
The Rebound Attack and Subspace
Distinguishers: Application to Whirlpool

Mario Lamberger1, Florian Mendel1, Christian Rechberger2,
Vincent Rijmen1,2, and Martin Schläffer1

1 Institute for Applied Information Processing and Communications
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria.

2 Dept. of Electrical Engineering ESAT/COSIC, K.U.Leuven,
and Interdisciplinary Institute for BroadBand Technology (IBBT),

Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium.

Abstract. We introduce the rebound attack as a variant of differen-
tial cryptanalysis on hash functions and apply it to the hash function
Whirlpool, standardized by ISO/IEC. We give attacks on reduced vari-
ants of the Whirlpool hash function and the Whirlpool compression func-
tion. Next, we introduce the subspace problems as generalizations of
near-collision resistance. Finally, we present distinguishers based on the
rebound attack, that apply to the full compression function of Whirlpool
and the underlying block cipher W .
Keywords: hash functions, cryptanalysis, near-collision, distinguisher

1 Introduction

A cryptographic hash function H maps a message m of arbitrary length to a
fixed-length hash value h. Informally, a cryptographic hash function has to fulfill
the following three classical security requirements: preimage resistance, second
preimage resistance and collision resistance. The resistance of a hash function
to these attacks depends in the first place on the length N of the hash value.
Regardless of how a hash function is designed, an adversary will always be able to
find preimages or second preimages after trying out about 2N different messages.
Finding collisions requires a much smaller number of trials: about 2N/2 due to
the birthday paradox. A function is said to achieve ideal security if these bounds
are guaranteed.

Although a satisfying formal definition of the collision resistance requirement
is apparently still lacking, some recent work on the hash functions MD4, MD5
and SHA-1 has convinced many cryptographers that at least these hash functions
can no longer be considered secure against collision attacks. [6,7,13,43,44]. As a
consequence, people are evaluating alternative hash functions, e.g. in the SHA-3
initiative organized by NIST. During this ongoing evaluation, not only the three
classical security requirements are considered. Researchers look at (semi-)free-
start collisions, near-collisions, etc. Every demonstration of a ‘behavior different
from that expected of a random oracle,’ is considered suspect, and so are weak-
nesses that are demonstrated only for the compression function and not for the
full hash function.

In this paper, we provide a detailed analysis of the hash function Whirlpool.
This hash function is based on a dedicated block cipher W , which was designed
according to the Wide Trail design strategy. It is the only hash function stan-
dardized by ISO/IEC (since 2000) [1] that does not follow the MD4 design
strategy.

One contribution of this paper is to give an in-depth account of the rebound
attack, as a variant of differential cryptanalysis heavily optimized to the crypt-
analysis of hash functions, and at the same time as a high-level model for hash
function cryptanalysis. The rebound attack can be used to construct various
types of collisions. Thus far, it has been very successful on designs that copy the
simple byte-oriented structure of AES.

Our second contribution is the introduction and definition of the subspace
problems, as a natural extension and formalization of the near-collision require-
ment. We give bounds for the difficulty of the subspace problems in the generic
(or ideal) case. Finally, we show subspace distinguishers for the full compression
function of Whirlpool, thereby demonstrating the first deviation from the ideal
model of this function.

Parts of this work appeared before in abridged form in [26,31]. New in this
paper are the extended descriptions of the rebound attacks, proper definitions
for the two subspace problems and the proofs on the lower bounds of the query
complexities of these problems in the generic case.

Organization. In Section 2, we describe the rebound attack. We introduce
two subspace problems in Section 3 and give bounds for their difficulty in the
generic case. We describe the hash function Whirlpool in Section 4. We start by
discussing classical attacks on reduced variants of the Whirlpool hash function in
Section 5. Next we discuss classical attacks on reduced variants of the Whirlpool
compression function in Section 6. Finally, we give subspace distinguishers for
the compression function in Section 7, and for the underlying block cipher W in
Section 8. We conclude in Section 9.

2 The Rebound Attack

The rebound attack was proposed by Mendel et al. in [31] for the cryptanalysis of
AES-based hash functions. It is a differential attack, using several new techniques
to improve upon existing results.

2.1 Differential Cryptanalysis of Block Ciphers

Differential cryptanalysis is a general tool in the cryptanalysis of symmetric
primitives. Originally devised to cryptanalyze DES [4], it has later been applied
to other block ciphers, stream ciphers and hash functions. A differential attack
exploits predictable propagation of the difference between a pair of inputs of a
cryptographic primitive, to the corresponding outputs. The description of the
difference patterns at the input, the intermediate values and the output of the

2

cryptographic primitive, is called a characteristic, or sometimes differential path
or trail. A pair that exhibits the differences of the characteristic, is called a right
pair. The fraction of right pairs over all input pairs, possibly averaged over all
keys (when the primitive is keyed), is called the probability of the trail.

Truncated differentials were proposed by Knudsen as a tool in block cipher
cryptanalysis [22]. While in a standard differential attack, the full difference
between two inputs/outputs is considered, in the case of truncated differen-
tials, the differences are only partially determined, e.g. for every byte, one only
checks if there is a difference or not. Truncated differentials have been applied
by Peyrin [39] in the cryptanalysis of the hash function Grindahl [24].

2.2 Differential Cryptanalysis of Hash Functions

Rijmen and Preneel described differential attacks on hash functions based on
a reduced variant of DES, with 15 instead of 16 rounds [40]. Also the attacks
on MD4 by Dobbertin [13], on SHA by Chabaud and Joux [8], and on MD4,
RIPEMD and SHA-1 by Wang et al. [43,44] are differential attacks. Most re-
cently, Khovratovich et al. analyzed the security of AES-based hash functions
with respect to collision resistance [5,21].

If we apply differential cryptanalysis to a hash function, a collision for the
hash function corresponds to a right pair for a trail through that hash function,
with output difference zero. Similarly, a near-collision corresponds to a right
pair for a trail with an output difference of low Hamming weight. It follows
that differential cryptanalysis of hash functions is intuitively very similar to
differential cryptanalysis of block ciphers. However, there are also important
differences between these two cases, as can be observed with the rebound attack
in the next section.

In the case of block ciphers, an adversary that wants to find a right pair
can usually do little better than simply trying out pairs. The needed effort is
proportional to the inverse of the probability of the trail. Since hash functions
do not have a secret key, an adversary can do better than that. In principle, an
adversary could simply write out the equations that determine whether a pair is
a right pair and solve them. In practice, these equations are highly nonlinear and
difficult to solve. However, it is often possible to determine some of the message
bits, thereby increasing the probability that a random guess for the remaining
part of the solution will be correct. Typically, the equations arising from the first
steps of the hash function are easier to solve, because they do not yet depend on
all message words. These techniques are known in the literature under the name
message modification techniques [44].

Hence, a (near-)collision attack on a hash function, that is based on differ-
ential cryptanalysis, can be described as follows.

1. Find a trail with a high probability.

2. Determine some message bits by applying message modification techniques.

3. Find the remaining message bits by guess-and-verify.

3

Wbw Win Wfw

inbound
outbound outbound

Fig. 1. A schematic view of the rebound attack. The attack consists of an in-
bound and two outbound phases.

2.3 The Rebound Attack

The rebound attack consists of two phases, called inbound and outbound phase,
as shown in Figure 1. According to these phases, the compression function,
internal block cipher or permutation of a hash function is split into three sub-
parts. Let W be a block cipher, then we get W = Wfw◦Win◦Wbw. Hence, the part
of the inbound phase is placed in the middle of the cipher and the two parts of the
outbound phase are placed next to the inbound part. In the outbound phase, two
high-probability (truncated) differential trails are constructed, which are then
connected in the inbound phase. Similar to message modification, the freedom
in the message, key-inputs or (internal) state variables is used to efficiently fulfill
many conditions of a differential trail.

The idea of placing the most expensive part of the differential trail in the
middle was previously used in the cryptanalysis of the compression function of
MD5 [12] and the hash function Tiger [20,30,33]. Also, inside-out techniques
as used in the rebound attack, were invented by Wagner as an application of
second order differentials in the cryptanalysis of block ciphers in the Boomerang
attack [42].

Constructing a Trail. As in all differential attacks we first need to construct
a “good” (truncated) differential trail. A good trail used for a rebound attack
should have a high probability in the outbound phases and can have a rather low
probability in the inbound phase. Two properties are important here: First, the
system of equations that determine whether a pair follows the differential trail in
the inbound phase, should be under-determined. Then, many solutions (starting
points for the outbound phase) can be found efficiently by using guess-and-
determine strategies. Second, the outbound phases need to have high probability
in the outward direction.

Inbound Phase. The inbound part of a trail is defined such that the corre-
sponding system of equations is under-determined. When searching for solutions,
we first guess some variables such that the remaining system is easier to solve.
Hence, the inbound phase of the attack is similar to message modification in an
attack on the hash function. The available freedom in terms of the actual values
of the internal variables is used to find a solution deterministically or with a

4

high probability. Hence, also a differential trail with a high Hamming weight
(and hence a low probability) can be used in the inbound phase.

Outbound Phase. In the outbound phase, we verify whether the solutions of
the inbound phase also follow the differential trail in the outbound parts. Note
that in the outbound phase, there are usually only a few or no free variables
left. Hence, a solution of the inbound phase will lead to a solution of the out-
bound phase with a probability significantly smaller than 1. Therefore, we aim
for narrow (truncated) differential trails in the outbound parts, which can be
fulfilled with a probability as high as possible (in the outward directions). The
advantage of using an inbound phase in the middle and two outbound phases at
the beginning and end is that one can construct differential trails with a higher
probability in the outbound phase.

Using more Inbound Phases. Sometimes, not all available freedom is used
in the rebound attack. This is usually the case if some parts of the (internal)
state or the input of the key schedule is not needed to find a solution in the
inbound phase [26,28]. In these cases, the attack can often be extended to more
rounds by having one or more independent inbound phases and then connect
the solutions of the inbound phases. Note that this is usually not a trivial task.
However, it is possible in the compression function attacks on Whirlpool using
the freedom of the round keys as shown in Section 6.

3 The Subspace Problem

In [37], NIST requires that a good hash function should fulfill several properties.
Along with the well known security notions of collision resistance and (second)
preimage resistance, NIST also requires that any K-bit hash function specified
by taking a fixed subset of the N output bits should possess the same security
assertions as the original function. Of course, an attacker can choose the K-bit
subset specifically to allow a limited number of precomputed message digests to
collide, but once the subset has been chosen, finding additional violations of the
above notions should again have the generic complexity.

From a practical application point of view, this requirement makes a lot of
sense when we want to guarantee security in cases where the output space of the
hash function is reduced by means of a simple truncation. However, instead of
simply truncating the hash function output, the application developer might also
choose to split the output string in two halves and xor them together [18,19].
This method is almost as simple as truncation, but the security requirement
on the hash function becomes now that it should be difficult to construct two
messages m,m∗ such that

H(m)⊕H(m∗) = z, (1)

where z can be any vector with two equal halves. Since the output space of a
hash function could be reduced by an arbitrary linear compression step L, we

5

could formulate as generalized requirement that for any linear transformation L,
it should be hard to find two inputs m, m∗ such that

L(H(m∗)⊕H(m)) = 0. (2)

Clearly, the adversary should not be able to choose L, because for all m,m∗,
it is trivial to find an L satisfying 2. On the other hand, if we require that the
adversary can find suitable m,m∗ for any arbitrarily selected L, or for a large
subset of them, then, it may become too difficult to find an adversary for many
intuitively bad hash function designs. In order to get out of this dilemma, we
propose to generalize a bit further by defining the following problem.

Subspace Problem 1 (Subspace Problem for One-Way Functions)
When given a one-way function f mapping to FN

2 , try to find t input pairs (ai, a
∗
i)

such that the corresponding output differences f(ai)⊕f(a∗i) belong to a subspace
Vout ⊂ FN

2 with dim(Vout) ≤ n for some n ≤ N .

Here F2 = GF (2) denotes the finite field of order 2.

If f is a hash or compression function, then solving Subspace Problem 1
should be hard, when n is significantly smaller thanN , say n ≤ N

2 . Otherwise, the
hash function has a certificational weakness. We show in Section 6 how Subspace
Problem 1 can be solved when f is the compression function of Whirlpool, but
first we discuss what we mean when we state that Subspace Problem 1 should
be hard.

3.1 On the Hardness of Subspace Problem 1

In this section, we investigate how difficult it is to solve Subspace Problem 1
without using knowledge of the internals of the function f . We measure the
difficulty by counting the number of queries that need to be made to the oracle.
We bound the query complexity and ignore all other computations, memory
accesses etc.

Let us now assume that an adversary is making Q � 2N/2 queries to the
function f . We thus get K ≤

(
Q
2

)
differences (∈ FN

2) coming from these Q
queries. For given n and t > n, we now want to calculate the probability that
among the K corresponding output differences f(ai)⊕ f(a∗i), we have t vectors
(output differences) that belong to a subspace Vout ⊆ FN

2 with dim(Vout) ≤ n.

We will need the following fact about matrices over finite fields. Let E(t,N, d)
denote the number of t ×N matrices over F2 that have rank equal to d. Then,
it is well known [14,27] that

E(t,N, d) =

d−1∏
i=0

(2N − 2i) · (2t − 2i)

2d − 2i
=

d−1∏
i=0

(2N − 2i) ·
(
t

d

)
2

, (3)

where
(
t
d

)
2

denotes the q-binomial coefficient with q = 2.

6

Proposition 1 Let n, t,N ∈ N be given such that t ≥ N > n. We assume a
set of K vectors (output differences) chosen uniformly at random from FN

2 . Let
Pr(K, t,N, n) denote the probability that t of these K vectors span a subspace
Vout ⊆ FN

2 with dim(Vout) ≤ n. Then, we have

Pr(K, t,N, n) ≤
(
K

t

)
2−t·N

n∑
d=0

E(t,N, d). (4)

This probability is upper bounded by

Pr(K, t,N, n) ≤ 1√
2πt

(
Ke

t

)t

2−(N−n)(t−n)+(n+1). (5)

For the proof of Proposition 1, we will first need two lemmas.

Lemma 1. Let t,N, n ∈ N be such that t ≥ N > n. Then,

E(t,N, n) ≤
n∑

d=0

E(t,N, d) ≤ 2 · E(t,N, n).

Proof. The first inequality is trivial. The second one is equivalent to

n−1∑
d=0

E(t,N, d) ≤ E(t,N, n).

and can be proven by induction over n. For n = 1, E(t,N, 0) ≤ E(t,N, 1) which
is easily seen to be true. So let us assume that

n−2∑
d=0

E(t,N, d) ≤ E(t,N, n− 1)

holds. To prove the statement, we add E(t,N, n − 1) to both sides. If we can
show that 2E(t,N, n− 1) ≤ E(t,N, n), we are done. From (3) we derive

2E(t,N, n− 1) = 2

n−2∏
i=0

(2N − 2i) ·
(

t

n− 1

)
2

,

E(t,N, n) =

n−1∏
i=0

(2N − 2i) ·
(
t

n

)
2

.

Since t ≥ N > n, we have

2

(
t

n− 1

)
2

≤ (2N − 2n−1)

(
t

n

)
2

.

The proof follows from the fact that(
t

n

)
2

=
2t−n+1 − 1

2n − 1

(
t

n− 1

)
2

.

ut

7

Lemma 2. Let t,N, n ∈ N be such that t ≥ N > n. Then,

(2t − 2i) · (2N − 2i)

2n − 2i
≤ (2t − 2j) · (2N − 2j)

2n − 2j

holds for all 0 ≤ i < j ≤ n− 1.

Proof. We show this by proving that for given A > B > C > 0 the function

f(x) =
(A− x)(B − x)

C − x

has always a positive derivative f ′(x) on the interval x ∈ [0, C/2]. Elementary
calculus shows that the derivative of f(x) is

f ′(x) =
(A− C)(B − C)

(C − x)2
− 1,

from which we easily see that the condition f ′(x) > 0 is satisfied if

(A− C)(B − C) > (C − x)2

holds. The right side is smaller than C2 which means that the statement is equal
to

AB > C(A+B)

If we substitute A = 2t, B = 2N , C = 2n we see that the last inequality holds in
our setting and we are done. ut

Now, we are in the position to prove Proposition 1.

Proof (of Proposition 1). Remember that E(t,N, d) was defined as the number
of t ×N matrices over F2 that have rank equal to d. Computing Pr(K, t,N, n)
exactly would require the application of the inclusion-exclusion principle since
the ranks of the

(
K
t

)
considered subspaces are not independent. Therefore, we

take (4) as an upper bound for the probability Pr(K, t,N, n).
Simplifying the upper bound consists of two steps. Bounding the binomial

coefficient and bounding the rest. Based on Lemma 1 and 2 we can estimate the
second part of the probability Pr(K, t,N, n) by

2−t·N
n∑

d=1

E(t,N, d) ≤ 2−t·N · 2 · E(t,N, n)

≤ 2−t·N+1

(
(2t − 2n−1) · (2N − 2n−1)

2n − 2n−1

)n

≤ 2−t·N+1
(

2n−1 · 2t−(n−1) · 2N−(n−1)
)n

= 2−(t−n)(N−n)+(n+1)

(6)

8

For the binomial coefficient
(
K
t

)
we combine the simple estimate

(
K
t

)
≤ Kt/t!

with the following inequality based on Stirling’s formula [41]:

√
2πtt+

1
2 e
−t+ 1

12t+1 < t! <
√

2πtt+
1
2 e−t+

1
12t (7)

From this we get (
K

t

)
≤ 1√

2πt

(
K · e
t

)t

. (8)

Putting together (6) and (8) proves the proposition. ut

As a corollary, we can give a lower bound for the number of random vectors
needed to fulfill the conditions of the proposition with a certain probability.

Corollary 1 For a given probability p and given N,n, t as in Proposition 1, the
number K of random vectors needed to contain t vectors that span a subspace
Vout ⊆ FN

2 with dim(Vout) ≤ n with probability p is lower bounded by

K ≥ t

e

(
p
√

2πt
) 1

t
2
(N−n)(t−n)−(n+1)

t . (9)

Proof. Equation (9) follows immediately from (5). ut

Corollary 2 For a given probability p and given N,n, t as in Proposition 1,
the and the number of queries Q to f needed to produce t vectors that span a
subspace Vout ⊆ FN

2 with dim(Vout) ≤ n with probability p is lower bounded by

Q ≥
√

2t

e

(
p
√

2πt
) 1

2t
2
(N−n)(t−n)−(n+1)

2t . (10)

Proof. (10) follows from setting K ≤
(
Q
2

)
= Q(Q− 1)/2 in (9). ut

3.2 The Permutation Case

This section is devoted to the study of the Subspace Problem in the case where
the function f is replaced by a permutation π. In the case of a permutation,
one can define adversaries that are allowed to make forward queries (i.e. to π)
and backward queries (i.e. to π−1). Clearly, backward queries render Subspace
Problem 1 trivial, since the adversary can fix pairs with output differences in
Vout and simply ask the backward queries. Therefore, if we want to define a
meaningful subspace problem, we have to formulate additionally constraints on
the inputs.

Subspace Problem 2 (Subspace Problem for Permutations)
When given a permutation π mapping from FN

2 to FN
2 , try to find t input pairs

(ai, a
∗
i) such that ai ⊕ a∗i belong to a subspace Vin ⊆ FN

2 with dim(Vin) ≤ m and
the corresponding output differences π(ai)⊕π(a∗i) belong to a subspace Vout ⊆ FN

2

with dim(Vout) ≤ n for some m ≤M and n ≤ N .

9

One can distinguish between two types of adversaries: the non-adaptive ad-
versary and the adaptive adversary. While in the adaptive setting, the adversary
can use the results of previous queries to select subsequent inputs for the next
queries, the adversary has to decide on the inputs for the queries on before-
hand in the non-adaptive setting. In all of the following, we will only consider
non-adaptive adversaries.

Now we want to give a bound on the success probability of the adversary for
solving Subspace Problem 2 when it is given oracle access to a permutation π
and its inverse π−1. The adversary is allowed to make at most Q queries in total
to π and π−1. Denote by Q1 the number of queries that the adversary makes to
π, and by Q2 = Q−Q1 the number of queries made to π−1.

Let us now start with the Q1 queries to π. It is easy to see that by choosing
the inputs in a sub-vector space of dimension m we get K1 ≤

(
Q1

2

)
input pairs

(ai, a
∗
i) and hence input differences ai ⊕ a∗i belonging to a subspace Vin ⊆ FN

2

with dim(Vin) ≤ m. This approach obviously allows a maximum of 2m queries.

In order to be able to make more queries we take the subsequent inputs to
be in a translate of Vin, that is, we take ai, a

∗
i ∈ u + Vin = {u + v | v ∈ Vin}

where u 6∈ Vin. We can repeat this several times for different u 6∈ Vin. So if we
set Q1 = q1 · 2m + r1 and r1 < 2m, q1 ≥ 0, by making Q1 queries to π we get

K1 = q1 ·
(

2m

2

)
+

(
r1
2

)
(11)

input differences ai ⊕ a∗i belonging to a vector space Vin with dim(Vin) ≤ m.

Analogously to Proposition 1 we will first consider the case of differences.
Note that the Q1 queries to π are chosen such that the resulting K1 input
differences lie in a subspace Vin whereas the corresponding output differences
can be assumed uniformly distributed in FN

2 . In a similar way, the Q2 queries to
π−1 result in K2 output differences in a space Vout where again the corresponding
input differences are uniformly distributed. So in total we have K1 + K2 pairs
of input and output differences.

Proposition 2 Let n,m, t,N ∈ N be given such that t ≥ N > 2n and m ≤ n.
We assume a set of K := K1+K2 difference pairs {(a1, b1), . . . , (aK , bK)} where
bi is uniformly distributed in FN

2 and ai is taken from some subspace Vin ⊆ FN
2

for i = 1, . . . ,K1 and where ai is uniformly distributed in FN
2 and bi is taken

from some subspace Vout ⊆ FN
2 for i = 1, . . . ,K2.

Let Pr(K, t,N,m, n) denote the probability that t of these K difference pairs
are such that the input differences span a subspace V ′in ⊆ FN

2 with dim(V ′in) ≤ m
and the output differences span a subspace V ′out ⊆ FN

2 with dim(V ′out) ≤ n,
simultaneously. Then, we have

Pr(K, t,N,m, n) ≤
t∑

t1=0

(
K1

t1

)(
K2

t− t1

)
2−t·N

m∑
i=0

E(t− t1, N, i)
n∑

j=0

E(t1, N, j).
(12)

10

This probability can be upper bounded by

Pr(K, t,N,m, n) ≤ 1√
2πt

(
Ke

t

)t

2−(N−n)(t−2n)+2(n+1). (13)

Proof. The K = K1 + K2 difference pairs described in the proposition can be
seen as elements (ai, bi) ∈ FN

2 × FN
2 , where in the first K1 pairs, the ai’s can be

chosen, and in the last K2 the bi’s can be chosen by an adversary. In order to
have the highest possible probability for the event in the proposition these values
would always be chosen to be a fixed difference a 6= 0 and b 6= 0. The 0 difference
is impossible when keeping in mind that they come from queries, so choosing
identical differences leads to the smallest dimension for the difference vectors
that can be controlled. So whenever t of the K difference pairs are selected, and
say t1 are taken from the first K1 pairs, and t − t1 from the second K2 pairs,
we can start to upper bound the sought probability by (12). This is because the
probability that t of these input differences span a space of dimension ≤ m is
upper bounded by

2−(t−t1)N
m∑
i=0

E(t− t1, N, i). (14)

Here we use that t1 input differences are identical and we apply Proposition 1 to
the remaining t − t1 input differences, where we count the F2-matrices of rank
≤ m. The sum in (14) is an overestimation since when the fixed input difference
a is not in the span of the remaining t− t1 differences, we would only be allowed
to take the matrices of rank ≤ m− 1 into account. Analogously, we get for the
output differences

2−t1N
n∑

i=0

E(t1, N, i),

and since both conditions have to be satisfied simultaneously, we end up with
(12).

To further bound (12) we proceed as follows. Without loss of generality, we
assume that m ≤ n and obtain

t∑
t1=0

(
K1

t1

)(
K2

t− t1

)
2−tN

n∑
i=0

E(t− t1, N, i)
n∑

j=0

E(t1, N, j)

as an upper bound for the probability. Using Lemma 3 we can simplify the last
sum to (

K

t

)
2−tN+2E(t

2 , N, n)2

where we used
t∑

t1=0

(
K1

t1

)(
K2

t− t1

)
=

(
K1 +K2

t

)
.

Then, we can prove (13) along the same lines as in (6). ut

11

Lemma 3. Let t,N, n ∈ N be such that t ≥ N > 2n and t1 ∈ {0, 1, . . . , t}.
Then,

n∑
i=0

E(t− t1, N, i)
n∑

j=0

E(t1, N, j) ≤ 4E(t
2 , N, n)2. (15)

Proof. We first consider the case where t1 ∈ {n, n + 1, . . . , t − n}. This implies
that both t1 and t − t1 are greater or equal than n. In this case, we can use
Lemma 1 to estimate both sums and we get

n∑
i=0

E(t− t1, N, i)
n∑

j=0

E(t1, N, j) ≤ 4E(t− t1, N, n)E(t1, N, n).

The product E(t− t1, N, n)E(t1, N, n) can be written as

n−1∏
i=0

(2N − 2i)2 · (2t−t1 − 2i) · (2t1 − 2i)

(2n − 2i)2
.

From this and the fact that (2t−t1 − 2i) · (2t1 − 2i) ≤ (2t/2 − 2i)2 holds for
i ∈ {0, . . . , n−1} follows the statement of the lemma for t1 ∈ {n, n+1, . . . , t−n}.

The case t1 ∈ {0, 1, . . . , n−1}, respectively t1 ∈ {t−n+1, . . . , t}, is symmetric,
so without loss of generality, we only consider the first case. Then, the estimate
of Lemma 1 applied to (15) results in

n∑
i=0

E(t− t1, N, i)
t1∑
j=0

E(t1, N, j) ≤ 4E(t− t1, N, n)E(t1, N, t1).

We can show
E(t− t1, N, n)E(t1, N, t1) ≤ E(t

2 , N, n)2

by splitting the statement into two inequalities:

E(t− t1, N, n)E(t1, N, t1) ≤ E(t− n,N, n)E(n,N, n) (16)

E(t− n,N, n)E(n,N, n) ≤ E(t
2 , N, n)2 (17)

Here, (16) can be deduced with similar arguments as Lemma 2. To show (17)
we look at E(t− n,N, n)E(n,N, n)E(t/2, N, n)−2 and observe that

n−1∏
i=0

(2t−n − 2i)(2n − 2i)

(2t/2 − 2i)2
=

n−1∏
i=0

2t − 2t−n+i − 2n+i + 22i

2t − 2t/2+i+1 + 22i
≤ 1,

since because of t > 2n, every term in the product is smaller or equal than
1. This proves the lemma in the case t1 ∈ {0, 1, . . . , n − 1}, respectively t1 ∈
{t− n+ 1, . . . , t}. ut

Now we round up the whole discussion to derive some lower bounds for the
number of differences and the query complexity.

12

Corollary 3 Under the preliminaries stated in Proposition 2, the number K of
difference pairs such that simultaneously, the input differences span a subspace
V ′in ⊆ FN

2 with dim(V ′in) ≤ m and the output differences span a subspace V ′out ⊆
FN
2 with dim(V ′out) ≤ n with probability p is lower bounded by

K ≥ t

e

(
p
√

2πt
) 1

t
2
(N−n)(t−2n)−2(n+1)

t . (18)

Proof. Equation (18) follows immediately from (13). ut

Corollary 4 Under the preliminaries stated in Proposition 2, let Q be the num-
ber of queries to π and π−1 needed to find t difference pairs such that simul-
taneously, the input differences span a subspace V ′in ⊆ FN

2 with dim(V ′in) ≤ m
and the output differences span a subspace V ′out ⊆ FN

2 with dim(V ′out) ≤ n with
probability p. Let

K̂ =
t

e

(
p
√

2πt
) 1

t
2
(N−n)(t−2n)−2(n+1)

t .

Then, Q is lower bounded by

Q ≥

{√
2K̂ if K̂ < 22n−1,

K̂2−n if K̂ ≥ 22n−1.
(19)

Proof. We see that (11) suggests that an adversary would favor to take the
dimension of the space Vin, respectively, Vout, as large as possible (that is, m,
respectively n) in order to produce as many differences as possible from a given
number of queries. Equation (11) gives rise to the easy estimates K1 ≤ 2m−1Q1

and K2 ≤ 2n−1Q2. Together with m ≤ n, we use (18) to end up with (19)
depending on the size of K̂. Note that this rough bound combines the best
possible cases for an adversary in terms of differences (by using (18)) and in
terms of queries. ut

Looking back at Corollary 2, we see that in the case of one-way functions the
connection between differences and queries was much more obvious than it is
here. This is caused by the fact that there we had only one type of queries. In
the permutation case, we saw that the strategy of choosing differences/queries
on both sides of π lead to a higher bound for the success probability of an
adversary. This can be seen as evidence for preferring this strategy over the
one-sided approach.

3.3 Related Work

Biryukov et al. introduce differential q-collisions as a means to construct dis-
tinguishers for a block cipher [5]. In our terminology, a differential q-collision
corresponds to a set of q input pairs that have input differences in an affine
subspace vi + {0} ⊆ FN

2 of dimension 0 (vi 6= 0) and output differences in an

13

affine subspace vo + {0} ⊆ FN
2 of dimension 0. An important difference with

our approach is that they allow the adversary to specify the input difference
and the output difference such that they optimally fit the block cipher under
attack. Since we characterize subspaces only by their dimension, we impose less
constraints on the adversary. The consequence is that for the same distinguisher,
they compute a higher advantage than we do.

Also Gilbert and Peyrin discuss distinguishers for AES, Grøstl [15] and
ECHO [3] in [17], which have some similarities with the subspace distinguish-
ers. Note however that, like Biryukov et al., they allow the adversary to specify
which of the coordinates have to be constant. Secondly, [17] ignores the invert-
ible linear transformation in the last round of Grøstl and ECHO. We note also
that [17] upper bounds the attack complexity for the generic case, while a lower
bound is needed in order to prove that the distinguishers given for AES, Grøstl
and ECHO are indeed valid distinguishers. Finally, [17] defines new families of
AES-like constructions by considering keyed linear or non-linear building blocks,
e.g. keyed S-boxes. Since neither AES, nor Grøstl uses keyed S-boxes or other
similar randomization techniques, this construction can be seen as somewhat
counter-intuitive.

4 The Hash Function Whirlpool

The Whirlpool hash function is a cryptographic hash function designed by Bar-
reto and Rijmen in 2000 [2]. It has been evaluated and approved by NESSIE [38]
and is standardized by ISO/IEC [1]. The hash function is commonly consid-
ered to be a conservative block cipher based design with a very conservative key
schedule. The design follows the wide trail design strategy. In this section, we will
give a detailed account of the Whirlpool hash function. It includes a discussion
of its core design principle, the wide trail design strategy, and the properties of
the employed round transformations with respect to differential and truncated
differential cryptanalysis.

4.1 The Wide Trail Design Strategy

The wide trail design strategy has been proposed by Daemen and Rijmen in [9,10]
and is a method to counter differential (and linear) attacks. The strategy allows
to easily construct upper bounds for the probability of trails through the prim-
itive. To obtain these bounds, we split up a design in a linear and a nonlinear
part, each with its own functionality.

We assume here that the nonlinear part is implemented by means of a brick-
layer of S-boxes [10]. The S-boxes Si are selected such that for any differential
(a, b) 6= (0, 0), the fraction of inputs x for which

Si(x)⊕ Si(x⊕ a) = b,

is small. Let pS denote an upper bound for this fraction.

14

Mj

Hj−1

Hj
state update

SB SC MR AK

key schedule
SB SC MR AC

Fig. 2. An overview of the Whirlpool compression function. The 10-round block
cipher W with key schedule and state update is used in Miyaguchi-Preneel mode.

The functionality of the linear part of the primitive is to make sure that
there are no narrow trails, i.e. trails where only a small number of S-boxes has
a non-zero input difference. An S-box with a non-zero input difference is called
active. Let z denote a lower bound for the number of active S-boxes in a trail.
Then it follows easily that (pS)z upper bounds the probability of a trail.

4.2 Whirlpool

Whirlpool is an iterative hash function based on the Merkle-Damg̊ard design
principle [11,35]. It processes 512-bit message blocks and produces a 512-bit hash
value. An unambiguous padding method is applied to ensure that the message
length is a multiple of 512 bits [2]. Let m = M1‖M2‖ · · · ‖Mt be a t-block message
(after padding). The hash value h = H(m) is computed as follows (see Figure 2):

H0 = IV,

Hj = W (Hj−1,Mj)⊕Hj−1 ⊕Mj , for 0 < j ≤ t,
h = Ht,

where IV is a predefined initial value and W is a 512 bit block cipher used in
the Miyaguchi-Preneel mode [34].

4.3 The Block Cipher W

The block cipher W is designed according to the wide trail strategy and its
structure is very similar to the Advanced Encryption Standard (AES) [36]. The
state update transformation and the key schedule update an 8 × 8 state S,
respectively K, of 64 bytes in 10 rounds. In one round, the round transformation
updates the state by means of the sequence of transformations

AK ◦MR ◦ SC ◦ SB,

while the key schedule applies

AC ◦MR ◦ SC ◦ SB

15

Si−1 SSB
i SSC

i SMR
i Si

SB SC MR AK

Ki−1 KSB
i KSC

i KMR
i Ki

SB SC MR AC

Ci

Fig. 3. One round of the block cipher W , used in the Whirlpool compression
function.

to the round key. In the remainder of this paper, we will use the outline of
Figure 3 for one round. We denote the resulting state after round i by Si and
the intermediate states after SubBytes (SB) by SSB

i , after ShiftColumns (SC) by
SSC
i and after MixRows (MR) by SMR

i . The initial state prior to the first round
is denoted by S0 = Mj ⊕Hj−1. The same notation is used for the key schedule
with round keys Ki with K0 = Hj−1. Note that we changed the names of some
steps of the round transformation of the original description [2] in order to be
more similar to the AES nomenclature [10].

4.4 The Round Transformations of W

In the following, we briefly describe the round transformations of the block cipher
W used in the Whirlpool compression function.

SubBytes (SB). The SubBytes step is the only non-linear transformation of the
cipher. It is a permutation consisting of an S-box applied to each byte of the
state. The 8-bit S-box is composed of 3 smaller 4-bit mini-boxes (the exponential
E-box, its inverse, and the pseudo-randomly generated R-box). For a detailed
description of the S-box we refer to [2].

ShiftColumns (SC). The ShiftColumns step is a byte transposition that cycli-
cally shifts the columns of the state over different offsets. Column j is shifted
downwards by j positions.

MixRows (MR). The MixRows step is a permutation operating on the state row
by row. To be more precise, it is a right-multiplication by an 8× 8 matrix over
F28 . The coefficients of the matrix are determined in such a way that the branch
number of MixRows (the smallest nonzero sum of active input and output bytes
of each row) is 9, which is the maximum possible for a transformation with these
dimensions.

16

Table 1. The number of differentials and possible pairs (a, b) for the Whirlpool
S-box. The first row shows the number of impossible differentials and the last
row corresponds to the zero differential.

solutions frequency

0 39655
2 20018
4 5043
6 740
8 79

256 1

AddRoundKey (AK) and AddRoundConstant (AC). The key addition in the
state update transformation is denoted by AddRoundKey and in the key schedule
by AddRoundConstant, respectively. In this transformation the state is modified
by combining it with a round key with a bitwise xor operation. While the round
key in the state update transformation is generated by the key schedule, it is a
predefined constant in the key schedule.

4.5 Differential Properties of Round Transformations

In this section, we describe the differential properties of the round transforma-
tions of Whirlpool.

SubBytes (SB). SubBytes has the following differential properties. Let a, b ∈
{0, 1}8. Exhaustively counting over all 216 differentials shows that the number
of solutions to the following equation

Si(x)⊕ Si(x⊕ a) = b, (20)

can only be 0, 2, 4, 6, 8 and 256, which occur with frequency 39655, 20018,
5043, 740, 79 and 1, see Table 1. The task to return all solutions x to (20) for a
given differential (a, b) is best solved by setting up a precomputed table of size
256× 256 which stores the solutions (if there are any) for each (a, b).

However, it is easy to see that for any permutation Si (to be more precise,
for any injective map) the expected number of solutions to (20) is always one:

2−16
∑
a

∑
b

#{x | Si(x⊕ a)⊕ Si(x) = b} = 2−16
∑
a

28 = 1,

because for a fixed a, every solution x belongs to a unique b. Since all the S-boxes
are independent, the same reasoning is valid for the full SubBytes transformation.

ShiftColumns (SC). The ShiftColumns transformation moves bytes and thus,
differences to different positions of a column but does not change their value.
Due to the good diffusion property of ShiftColumns, 8 active bytes of a full active

17

Table 2. Approximate probabilities (as base 2 logarithms) for the propagation
of truncated differences through MixRows with predefined positions. a denotes
the number of active bytes at the input and b the number of active bytes at the
output of MixRows.

a \ b 0 1 2 3 4 5 6 7 8

0 0 × × × × × × × ×
1 × × × × × × × × 0

2 × × × × × × × −8 −0.0017

3 × × × × × × −16 −8 −0.0017

4 × × × × × −24 −16 −8 −0.0017

5 × × × × −32 −24 −16 −8 −0.0017

6 × × × −40 −32 −24 −16 −8 −0.0017

7 × × −48 −40 −32 −24 −16 −8 −0.0017

8 × −56 −48 −40 −32 −24 −16 −8 −0.0017

row are moved to 8 different rows of the state. Hence, ShiftColumns ensures that
the 8 bytes of one row of a state are processed independently in the subsequent
MixRows transformation.

MixRows (MR). Since the MixRows operation is a linear transformation, stan-
dard differences propagate through MixRows in a deterministic way. The prop-
agation only depends on the values of the differences and is independent of
the actual value of the state. In case of truncated differences only the position,
but not the value of the difference is determined. Therefore, the propagation of
truncated differences through MixRows is probabilistic.

Since the branch number of MixRows is 9, a truncated difference with exactly
one active byte will propagate to a truncated difference with 8 active bytes with
a probability of 1. On the other hand, a truncated difference with 8 active bytes
can result in a truncated difference with 1 to 8 active bytes after MixRows. The
probability of an 8 to 1 transition is only 2−7·8 = 2−56, since we need 7 out
of 8 truncated differences to be zero. In general, the probability of any a to b
transition with 1 ≤ a, b ≤ 8 satisfying a+ b ≥ 9 is approximately 2(b−8)·8. Note
that the probability depends on the direction of the propagation of truncated
differences, see Table 2.

AddRoundKey (AK) and AddRoundConstant (AC). Since AddRoundKey and
AddRoundConstant are simple xor operations with a round key or a constant.
Therefore, both standard differences and truncated differences propagate through
AddRoundKey and AddRoundConstant in a deterministic way.

4.6 Good Differential Trails

Due to the design of the Whirlpool hash function, constructing good truncated
differential trails is rather simple, as long as there are no differences inserted from
the key schedule. Therefore, we restrict ourselves to trails with no differences
in the key schedule and hence chaining value of Whirlpool. This allows us to

18

S0 S1 S2 S3 S4

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

Fig. 4. A 4-round differential trail with the minimum number (81) of active
S-boxes.

construct good differential trails by hand as shown in this section. We will use
the following notation to specify the number of active bytes in two subsequent
states in the state update:

a
ri−→ b,

with a the number of active bytes in the first state, b the number of active bytes
in the second state and ri the i-th round of Whirlpool. As an example, for one
round ri of Whirlpool, we either get a + b ≥ 9 or a = b = 0, due to the design
of the MixRows transformation. Hence, for a = 1 we always get:

1
ri−→ 8.

It follows from the properties of the ShiftColumns and MixRows transforma-
tions, that any 4-round (truncated) differential trail has at least 92 = 81 active
S-boxes. Hence, (pS)z = (2−5)81 upper bounds the probability of any 4-round
differential trail (see Section 4.1). An example differential trail with 81 active
S-boxes is given in Figure 4. Note that the active byte in state S0 and state S4

can be placed at any position (state S1 and S3 change accordingly). The number
of active S-boxes in each state for these trails are as follows:

1
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 1

This 4-round trail will be used to explain the principles of the rebound attack in
Section 5.1. Note that this trail can be extended in a simple and straightforward
way in the forward and in the backward direction. We will use the following trail
to show a near-collision attack for the Whirlpool hash function in Section 5.4:

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 8
r5−→ 1

r6−→ 8

Another possibility is to extend the trail by adding rounds in the middle. If
we add a second full active state in the middle, then we still get a valid trail.
This trail will be used to extend the rebound attacks on the hash function by
one round (see Section 5.3 and 5.4):

1
r1−→ 8

r2−→ 64
r3−→ 64

r4−→ 8
r5−→ 1

Moreover, two full active states allow us to place one or two states with 8 active
bytes in between them, such that all properties of the round transformations are
still fulfilled:

1
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8
r5−→ 64

r6−→ 8
r7−→ 1

This trail will be used as the core for the compression function attacks on
Whirlpool in Section 6.

19

5 Attacks on the Hash Function

In this section, we describe the application of the rebound attack to reduced
variants of the Whirlpool hash function. First, we describe the basic idea of the
attack for Whirlpool reduced to 4.5 rounds. By improving the inbound phase of
the attack, the complexity can be significantly reduced to about 264 compression
function evaluations and negligible memory requirements. Furthermore, we show
how the attack can be extended to 5.5 rounds by adding another full active state
in the inbound phase. The resulting attack has a complexity of about 2120 and
memory requirements of 264.

Second, we present near-collision attacks for the Whirlpool hash function
reduced to 6.5 and 7.5 rounds. These attacks are straight forward extensions
of the collision attacks on 4.5 and 5.5 rounds, respectively. By adding 2 rounds
in the outbound phase, we get a near-collision for the Whirlpool hash function
reduced to 6.5 and 7.5 rounds.

5.1 Collision Attack on 4.5 Rounds

The rebound attack on 4.5 rounds of Whirlpool uses a differential trail with the
minimum number of active S-boxes according to the wide trail design strategy.
For this attack, the full active state is placed in the middle of the trail (see
Figure 5):

1
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 1
r4.5−−→ 1

To find a message pair following this 4.5-round differential trail, we first split
the block cipher W into three sub-ciphers W = Wfw ◦Win ◦Wbw, such that the
full active state of the differential trail is covered by the inbound phase Win.

Wbw = SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB
Win = MR ◦ SC ◦ SB ◦ AK ◦MR

Wfw = SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB ◦ AK

In the inbound phase, the actual values of the state are chosen to guarantee that
the differential trail in Win holds. The differential trail in the outbound phase
(Wfw, Wbw) is supposed to have a relatively high probability. While standard
xor differences are used in the inbound phase, truncated differentials are used
in the outbound phase of the attack. In the following, we describe the inbound
and outbound phase of the attack in detail.

Inbound Phase. In the inbound phase of the attack we have to find inputs to
Win such that the differential trail in Win holds. It can be summarized as follows
(see Figure 6).

1. We start at the output of MixRows of round r3 (SMR
3) with arbitrary nonzero

differences at the 8 byte positions indicated on Figure 6. We propagate the
difference backward. Since we have one active byte in each row of the state,
we obtain a full active state at the output of SubBytes of round r3 (SSB

3).

20

S0 S1 S2 S3 S4 SSC
4

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC

outbound phase inbound phase outbound phase

Fig. 5. Differential trail for the collision attack on 4.5 rounds of Whirlpool. Black
state bytes are active.

SSC
2 S2 SSB

3 SMR
3

MR
AK

SB
SC
MR

step 1step 2 step 3

Fig. 6. Inbound phase of the attack on 4.5 rounds of Whirlpool. Black state
bytes are active.

2. We choose a difference for the active byte in each row at the input of MixRows
in round r2 (SSC

2) and compute forward to the input of SubBytes of round r3
(S2). Note that this can be done for all 255 (∼ 28) values (nonzero difference)
of the active byte for each row independently, which facilitates the attack.

3. In the next step of the inbound phase, the match-in-the-middle step, we look
for a matching input/output difference of the SubBytes layer of round r3.
This is done as described in Section 4.4 with a precomputed 256×256 S-box
lookup table. As explained in Section 4.4, the expected number of solutions
is one per trial. Note that we can search for S-box matches for each row of
S2 and SSB

3 independently. Since we have 28 candidates for each row of S2

(and 1 for each row of SSB
3) the expected number of solutions for each row is

28 (i.e. 2 solutions for each S-box). Hence, the expected number of solutions
for the whole SubBytes layer (8 rows) equals 264. In other words, we can find
264 actual values that follow the differential trail in the inbound phase with
a complexity of about 28 round transformations.

Since we can repeat these 3 steps 264 times, we can find 2128 actual values that
follow the differential trail in the inbound phase.

Outbound Phase. In contrast to the inbound phase, we use truncated dif-
ferentials in the outbound phase of the attack. By propagating the matching
differences and state values through the next SubBytes layers outwards, we get a
truncated differential in 8 active bytes in both backward and forward direction.

In order to get a collision after 4.5 rounds we require that the truncated
differentials in the outbound phase propagate from 8 to 1 active byte through

21

the MixRows transformation, both in the backward and forward direction (see
Figure 5). The propagation of truncated differentials through the MixRows trans-
formation can be modeled in a probabilistic way, see Section 4.4. Since we need
to fulfill one 8 to 1 transition in the backward and forward direction, the prob-
ability of this part of the outbound phase is 2−2·56 = 2−112. Furthermore, to
construct a collision at the output (after the feed-forward), we need that the
differences at the input and output cancel out. Since only one byte is active, this
has a probability of approximately 2−8. Hence, the probability of the outbound
phase of the attack is 2−112 · 2−8 = 2−120. In other words, we need to generate
2120 starting points for the outbound phase to find one collision.

Since we can find one of these starting points in the inbound phase with an
average complexity of 1, we can find a collision for the Whirlpool hash function
reduced to 4.5 rounds with a complexity of about 2120 and negligible memory.

5.2 Improving the Collision Attack on 4.5 Rounds

In this section, we show how the complexity of the collision attack presented in
the previous section can be improved significantly. The main idea is to extend
the inbound phase of the attack by 1 round such that one 8 to 1 transition of the
outbound phase is covered in the inbound phase of the attack. This improves the
probability of the outbound phase significantly from 2−120 to 2−56−8 = 2−64. In
other words, we need to construct only 264 instead of 2120 starting points for the
outbound phase of the attack in the inbound phase. In the following, we show
how to find inputs that follow the differential trail in the inbound phase of the
attack with the following sequence of active bytes:

1
r1−→ 8

r2−→ 64
r3−→ 8

Note that the attack is very similar to the attack on the hash function Grøstl
in [29]. It can be summarized as follows.

1. Similar to the previous section, we first choose a difference for the 8 active
bytes at the output of MixRows of round r3 (SMR

3) and propagate backward
to get the differences of the full active state at the output of SubBytes of
round r3 (SSB

3).
2. In the second step we choose a difference for the active byte in each row at

the input of MixRows of round r2 (SSC
2) and compute forward to the input

of SubBytes of round r3 (S2). Again, we can choose 28 differences for each
row and compute each row independently.

3. Next, we look for a matching input/output difference of the SubBytes layer
of round r3 for each row of S2 and SSB

3 independently. This is done with a
precomputed 256 × 256 lookup table as described in Section 4.4. Since the
expected number of solutions per trial is one and we have 28 candidates for
each row of S2 the expected number of solutions for each row equals 28, i.e.
2 solutions for each S-box.

4. For all 28 solution of each row of S2, we compute backward to S1. Since
MixRows works independently on each row and since SubBytes, ShiftColumns,

22

S0 S1 S2 S3 S4 S5 SSC
5

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC

outbound phase inbound phase outbound phase

Fig. 7. Differential trail for the collision attack on 5.5 rounds of Whirlpool.

and AddRoundKey are byte-wise operations, this determines only 8 bytes of
S1 and the according differences (active bytes). In detail, we get 28 candidates
for each active byte in S1 after testing all 28 solutions for each row of S2

independently. Hence, we get 264 candidates for the 8 active bytes in row 1
of S1 after this step of the attack with a complexity of about 28 round
transformations.

5. In order to follow the differential trail in the inbound phase of the attack, we
have to guarantee that the differences in S1 propagate from 8 to 1 active byte
through the MixRows transformation in the backward direction. Therefore,
we compute all 28 differences of the single active byte at the input of MixRows
in round r1 (SSC

1) forward to the input of SubBytes in round r2 (S1) and check
for a match. Since we have 264 candidates for the active bytes in S2, i.e. 28 for
each active byte, the expected number of solutions is 28 after testing all 28

candidates for the one active byte in SSC
1 . In other words we get 28 solutions

(actual values) that follow the differential trail in the inbound phase of the
attack with a complexity of about 28 round transformations.

Since the probability of the outbound phase of the attack is 2−64, we need to
repeat steps 1-5 about 256 times to generate 264 starting points for the outbound
phase of the attack. Since we can find 28 starting point for the outbound phase
with a complexity of 28, we can construct a collision for the Whirlpool hash
function reduced to 4.5 rounds with a complexity of about 264.

5.3 Collision Attack on 5.5 Rounds

In this section, we present a collision attack for the Whirlpool hash function
reduced to 5.5 rounds with a complexity of about 2184−s and memory require-
ments of 2s, with 0 ≤ s ≤ 64. The attack is a straightforward extension of the
collision attack on 4.5 rounds of Whirlpool described in Section 5.1. By adding
one round in the inbound phase of the attack we can extend the attack to 5.5
rounds (see Figure 7). This idea was introduced in [26], applied to the SHA-3
candidate Grøstl in [32], and called super-sbox cryptanalysis in [17]. In the 5.5
round collision attack, we use the following sequence of active bytes:

1
r1−→ 8

r2−→ 64
r3−→ 64

r4−→ 8
r5−→ 1

r5.5−−→ 1

Again, we split the block cipher W into three sub-ciphers W = Wfw ◦Win ◦
Wbw, such that the full active states of the trail are covered by the inbound phase

23

SSC
2 S2 SSB

3 S3 SSB
4 SMR

4

MR
AK

SB
SC
MR
AK

SB
SC
MR

step 1 step 2step 3

Fig. 8. The inbound phase of the collision attack on 5.5 rounds of Whirlpool.

Win, while the trail in the outbound phase (Wfw,Wbw) can be fulfilled with a
relatively high probability.

Wbw = SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB
Win = MR ◦ SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB ◦ AK ◦MR

Wfw = SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB ◦ AK

Since the outbound phase is identical to the attack on 4.5 rounds, we only discuss
the inbound phase of the attack here (see Figure 8).

Since the outbound phase of the attack has a probability of 2−120, we have
to generate 2120 starting points in the inbound phase of the attack. This can be
summarized as follows.

1. Start at the input of MixRows in round r2 (SSC
2) with arbitrary nonzero

differences in the 8 byte positions indicated on Figure 8. Propagate the
difference forward to the input of SubBytes in round r3 (S2). Since we have
one active byte in each row of the state this results in a full active state S2.

2. Start with an arbitrary difference in the 8 active bytes at the output of
MixRows in round r4 (SMR

4) and compute backward to the output of SubBytes
in round r4 (SSB

4). Again, since we start with one active byte in each row,
we get a full active state in SSB

4 .

3. Next we have to connect the states S2 and SSB
4 such that the differential

trail holds. Note that this can be done for each row of SSB
4 independently,

which facilitates the attack. It can be summarized as follows.

(a) For all 264 actual values of the first row of SSB
4 compute backward to S2

and check if the differential trail holds. Since MixRows works on each row
independently and ShiftColumns and SubBytes are byte-wise operations,
this determines 8 bytes of S2 and the according differences. Hence, after
testing all 264 candidates, the expected number of inputs such that the
differential trail holds, is one.

(b) Do the same for row 2-8 of SSB
4 .

After testing each row independently, the expected number of solutions is 1.
Hence, we expect to get one actual value for state SSB

4 (and S2) such that the
differential trail holds. This step has a total complexity of about 264 round
computations.

24

To summarize, we can compute one starting point for the outbound phase of the
attack with a complexity of about 264. Since we need 2120 starting points in the
inbound phase, the collision attack has a complexity of about 2184.

Note that the complexity of the inbound phase can be significantly reduced
at the cost of higher memory requirements. By saving 2s candidates for the
differences (active bytes) in S2, we can do a standard time/memory tradeoff with
a complexity of about 2184−s and memory requirements of 2s with 0 ≤ s ≤ 64.
Hence, by setting s = 64 we can find a collision for the Whirlpool hash function
reduced to 5.5 rounds with a complexity of about 2120 and memory requirements
of 264.

5.4 Near-Collision for Whirlpool

The collision attacks on 4.5 and 5.5 rounds can be further extended by adding
one round at the beginning and one round at the end of the trail. The result is a
near-collision attack on 6.5 and 7.5 rounds of the hash function Whirlpool. We
use the following sequence of active bytes

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 8
r5−→ 1

r6−→ 8
r6.5−−→ 8

for the near-collision attack on 6.5 rounds, and

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 64
r5−→ 8

r6−→ 1
r7−→ 8

r7.5−−→ 8

for the near-collision attack on 7.5 rounds. In the following, we summarize the
attack for 7.5 rounds. Note that the attack on 6.5 rounds works similar. Since the
inbound phase is identical to the collision attack on 5.5 rounds, we only discuss
the outbound phase here.

First, note that the 1-byte difference at the beginning and end of the 5.5 round
trail will always result in 8 active bytes after one MixRows transformation. Thus,
we can go both backward and forward 1 round with no additional costs. After
the feed-forward, the position of two active bytes match and cancel each other
with a probability of 2−16. In other words, the outbound phase of attack has a
probability of about 2−112 to construct a near-collision in 50 bytes and 2−128

to construct a near-collision in 52 bytes. Hence, we have to construct 2112 and
2128 starting points in the inbound phase of the attack to find a near-collision
in 50 and 52 bytes, respectively. Since in the collision attack on 5.5 rounds
one can construct 2s starting points in the inbound phase of the attack with a
complexity of about 264 and memory requirements of 2s with 0 ≤ s ≤ 64 (see
Section 5.3), the attack has a complexity of about 2176−s and 2192−s, respectively.
Both attacks have memory requirements of 2s.

Note that the attack on 6.5 rounds works similarly, except for the inbound
phase of the attack. Since one can find a solution for the inbound phase with an
average complexity of 1 (see Section 5.1), we can construct a near-collision in 50
and 52 bytes with a complexity of about 2112 and 2128, respectively. Similar to
the collision attack on 4.5 rounds one can improve the complexity of the attack
by a factor of 256. Again, we extend the inbound phase of the attack by one round

25

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
S
C

8

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

o
u
tb

o
u
n
d

p
h
a
se

in
b

o
u
n
d

p
h
a
se

o
u
tb

o
u
n
d

p
h
a
se

F
ig

.
9
.

D
iff

eren
tia

l
trail

fo
r

th
e

n
ear-collision

a
tta

ck
o
n

7
.5

ro
u

n
d

s
o
f

W
h

irlp
o
o
l,

co
n

stru
cted

b
y

ex
ten

d
in

g
th

e
5.5-rou

n
d

trail
w

ith
on

e
rou

n
d

a
t

th
e

b
egin

n
in

g
an

d
o
n

e
rou

n
d

a
t

th
e

en
d

o
f

th
e

o
u

tb
o
u
n

d
p

h
a
se.

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
S
C

7

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

o
u
tb

o
u
n
d

p
h
a
se

in
b

o
u
n
d

p
h
a
se

o
u
tb

o
u
n
d

p
h
a
se

F
ig

.
1
0
.

D
iff

eren
tial

tra
il

fo
r

th
e

n
ea

r-collision
atta

ck
o
n

6
.5

ro
u

n
d
s

o
f

W
h

irlp
o
o
l,

co
n

stru
cted

b
y

ex
ten

d
in

g
th

e
4.5-rou

n
d

trail
w

ith
o
n

e
ro

u
n

d
at

th
e

b
eg

in
n

in
g

a
n

d
on

e
rou

n
d

a
t

th
e

en
d

o
f

th
e

o
u

tb
o
u
n

d
p

h
a
se.

26

S0 S1 S2 S3 S4 S5

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

part 1 part 2 part 1

Fig. 11. The extended inbound phase of the attack on the compression function
of Whirlpool.

such that one 8 to 1 transition of the outbound phase is covered by the inbound
phase of the attack (see Section 5.2). Hence, we can construct a near-collision
in 50 and 52 bytes for the Whirlpool hash function reduced to 6.5 rounds with
a complexity of about 256 and 272, respectively.

6 Attacks on the Compression Function

In this section, we will present attacks on the Whirlpool compression function.
Since in an attack on the compression function, the attacker has full control over
the chaining variable input, this can be used to extend the previous attacks to
more rounds. In detail, we can show a semi-free-start collision for the Whirlpool
compression function reduced to 7.5 rounds and a semi-free-start near-collision
for 9.5 rounds. The basic idea is to have an extended inbound phase consisting
of two instead of one inbound phase and connect them by choosing the subkeys
accordingly. The outbound phase of the attacks are identical to the previous
attacks on the Whirlpool hash function on 5.5 and 7.5 rounds (see Section 5). In
the following, we describe both, the extended inbound phase and the outbound
phase of the attack in detail.

6.1 The Extended Inbound Phase

In this section, we describe the extended inbound phase consisting of 2 indepen-
dent inbound phases in detail. We use the following sequence of active bytes for
the attack:

8
r1−→ 64

r2−→ 8
r3−→ 8

r4−→ 64
r5−→ 8

In order to find inputs following the differential trail, we split the attack into two
parts. In the first part, we have two inbound phases: one in round 1-2 and one
in 4-5, with active bytes 8 → 64 → 8 each. In the second part, we need to find
values for the subkeys such that the resulting differences in the 8 active bytes
and the 64 (byte) values of the state between round 2 and 4 can be connected.

Part 1 (The 2 Independent Inbound Phases). This part of the attack
consists of two inbound phases in rounds 1-2 and 4-5. It can be summarized as
follows:

27

1. Inbound Phase 1 (round 1-2):

(a) Start with 8 active bytes at the output of AddRoundKey in round r2 (S2)
and propagate backward to the output of SubBytes in round r2 (SSB

2).
(b) Start with 8 active bytes (1 in each row) at the input of MixRows in

round r1 (SSC
1) and propagate forward to the input of SubBytes in round

r2 (S1). Again, this can be done for all 28 differences (value of the active
byte) and for each row independently.

(c) Next, we look for a matching input/output difference of the SubBytes
layer of round r2 for each row of S1 and SSB

2 independently. This can be
implemented with a precomputed 256×256 lookup table as described in
Section 4.4. Since, on average, we get one solution per trial and we have
28 candidates for each row of S1, the expected number of solutions for
each row is 28, i.e. 2 solutions for each S-box. After finishing this step
we have 264 inputs (2 for each S-box of S1) that follow the differential
trail in round 1-2.

2. Inbound Phase 2 (round 4-5): Do the same as in step 1 for rounds 4-5.

Note that after this part of the attack, we get 264 candidates for SSB
2 and 264

candidates for S4 with a complexity of about 29 round transformations.

Part 2 (Connecting the 2 Inbound Phases). In the second part of the
attack, we have to connect the results of the two inbound phases. In detail, we
have to ensure that the differences in the 8 active bytes (a 64-bit condition) as
well as the actual values of SSB

2 and S4 (a 512-bit condition) match by choosing
the subkeys K2, K3 and K4 accordingly. In other words, we have to solve the
following equation:

MR(SC(SB(MR(SC(SB(MR(SC(SSB
2))⊕K2)))⊕K3)))⊕K4 = S4 (21)

with
K3 = MR(SC(SB(K2)))⊕ C3

K4 = MR(SC(SB(K3)))⊕ C4.
(22)

Since we have 264 candidates for SSB
2 , 264 candidates for S4 and can choose from

2512 values for the subkeys (K2, K3 or K4 because of (22)), the expected number
of solutions is 264.

Since SMR
2 = MR(SC(SSB

2)), we can rewrite (21) as follows:

MR(SC(SB(MR(SC(SB(SMR
2 ⊕K2)))⊕K3)))⊕K4 = S4 (23)

Note that in the Whirlpool block cipher the order of ShiftColumns and SubBytes
can always be changed without affecting the output of one round. In order to
make the subsequent description of the attack easier, we do this here and get
the following equation:

MR(SC(SB(MR(SB(SC(SMR
2 ⊕K2)))⊕K3)))⊕K4 = S4 (24)

28

MR

MR

SB

SB

SC

SC

MR

MR

SB

SB

SC

SC

MR

MR

SB

SB

C2

K2

C3

K3

C4

K4

original description:

MR

MR

SC

SC

S̃2

SB

SB

MR

MR

SB

SB

SC

SC

X
MR

MR

SB

SB

C2

K̃2

C3

K3

C4

C4KSB
4

alternative description:

Fig. 12. The sequence of operations is changed to get an equivalent description
of the W .

S̃2 S2 SMR
3 S3 SSB

4 X

AK
SB
MR

AK SB AK

K̃2 K3 KSB
4

Fig. 13. The second part of the extended inbound phase of the attack on the
compression function of Whirlpool by using the alternative description.

Furthermore, MixRows and ShiftColumns are linear transformations and hence
we can rewrite the above equation as follows:

SB(MR(SB(S̃2 ⊕ K̃2))⊕K3)⊕KSB
4 = X (25)

with S̃2 = SC(SMR
2), K̃2 = SC(K2), KSB

4 = SB(K3), X = SC−1(MR−1(S4⊕C4)).

Figure 12 shows how the sequence of operations between state SMR
2 and S4

of the Whirlpool state update and key schedule are changed. In the following,
this equivalent description is used to connect the values and differences of the
two states S̃2 and X.

Remember that the differences of SSB
2 and S4 have already been fixed in

part 1 of the attack. Since ShiftColumns, MixRows and AddRoundKey are linear
transformations, also the differences of S̃2 and X are fixed. However, we can
still choose from 264 candidates for each of the states S̃2 and X, since we found
264 candidates for SSB

2 and 264 candidates for S4 in part 1 of the attack. Note
that we can compute and store the candidates of S̃2 (from SSB

2) and X (from

29

S4) row-by-row and independently. Hence, both the complexity and memory
requirements for this step are 28 instead of 264.

Now, we use (25) to determine the subkey K̃2 such that we get a solution
for the extended inbound phase and hence, a starting point for the outbound
phase of the attack. Note that we can solve (25) for each row of the states
independently. It can be summarized as follows. (see Figure 13).

1. Since AddRoundKey is a linear transformation, we can compute the 8-byte
difference in S2 (form S̃2) and SSB

4 (from X). We want to stress that these
differences are the same for all 264 candidates of the state S̃2 and all 264

candidates of the state X, respectively.
2. Choose arbitrary values for the first row of S2 and compute forward to obtain

the differences and values of the first row of SMR
3 . Again, since AddRoundKey

is a linear transformation, this also determines the difference of S3.
3. Next, we choose the first row of the key K3 such that the differential of the

S-box between S3 and SSB
4 holds. This can be done similar as in the inbound

phase with a precomputed 256×256 lookup table as described in Section 4.4.
4. Once the first row of K3 is fixed we can also compute the first row of K̃2

and KSB
4 . This also determines the first row (64 bits) of S̃2 and the first

row (64 bits) of X. Remember that we have 264 candidates for state S̃2

and 264 candidates for state X due to step 1. Hence, the expected number
of compatible candidates for both S̃2 and X equals 1. In other words, we
can connect the values and differences of the first row of S̃2 and X with an
average complexity of one.

5. Next, we have to connect the values of S̃2 and X for rows 2-8. Note that
this can be done independently for each row by a simple brute-force search
over all 264 values of the corresponding row of K̃2. Since we have to connect
64 bits and we test 264 values for each row of K̃2 the expected number of
solutions is one.

Since we can repeat the above procedure 264 times with different values for the
first row of S2, we get in total 264 solutions (matches) connecting state S̃2 to
state X with a complexity of 2128 and memory requirements of 28. In other
words, we get 264 starting points for the outbound phase of the attack. Hence,
the average complexity to find one starting point for the outbound phase is 264.

Note that Step 5 can be implemented using a precomputed lookup table of
size 2128. In this lookup table each row of the key K2 (64 bits) is saved for the
corresponding two rows of S̃2 and X (64 bits each). Using this lookup table, we
can find one starting point for the outbound phase with an average complexity of
1. However, the complexity to generate this lookup table is 2128. It is important
to note that one can construct a total of 2192 starting points in the extended
inbound phase to be used in the outbound phase of the attack.

6.2 Outbound Phase

In the outbound phase of the attack, we further extend the differential trail
backward and forward. By propagating the matching differences and state values

30

through the adjacent SubBytes layers, we get a truncated differential in 8 active
bytes in each direction. These truncated differentials need to follow a specific
active byte pattern to result in a semi-free-start collision for 7.5 rounds and a
semi-free-start near-collision for 9.5 rounds, respectively. In the following, we
describe the outbound phase of the two attacks in detail.

Semi-Free-Start Collision for 7.5 Rounds. By adding 1 round in the begin-
ning and 1.5 rounds at the end of the trail, we get a semi-free-start collision for
7.5 rounds for the compression function of Whirlpool with the following sequence
of active bytes:

1
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8
r5−→ 64

r6−→ 8
r7−→ 1

r7.5−−→ 1

For the differential trail to hold, we require that the truncated differentials in
the outbound phase first propagate from 8 to 1 active byte through the MixRows
transformation, both in the backward and forward direction (see Figure 14).
Since the transition from 8 active bytes to 1 active byte through the MixRows
transformation has a probability of about 2−56, and the exact value of the input
and output difference in one byte has to match after the feed-forward to get
a semi-free-start collision, the outbound phase has a probability of 2−2·56−8 =
2−120. In other words, we have to generate 2120 starting points (for the outbound
phase) in the extended inbound phase of the attack.

Since we can find one starting point with an average complexity of about 264

and memory requirements of 28, we can find a semi-free-start collision with a
complexity of about 2120+64 = 2184. The complexity of the attack can be reduced
to 2120 by using a precomputed lookup table of size 2128 in the extended inbound
phase of the attack.

Semi-Free-Start Near-Collision for 9.5 Rounds. As in the attack on the
Whirlpool hash function, the semi-free-start collision attack on 7.5 rounds can
be further extended by adding one round at the beginning and one round at
the end of the trail in the outbound phase. The result is a semi-free-start near-
collision for 9.5 rounds of the compression function with the following sequence
of active bytes (see Figure 15):

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 8
r5−→ 8

r6−→ 64
r7−→ 8

r8−→ 1
r9−→ 8

r9.5−−→ 8

Since the 1-byte difference at the beginning and end of the 7.5 round trail
will always result in 8 active bytes after one MixRows transformation, we can go
backward 1 round and forward 1 round with no additional cost. Using the feed-
forward, the positions of two active S-boxes match and cancel one another with
a probability of 2−16. Hence, we get a semi-free-start near-collision in 50 and 52
bytes for the compression function of Whirlpool with a complexity of about 2176

and 2176+16 = 2192, respectively. Again, by using a precomputed lookup table
(size 2128) in the extended inbound phase the complexity of the attack can be
reduced significantly. The result is a semi-free-start near-collision for 9.5 rounds
of Whirlpool with a complexity of about 2112 and 2128, respectively.

31

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
S
C

8

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

o
u
tb

o
u
n
d

p
h
a
se

ex
ten

d
ed

in
b

o
u
n
d

p
h
a
se

o
u
tb

o
u
n
d

p
h
a
se

F
ig

.
1
4
.

D
iff

eren
tia

l
tra

il
fo

r
th

e
sem

i-free-start
n

ea
r-co

llisio
n

a
tta

ck
o
n

7
.5

ro
u

n
d

s
o
f

th
e

com
p

ression
fu

n
ction

of
W

h
irlp

o
ol,

co
n

stru
cted

b
y

ex
ten

d
in

g
th

e
5-ro

u
n

d
trail

w
ith

o
n

e
ro

u
n

d
a
t

th
e

b
eg

in
n

in
g

a
n

d
1
.5

ro
u

n
d

s
at

th
e

en
d

.

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
S
C

1
0

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

o
u
tb

o
u
n
d

p
h
a
se

ex
ten

d
ed

in
b

o
u
n
d

p
h
a
se

o
u
tb

o
u
n
d

p
h
a
se

F
ig

.
1
5
.

D
iff

eren
tia

l
tra

il
fo

r
th

e
sem

i-free-start
n

ea
r-co

llisio
n

a
tta

ck
o
n

9
.5

ro
u

n
d

s
o
f

th
e

com
p

ression
fu

n
ction

of
W

h
irlp

o
ol,

co
n

stru
cted

b
y

ex
ten

d
in

g
th

e
7
.5

-rou
n

d
trail

w
ith

o
n

e
ro

u
n

d
a
t

th
e

b
eg

in
n

in
g

a
n

d
o
n

e
ro

u
n

d
at

th
e

en
d

of
th

e
ou

tb
ou

n
d

p
h

ase.

32

7 Distinguisher for the Whirlpool Compression Function

Now we will show how the compression function attack described in Section 6
can be used to show a certificational weakness in the full Whirlpool compression
function. To be more precise, we will show how to distinguish the Whirlpool com-
pression function from a random (that is, randomly selected) one-way function
using the results described in Section 3.

Obviously, the difference between two Whirlpool states can be seen as a vector
in the vector space of dimension N = 512 over F2. The crucial observation is
that the attack of Section 6 can be interpreted as an algorithm that can find t
difference vectors in F512

2 (output differences of the compression function) that
form a subspace Vout ⊆ F512

2 with dim(Vout) ≤ 128. To see this, observe that
by extending the differential trail from 9.5 to 10 rounds, the 8 active bytes in
SSC
10 will always result in a full active state S10 due to the properties of the

MixRows transformation. Thus the near-collision is destroyed. However, even
though after the application of MixRows and AddRoundKey the state S10 is fully
active in terms of truncated differences, the xor differences in S10 still belong to
a subspace of F512

2 of dimension at most 64 due to the properties of MixRows. If
we look again at Figure 15, both the differences in S0 (respectively the message
block Mj) and the differences in SSC

10 can be seen as (difference) vectors belonging
to subspaces of F512

2 of dimension at most 64. Therefore, after the feed-forward,
we can conclude that the differences at the output of the compression function
form a subspace Vout ⊆ F512

2 with dim(Vout) ≤ 128
Hence, we can use the attack of Section 6 to find t input differences such

that the corresponding output differences form a vector space Vout of dimension
n ≤ 128. This has a complexity of t · 2176 or t · 2112 using a precomputation step
with complexity 2128. Note that t ≤ 2192−112 = 280, due to the restrictions in
the extended inbound phase of the attack (see Section 6.1).

Now the main question is for which values of t our attack is more efficient
than the generic attack. In other words, how do we have to choose t such that we
can distinguish the compression function of Whirlpool from a random one-way
function. Table 3 compares for several values of t the complexity of our dedicated
approach to the query complexity in the generic case (cf. Section 3).

As can be seen in the table, the Subspace Problem for the full Whirlpool
compression function is easier to solve than for a random one-way function when
we take t = 212. The complexity of the attack is then about 2188. The probability
to solve the Subspace Problem when making Q = 2188 queries to a random one-
way function with the parameters t = 212, N = 512 and n = 128 is ≈ 2−30833.
This follows from Proposition 1. Therefore, we get a distinguishing attack on
the full Whirlpool compression function. Note, that by using a precomputation
table as described in Section 6, the complexity reduces to 2121 with t = 29.

8 Distinguisher for the Block Cipher W

After our result on the compression function of Whirlpool, we now show how
the subspace distinguisher for the compression function of Whirlpool can also

33

Table 3. Values for t, Q (query complexity), C (complexity of our attack), and
Cp (complexity of our attack with precomputation) for p = 1, N = 512, n = 128

log2(t) log2(Q) log2(C) log2(Cp)

9 148.16 185 121
10 172.72 186 122
11 185.25 187 123
12 191.76 188 124
13 195.27 189 125
14 197.28 190 126
15 198.53 191 127
16 199.40 192 128

be used to distinguish the block cipher W in the open-key setting [25]. To be
more precise, we show a distinguisher for W reduced to 8 rounds in the known-
key setting and a distinguisher for the full block cipher (all 10 rounds) in the
chosen-key setting.

8.1 Known-Key Distinguisher for 8 Rounds

In this section, we present a known-key distinguisher for the block cipher W
reduced to 8 rounds. In this setting, the adversary is given the key and the goal
is to distinguish the given permutation from a randomly selected permutation on
the plaintext space of the block cipher. This can be done by using the hardness
of Subspace Problem 2 described in Section 3.2. That is, for a given permutation
we have to find t plaintext pairs (pi, p

∗
i), such that the differences pi ⊕ p∗i form

a subspace Vin ⊆ FM
2 with dim(Vin) ≤ m and for the corresponding ciphertext

pairs the differences ci ⊕ c∗i form a subspace Vout ⊆ FN
2 with dim(Vout) ≤ n.

For the block cipher W reduced to 8 rounds and for a given key, the attack
of Section 5.4 can be interpreted as an algorithm to find t plaintext pairs (pi, p

∗
i)

with pi ⊕ p∗i belonging to a vector space of dimension m ≤ 64, such that for
the corresponding ciphertext pairs the differences ci ⊕ c∗i form a vector space
of dimension n ≤ 64. The resulting complexity is about t · 2176−s with memory
requirements of 2s and 0 ≤ s ≤ 64. So in other words, we have found a solution
for Subspace Problem 2 in the case of W reduced to 8 rounds.

The discussion in Section 3.2 culminates in lower bounds for the query com-
plexity of a non-adaptive adversary when trying to solve Subspace Problem 2
for a random permutation to which only black-box access is admissible. Table 4
compares the complexity of the generic approach of Section 3.2 and our dedicated
approach for several values of t.

As can be seen in the table, the Subspace Problem for the Whirlpool block
cipher, reduced to 8 rounds in the known key setting, is easier to solve than for
a random permutation when we take t = 210. The complexity of the attack is
then about 2186−s. The probability for a non-adaptive adversary to solve the

34

Table 4. Values for t, Q (query complexity), Cs (complexity of our attack with
0 ≤ s ≤ 64), for p = 1, N = 512, n = 64,m = 64

log2(t) log2(Q) log2(Cs)

10 336.44 186-s
11 365.50 187-s
12 380.53 188-s
13 388.54 189-s
14 393.05 190-s
15 395.80 191-s
16 397.68 192-s

Subspace Problem 2 when making Q = 2186−s queries to a random permutation
with the parameters t = 210, N = 512, n = m = 64 and s = 64 is ≈ 2−350655.
This follows from Proposition 2.

8.2 Chosen-Key Distinguisher for 10 Rounds

In the chosen-key setting, an adversary is also given control over the key-input.
The goal of a distinguishing attack in this setting is to be able to distinguish the
block cipher W from an ideal cipher. Again, we want to use something similar
as Subspace Problem 2 for this task.

For the block cipher W we want to find t triples (pi, p
∗
i , ki) such that the

plaintext differences pi ⊕ p∗i form a subspace Vin ⊆ FN
2 with dim(Vin) ≤ m and

for the corresponding ciphertext pairs the differences ci ⊕ c∗i form a subspace
Vout ⊆ FN

2 with dim(Vout) ≤ n.
The above task can be solved along the same lines as it was done in Section 7.

Namely, we use the 9.5-round near-collision attack on the Whirlpool compression
function of Section 6 to solve the above described problem. The only difference
to Section 7 is that in the block cipher case, we omit the feed-forward. Thus,
our attacks finds t triplets (pi, p

∗
i , ki) confining to the above conditions with a

complexity of t · 2176 (respectively t · 2112 with precomputation). Note that in
our setting, a non-adaptive adversary is not able to exploit the fact that he can
choose the keys, since he has to decide upon his queries on beforehand to solve
the Subspace Problem 2. This is the reason why we can again use Proposition 2
with Q = 2122, t = 210, N = 512 and n = m = 64 to show that the success
probability for such an adversary is ≈ 2−285119 for a randomly selected cipher.

8.3 Related Work

For the block cipher W that is used in the Whirlpool compression function,
Knudsen described a distinguisher for 6 (out of 10) rounds [23]. It needs 2120

inputs and has a complexity of 2120. In [25] similar techniques were used to obtain
known-key distinguishers for 7 rounds of the AES. Furthermore, the designers of
Whirlpool describe in [2] a key recovery attack against W reduced to 7 rounds

35

Table 5. Values for t, Q (query complexity), C (complexity of our attack), and
Cp (complexity of our attack with precomputation) for p = 1, N = 512, n =
64,m = 64

log2(t) log2(Q) log2(C) log2(Cp)

10 336.44 186 122
11 365.50 187 123
12 380.53 188 124
13 388.54 189 125
14 393.05 190 126
15 395.80 191 127
16 397.68 192 128

with a complexity of about 2245. It is an extension of the attack by Gilbert and
Minier on AES [16].

9 Concluding Remarks

In this paper, we have explained the rebound attack on hash functions and
applied it to the hash function Whirlpool. We presented a detailed security
analysis of the Whirlpool hash function and the Whirlpool compression function
with respect to collision resistance.

We have also introduced two subspace problems as natural generalizations of
near-collision resistance for the cases of (non-invertible) functions and permuta-
tions. We have used rebound attacks to show that the compression function of
Whirlpool does not have the resistance of ideal primitives against distinguishers
based on one of these subspace problems.

An interesting property of both subspace problems is that the associated dis-
tinguishers are not affected by the presence of an invertible linear transformation
at the end of the compression function or its underlying block cipher. This prop-
erty corresponds to the common intuition that invertible linear transformation
at the start or the end do not affect the security of a primitive, but it is not
satisfied by the usual definition of near-collision resistance.

Thus far, the rebound attack has been applied mostly to hash functions that
are based on or inspired by the AES design. This can be interpreted as a weakness
of the AES design. However, one can also argue that the simple structure of AES
simply accelerates understanding of new designs, and thereby the development
of attacks. In that case, more results can be expected on other types of hash
functions.

Acknowledgements

The work in this paper has been supported in part by the Secure Information
Technology Center - Austria (A-SIT), by the Austrian Science Fund (FWF),

36

project P21936-N23, by the IAP Programme P6/26 (BCRYPT) of the Belgian
State (Belgian Science Policy) and by the European Commission under contract
ICT-2007-216646 (ECRYPT II).

References

1. Information technology – Security techniques – Hash-functions – Part 3: Dedicated
hash-functions. ISO/IEC 10118-3:2004., 2004.

2. Paulo S. L. M. Barreto and Vincent Rijmen. The Whirlpool Hashing Function.
Submitted to NESSIE, September 2000. Revised May 2003. Available online at
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (2008/12/11).

3. Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin,
Matt Robshaw, and Yannick Seurin. Sha-3 proposal: Echo. Submission to NIST,
2008.

4. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
J. Cryptology, 4(1):3–72, 1991.

5. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-
Key Attack on the Full AES-256. In Shai Halevi, editor, CRYPTO, volume 5677
of LNCS, pages 231–249. Springer, 2009.

6. Christophe De Cannière, Florian Mendel, and Christian Rechberger. Collisions for
70-Step SHA-1: On the Full Cost of Collision Search. In Carlisle M. Adams, Ali
Miri, and Michael J. Wiener, editors, Selected Areas in Cryptography, volume 4876
of LNCS, pages 56–73. Springer, 2007.

7. Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteris-
tics: General Results and Applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of LNCS, pages 1–20. Springer, 2006.

8. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, CRYPTO, volume 1462 of LNCS, pages 56–71. Springer, 1998.

9. Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In Bahram
Honary, editor, IMA Int. Conf., volume 2260 of LNCS, pages 222–238. Springer,
2001.

10. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

11. Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 416–427. Springer, 1989.

12. Hans Dobbertin. The status of MD5 after a recent attack. CryptoBytes, 2(2):3–6,
1996.

13. Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271, 1998.

14. S. D. Fisher. Classroom Notes: Matrices over a Finite Field. Amer. Math. Monthly,
73(6):639–641, 1966.

15. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a SHA-3
candidate. Available online at http://www.groestl.info, 2008.

16. Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of Rijndael. In
AES Candidate Conference, pages 230–241, 2000.

17. Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks
for AES-like permutations. Cryptology ePrint Archive, Report 2009/531, 2009.

18. N. Haller. RFC1760: The S/KEY One-Time Password System, 1995.

37

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://www.groestl.info

19. N. Haller, C. Metz, P. Nesser, and M. Straw. RFC2289: A One-Time Password
System, 1998.

20. John Kelsey and Stefan Lucks. Collisions and Near-Collisions for Reduced-Round
Tiger. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS, pages
111–125. Springer, 2006.

21. Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic. Speeding up Collision
Search for Byte-Oriented Hash Functions. In Marc Fischlin, editor, CT-RSA,
volume 5473 of LNCS, pages 164–181. Springer, 2009.

22. Lars R. Knudsen. Truncated and Higher Order Differentials. In Bart Preneel,
editor, FSE, volume 1008 of LNCS, pages 196–211. Springer, 1994.

23. Lars R. Knudsen. Non-random properties of reduced-round Whirlpool. NESSIE
public report, NES/DOC/UIB/WP5/017/1, 2002.

24. Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl
Hash Functions. In Alex Biryukov, editor, FSE, volume 4593 of LNCS, pages
39–57. Springer, 2007.

25. Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block
Ciphers. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages
315–324. Springer, 2007.

26. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schläffer. Rebound Distinguishers: Results on the Full Whirlpool Compres-
sion Function. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS,
pages 126–143. Springer, 2009.

27. Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, second
edition, 1997. With a foreword by P. M. Cohn.

28. Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolic, Yu Sasaki, and Martin
Schläffer. Rebound Attack on the Full Lane Compression Function. In Mitsuru
Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 106–125. Springer,
2009.

29. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Im-
proved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Per-
mutation and AES Block Cipher. In Michael J. Jacobson Jr., Vincent Rijmen,
and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867
of LNCS, pages 16–35. Springer, 2009.

30. Florian Mendel, Bart Preneel, Vincent Rijmen, Hirotaka Yoshida, and Dai Watan-
abe. Update on Tiger. In Rana Barua and Tanja Lange, editors, INDOCRYPT,
volume 4329 of LNCS, pages 63–79. Springer, 2006.

31. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr
Dunkelman, editor, FSE, volume 5665 of LNCS, pages 260–276. Springer, 2009.

32. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Rebound Attacks on the Reduced Grøstl Hash Function. In Josef Pieprzyk, editor,
CT-RSA, volume 5985 of LNCS, pages 350–365. Springer, 2010.

33. Florian Mendel and Vincent Rijmen. Cryptanalysis of the Tiger Hash Function.
In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages 536–550.
Springer, 2007.

34. Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

35. Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 428–446. Springer, 1989.

38

36. National Institute of Standards and Technology. FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce, November 2001.

37. National Institute of Standards and Technology. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-
3) Family. Federal Register, 27(212):62212–62220, November 2007. Avail-
able: http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(2008/10/17).
38. NESSIE. New European Schemes for Signatures, Integrity, and Encryption. IST-

1999-12324. Available online at http://cryptonessie.org/.
39. Thomas Peyrin. Cryptanalysis of Grindahl. In Kaoru Kurosawa, editor, ASI-

ACRYPT, volume 4833 of LNCS, pages 551–567. Springer, 2007.
40. Vincent Rijmen and Bart Preneel. Improved Characteristics for Differential Crypt-

analysis of Hash Functions Based on Block Ciphers. In Bart Preneel, editor, FSE,
volume 1008 of LNCS, pages 242–248. Springer, 1994.

41. Herbert Robbins. A remark on Stirling’s formula. Amer. Math. Monthly, 62:26–29,
1955.

42. David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume
1636 of LNCS, pages 156–170. Springer, 1999.

43. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of LNCS, pages 17–36.
Springer, 2005.

44. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35.
Springer, 2005.

39

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://cryptonessie.org/

	Introduction
	The Rebound Attack
	Differential Cryptanalysis of Block Ciphers
	Differential Cryptanalysis of Hash Functions
	The Rebound Attack

	The Subspace Problem
	On the Hardness of Subspace Problem 1
	The Permutation Case
	Related Work

	The Hash Function Whirlpool
	The Wide Trail Design Strategy
	Whirlpool
	The Block Cipher W
	The Round Transformations of W
	Differential Properties of Round Transformations
	Good Differential Trails

	Attacks on the Hash Function
	Collision Attack on 4.5 Rounds
	Improving the Collision Attack on 4.5 Rounds
	Collision Attack on 5.5 Rounds
	Near-Collision for Whirlpool

	Attacks on the Compression Function
	The Extended Inbound Phase
	Outbound Phase

	Distinguisher for the Whirlpool Compression Function
	Distinguisher for the Block Cipher W
	Known-Key Distinguisher for 8 Rounds
	Chosen-Key Distinguisher for 10 Rounds
	Related Work

	Concluding Remarks

