
Robust Combiner for Obfuscators

Amir Herzberg? and Haya Shulman??

Bar Ilan University
Department of Computer Science

Ramat Gan, 52900, Israel

Abstract. Practical software hardening schemes are heuristic and are not proven to be secure. One
technique to enhance security is robust combiners. An algorithm C is a robust combiner for speci�cation
S, e.g., privacy, if for any two implementations X and Y , of a cryptographic scheme, the combined
scheme C(X, Y) satis�es S provided either X or Y satisfy S.

We present the �rst robust combiner for software hardening, speci�cally for obfuscation [2]. Obfuscators
are software hardening techniques that are employed to protect execution of programs in remote, hostile
environment. Obfuscators protect the code (and secret data) of the program that is sent to the remote
host for execution.

Robust combiners are particularly important for software hardening, where there is no standard whose
security is established. In addition, robust combiners for software hardening are interesting from soft-
ware engineering perspective since they introduce new techniques of software only fault tolerance.

Keywords: White-box security, software hardening, obfuscation, robust combiners, fault tolerance,
cryptographic protocols.

1 Introduction

Many applications rely on secure execution of programs in untrusted, potentially hostile, envi-
ronments. White-box security, refers to ensuring security of programs running in such untrusted
environments. Over the last two decades there is a growing interest in white-box security, in order
to enable distributed network applications including on-line software distribution and licensing, mo-
bile agents, grid computing, and others. In white-box security the software is at full control of the
platform executing the software. The originator loses all control over her software, which is com-
pletely exposed to the hosting environment, and the entity controlling the execution environment
obtains full access to the program, and can observe and manipulate the execution, code and data.

White box security stands in contrast to traditional cryptography, which assumes a trusted
platform, i.e., a black-box, on which secrets, e.g., private keys, can be stored. In black-box security
all the computations are performed inside a trusted black-box, and secrets (keys) never leave its
boundaries. Attackers can only observe the input/output behaviour, but cannot access the code or
data, or observe the execution inside the black-box. To support execution in untrusted environment,
this approach requires and relies on an additional tamper-resistant hardware module, e.g., a trusted
server as in [1]. In contrast, white box security does not assume a trusted module, and relies on
software hardening techniques, rather than depending on (specialized) hardware. In particular, the
software is hardened in order to prevent undetected tampering or exposure of secret information,
by providing integrity and con�dentiality of the execution and of the computations performed.

? Amir.Herzberg@gmail.com
?? Haya.Shulman@gmail.com

Although provably secure software hardening techniques exist, e.g., [4], they are highly ine�cient
for practical applications, and due to e�ciency considerations, software hardening techniques em-
ployed in practice do not rely on provable security. Heuristic implementations are a typical choice in
practice, which often gain a reasonable security reputation as a result of failed e�orts to cryptanalyse
them, and as a result of build-break-�x1 paradigm. Same approach is also taken in black-box cryptog-
raphy, e.g., instead of implementing schemes with provable security, cryptanalysis secure standards,
such as AES [8], are employed, resulting in e�cient and practical implementations. When security
of the cryptographic primitive is not proven, robust combiner is a safe choice, to ensure that the
overall security of the cryptosystem will be as that of the most secure underlying primitive. In this
work we focus on robust combiners for software hardening techniques. More speci�cally, we present
a robust combiner for obfuscators, [2], in Section 3. Our approach and constructions may constitute
a methodology for future heuristic white-box primitives.

Robust combiners ensure that the scheme is at least as secure as the stronger one of the underly-
ing candidates. Robust combiners are employed for practical constructions to provide security when
the security of the underlying primitives is not known, e.g., the primitive is believed to be secure
due to failed crypt-analysis. Robust combiners are especially important in white-box security, where
mostly heuristic or cryptanalysis secure solutions are employed, since provably secure solutions are
ine�cient for practical purposes.

Obfuscation is a prevalent software hardening technique used in practice, and can be employed
as a building block in higher layer protocols. Obfuscator O is an e�cient algorithm, that when
applied on some program P , see Figure 2, produces an obfuscated program P ′, that has the same
functionality as P (for any input, O(P) produces the same result as P), but its code is harder to
understand and analyse. There are many practical constructions of obfuscators, yet none is known
to be provably secure, and due to result of Barak et al. [2] we cannot hope for a universal obfuscator
that would turn the code of every program into one that is hard to understand and reverse engineer.

Obfuscators aim to hide the code of the executing program, and once the program is obfuscated
and sent to remote host, there is no further interaction with the originator of the program, and the
remote environment can execute the obfuscated program on any input of its choice and observe the
output. Obfuscator can be used for software protection and licensing, where a program (implement-
ing some secret, proprietary algorithm) is distributed to users, that can evaluate the program on
any input and obtain result. For instance, a program can implement an algorithm that �nds prime
factors of a given composite number. The user purchases the program and can factor any number of
its choice. The goal is to prevent the malicious acts targeted at circumventing software protection
to recover the secret algorithm, e.g., by competitors. Since the security of existing obfuscators is
not proven, robust combiners is a natural choice to enhance security.

1.1 Our contribution: Robust Combiners for Obfuscators

We present robust combiners for software hardening, speci�cally for obfuscation [2]. Applying obfus-
cator on an obfuscated program, i.e., combining obfuscators, is a folklore way to enhance security,
yet no formal construction prior to this work was given. In addition, whether combining obfuscators
indeed contributes to overall security has been controversial among practitioners. In this work we
precisely de�ne cascade combiner for obfuscation, and provide a formal proof of security, i.e., we

1 A software implementation is published for public scrutiny and undergoes extensive e�orts to cryptanalyse it.
If a weakness is found, it is being �xed, and the software is tested again for security. Eventually, a software
implementation is believed to be cryptanalysis secure, due to failed e�orts to cryptanalyse it.

2

show that cascade is a robust combiner for obfuscation. Our combiner for obfuscators is (1,2)-robust,
i.e., it receives two obfuscators O′ and O′′, and produces a third obfuscator O that is secure accord-
ing to virtual black-box property, if one of the underlying obfuscators is virtual black-box secure.
The cascade combiner for obfuscator O, see Figure 1, receives a program P in an input, applies O′

and receives O′(P). It then provides O′(P) in an input to obfuscator O′′, and returns the resulting
obfuscated program O′′(O′(P)).

O

P

O'(P)

O''(O'(P))

O(P)

O'

O''

Fig. 1. Cascade obfuscator O receives a program P , and applies O′ and O′′ sequentially. The resulting obfuscated
program O′′(O′(P)) is then output.

1.2 Robust Combiners

The security of cryptographic constructions often depends on unproven hardness assumptions, or
on the security of primitives that withstood cryptanalysis attacks. A common approach employed
to enhance security is to construct robust combiners, by combining two or more cryptographic
primitives into one, s.t. the resulting construction is secure even when only some of the candidates
are secure. Robust combiners can also be applied for fault tolerance, i.e., to ensure the correctness
of the resulting combined scheme and to prevent erroneous implementations or design bugs. Robust
combiners for various cryptographic primitives were shown, and alternately, an impossibility of
achieving robust constructions for others was presented.

The most well-known combiner is the cascade combiner, which is a sequential application of two
cryptographic primitives. Even and Goldreich [9] showed that cascade is a robust combiners of block
ciphers, against message recovery attacks. Cascade, and other basic robust combiners, were studied
by Herzberg [12], for encryption, MAC, signature and commitment schemes. Robust combiners were
also studied for other primitives, e.g. hash functions Fischlin and Lehmann [10], Boneh and Boyen
[3], private information retrieval (PIR) Meier and Przydatek [14] and oblivious transfer Harnik et al.
[11].

Robust combiners are especially important in the context of white-box security, where security
of practical candidates is not proven. Furthermore, the existing provably secure white-box primitives
are either restricted to a limited class of functions or ine�cient and as a result not applicable to
practical implementations. Therefore, practitioners have to use heuristic constructions, and currently
there isn't even a candidate whose security is su�ciently established; therefore robust combining of
candidates is highly desirable.

3

In principle, robust combiners ensure also fault tolerance: the combined output will meet the
spec, even if the code (or hardware) running one mechanism has some fault, and as a result the
output of this mechanism does not meet its speci�cations. However, we caution that many construc-
tions of robust combiners, including the one we present in Section 3, only ensure robustness to the
security properties, and assume that some basic functionality is preserved by all modules. In such
cases, where functionality is not preserved, the robust combiner does not ensure also fault tolerance
(for arbitrary hardware/software faults). We leave it as an open question, whether it is possible to
design a robust combiner for obfuscators, which will be tolerant for arbitrary faults (not just faults
on security speci�cations).

1.3 Software Hardening Techniques: Virtual Black-Box Obfuscation

In white-box security the attacker obtains full access to the implementation. This is in contrast to
traditional cryptography where a black-box (such as a trusted hardware) is assumed to exist, on which
secrets can be stored. An attacker cannot access this black-box but can only observe the input-output
behavior of the cryptographic implementation, e.g. a server performing signature computations on
request. The inherent distinction in the attacker's abilities between the two models implies that
traditional cryptographic tools are not applicable to remote environments, since they rely on the fact
that the secrets used by the software do not reside on the same execution platform as the malicious
host, and are thus not accessible to the attacker. Therefore, alternative tools and techniques have
been proposed, with obfuscation being a prevailing technique employed by practitioners to harden
software for execution in a remote environment, e.g., [6, 7]. There are practical and theoretical works
on obfuscation, including formal de�nitions and negative and positive results, which we brie�y survey
below. In [2] Barak et al. formalised the notion of obfuscation: an obfuscator O(·), is a probabilistic
polynomial time algorithm, which on an input a program P generates an obfuscated program O(P),
such that O(P) has the same functionality as P , is at most polynomially slower than P , but leaks
no more information about P than a black-box access to P would. Obfuscated program is then sent
o� to remote platform, see Figure 2. Intuitively this means that the resulting obfuscated program
should be harder to reverse engineer and to analyse. That is, the goal of obfuscation is to prevent
reverse engineering, and to make it hard to extract information from the binary code. Consider a

P

O
O(P)(·)

Fig. 2. A program P is obfuscated, and then sent to remote platform. The user controlling the execution environment
can execute the obfuscated program on any input of its choice and can observe the outputs. The virtual black-box
property requires that the user does not learn more about the program than an oracle access to the program would
reveal.

4

mobile agent purchasing goods on behalf of its originator. The agent purchases best o�er based
on its internal parameters and signs the purchase with an embedded secret signing key. If the
platform hosting the agent could extract the secret key, it could use it to sign any document of its
choice. However given a secure obfuscator, it would be possible to obfuscate the agent's code, thus
preventing key extraction and analysis of agent's code and data.

The result in [2] also showed that there are programs which cannot be obfuscated. Namely,
they showed that there does not exist an obfuscator that can protect every program's code from
exposing more than the program's input-output behavior. Thus the goal is to investigate obfuscators
for speci�c function families. Positive results in obfuscation presented constructions of obfuscated
functions e.g. [5, 15, 13], which are secure according to [2]. However, none of these works show how
to construct an obfuscator that could be applied on programs to harden them, but they instead
construct obfuscated programs from `scratch'. Those results do not su�ce for practical de�nition of
`obfuscation' but they do exhibit a feasibility, paving way to future work in this direction.

As for practical and commercial mechanisms based on obfuscation, those lack a clearly stated
security analysis, and rely on security by obscurity, which contradicts basic cryptographic principles,
and assume limited patience of the attackers when reverse engineering. Other proposed obfuscations
may rely on program analysis that is known to be pragmatically di�cult, however, are very suscep-
tible to continuing improvements in program analysis. Unfortunately, to date, no secure practical
obfuscation candidates are known to exist, e.g. it is not known how to obfuscate simple programs
that upon receipt of an encrypted input, decrypt and execute it, without revealing anything of the
inputs or computation.

1.4 Organisation

We �rst present the de�nition of obfuscation and virtual black-box obfuscation in Section 2, where we
extend the existing virtual black-box de�nition of [2]. We subsequently de�ne cascade of obfuscators
in Section 3.1, and then in Section 3.2 we prove that cascade is robust for obfuscation.

2 Obfuscation: De�nitions

We initiate with re�ned de�nition of obfuscation, which is based on the de�nition given by Barak
et al. in [2], and then present cascade combiner construction for obfuscation and prove its security.

According to [2], universal obfuscator for every program does not exist, therefore we use the
de�nition of obfuscation w.r.t. a family of programs. To simplify exposition, in de�nitions below we
de�ne obfuscation w.r.t. a family of circuits (instead of programs). The di�erence between circuits
and programs, is that circuits are de�ned for a speci�c input size, therefore no need to explicitly
refer to running time and other technicalities. We next give two de�nitions of obfuscation: De�nition
1 says nothing of security, but only speci�es correctness and functionality properties; De�nition 2,
in addition to correctness and functionality, also de�nes security of the obfuscator. The distinction
between the two de�nitions, 1 and 2, is essential to emphasise that not every obfuscator delivers on
the `expected' security.

De�nition 1 (Obfuscation). Let C = {Ck} be a family of polynomial size circuits of input length

k. A polynomial time algorithm O on C is an obfuscator that takes as input a circuit C from Ck,
and outputs an obfuscated circuit O(C) ∈ Ck, s.t.:

5

� (Preserving Functionality) For every k, and every C ∈ Ck, O(C) is a circuit that computes the

same function as C.

� (Polynomial Slowdown) Obfuscated circuit O(C) is roughly as e�cient as a circuit C, i.e., there

exists a polynomial p(·), such that for su�ciently large k's, for every C ∈ Ck holds: |O(C)| ≤
|p(|C|)|

De�nition 2 (Virtual Black-Box Obfuscation). Let C = {Ck} be a family of polynomial size

circuits of input length k. A polynomial time algorithm O on C is an obfuscator that takes as input

a circuit C from Ck, and outputs an obfuscated circuit O(C) ∈ Ck, s.t.:
� (Preserving Functionality) For every k, and every C ∈ Ck, O(C) is a circuit that computes the

same function as C.

� (Polynomial Slowdown) Obfuscated circuit O(C) is roghly as e�cient as a circuit C, i.e., there

exists a polynomial p(·), such that for su�ciently large k's, for every C ∈ Ck holds: |O(C)| ≤
|p(|C|)|

� (Virtual Black-Box) For every polynomial p(·) and every probabilistic polynomial time algorithm

A, there exists a probabilistic polynomial time simulator S, such that for all su�ciently large

k's, for all C ∈ Ck, holds:∣∣∣ Pr[A(O(C)) = 1]− Pr[SC(1k) = 1]
∣∣∣ <

1
p(k)

Where the probabilities are taken over the random coins of A and S.

Several comments related to above de�nitions are in order:

� The de�nition presented in [2] is a special case of virtual black-box de�nition given in 2, where
the family of circuits Ck is de�ned to be all the circuits.

� De�ning two types of obfusctors, one w.r.t. functionality and correctness, and another that is
also secure (which is also true in reality, an obfuscator can be correct, but not deliver on its
security guarantees) is important for cascade combiner, which we show below, to show that it
su�ces for only one of the underlying obfuscators, input to the combiner, to be secure according
to De�nition 2, so that the cascade obfuscator results in a secure obfuscator, according to
De�nition 2.

� Another subtlety which should be explicitly dealt with when de�ning obfuscation (and cascade
combiner thereof) w.r.t. family of circuits, is that the family of circuits should be closed for
obfuscation and for cascade of obfuscators. Namely, upon input a circuit C from family of
circuits Ck, the result is an obfuscated circuit O(C) which is also an element in the family Ck.
The obfuscated circuit O(C) can thus be supplied in an input to obfuscator O (since O is de�ned
for Ck) again, and will result in O(O(C)), which is also an element in Ck. This technicality is
motivated by the fact that practical obfuscators are typically written in the same language as
the programs on which they are applied.

3 Cascade Combiner for Obfuscators: Construction

In this section we present the �rst robust cascade combiner for obfuscation. The combiner we
construct is natural and folklore, yet was not formally de�ned and proved secure prior to this work.
The construction of the combiner is simple yet the security is not directly implied, and needs to
be explicitly proven. In addition, the proof requires our re�ned de�nition of obfuscation, given in
Section 2.

6

3.1 Cascade Combiner for Obfuscation: Construction

De�nition 3 (Cascade of Obfuscators). Let O′ and O′′ be two obfuscators for circuits family

Ck. Their cascade obfuscator O = O′ ◦ O′′ is presented in Algorithm 1.

Algorithm 1 Construction of cascade obfuscator O.On input a circuit C ∈ Ck, O �rst applies O′ on C and obtains
C′ ∈ Ck. Then O runs O′′ on C′ and as a result receives C′′ ∈ Ck; O outputs C′′.

O(C) {
C′ ← O′(C)
C′′ ← O′′(C′)
return C′′

}

Intuitively, the resulting combined obfuscator O is virtual black-box secure, according to De�nition
2, if at least one of the underlying obfuscators, O′ or O′′, is virtual black-box secure, i.e., satis�es
the properties in De�nition 2, and the other is obfuscator according to De�nition 1. Assume that
O′ is virtual black-box secure, then the circuit is hidden and even if the external O′′ exposes it, the
security relies on the security of O′. A similar argument holds for O′′. We next, in Section 3.2, present
a formal and detailed proof of the cascade construction (Algorithm 1), and show that cascade is
robust for virtual black-box obfuscation.

3.2 Cascade Combiner is Robust for Obfuscation: Proof

Lemma 1 (Cascade is Robust for Obfuscation) Let O′ and O′′ be two obfuscators for circuits
family C, the cascade O = O′ ◦ O′′ is a virtual black-box obfuscator for circuits family C, according
to De�nition 2, if at least one of O′ or O′′ is virtual black-box secure for C.

Proof. In order to show that cascade is robust for obfuscators, we prove that O satis�es the func-
tionality and the security requirements in De�nition 2. We �rst show that O is indeed an obfuscator,
i.e., satis�es the e�ciency and correctness requirements in De�nition 1.
Preserving Functionality: Let C ∈ Ck. Then according to functionality requirement of O′, the ob-
fuscated circuit O′(C) = C ′ is also an obfuscator, i.e., C ′ ∈ Ck, and has the same functionality
as C. Obfuscator O′′ also satis�es a functionality requirement, and therefore when applied on C ′

it produces an obfuscated circuit C ′′, i.e., C ′′ = O′′(C ′), such that C ′′ is also a circuit C ′′ ∈ Ck,
and has the same functionality as C ′. Since C, C ′ and C ′′ all compute the same function, cascade
obfuscator preseves the functionality of the original circuit C.

Polynomial Slow Down: Cascade obfuscator O applies O′ on C, then O′′ on O′(C), and out-
puts the result. According to de�nition, there exists a polynomial p′(·) bounding the encoding
of the obfuscated circuit O′(C) (and thus its running time), and there exists a polynomial p′′(·),
bounding the size of O′′(O′(C)); composition of polynomials p′(·) and p′′(·) is a polynomial, i.e.,
|O(C)| ≤ p′′(|p′(|C|)|), thus O is e�cient if O′ and O′′ are.

We next show that obfuscator O is virtual black-box secure, according to De�nition 2.

7

Virtual Black-Box: Assume towards contradiction that there exists a PPT algorithm A and a poly-
nomial p(·), such that for every simulator S holds:∣∣∣ Pr[A(O(C)) = 1]− Pr[SC(1k) = 1]

∣∣∣ ≥ 1
p(k)

Given a PPT algorithm A against O we construct PPT algorithms A′ and A′′ against O′ and O′′

respectively, s.t. for every C ∈ Ck holds:

Pr[A′(O′(C)) = 1] = Pr[A(O(C)) = 1] (1)

∀C,∃C ′, s.t. Pr[A′′(O′′(C ′)) = 1] = Pr[A(O(C)) = 1] (2)

Where C ′ is a result application of O′ on C. We prove equations (1) and (2) in Claims 2 and 3.
We then show, in Claims 4, and 5, that there do not exist simulators S′ and S′′ for A′ and A′′

respectively. Namely, given S′ (respectively S′′) we show how to construct a simulator S for A, thus
obtaining:

Pr[S
′C(1k) = 1] = Pr[SC(1k) = 1] (3)

Pr[S
′′C

′
(1k) = 1] = Pr[SC(1k) = 1] (4)

However, existence of a simulator S for A contradicts the initial assumption, that there does not
exist a simulator for A. More speci�cally, if there exists an A for which no simulator exists, we can
use it to construct A′ and A′′ against O′ and O′′. Thus the advantage of A′ and A′′ over S′ and S′′

respectively, is equivalent to the advantage of A over S:∣∣∣ Pr[A′(O′(C)) = 1]− Pr[S
′C(1k) = 1]

∣∣∣ =
∣∣∣ Pr[A(O(C)) = 1]− Pr[SC(1k) = 1]

∣∣∣ (5)∣∣∣ Pr[A′′(O′′(C ′)) = 1]− Pr[S
′′C

′
(1k) = 1]

∣∣∣ =
∣∣∣ Pr[A(O(C)) = 1]− Pr[SC(1k) = 1]

∣∣∣ (6)

Therefore, cascade is robust for virtual black-box obfuscation, and O is a secure obfuscator. ut

Claim 2 Given a PPT algorithm A, there exists a PPT algorithm A′, s.t., for in�nitely many k's
equation 1 holds.

Proof. Let A be a PPT algorithm against O. We use A to construct A′. The algorithm A′, in Algo-
rithm 2, will receive an obfuscated program O′(C), and will emulate the execution of A providing
it with O′′(O′(C)) and will output whatever A outputs. Since A′ applies O′′ on O′(C) and invokes
A with the resulting program, it is e�cient if A is e�cient, and achieves the same probability as A,
i.e., Equation 1 holds. ut

Claim 3 Given a PPT algorithm A, there exists a PPT algorithm A′′, s.t., for in�nitely many k's
equation 2 holds.

Proof. Let A be a PPT algorithm against O. We use A to construct A′′. The algorithm A′′, in
Algorithm 2, will receive an obfuscated program O′′(O′(C)), will invoke A with O′′(O′(C)) and will
output whatever A outputs. Since A′′ only invokes A, it is e�cient if A is e�cient, and achieves the
same probability as A, i.e., Equation 2 holds. ut

8

Algorithm 2 Given an algorithm A against O, we construct algorithms A′ and A′′, against O′ and O′′ respectively,
that achieve the same advantage as A.

A′(C′ = O′(C)) {
C′′ ← O′′(C′)
return A(C′′)
}

A′′(C′′ = O′′(O′(C))) {
return A(C′′)
}

Claim 4 Given a PPT simulator S′ there exists a PPT simulator S such that Equation 3 holds.

Proof. Let S′ be a PPT simulator for which A′ cannot achieve a non-negligible advantage against
O′. We use S′ to construct S, such that A will not be able to achieve non-negligible advantage
against S contradicting the assumption. The algorithm S is given access to C, it simply invokes S′

and provides it with an oracle access to C, in Algorithm 3. For each input query of S′, S queries C
and returns the result to S′, precisely simulating the real execution to S′; thus Equation 3 holds. ut

Claim 5 Given a PPT simulator S′′ there exists a PPT simulator S such that Equation 4 holds.

Proof. Let S′′ be a PPT simulator for which A′′ cannot achieve a non-negligible advantage against
O′. We use S′′ to construct S such that A will not be able to achieve non-negligible advantage
against S contradicting the assumption. The algorithm S is given access to C, it invokes S′′ and
provides it with an oracle access to C, in Algorithm 3. For each input query of S′′, S queries C and
returns the result to S′, precisely simulating the real execution to S′; thus Equation 4 holds. ut

Note that the simulator S is implemented identically when using S′ or S′′. This is due to the fact that
the simulator S obtains an oracle access to C, and has to simulate execution for S′ and S′′, which
receive an oracle access to C and C ′. Yet according to de�nition of obfuscator, the functionality is
preserved, thus all S should do, is query its own oracle upon requests from S′ (resp. S′′) and return
the responses as is.

Algorithm 3 Given a simulator S′ (respectively, S′′) we show how to construct S that will achieve the same
advantage when given a black-box access to C.

SC(1k) {
return S

′C(1k)
}

SC(1k) {
return S

′′C
′
(1k)

}

References

[1] Joy Algesheimer, Christian Cachin, Jan Camenisch, and Gunter Karjoth. Cryptographic security for mobile
code. In SP '01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, page 2, Washington, DC,
USA, 2001. IEEE Computer Society.

[2] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs. In CRYPTO '01: Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, London, UK, 2001. Springer-Verlag. ISBN 3-540-42456-3.

[3] D. Boneh and X. Boyen. On the impossibility of e�ciently combining collision resistant hash functions.
[4] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Muller. One-round secure computation and secure

autonomous mobile agents. In Automata, Languages and Programming, pages 512�523, 2000. URL citeseer.

ist.psu.edu/article/cachin00oneround.html.

9

citeseer.ist.psu.edu/article/cachin00oneround.html
citeseer.ist.psu.edu/article/cachin00oneround.html

[5] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In Burton S.
Kaliski, Jr., editor, Advances in Cryptology � CRYPTO ' 97, volume 1294 of Lecture Notes in Computer Science,
pages 455�469. International Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 1997. URL
http://philby.ucsd.edu/psfiles/97-07.ps(longerToCLversion,June2,97).

[6] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations. University of Auckland
Technical Report, 170, 1997.

[7] CS Collberg and C. Thomborson. Watermarking, tamper-proo�ng, and obfuscation-tools for software protection.
Software Engineering, IEEE Transactions on, 28(8):735�746, 2002.

[8] J. Daemen and V. Rijmen. The Design of Rijndael: AES�the Advanced Encryption Standard. Springer, 2002.
[9] S. Even and O. Goldreich. On the power of cascade ciphers. In D. Chaum, editor, Proc. CRYPTO 83, pages

43�50, New York, 1984. Plenum Press.
[10] M. Fischlin and A. Lehmann. Multi-Property Preserving Combiners for Hash Functions.
[11] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust combiners for oblivious transfer and other

primitives. Proc. EUROCRYPT 2005, pages 96�113, 2005.
[12] Amir Herzberg. Folklore, practice and theory of robust combiners. Cryptology ePrint Archive, Report 2002/135,

2002. http://eprint.iacr.org/.
[13] S. Hohenberger and G.N. Rothblum. Securely Obfuscating Re-Encryption. TCC, pages 233�252, 2007.
[14] R. Meier and B. Przydatek. On robust combiners for private information retrieval and other primitives. Proc.

CRYPTO 2006, pages 555�569, 2006.
[15] Wee. On obfuscating point functions. In STOC: ACM Symposium on Theory of Computing (STOC), 2005.

10

http://philby.ucsd.edu/psfiles/97-07.ps (longer ToCL version, June 2, 97)
http://eprint.iacr.org/

	Robust Combiner for Obfuscators
	Amir Herzberg 1em and 1em Haya Shulman

