on A5.1 have been published, some recently [8]. The attacks
generally follow one of the following strategies.
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• Guessing attacks, guess the two shorter registers, and determine the longer
register.

• Golić [9] uses a time-memory trade off to recover the initial state of the
cipher. If M and T are the memory and time requirements, then M ·T ≥
263.32; thus this attack can be quickened by precomputation.

• Biryukov et al. [3] provide a refinement of Golić’s attack. They focus on
certain special states which produce particular patterns. This increases
the speed of the attack. This attack requires about 242 to 248 steps of pre-
processing and data storage and requires a deep knowledge of all aspects
of the cipher.

• Al-Hinai et al. [1] applied algebraic attacks to A5.1.

Barkan et al. [2] improved the third attack, and Nohl and Krißler [17] have set
up Rainbow tables to break A5.1 based on a similar approach.

In analysing the cipher, the last attack demonstrates that the clocking mech-
anisms provide significant immunity to algebraic attacks. The first three attacks
have only become feasible in recent years with an increase in processing power
and storage space but still face the difficulty of handling large amounts of data.
Consequently, these attacks become infeasible if the overall size of the cipher is
increased while retaining the essence of the clocking mechanism. This can be
done in several ways, such as increasing the lengths of the three ciphers and
adding registers to the cipher.

These considerations, together with the observation that A5.1 operates in a
resource constrained and challenging environment, have motivated the authors
of this paper to build a strengthened version of A5.1. In addition to the obvious
extension to more and longer registers, we propose a novel approach which
changes both the number and size of registers used in any one session as well as
the polynomials underlying the feedback registers.

2.4 Elements of the Cipher

From the above description, A5.1 is an example of an LFSR based cipher with
majority clocking. The parameters of this type of cipher are:

• the key length K ′,

• the number of registers r,

• the length of registers {ρi} where the registers are denoted by {Ri}
r
i=1,

• the feedback bits of the registers, and

• the clocking mechanism.

With the exception of the clocking mechanism, we vary these parameters in
Heraclitus.
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3 Overview of Construction

As noted above, the parameters of the cipher that are varible are the number
of registers r, the length of registers {ρi}, and the feedback polynomials of the
registers. These parameters are specified used a 128 bit string, X called the
Index. This is distinct from the key used by the instance of the cipher.

For Heraclitus the key length is fixed to be 128 bits: thus the total register
length will need to exceed 128 plus the check bits required to any register having
a trivial loading.

Our construction starts with an index which is a 128 bit string X = ξ1 · · · ξ128,
and consists of three steps:

1. selection of number of registers;

2. selection of register sizes; and

3. selection of feedback bits for each register by generating irreducible poly-
nomials.

The index X is used for each of these steps.
The majority clocking function used in the A5.1 cipher will be used due to its

simplicity and to allow reuse of analyses of A5.1. Moreover, it was extensively
analysed algebraically in [1].

Pseudocode for these algorithms can be found in Appendix C. A discussion
of alternative design choices for Heraclitus is found in Appendix B

4 Number and Size of Registers

4.1 Considerations and Choices

The number and size of registers will be determined by the initial bits of the
index X . To use the majority clocking function unmodified, an odd number
of registers will be used. Another concern is that if the registers are long and
relatively few, a significant proportion of the bits, a third or a fifth, may be
derived from other bits and the key stream, and therefore be more amenable to
analysis.

Consequently, the number of registers will be chosen from {7, 9, 11}.
The following points were considered in determining the range of the lengths

of the registers.

• The sum of lengths of the registers used in any session should equal or
exceed the key size, including the check bits. That is:

r
∑

i=1

ρi ≥ K.

• The lengths of the registers should not present difficulties in implementa-
tion either in software or in hardware.
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• The register sizes need to be limited to ensure that the algorithms used
to determine the feedback bits are tractable.

• The register sizes are not too small to limit the scope for analysis based
on a brute force indexing of the smaller registers.

• The register lengths should be pairwise coprime.

Most modern operating systems are based on 64 bit registers. Moreover, the
decryption algorithm used to determine the feedback bits has a complexity of
O(m3), where m is the length of the register: this requires O(218) operations for
registers of less than 64 bits which is feasible for most devices, including resource
constrained devices. Consequently, 64 bits is chosen as the upper bound for
register sizes.

The minimum size for registers is set to be 17 in order to limit the scope of
brute force attacks on these systems.

The requirement that the register lengths are pairwise coprime reduces cor-
relation attacks against the cipher and ensures that the cycle time is maximised
[15]. This is certainly seen in most stream ciphers published. Consequently, in
our implementation, we chose register lengths to be primes and prime powers.
This has the added benefit of simplifying the selection of feedback bits.

We chose the set, ζ of possible register lengths to be:

ζ = {17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61}

This set has 16 elements: however, when using only 7 registers, only the 15
longest are used.

Based on a choice of 7, 9 or 11 registers, the first two bits of the index X
are used to determine the number of registers. This will also determine the
number of possible register lengths. The first 14 bits of X are used to make
these determinations.

1. If ξ1ξ2 = 00, then r = 7, which allows
(

15
7

)

or 6435 choices of register
lengths. ξ3 . . . ξ14 are used for 4096 possible register lengths.

2. If ξ1ξ2 = 01, then r = 11, which allows
(

16
11

)

or 4368 choices of register
lengths. ξ3 . . . ξ14 are used for 4096 possible register lengths.

3. If ξ1ξ2 = 1, then r = 9, which allows
(

16
9

)

or 11440 choices of register
lengths. If 13 bits are used to make this choice up to 8192 register lengths
can be chosen

In our implementation, a look-up table was used to choose the register
lengths. This is an efficient method as the table is used repeatedly and the
space needed is minimal.

In choosing the number of registers and the register lengths, care must be
taken to ensure that the above inequality with K is satisfied.
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5 Feedback Bits

The next step is to determine the feedback bits. As discussed in Golomb [10] and
in Section 2.1 the feedback bits are directly related to the feedback polynomials.
Moreover, the feedback polynomials should be irreducible to ensure that each
register has maximal cycle length.

Thus, to select the feedback bits for the registers, irreducible polynomials
are generated and the corresponding feedback bits for the register are used.

Elements of GF(2n) can be used to generate irreducible polynomials of order
n over GF(2). The algorithm chosen to generate the polynomials is outlined in
§4.74 of [15].

Note that GF(2n) is isomorphic to GF(2)[x]/p(x), where p(x) is an irre-
ducible polynomial of order n over GF(2). Consequently, Heraclitus uses a
fixed set of irreducible polynomials to generate feedback polynomials, one for
each register, to use this algorithm. Table 2 lists the irreducible polynomials
used in Heraclitus, Pi: these were taken from Seroussi [20].

ρ Pρ

17 x17 + x3 + 1
19 x19 + x5 + x2 + x+ 1
23 x23 + x5 + 1
25 x25 + x3 + 1
27 x27 + x5 + x2 + x+ 1
29 x29 + x2 + 1
31 x31 + x3 + 1
32 x32 + x7 + x3 + x2 + 1
37 x37 + x6 + x4 + x+ 1
41 x41 + x3 + 1
43 x43 + x6 + x4 + x3 + 1
47 x47 + x5 + 1
49 x49 + x9 + 1
53 x53 + x6 + x2 + x+ 1
59 x59 + x7 + x4 + x2 + 1
61 x61 + x5 + x2 + x+ 1

Table 2: Irreducible Polynomials

Elements can be represented as n bit strings, α where

α←→

n
∑

i=1

αix
i−1.

Addition and multiplication are as for polynomial rings, calculated modulo p(x).
’The trivial elements are the additive identity 0 and the multiplicative identity
1.
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For p prime, all non-trivial elements α of GF(2p) will generate an irreducible
polynomial by:

mα =

p−1
∏

i=0

(x− α2i).

Two elements, α and β will generate the same irreducible polynomial if, and
only if, there exists an integer 1 ≤ j ≤ p such that: β = α2j . The collection
{α2i}p−1

i=0 is known as the cyclotomic coset of α [13].
For q, a prime power, similar properties hold: however, not every non-trivial

element of GF(2q) will generate irreducible polynomials — only those elements
with exactly q elements in its cyclotomic coset. That is, those elements α for
which the smallest integer t such that α2t = α is q.

In order to use this method to choose irreducible polynomials from the values
of X , there needs to be some way of generating strings of the length of the regis-
ters. Ideally, some method of indexing cyclotomic cosets would be used in order
that each value of X would generate a different set of irreducible polynomials.
However, there is no generalised simply implementable indexing of cyclotomic
cosets or representatives from these cosets.

The method that we have chosen is to use a one way hashing function to
generate bit strings that have the following properties:

• uniform distribution over the strings;

• the correlation between chosen polynomials between registers is 0; and

• collisions are difficult to find.

The one way hashing function chosen is SHA512, which has these properties.
Moreover, it is a standard and many implementations exist, including for con-
strained environments. This will provide a 512 bit string in which substrings of
the appropriate lengths can be chosen.

The method for choosing the feedback bits for the register of length n is as
follows.

1. Take the first n unused bits of SHA512(X ).

2. If it corresponds to a trivial element, set Qn = Pn.

3. Else, if n ∈ {25, 27, 32, 49} test the string. If it does not generate an irre-
ducible polynomial, discard the first bit and concatenate the first unused
bit of SHA512(X ). If the test fails three times, set Qn = Pn as the default
feedback polynomial.

4. Else generate irreducible polynomial Qn.

5. Set the feedback bits to correspond with Qn.

Pseudocode for Algorithms 3 and 4 can be found in in Appendix C. Al-
gorithm 3 tests whether a string will generate an irreducible polynomial for
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n ∈ {25, 27, 32, 49}. Algorithm 4 generates irreducible polynomials from the
strings, using Algorithm 3 to test as appropriate.

Each polynomial generation will have a running time of O(m3) operations.
Note that an upper limit of three attempts to generate an irreducible polynomial
is set. This is to ensure that the polynomial will be generated within a known
amount of time.

Two concerns exist for the generation of irreducible polynomials (a) the pro-
portion of irreducible polynomials generated, and (b) significant bias of polyno-
mials generated.

For all registers, the probability that a particular polynomial will not be
generated using this method is less than 2−85: for polynomials of order 17, this
probability will be significantly less. This indicates that a large proportion of
the set of irreducible polynomials will be generated.

The algorithm will introduce a small bias for the default polynomial to be
generated. For a prime, p, the default will occur at a rate of (p + 2)2−p, the
other polynomials occur at a rate of p · 2−p. For a prime power, q = pn, the
default polynomial will occur at a rate of about (p+2)2−q+2−3(q−q/p−1). These
increases are small and will not introduce a significant bias, and therefore will
not provide significant assistance to an attacker.

6 Irregular Clocking

The clocking mechanism is the one that is used for A5.1: that is, majority
clocking based on fixed bit positions in the LFSRs. In A5.1, the clock bits are
at the centre of the registers. There appear to be a number of good reasons:
the primary one seems to be that this position is furthest from the output and
therefore most difficult to correlate.

Thus, for each register, Ri, the clocking bit is chosen to be ci = Ri[j] where
j = ⌊‖Ri‖/2⌋, that is, about the middle bit.

7 Initialisation

For stream ciphers, synchronicity is essential for correct function. In harsh
environments, such as radio interfaces, traffic will be lost, which poses a problem
for stream ciphers and other mechanisms requiring synchronicity. This is usually
addressed by putting the traffic into frames and assigning frame numbers or
other identifiers for the frame. Many ciphers, e.g. A5.1 and RC4, incorporate
the frame number into the session key. Thus, for each frame, the frame number
may be XORed or appended to the session key and loaded into the cipher and
used for the traffic of that frame.

However, this incorporation may lead to weaknesses using the cipher, in
particular related IV attacks [5, 7, 18]. This is usually addressed by running
the cipher for a fixed number of clock cycles to ensure that sufficient diffusion
of the key bits and IV occurs.
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An alternative to this is to put the IV and session key through a hash function
such as SHA1 and to load the registers with the output of this hash function.

In resource constrained environments using hash functions may not be pos-
sible, and other mechanisms to avoid related IV attacks are required. Conse-
quently, two initialisation modes are proposed for Heraclitus: Hash mode and
Run mode; noting that Hash mode is preferred when it is possible. Both as-
sume that the session key is K = κ1 · · ·κ128 and IV is the initialisation vector
or frame number or sequence number.

For Hash mode, the string kf = SHA512(K, IV ) is generated. The initial R
bits of the string kf are loaded into the cipher, where R is the total length of
the registers. The registers are loaded from the shortest to the longest register.
The remaining bits of kf are discarded. Then the complement of the parity of
each subkey of each register is loaded to avoid the null loading.

For Run mode the key for the frame is generated kf = K ⊕ IV , IV being
padded by repetition until it is 128 bits long. This is divided into subkeys,
depending on the number of registers:

1. for 7 registers: k1 · · · k18, k19 · · · k36, k37 · · · k54, k55 · · · k72, k73 · · · k90,
k91 · · · k109, and k110 · · · k128;

2. for 9 registers: k1 · · · k14, k15 · · · k28, k29 · · · k42, k43 · · · k56, k57 · · · k70,
k71 · · · k84, k85 · · · k98, k99 · · · k113, and k114 · · · k128;

3. for 11 registers: k1 · · · k11, k12 · · · k22, k23 · · · k33, k34 · · · k44, k45 · · · k56,
k57 · · · k68, k69 · · · k80, k81 · · · k92, k93 · · · k104, k105 · · · k116, and k117 · · · k128.

Each subkey has a parity bit appended to prevent a null loading. The subkeys
are loaded into each of the registers, starting with the smallest going to the
longest.

The cipher is then run to ensure that every bit in the registers is dependent
on every key bit and frame bit, which will provide resistance to related IV
attacks. Majority clocking will ensure that each register moves about half the
time, then running the cipher for three times the length of the longest register
will ensure that this condition is met. For simplicity, 183 is used in all cases to
ensure this.

The advantage of Hash mode is that the key loaded into each frame is gen-
erated by a hash function, and therefore even if an attacker were to determine
the key for one frame, the keys for the other frames are protected by the hash
function. However, hash functions require significant processing that may not
be available in low resource environments. Although Run mode does not have
this protection, experience with A5.1 and other ciphers indicate that this an
effective mechanism to protected the cipher.

Figure 1 shows the feed-through of the hashed key and IV information
through the 264 frames of a session.

The fact that the key and IV are used to determine the structure of the
cipher in the next 264 frames adds to the unpredictability of future set-ups and
consequently provides security against attacks.

10



Figure 1: Each session key K is used for 264 frames.

8 Security Analysis

The security of Heraclitus was analysed briefly. The following are the initial
conclusions of the analysis.

• Due to the increase in key length, guessing attacks are not feasible.

• The time-memory trade of attacks of Golić are not feasible due the increase
in key length and the number of registers [9].

• The refinements of Golić’s attack are not feasible [2, 3]. This is due to the
increase key size, thus requiring feasible precomputation: moreover, there
are a large number of register number and length combinations, making
the search for patterns and refinements more difficult. Each combination
will require its own precomputed data.

• Each cipher within Heraclitus is immune to algebraic attacks due to the
non-linear clocking. Thus, Heraclitus is immune to algebraic attacks [1].

• Each cipher within Heraclitus is independent of and uncorrelated with the
other ciphers.

Each instantiation of Heraclitus is therefore immune to the known attacks
against A5.1. However, possible weaknesses in transitions between instanti-
ations are not yet fully known. For this reason, the authors have lodged

11



the code at the ECRYPT Benchmarking of Cryptographic Systems (eBACS
http://bench.cr.yp.to/) for general testing by the cryptographic community.

9 Implementation

One of the practical concerns for any cipher is the implementation of the cipher
— either in hardware or software. Variants of Heraclitus have been implemented
in software, two of which are described briefly: the first by the second author,
and the second by a group of undergraduate students in 2008 as a group project
[11].

These implementations demonstrate:

• the method is extensible and adaptable,

• that it is implementable, and

• that it is usable.

9.1 Heraclitus-64

The description of Heraclitus given here is very general, and a number of variants
can be made. A variation of Heraclitus was implemented in June 2008. In this
version:

• the index was restricted to 64 bits;

• the number of registers is either 5 and 7;

• the set {25, 27, 29, 31, 32, 37, 41, 43, 49, 53, 59, 61} was used for the register
lengths;

• the number of registers and register sizes are chosen by an 11 bit string
which is stored in a table; and

• 65536 irreducible polynomials for each register length were generated and
stored as an array of a 64 bit word length.

Thus, to generate the cipher, up to 8 table look ups were required and the
register implemented. The storage requirements are very modest. The array
of irreducible polynomials for each register length requires 219 bytes, or 0.1MB
per array. Also the number and length of registers are determined by 11 bits,
which can also be stored as an array.

Thus, the total storage required is less than 2MB.
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9.2 A5+

This was a variation of Heraclitus that was implemented by a group of under-
graduate students [11]. Its structure is:

• the index was restricted to 112 bits;

• 7 registers are used for all instances;

• the register lengths are chosen from a set of 14 possible lengths; and

• the feedback bits are chosen from a possible 65535 sets per register.

The possible feedback polynomials for each register are stored in tables, and
the index is used to select them for the registers being used. Each of these
feedback taps correspond to an irreducible polynomial.

The set up required a small amount of processing and 7 table look ups: the
total time for setting up an instance took less than a microsecond on a standard
business PC.

10 Efficiency

The efficiency of a cipher is dependent on the implementation and the resources
required to implement the cipher, and the context in which it is being imple-
mented.

The complexity of the algorithms specified is at most cubic in the length

of the register — i.e. O(n3): and n ≤ 64. This presents a small overhead in
setting up the cipher, and indicates that the register lengths can be increased
significantly in this type of cipher without a large performance impact.

However, with the availability of cheap memory on most standard PCs and
servers, pre-computing these algorithms and implementing the algorithms as
look-up tables provides significant time and implementation efficiecies. This
is demonstrated by the choices made in implementing Heraclitus-64 and A5+.
Estimates for the time and memory requirements of the variants are found in
Table 3

Variant Set Up Memory Memory

Runtime Storage

Heraclitus c · 3× 106 instructions < 10kB < 10kB
Heraclitus-64 8 table lookups < 200kB 2 MB

A5+ 7 table lookups 1 MB 8 MB

Table 3: Summary of A5.1

Heraclitus has not been implemented in hardware. However, there are some
observations for a hardware implementation:
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• each register of Heraclitus will need three physical registers to implement
it — one to act as a register, one for the feedback bits and one as a length
mask;

• the algorithms to determine the feedback bits can be either implemented
as look ups, as for software, or implmented as the algorithms described.

The tables will take up significant memory. However, if a cipher with the
structure of Heraclitus is to be implemented in hardware, then it can be modified
to ensure that the memory requirements are reduced to acceptable levels. For
example, Heraclitus-64 reduced the total memory requirement to less than 2MB.
Similar modifications could be used in hardware.

11 Conclusions

Heraclitus demonstrates that ciphers with key dependent structures can be ex-
tended to LFSR based stream ciphers, and that each instance can be imple-
mented in real time. Moreover, each instance of the cipher has

In describing Heraclitus, an extension of the A5.1 cipher, we wrote algo-
rithms to specify the parameters of the ciphers such as register lengths and
feedback taps. These algorithms all run in at most cubic time (O(n3)), and
n ≤ 64. An adaptation of Heraclitus was implemented which uses up to 91 bits
for an index and at most eight table lookups and 2MB of stored data. This
implementation is suitable for resource constrained environments.

The design of Heraclitus exploited the choices available in cipher design, such
as the choice of irreducible polynomials or the choice a function which satisfies
certain conditions. They also represent an increase in strength of the ciphers
because: (a) each cipher generated is designed to satisfy particular criteria to
ensure the strength of the cipher; and (b) each cipher is expected to be only
used once — therefore it is infeasible to determine any weakness, even if the
cipher is known.

Heraclitus is only one example of this type of approach: it can be extended
and adapted to other stream ciphers. Further investigation into key dependent
block ciphers and hashing functions is currently underway.
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A Security Analysis

Since Heraclitus is a proof of concept of one time ciphers, the aim of this section
is not to provide a complete analysis, but to demonstrate the immunity of
Heraclitus to the attacks used against A5.1.

It aims to provide indications that:

• each example of Heraclitus is secure, and immune to attacks currently
published against this type of cipher; and

• the indexing will provide further security.

One of the first considerations of Heraclitus is the number of ciphers that
are generated, and then if the ciphers generated are independent of each other
and are not easily mapped to each other.

Once it has been established that a large number of ciphers are generated,
then attacks against (a) the ciphers themselves and (b) the collection of the
ciphers will need to be considered. As indicated in §2.3, three approaches have
been used against this class of ciphers. These are:

• guessing attacks.

• time-space trade off as described in Golić [9] and the refinements proposed
and implemented in Biryukov et al. [3] and Barkan et al. [2]; and

• algebraic attacks as described in Al-Hinai et al. [1].

Guessing attacks are not feasible due to the increase in key length and will not
be further considered in this analysis.

In considering these attacks, we will first consider the attack against an
arbitrary example of Heraclitus, which is denoted H.1. We then consider the
further difficulty of analysing the entire family.
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A.1 Number of Ciphers Generated

One of the concerns in designing Heraclitus was the number of distinct ciphers
that were generated. This can be seen as the effective number of bits of the
index X . One measure of this efficiency is (log2 ‖{Hξ}ξ∈X ‖)/128.

The number, I(n), of degree n irreducible polynomials over GF (2) is given
by [12]:

I(n) =
1

n

∑

d|n

µ(d)2n/d,

where the Möbius function µ is defined:

µ(d) =







0 if d has repeated prime factors;
1 if d = 1; and
(−1)k if d is a product of k distinct primes.

The d = 1 term is the dominating correction term of the sum. For p prime, the
sum is (2p−2)/p; for prime powers, q = pk, p prime the sum is (2q−2q/p−2)/n.
Table 4 lists the number of irreducible polynomials for each register length and
the appropriate number of bits to index them. This is the number of suitable
sets of taps for the LFSRs of that length.

Note that using the one-way function, SHA512, we have:

• uniform distribution over possible bits strings used to generate the irre-
ducible polynomials;

• the bits strings for any two registers will be uncorrelated; and

• collisions will be minimal.

There is a small probability that a particular irreducible polynomial will not
be generated as X goes through its range of values. For any particular set of
registers, the first 14 bits can be considered to be fixed: consequently, there are
2114 possible values for X . Thus, the probability that particular polynomial will
not generated is:

Pr(n) ≤

(

1−
1

I(n)

)2114

.

Consider n = 61, in this case, Pr(n) ∼ 2−85: which indicates that almost all of
the 37800705069077000 irreducible polynomials will be generated. For n < 61,
Pr(n) < 2−85. Thus, we can assume that at least I(n)/2 will be generated for
each of the registers.

Due to the properties of SHA512, the bit strings that will be generating the
polynomials for each register will also be uncorrelated, and therefore will have
a small probability of collision.

Thus, for the case of the smallest set of registers, the number of irreducible
combinations expected to be generated is 2114.
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Length Number of Irreducible Number

n Polynomials I(n) of Bits

17 7710 12.91
19 27594 14.75
23 364722 18.48
25 1342176 20.36
27 4971008 22.25
29 18512790 24.14
31 69273666 26.05
32 134215680 27.00
37 3714566310 31.79
41 53634713550 35.64
43 204560302842 37.57
47 2994414645858 41.45
49 11488774559616 43.39
53 169947155749830 47.27
59 9770521225481750 53.12
61 37800705069077000 55.07

Table 4: Number of Irreducible Polynomials for Each Register Length

This indicates that the index efficiency is close to 1. We note that in the
variations of Heraclitus, described in §9, the index efficiency is 1, since every
index is guaranteed to generate a different cipher.

While SHA512 is not compromised, guessing the index X is the most efficient
approach to analysing the family of ciphers.

A.2 Independence of Ciphers

As indicated above, there are many ciphers generated. This alone does not, of
itself, guarantee an increase in security. If the generated ciphers are linearly
related, then the increase in security is minimal.

Consider two ciphers Hα and Hβ that have:

• the same number of registers and register length,

• the same feedback bits in all but one register, and

• the same key.

That is, they are identical with the exception of one register, ri,α for Hα and
ri,β for Hβ both being of length n. What is the correlation between the two key
streams?

For any two regularly clock LFSRs of the same length, differing only in
feedback bits, there exists a function L : t × (GF (2))n → (GF (2))n such that
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at time t the state rt of the two registers are related:

rti,α = L(t, ri,β).

For t fixed, the function L is linear. Similarly, the state of the LFSR at time t2
and time t2 will also be a similar function.

The irregular clocking increases the complexity of constructing Hβ from Hα

by:

1. introducing non-linearity into the register positions; and

2. introducing dependency of the values in the other registers for the position
of any particular register.

Consequently, if the keystream of the ciphers Hα and Hβ can be mapped in
feasible time, then the key stream ofHα can be constructed from a small amount
of known key stream. Therefore, relating two ciphers is at least as difficult as
breaking the cipher Hα. There is currently no indication that A5.1 type ciphers
can be easily broken for the parameters that Heraclitus uses.

Thus, the indications are that the ciphers generated within Heraclitus are
independent of each other.

A.3 Time-Memory Trade Off

In considering the time-memory trade off attacks, we first consider the analy-
sis of a single instance of the cipher: that is, a cipher in which the registers
and irreducible polynomials have been determined. In the discussion, this will
referred as H.1.

The attacks published by Biryukov et al. [3] and Barakan et al. [2] are
based on refinements of Golić’s original attack. Two important aspects of the
refinement are:

• particular observations about recurring bit patterns in the key stream
which correspond to particular states of the registers; and

• being able to precompute large amounts of data to be searched during the
attack.

These are used to speed up the attack significantly. Note, however, that these
improvements depend on:

• the way that A5.1 is used in GSM and that frame numbers are added into
the key for the frame; and

• knowledge of the structure of the cipher and the feedback taps to derive
some of the patterns.

This allows them to effectively remove one register from consideration, reducing
the attack to about 245 steps.
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As estimated in Golić [9], if M and T are the memory and time requirements
for A5.1, then M · T ≥ 263.32. The cipher H.1 has a very similar structure to
A5.1: the total length of the registers is, however, at least 144 bits. Applying
the time-memory trade off to H.1, the estimate for the required processing is
M · T ≥ 2140.

Similar improvements should be expected for H.1: thus, a similar attack will
need about 2112 steps, and significant amounts of precomputation.

Thus, the time-memory attacks of Golić and Biryukov et al. are not feasible
against H.1.

For Heraclitus, more generally, these attacks will also suffer if the index
string X is also used as part of the key. Among the reasons:

1. there are 17308 possible register length combinations; and

2. the feedback polynomials for the registers are also varying.

The advantage provided by identifying various patterns in the key stream
will not be applicable since the registers are varying in length and the feedback
also varies.

Thus, using Golić’s method and its refinements is currently infeasible against
any particular instance of Heraclitus, and against Heraclitus generally.

A.4 Algebraic Attacks

Algebraic attacks were found by Al-Hinai et al. [1] to be less effective than
Golić’s attack. Al-Hinai et al. provide an algebraic description of A5.1, which
can be generalised to Heraclitus. Equation 1 is generalised for the movement of
the registers. In this case for register Ri

St
i = cti +Mr(c

t
1, . . . , c

t
r)

where ctj is the value of the clock bit of register Rj at time t.
The functions Mr can be represented in Algebraic Normal Form: below are

the representations of M5, M7 and M9. A generalisation is also given without
proof.

M5(x1, x2, x3, x4, x5) = 1 + x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4

+x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5

+x2x4x5 + x3x4x5 + x1x2x3x4 + x1x2x3x5

+x1x2x4x5 + x1x3x4x5 + x2x3x4x5. (2)

M7(x1, x2, x3, x4, x5, x6, x7) = 1 +
∑

i<j<k<l

xixjxkxl

+
∑

i<j<k<l<m

xixjxkxlxm

+
∑

x1x2x3x4x5x6x7. (3)
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M9(x1, · · · , x9) = 1 +
∑

i1<i2<i3<i4<i5

xi1xi2xi3xi4xi5

+
∑

i1<i2<i3<i4<i5<i6

xi1xi2xi3xi4xi5xi6

+
∑

i1<···<i7

xi1xi2xi3xi4xi5xi6xi7

+
∑

i1<···<i8

xi1xi2xi3xi4xi5xi6xi7xi8 .

(4)

This can be generalised for more registers. Consider majority clocking for
2n− 1 registers. In this case:

M2n−1(x1, . . . , x2n−1) = 1 +
∑

i1<···<in

xi1 · · ·xin

+ possible higher order terms.

Recall Equation 1, the derived algebraic expression for the values of the
registers at time t+ 1:

rt+1
i [j] =

{

St
i · r

t[j − 1] + (St
i + 1) · rt[j] j > 1, and

St
i · F

t
i + (St

i + 1) · rt[j] j = 1,

where F t
i is the value of the feedback polynomial of Ri at time t. Note that for

each keystream bit, r second order terms are generated, and many more higher
order terms. In the case of r = 7, 56 fourth and fifth order terms are added.
This significantly increases the number of monomials in the algebraic attack,
thereby making it infeasible.

Thus, Heraclitus is immune to algebraic attacks.

B Alternatives to Element Generation

In this section we discuss the reasons why the particular methods for element
generation were chosen for the cipher and some of the alternatives that were
considered.

B.1 Number of Registers

An initial concern was to ensure that Heraclitus was as close as possible in
structure to A5.1. The goal was to be able to reuse the analysis of A5.1 and the
attacks against A5.1. These were to be compared with Heraclitus.

This meant that in the early designs of Heraclitus, the option of using three
registers was included. However, this was eventually discarded for the following
reasons:
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• three registers provided for very few options for register length, and some
would have required the registers to be longer than 64 bits;

• three registers also presented difficulties ensuring that the index was used
efficiently; and

• concerns that the analyses which effectively removed one register signifi-
cantly weakened these ciphers.

These reasons lead to the use of five or more registers.

B.2 Length of Registers

The register lengths have to satisfy a number of constraints — ensuring that
they are not too long to be difficult to implement and not to sure to allow
easy enumeration and analysis et cetera. Co-primality of the register lengths
is necessary to provide protection against the correlation attacks against the
cipher.

Initially, the requirement on register lengths was that the were to be a co-
prime partition of a particular number, such as 128 or 256, which is related to
the key size of the cipher.

Erdős and Richmond [6] provide asymptotic estimates of the number of
coprime partitions, which are also coprime to the number being parted. For
128, there are about 20 coprime partitions, and for 256 there are about 29.
These increase to 29 and 40 for numbers close to 128 and 256 (127 and 257
respectively).

The numbers in each of these partitions is also coprime to the original num-
ber. This is beyond the requirement for Heraclitus, thus, these partitions can be
considered as well as all partitions in which one of the parts is even. This means
that for 128 and 256, the initial partition will have two even numbers: one of
these can then be parted into a coprime partition. This will not guarantee that
each partition will be coprime to the other even number.

Estimates based on Erdős and Richmond could provide a rough estimate
of the number of partitions formed in this way. The initial estimates did not
account for repetitions and other unsuitable partitions. This method was judged
not to be satisfactory because:

• not all the partitions generated in this way will be usable — the number
of coprime parts will be either more or less than the number of registers
and some of the values may be too small for register sizes, for example,
those with numbers less than 10, or more than 64;

• the extension of the partitions as described above will not guarantee that
they will be coprime; and

• there is no obvious algorithm to map a bit stream to a partition.

It was then observed that the length of the registers do not have to add to a
number: they need only exceed the length of the key. This freed the lengths from
being a partition of a particular number. The original approach was discarded.
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B.3 Selection of Irreducible Polynomials

Since the feedback tap selection is dependent on the generation of irreducible
polynomials. The algorithm we used generates irreducible polynomials which
are unique to cyclotomic cosets of elements. Thus, to ensure index efficiency we
attempted to index these cosets using bit strings of appropriate length.

This approach was not readily amenable to simple implementation and was
abandoned in favour of the approach above.

An alternative approach was proposed: if the number of irreducible polyno-
mials for each register length is kept to less than 65536 (216) then they can be
generated and stored in a table. This will ensure that each string will generate
a unique irreducible polynomial, thereby achieving maximum index efficiency.

In practice, the alternative approach would be implemented. The algorithm
above was described for generality and extensibility.

B.4 Clocking Mechanism

The clocking mechanism chosen was deliberately chosen to be the same as A5.1
so that the earlier analyses could be easily applied.

The clocking mechanism will be same as for A5.1 Many alternative clocking
mechanisms could have been chosen.

• Bent Functions: the clocking bits are put through a bent function and
ci + bent function will determine the clocking for Ri.

• Step1-Step2: majority of registers are clocked two steps, the minority are
clocked only one.

• Step-n–Step-m: the majority of registers are clocked by the number of
registers in the majority, the minority are clocked by the number in the
minority. For example, for five registers, if three have a clock bit of 1 and
two have a clock bit of 0, the three with a clock bit of 1 are clocked three
times, and the two with clock bits of 0 are clocked twice.

There are many variations. An extension of Heraclitus is that the clocking
mechanism could be chosen from a set of clocking mechanisms by bits of X .

Of these choices, bent functions are expected to be used since they provide
the maximum non-linearity and greatest resistance to correlation attacks.

C Algorithms
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Algorithm 1 Determining the Number of Registers

if ξ1 = 0 then

r ← 9
α0 = ξ2 . . . ξ14
ζ = {19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61}

else if ξ1ξ2 = 10 then

r ← 7
α0 = ξ3 . . . ξ15
ζ = {19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61}

else

r ← 5
α0 = ξ3 . . . ξ12
ζ = {25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61}

end if

Algorithm 2 Generating Selection String

input r, z, a
β ← {}
i← 1
j ← 1
for 1 ≤ i ≤ r do

x←

(

z − j
r − i

)

while a ≥ x do

β‖0
j ← j + 1

x← x+

(

z − j
r − i

)

end while

β ← β‖1

a← a− x+

(

z − j
r − i

)

j ← j + 1
end for

while j ≤ z + 1 do

β ← β‖0
j ← j + 1

end while
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Algorithm 3 test — Irreducibility Test

input p(x) irreducible polynomial of order n; α = α1 · · ·αn

output T ∈ {true, false}
α←

∑n
i=1 αix

i−1

j ← 1
β ← α2modp(x)
while β 6= α do

j ← j + 1
β ← β2modp(x)

end while

if j = n then

T = true
else

T = false
end if
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Algorithm 4 Polynomial Generation

input X = ξ1 · · · ξ128, {ρi}
r
i=1, {Pρi

}ri=1

output {Qi}
r
i=1

H = η1 · · · η512 ← SHA512(X )
l← 0
for 1 ≤ j ≤ r do

α = ηl+1 · · · ηl+ρj

l← l + ρj
if ρj /∈ {25, 27, 32, 49} then
if α /∈ {0, 1} then
Qj =

∏ρj

n=1(x− α2n)
else

Qj = Pρj

end if

else

k ← 1
T ← test(α,Pρj

)
while T = false and k ≤ 3 do

l← l + 1
α = ηl+1 · · · ηl+ρj

T ← test(α,Pρj
)

k ← k + 1
end while

if T = false or α ∈ {0, 1} then
Qj = Pρj

else

Qj =
∏ρj

n=1(x− α2n)
end if

end if

end for
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Algorithm 5 Subkey Generation

input K = κ1 · · ·κ128, r
case r = 5
K1 = κ1 · · ·κ22‖check bits
K2 = κ23 · · ·κ46‖check bits
K3 = κ47 · · ·κ72‖check bits
K4 = κ73 · · ·κ100‖check bits
K5 = κ101 · · ·κ128‖check bits
endcase

case r = 5
K1 = κ1 · · ·κ12‖check bits
K2 = κ13 · · ·κ25‖check bits
K3 = κ26 · · ·κ42‖check bits
K4 = κ43 · · ·κ61‖check bits
K5 = κ63 · · ·κ82‖check bits
K6 = κ83 · · ·κ104‖check bits
K7 = κ105 · · ·κ128‖check bits
endcase

case r = 9
K1 = κ1 · · ·κ14‖check bits
K2 = κ15 · · ·κ28‖check bits
K3 = κ29 · · ·κ42‖check bits
K4 = κ43 · · ·κ56‖check bits
K5 = κ57 · · ·κ70‖check bits
K6 = κ71 · · ·κ84‖check bits
K7 = κ85 · · ·κ98‖check bits
K8 = κ99 · · ·κ112‖check bits
K9 = κ113 · · ·κ128‖check bits
endcase

27


