
Noname manuscript No.
(will be inserted by the editor)

Non-Transferable Proxy Re-Encryption Scheme for
Data Dissemination Control

Yi-Jun He · Tat Wing Chim · Lucas
Chi Kwong Hui · Siu-Ming Yiu

Received: date / Accepted: date

Abstract A proxy re-encryption (PRE) scheme allows a proxy to re-encrypt
a ciphertext for Alice (delegator) to a ciphertext for Bob (delegatee) without
seeing the underlying plaintext. With the help of the proxy, Alice can delegate
the decryption right to any delegatee. However, existing PRE schemes gener-
ally suffer from at least one of the followings. Some schemes fail to provide the
non-transferable property in which the proxy and the delegatee can collude to
further delegate the decryption right to anyone. This is the main open problem
left for PRE schemes. Other schemes assume the existence of a fully trusted
private key generator (PKG) to generate the re-encryption key to be used by
the proxy for re-encrypting a given ciphertext for a target delegatee. But this
poses two problems in PRE schemes if the PKG is malicious: the PKG in their
schemes may decrypt both original ciphertexts and re-encrypted ciphertexts
(referred as the key escrow problem); and the PKG can generate re-encryption
key for arbitrary delegatees without permission from the delegator (we refer
to it as the PKG despotism problem).

In this paper, we propose the first non-transferable proxy re-encryption
scheme which successfully achieves the non-transferable property. We show
that the new scheme solved the PKG despotism problem and key escrow prob-
lem as well. Further, we find that the new scheme satisfies requirements of
data dissemination control which seeks to control information and digital ob-
jects even after they have been delivered to a legitimate recipient. We explore
the potential of adopting our new scheme to achieve data dissemination con-
trol and implement a non-transferable re-encryption based encrypted PC/USB
file system. Performance measurements of our scheme demonstrate that non-
transferable re-encryption is practical and efficient.

Yi-Jun He, Tat Wing Chim, Lucas Chi Kwong Hui, Siu-Ming Yiu
Department of Computer Science, The University of Hong Kong
Tel.: +852-28578440
Fax: +852-25598447
E-mail: {yjhe, twchim, hui, smyiu}@cs.hku.hk



2 Yi-Jun He et al.

Keywords proxy re-encryption · certificateless public key encryption ·
non-transferable property · data dissemination

1 Introduction

1.1 Proxy Re-encryption

In daily life, the following situations are likely to happen. A boss is on leave,
but he still wants to read emails regularly for checking if there are urgent
matters requiring his attention. People might think that checking emails could
easily be done anywhere via a mobile phone or a notebook. But in reality,
you could be situated in a place where it is not convenient to access the
network, or the network is too slow for checking emails. Then, the boss may
ask his secretary or subordinate to check emails for him. The simplest and
most common way is to give his password to his secretary or subordinate.
However, by doing so, his personal information would not be safe anymore if
the password is leaked outside. Consider another situation. Suppose that you
have kept some encrypted photos, videos or sensitive files in the file server
to facilitate sharing the data with a group of target users. The distribution
of decryption keys to the target users could become a big problem. The file
system employed could be similar to Cephesus [6]; it uses a trusted access
control server to distribute the keys. So, the group members must contact
the access control server to obtain their decryption keys for accessing files.
However, the above keys distribution method may not be satisfactory, since
the underlying access control server model relies on a complete trust in the
server operator. Furthermore, in practice, the server operator could abuse the
keys kept by the server to decrypt any data. Even if the access control server
operator can be trusted fully, letting all critical key data kept by a single server
could make it become an attack target.

The proxy re-encryption, a cryptographic scheme, introduced in [4] can be
employed to address the problems mentioned above. It allows a third-party
(the proxy) to re-encrypt a ciphertext which has been encrypted for one party
without seeing the underlying plaintext so that it can be decrypted by an-
other. This is illustrated in Figure 1, where Alice keeps some photos, videos
or sensitive files in encrypted form in the file server; Bob fetches encrypted
files from file server, and then transmits the encrypted files to proxy; Alice
sends a re-encryption key to the proxy which re-encrypts the encrypted files
and sends Bob the re-encrypted ciphertext which can be decrypted by Bob
with his own private keys. The above scheme aroused much interest in the
encryption community [3,4,9,11,13,14,20–24] since it could be exploited in a
number of applications for achieving better information security and privacy,
such as:

– Email forwarding: Delegator wishes to delegate his email decryption right
to a delegatee. The proxy can “forward” re-encrypted emails to a delegated



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 3

File Server

Alice Proxy Bob

 
Fig. 1 Proxy Re-Encryption

recipient. The recipient then accesses the emails without needing to know
the delegator’s decryption key.

– Encrypted files distribution: The encrypted files are stored in a file server.
Only the content owners can grant the access right of the files to the target
users; even the file server operator has no right to access the files.

– Law-enforcement monitoring: The encrypted communication data is trans-
ferred via an Internet service provider (ISP). The ISP can require the
content owners to provide the access right to the law enforcement officers
to let them monitor the data being transferred to various users; however,
the ISP operator cannot access the data.

1.2 Review of the Transferable Problem

However, the main problem of existing PRE schemes (details of existing schemes
will be given in the next section) is failing to provide the non-transferable
property which was first introduced by Ateniese et al. in 2005 [3]. A proxy
re-encryption scheme is said to be non-transferable if the proxy and a set of
colluding delegatees cannot re-delegate decryption rights to other parties. On
one hand, this is a very desirable property. For example, user A saves some
encrypted private confidential files on the file server. If A delegates B the de-
cryption right for accessing those files, A may need some guarantee that his
files ”go no further”. It requires that the delegatee B plus the proxy cannot
re-delegate decryption right to others. On the other hand, researchers [3,11]
are even not sure that transferability can be preventable since the delegatee
B can always decrypt and forward the plaintext to another party. However,
this approach requires that the delegatee remains an active, online participant.
What we want to prevent is the delegatee (plus the proxy) providing other par-
ties with a secret value that it can be used offline to decrypt A’s ciphertexts.
Again, the delegatee can always send its secret key to another party. But in
doing so, the delegatee puts itself in a risky situation. Therefore, achieving a
non-transferable PRE scheme, in the sense that the only way for delegatee to
transfer decryption capabilities to another party is to expose his own secret
key, seems to be the main open problem left for PRE.



4 Yi-Jun He et al.

1.3 Limitations of Existing Solutions

Libert and Vergnaud [11] indicated that it is quite difficult to prevent the proxy
and delegatees from colluding to do re-delegation and that discouraging col-
lusion rather than preventing illegitimate re-delegation is an easier approach.
Thus, they try to trace the malicious proxy after its collusion with one or more
delegatees. No doubt that it works to deter collusion from happening. How-
ever, it is more desirable to have a better way to prevent collusion, not just
discourage collusion. Some identity-based PRE schemes [13,20–24] assume the
existence of a fully trusted private key generator (PKG) which helps to gen-
erate the re-encryption key to be used by the proxy for re-encrypting a given
ciphertext for a target delegatee. Since the re-encryption key is generated us-
ing the master key of the PKG, the proxy and the delegatee(s) cannot further
delegate the decryption right to others without the help of the PKG. However,
this creates two problems in PRE schemes. First, there is another key escrow
problem for which the PKG in their schemes may be able to decrypt both
original and re-encrypted ciphertexts; And the PKG despotism problem, in
which the PKG itself has the power of generating re-encryption key for trans-
ferring decryption right to arbitrary delegatees. Thus those PKG-based PRE
schemes just transformed the ”delegatee-proxy-collusion transferable problem”
to a ”PKG alone transferable problem”. So it is fair to say that they did not
solve the transferable problem.

1.4 Data Dissemination Control

Data Dissemination control [19] seeks to control information and digital ob-
jects even after they have been delivered to a legitimate recipient. Control
encompasses the usage of the digital object by the recipient (e.g., permission
to view a document on a trusted viewer) as well as further dissemination
(e.g., permission to distribute a limited number of copies of the document to
colleagues but with no further dissemination allowed). Dissemination control
is needed in many different domains ranging from the dissemination of dig-
ital music and movies, eBooks, business proprietary and sensitive electronic
documents, healthcare [10,18].

Non-redissemination is a requirement of dissemination control, i.e. the dis-
seminator, such as A, disseminates an object to a recipient B, but B is not
allowed to disseminate the object any further. It would be a nightmare if non-
redissemination control does not exist, for example, one day, you suddenly find
that your encrypted private information in the file server can be accessed by
anyone, but actually you disseminated it only to a recipient B before.

1.5 Our Contributions

To tackle the transferable problem as well as the key escrow problem and
PKG despotism problem, a new PRE model based on certificateless public



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 5

key encryption [2] is built in this paper. We borrow the idea of using PKG
to generate a re-encryption key, but our new non-transferable re-encryption
scheme successfully solved the problems in previous PKG-based works. The
characteristics of our proposed scheme are summarized as follow.

– The proposed scheme has the non-transferable property. The re-encryption
key is generated by a key generating centre (PKG); Delegator participants
actively to help generating partial decryption key for delegatee using part
of his private key. Thus delegatee and proxy cannot collude to re-delegate
decryption rights since they do not have knowledge of PKG’s master secret
and the delegator’s private key.

– Without the participation of the delegator, PKG is unable to generate any
useful re-encryption key for delegating decryption right, thus completely
resolves the PKG despotism problem.

– PKG cannot decrypt the original ciphertext and re-encrypted ciphertexts
as well, thus solving the key escrow problem.

Dissemination control literatures [17,19] have been focused on mechanisms
and policies. In our research, we find that the non-redissemination requirement
is similar to the non-transferable requirement in proxy re-encryption scheme.
Thus we propose to use our non-transferable proxy re-encryption scheme
to achieve non-redissemination in a cryptographic way. Non-transferable re-
encryption may be not the only way to control illegitimate redisseminating
digital object, but using PRE scheme brings three main advantages:

– Disseminated digital object is invisible to proxy though it is responsible
for doing re-encryption.

– Disseminator does not need to reveal his private key to the recipient for
decrypting ciphertext.

– Disseminator and recipient do not need to share the same decryption key.
Recipient just needs to use his own private key to decrypt the re-encrypted
ciphertext.

2 Related Work

Blaze, Bleumer and Strauss [4] proposed the first proxy re-encryption scheme,
which is based on ELGamal encryption. But this scheme is bi-directional, that
is, when the proxy is allowed to re-encrypt Alice’s messages under Bob’s key,
it can also re-encrypt Bob’s messages under Alice’s key. Bob may not like
this. Another weakness is that if the proxy colludes with Alice, they can easily
learn Bob’s secret key SKB. Likewise, the proxy and Bob may collude to learn
Alice’s secret key. Furthermore, in order to compute the re-encryption key from
A to B, denoted as rkA−>B , one party must share his or her secret key with
the other or they must rely on a trusted third party. The other drawback is
that the scheme is transitive in the following sense. Suppose that the proxy
is allowed to generate two re-encryption keys rkA−>B and rkB−>C ; then the



6 Yi-Jun He et al.

proxy can derive an additional re-encryption key rkA−>C for delegation from
A to C.

Later, Ivan and Dodis [9] proposed three unidirectional proxy re-encryption
schemes based on ElGamal, RSA, and IBE (ID-based encryption) respectively.
Their main contribution is that they solved (i) the bi-directional problem and
(ii) the transitive problem in [4]. But in their schemes, Alice’s private key is
split into two parts DK1 and DK2, with DK1 distributed to proxy and DK2

distributed to Bob. Thus when the proxy colludes with Bob, they can derive
Alice’s private key.

In 2005, Ateniese et al. [3] presented three proxy re-encryption schemes
which are considered to be more secure than other approaches. Their major
advantages are the following. The schemes are unidirectional and the del-
egator’s private key is protected from being disclosed by the collusion of
proxy and a delegatee. They implemented one of their proposed schemes
in a secure distributed file system to show that the scheme can work effi-
ciently in practice. They summarized nine important properties of proxy re-
encryption schemes, which include the non-transferable property. Lacking the
non-transferable property in all existing schemes was considered an open prob-
lem of the contemporary PRE schemes.

This open problem was first addressed in 2008 by Libert and Vergnaud
[11]. They indicated that it is quite difficult to prevent the proxy and delega-
tees from colluding to do re-delegation and that discouraging collusion rather
than preventing illegitimate re-delegation is an easier approach. Thus, they
proposed, instead of preventing the collusion of proxy and delegatee, tracing
the malicious proxy after its collusion with one or more delegatees. It is the
first attempt to address the open problem. However, it still cannot prevent
re-delegation from happening.

Matsuo’s PRE schemes [13] use the PKG to help generating re-encryption
key for the delegator and the delegatee. Based on this approach, they proposed
two PRE schemes: one for the decryption right delegation from a user of PKI-
based public key encryption system to IBE system users, and the other for
the delegation among IBE system users. This is the first set of schemes that
use PKG to generate re-encryption key. However, the PKG in the schemes can
decrypt all re-encrypted ciphertexts; so, there is a potential security problem
as long as PKG is untrusted or malicious.

In 2008, Wang et al.[23] extended the idea of Matsuo’s scheme by allowing
PKG to generate re-encryption keys based on its master secret key. They
proposed several proxy re-encryption schemes:(i) PRE from IBE to Certificate
Based Public Key Encryption; (ii) PRE based on a variant of the first system
of Selective identity secure IBE [5]; (iii) PRE based on the second system of
Selective identity secure IBE [5];and (iv) PRE based on Sakai-Kasahara IBE
scheme [15]. Based on this work, Wang et al. proposed five other schemes
[14,20–22,24] to address different problems of proxy re-encryption schemes.
However, there are still some issues not yet addressed in each one of them. In
[20], the proxy can re-encrypt on its own the ciphertext for the delegator into
ciphertext for any delegatee; this is not a desired property of PRE. In [21],



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 7

it seems that they solved the open problem related to the non-transferable
issue, since proxy and delegate cannot collude to re-delegate decryption right;
however, in the scheme, the PKG alone can delegate arbitrarily to anyone as
it can generate a re-encryption key for any delegatee. In [22,24], the PKG can
also delegate arbitrarily as what it could do in [21]. Among the five schemes,
[21] seems to be the best in solving the non-transferable issue, we will compare
our scheme with [21] in Section 5.

3 Preliminaries

3.1 Bilinear Map

Let G and GT be multiplicative cyclic groups of prime order p, and g be
generator of G. We say that GT has an admissible bilinear map e: G×G → GT ,
if the following conditions hold.

– e(ga, gb) = e(g, g)ab for all a, b.
– e(g, g) �= 1.
– There is an efficient algorithm to compute e(ga, gb) for all a, b and g.

3.2 Assumption

The security of our concrete construction is based on a complexity assumption
called “Truncated Decision Augmented Bilinear Diffie-Hellman Exponent As-
sumption (Truncated q-ABDHE )”proposed in [7], which is defined as follows:

Let e : G×G → GT be a bilinear map, where G and GT are cyclic groups
of large prime order p. Given a vector of q+3 elements:

(g′, g′(α
q+2), g, gα, . . . , g(α

q)) ∈ Gq+3

and an element Z ∈ GT as input, output 0 if Z = e(g(α
q+1), g′) and output 1

otherwise.

An algorithm B has advantage ε in solving the truncated q-ABDHE if:

|Pr[B(g′, g′(αq+2), g, gα, . . . , g(α
q), e(g(α

q+1), g′)) = 0]

−Pr[B(g′, g′(αq+2), g, gα, . . . , g(α
q), Z) = 0]| ≥ ε

where the probability is over the random choice of generators g, g′ in G, the
random choice of α in Zp, the random choice of Z ∈ GT , and the random bits
consumed by B.



8 Yi-Jun He et al.

4 Our Non-Transferable PRE Scheme

4.1 Non-Transferable PRE Model

Our Non-Transferable PRE scheme is based on certificateless public key en-
cryption. It is composed of nine algorithms:

– Setup. On input a security parameter 1k, the public parameters mpk and
master secret key msk are generated.

– Key Generation.
– Set-Secret-Value. algorithm generates a secret value which is only known

to user himself.
– Partial-Private-Key-Extract. On input a user’s identity ID, msk, algo-

rithm generates partial private key for user.
– Set-Private-Key. On input the partial private key and the secret value,

algorithm outputs the whole private key for user.
– Set-Public-Key. On input a user’s identity ID and secret value, algo-

rithm generates public key.
– Private Key Correctness Check. Algorithm checks the correctness of the

private key.
– Encryption. The encryption algorithm takes public key upki of delegator i

and message m as input, outputs a ciphertext Ci encrypted under upki.
– Decryption(delegator). The decryption algorithm takes private key uski of

delegator i and ciphertext Ci as input, outputs message m. This algorithm
actually is not necessary for PRE scheme. We put it here just for indicating
that delegator has the ability to decrypt the original ciphertext Ci.

– Re-Encryption Key Generation. Algorithm verifies the delegator i ’s signa-
ture, and extracts delegatee j ’s ID from signature. The re-encryption key
generation algorithm outputs a re-encryption key rki→j and other rela-
tional values.

– Partial-Decryption-Key Generation. Algorithm checks the correctness of
the re-encryption key, and generates a partial decryption key.

– Re-Encryption. The re-encryption algorithm takes re-encryption key rki→j

and ciphertext Ci as input, outputs a re-encrypted ciphertext Cj under
upkj.

– Decryption(delegatee). The decryption algorithm takes private key uskj
of delegatee j, partial decryption key and ciphertext Cj as input, outputs
message m.

4.2 Security Model for Identity-Based Encryption

Chosen ciphertext security for proxy re-encryption systems is defined via the
following game between an adversary A and a challenger C:

Setup. C runs algorithm Setup, and outputs params to A.
Phase 1 . A adaptively issues queries q1,...,qm, with query qi being one of

the following:



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 9

– (pkextract, IDi): public key extraction for user IDi

– (encrypt, IDi,mi): encryption of plaintext for user IDi

– (pskextract, IDi): partial private key extraction for user IDi

– (rkextract, IDi, IDi′): re-encryption key extraction for delegator IDi and
delegatee IDi′

– (decrypt, IDi, ci): decryption of ciphertext for IDi

– (reencrypt, IDi, IDi′ , ci): re-encryption of ciphertext for IDi to IDi′

Challenge. The adversary submits two plaintexts M0, M1 ∈ M and an iden-
tity IDj . IDj must not have appeared in any key generation query in Phase 1.
The challenger selects a random bit b ∈ {0, 1}, sets C = Encrypt(params, IDj ,Mb),
and sends C to the adversary as its challenge ciphertext.

Phase 2 . This phase proceeds as in Phase 1. However A is restricted from
issuing the following queries:

1. (encrypt, IDj,M0) and (encrypt, IDj ,M1)
2. (decrypt, IDj, cj)
3. Any pair of queries (rkextract, IDj , ID

′
j) and (decrypt, ID′

j , c
′
j) where c′j

is the re-encrypted ciphertext using rkj→j′ .

Guess. Finally, A submits a guess b′ ∈ {0, 1}. The adversary wins if b = b′.
We call an adversary A in the above game a IND-ID-CCA adversary.

Definition 1. A proxy re-encryption scheme is said to be (t, qID, qc, ε)
IND-ID-CCA secure, if all t-time IND-ID-CCA adversaries making at most
qID private key queries and at most qc chosen ciphertext queries have advan-
tage at most ε in winning the above game.

Recipient-Anonymity. Informally, we say that a system is anonymous
if an adversary cannot distinguish the public key ID under which a ciphertext
was generated. More formally, we can incorporate anonymity into our game
above through the following simple modification. In the Challenge phase, the
adversary outputs two identities ID0 and ID1 not queried in Phase 1 and two
messages M0 and M1. The challenger picks two random bits b, c ∈ {0, 1}, uses
IDb to encrypt Mc, and sends the resulting ciphertext C to the adversary.
Phase 2 is like Phase 1, except that the adversary cannot request a private
key for ID0 or ID1, or the decryption of C under either identity. Finally, in the
Guess phase, the adversary guesses two bits b’, c’ and wins if b = b′ and c = c′.
We define the adversary’s advantage in this game to be |Pr[b=b′ ∧ c=c′]− 1

4 |,
and we call an adversary A in this modified game a ANON-IND-ID-CCA
adversary.

Definition 2. A proxy re-encryption scheme is (t, qID, qc, ε) ANON-
IND-ID-CCA secure, if all t-time ANON-IND-ID-CCA adversaries making at
most qID private key queries and at most qc chosen ciphertext queries have
advantage at most ε in winning the modified game.

4.3 Non-Transferable PRE Scheme Construction

We construct the Non-Transferable PRE scheme based on the basic IBE sys-
tem proposed in [8]. However, the IBE system in [8] cannot fully satisfy our



10 Yi-Jun He et al.

security requirement. We transformed this IBE system into a certificateless
public key encryption system [2], so that our PRE scheme based on this new
certificateless public key encryption system can successfully solve the trans-
ferable problem in existing PRE schemes. The main ideas of the scheme are
as follow: Before delegation, delegator will send delegatee’s identity to PKG.
PKG is responsible for generating the re-encryption key, and sending this key
and some other information to delegator. Delegator checks the correctness of
the re-encryption key, and generates a partial decryption key making use of
the information received from PKG. Then, delegator sends the re-encryption
key to the proxy, and the partial decryption key to delegatee. The proxy re-
encrypts the original ciphertext from delegator, and sends the re-encrypted
ciphertext to delegatee. The delegatee can decrypt the ciphertext using his
private key and the partial decryption key received from delegator.

In the following sections, we let Alice (A) be the delegator, and Bob (B)
be the delegatee.
Setup:

Let G and GT be groups of order p such that p is a k -bit prime, and
let e : G × G → GT be the bilinear map. HI :{0, 1}∗ → Zp, H :{0, 1}∗ →
Zp, H

′:GT → Zp are secure hash functions. The PKG selects four random
generators h1, h2, h3, g ∈ G and randomly chooses α ∈ Zp. It sets g1 = gα.
Define the message space M ∈ GT . The public parameters mpk and master
secret key msk are given by

mpk = (g, g1, h1, h2, h3, HI , H,H ′,M),msk = (α)

Key Generation :
This is a protocol through which a user U with an identity ID can securely

get his partial private key from PKG.
On input the public key/master secret key pair (mpk, msk) and an identity

IDA ∈ {0, 1}k of entity A, the PKG computes idA = HI(IDA). If idA = α ,
it aborts. Otherwise, the protocol proceeds as follow:

– Set-Secret-Value. Entity A selects rA ∈ Zp at random. rA is A’s secret
value.

– Partial-Private-Key-Extract.
1. A sends R = h1

rA to PKG, and gives PKG the following zero-knowledge
proof of knowledge:

PK{rA : R = h1
rA}

2. PKG randomly selects r′A, rA,2, rA,3 ∈ Zp and computes

h′
A = (Rg−r′A)1/(α−idA), hA,2 = (h2g

−rA,2)1/(α−idA), hA,3 = (h3g
−rA,3)1/(α−idA)

and sends A’s partial private key (r′A, h
′
A, rA,2, hA,2, rA,3, hA,3) to A.

– Set-Private-Key. A computes

rA,1 = r′A/rA, hA,1 = (h′
A)

1/rA = (h1g
−rA,1)1/(α−idA)

Then, A’s private key can be denoted as

uskA = (rA, rA,1, hA,1, rA,2, hA,2, rA,3, hA,3)



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 11

Similarly, the delegatee B ’s private key is denoted as

uskB = (rB , rB,1, hB,1, rB,2, hB,2, rB,3, hB,3)

– Set-Public-Key. A publishes her public key upkA = (pA,1, pA,2), where
pA,1 = g1

rA , and pA,2 = grAidA . Anyone can verify the validity of upkA
by checking if the equalities e(gidA , pA,1)=e(g1, pA,2), and e(hrA

1 , g1) =
e(h1, pA,1) hold (i.e., hrA

1 can be obtained from PKG).

Private Key Correctness Check :
On input (mpk, uskID) and an identity ID ∈ {0, 1}k, A computes idA =

HI (IDA) and checks whether

e(hA,i, g1/g
idA) = e(hig

−rA,i,g)

for i=1,2,3. If correct, output 1. Otherwise, output 0.

Encryption :
To encrypt a messagem ∈ GT using public key, sender checks that whether

the equalities e(gidA , pA,1)=e(g1, pA,2) and e(hrA
1 , g1) = e(h1, pA,1) hold. If

not, output ⊥ and abort encryption. Otherwise, sender generates a unique
randomly-selected secret parameter s ∈ Zp, and computes idA = HI (IDA).
Finally, sender outputs the ciphertext C where:
C = (C1, C2, C3, C4, C5, C6) =(pA,1

spA,2
−s, e(g, g)s,m·e(g, h1)

−s
, e(g, g)H

′(m),

gsβ+H′(m), e(g, h2)
se(g, h3)

sβ).
We set β = H(C1, C2, C3, C4).

Decryption(delegator):
To decrypt a ciphertext C = (C1, C2, C3, C4, C5, C6) using secret key uskA,

delegator Alice computes β = H(C1, C2, C3, C4) and tests whether

e(C5, g) = Cβ
2 C4

and
C6 = e(C1, hA,2hA,3

β)1/rA · C2
rA,2+rA,3β

If it is not equal, outputs ⊥. Else computes

m = C3 · e (C1, hA,1)
1/rA · C2

rA,1

If e(g, g)H
′(m) = C4 holds, return m; otherwise return ⊥.

The following Re-Encryption process is done through an interactive proto-
col among Alice, Bob, PKG and Proxy, which is shown in Figure 2.

Re-Encryption Key Generation :

1. In our PRE scheme, Bob is only allowed to decrypt messages intended
for Alice during some specific time period i. To achieve this property, the
delegator Alice generates a random value ai ∈ Zp for each time period i,
where i ≥ 1. ai will be invalid after the period i. Alice signs Bob’s identity
IDB, and sends the signature σ, IDB , ai to PKG via a secure channel.
Delegator Sign:



12 Yi-Jun He et al.

, C4, C5

Fig. 2 Proposed Non-Transferable Proxy Re-encryption framework

– Choose z ∈ Zp, and compute U = gz.
– Compute V = HI (IDB, U).
– Compute W = gαrA+V .
– The signature on IDB is σ = (U,W ).

2. PKG verifies Alice to identify the identity of the delegator.
PKG Verify:
– Compute V = HI (IDB, U).
– Accept the signature iff e(h1,W ) = e(h1

rA , gα)e(h1, g)
V .

3. If verification passes, PKG generates a unique randomly-selected secret
parameter y ∈ Zp, and computes re-encryption key rkA→B = (α−idB

α−idA
+

aiy) mod p,A1 =
(
h1

rAg−r′A
)y

, B1 =
(
h1

rBg−r′B
)aiy/(α−idB)

, B2 = h1
aiy

and sends rkA→B , A1, B1, B2 to Alice.

Partial-Decryption-Key Generation:
4. Delegatee Bob sends h′

B to Alice via a secure and authenticated channel.
5. Alice checks whether

e(h1, B1) = e(B2, h
′
B)

to ensure B1 is a valid value which will help delegatee for decryption later.
If correct, output 1, otherwise, output 0.

6. Alice checks whether

h′
A
(idA−idB) · A1

ai ·
(
h1

rAg−r′A
)
=

(
h1

rAg−r′A
)rkA→B



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 13

to ensure that rkA→B is a re-encryption key generated properly for dele-
gation from her to Bob.

7. Alice sends the re-encryption key rkA→B to Proxy via an authenticated
channel.

8. Alice computes h′
B
1/rA and B1

1/rA , and sends them to Bob as partial
decryption key.

Re-Encryption:
Proxy computes β = H(C1, C2, C3, C4) and tests whether

e(C5, g) = Cβ
2 C4

If it is not equal, output⊥. Else computes C1
′ = C1

rkA→B = g
rAs(α−idA)(

α−idB
α−idA

+aiy),
and sends (C1

′, C1, C2, C3, C4, C5) to Bob.

Decryption (delegatee):
Bob computes β = H(C1, C2, C3, C4) and tests whether

e(C5, g) = Cβ
2 C4

If it is not equal, output ⊥. Else Bob computes

C3
e(C1

′,h′
B

(1/rA)(1/rB))C2
rB,1

e(C1,B1
(1/rA)(1/rB))

= C3
e(g

rAs(α−idA)(
α−idB
α−idA

+aiy)
,(h1g

−rB,1 )
1

(α−idB )rA )(e(g,g)s)rB,1

e(grAs(α−idA),(h1g
−rB,1 )

aiy

(α−idB )rA )

= C3e(g
s(α−idA)(

α−idB
α−idA

)
, (h1g

−rB,1)
1

(α−idB ) )e(g, g)s∗rB,1

= m · e(g, h1)
−se(gs(α−idB), (h1g

−rB,1)
1

(α−idB ) )e(g, g)srB,1

= m
If e(g, g)H

′(m) = C4 holds, return m; otherwise return ⊥.

5 Comparison with Existing Proxy Re-encryption Schemes

The main advantage of our scheme is: It achieved Non-transferable property,
Non-Key-escrow property and Non-PKG-despotism property, in which Non-
Key-escrow property and Non-PKG-despotism property are defined by us es-
pecially for estimating security of a PKG involved PRE schemes. To compare
some existing proxy re-encryption schemes with our proposed scheme as fully
as possible, we also analyze below some important properties defined in [3].
The comparison results are presented in Table 1.

– Non-transferable: In PRE, the proxy and a set of colluding delegatees can-
not re-delegate decryption rights. This is called Non-transferable. For ex-
ample, from rkA→B , skB and pkC , they cannot produce rkA→C .
Proof :Now go back to our scheme for a concrete discussion. After one del-
egation, the proxy holds rkA→B , and the delegatee Bob holds (rB , rB,1)

and (DK0 = h′
B
1/rA , DK1 = B

1/rA
1 ). If proxy and Bob want to launch



14 Yi-Jun He et al.

an attack in order to re-delegate the decryption right to others, Bob may

compute DK2 = DK
1/rB
0 and DK3 = DK

1/rB
1 by himself, then the proxy

exponentiate the DK2 by rkA→B. Given (C1, C2, C3) which is the origi-
nal ciphertext for the delegator, anyone who holds (DK2, DK3, rB,1) can
decrypt by C3 ·e(C1, DK2) ·CrB,1

2 /e(C1, DK3). However, notice that what-
ever method (2-party computation, or oblivious computation) the proxy
and delegatee used to compute the DK2, DK3, this re-delegation will suc-
cess only when Bob wishes to send his secret key rB,1 explicitly to other
parties, because rB,1 must be used to exponentiate C2 for decrypting the
ciphertext. Further, C2 is changeable in each delegation due to the random
number s is changing, so C

rB,1

2 cannot be computed offline, and rB,1 must
be sent explicitly to other parties. But by doing so, Bob may put himself
in danger, because his private key would be known to PKG once other par-
ties report rB,1 to PKG. Since the only way for Bob and proxy to transfer
decryption capabilities to other parties is to expose Bob’s secret key, Bob
would not run the risk of launching such attack. Thus we achieved the
purpose of preventing delegatees from colluding with proxy to re-delegate
the decryption right. Non-transferable property is achieved in our scheme.

– Non-Key-escrow : In PRE, PKG should not be allowed to decrypt both
original ciphertext and re-encrypted ciphertext for anyone, this is called
Non-Key-escrow.
Most of PKG-based PRE schemes do not achieve this property as dis-
cussed in section 2. However, in our proposed scheme, the original cipher-

text is decrypted by m = C3 · e (C1, hA,1)
1/rA · C2

rA,1 , in which rA is
needed for decryption. Moreover, the re-encrypted ciphertext is decrypted

by m = C3
e(C1

′,h′
B

(1/rA)(1/rB))C2
rB,1

e(C1,B1
(1/rA)(1/rB))

, in which rB is needed for decryption.

Notice that rA is the secret value of delegator, and rB is the secret value of
delegatee. PKG holds neither rA nor rB . Thus only users themselves can
decrypt the ciphertext, not the PKG. Non-Key-escrow property is achieved
in our scheme.

– Non-PKG-despotism: In PRE, PKG is not allowed to generate a proper
re-encryption key arbitrarily for delegating decryption right without per-
mission from delegator, this is called Non-PKG-despotism.
In our proposed scheme, delegator participants actively to help PKG gen-
erating re-encryption key by sending the random value ai, and the valid-
ity of the re-encryption key will be verified by delegator by checking if

h′
A
(idA−idB) ·A1

ai ·
(
h1

rAg−r′A
)
=

(
h1

rAg−r′A
)rkA→B

. If PKG misbehaved,

delegator can detect it via validity verification. Further, delegator is respon-

sible for generating a partial decryption key (h′
B
1/rA ,B

1/rA
1 ) for delegatee

using his own secret value rA. Without the participation of the delegator,
delegatee is unable to decrypt the re-encrypted ciphertext, even if PKG
may collude with proxy to do re-encryption illegally (PKG can do this by
sending the re-encryption to proxy directly, without passing the delegator).
In another word, the re-encryption key generated by PKG alone is useless



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 15

unless delegator is willing to help to generate the partial decryption key.
Thus completely resolves the PKG despotism problem.

– Unidirectional : Delegation from A → B does not allow re-encryption from
B → A.
In our scheme, rkA→B is in the form of (α−idB

α−idA
+aiy) mod p. It is impossible

to modify it into a valid rkB→A.
– Non-interactive: Re-encryption keys can be generated by Alice using Bob’s

public key; no trusted third party or interaction is required.
In our proposed scheme, PKG is employed to generate re-encryption keys,
so delegator needs to interact with PKG to generate the keys.

– Proxy invisible to delegator : In Ateniese’s scheme, a property called proxy
invisibility is achieved. This property in their work means the sender needs
to know the existence of proxy, in order to decide whether to generate
first-level encryption or second-level encryption, but the delegatee need
not to know the proxy existence. However, in our proposed scheme, proxy
is invisible to delegator, since there is only one form of encryption, but
visible to delegatee because delegatee needs to decide whether to decrypt
a normal form of ciphertext or a re-encrypted form of ciphertext. Thus, we
differentiate these two situations by using ”Proxy invisible to delegator”
and ”Proxy invisible to delegatee”. Our scheme achieved ”Proxy invisible
to delegator”, on the contrary, Ateniese’s scheme achieved ”Proxy invisible
to delegatee”.

– Original-access : Alice can decrypt re-encrypted ciphertexts that were orig-
inally sent to her.
This has been proved in our scheme construction.

– Key optimal : The size of Bob’s secret storage remains constant, regardless
of how many delegations he accepts.
Like Ateniese’s scheme, delegatee is allowed to decrypt re-encrypted ci-
phertext during some specific time period i. Thus information received
from PKG for decryption only need to exist temporarily in delegatee’s
side. After a time period i, the information would be invalid. Delegatee
can delete the information immediately. Thus in the long run, our scheme
is still key optimal.

– Collusion-“safe”: Bob and the proxy’s collusion cannot recover Alice’s se-
cret key.
In our proposed scheme, secrecy of Alice’s secret key depends on a ran-
dom value rA. It is chosen by Alice, and is not used in re-encryption key.
Although Bob and proxy collude, they cannot recover it.

– Temporary: Bob is only able to decrypt messages intended for Alice that
were authored during some specific time period i.
In our scheme, to achieve temporary proxy re-encryption, for each time
period i ≥ 1, Alice generates a random value ai ∈ Zp. Because ai will
be invalid after time period i, the re-encryption key’s life cycle is also pe-
riod i. We remark that in most existing schemes we are aware, including
our scheme, the temporary property is achieved based on the assumption
that the proxy will update the re-encryption key after each period expires



16 Yi-Jun He et al.

Table 1 Security Comparison of existing PRE schemes and our proposed scheme

Property BBS [4] ID [9] Ateniese [3] Wang [21] Our Scheme

Uni-directional No Yes Yes Yes Yes
Non-interactive No Yes Yes No No
Proxy invisibility Yes No Yes# Yes Yes#

Original-access Yes Yes Yes No Yes
Key optimal Yes No Yes Yes Yes
Collusion-safe No No Yes Yes Yes
Temporary Yes! Yes! Yes! No Yes!
Non-transitive No Yes Yes Yes Yes
Non-transferable No No No No* Yes
Non-Key-escrow −− No −− No Yes
Non-PKG-despotism −− No −− No Yes

(∗) PKG alone can transfer
(#) Ateniese [3] can only achieve proxy invisible to delegatee, our scheme can only achieve
proxy invisible to delegator.
(!) possible to achieve with additional assumption and overhead.

and re-encrypt the ciphertext using the updated re-encryption key. Oth-
erwise, if proxy always uses the expired re-encryption key to re-encrypt a
ciphertext, as long as the re-encryption is correct, the delegatee can always
decrypt the re-encrypted ciphertext using expired decryption key. In this
case, Temporary property cannot be achieved.

– Non-transitive: Based on the re-encryption keys, rkA→B and rkB→C , the
proxy cannot produce rkA→C .
In our proposed scheme, the re-encryption key is generated using the master
secret key of the PKG, proxy cannot generate rkA→C without knowing
the master secret key. And the delegatee’s identity is included in the re-
encryption key, the proxy is unable to replace the delegatee with another
party. So even with the keys rkA→B and rkB→C , the proxy cannot produce
rkA→C .

Our scheme adds more rounds of interaction for the following reasons:

– Private Key Correctness Check is added for checking the partial private
key generated by PKG, since PKG is not fully trusted in our assumption.

– In Re-encryption Key Generation, step 1 and 2 are added for PKG to
verify delegator and get delegatee’s identity, since PKG is responsible for
generate re-encryption key. Without verification, attacker may impersonate
delegator to trick PKG into generating re-encryption key.

– Partial-Decryption-Key Generation is added to prevent PKG, proxy and
delegatee re-delegating decryption right from colluding. With this step,
even if PKG, proxy and delegatee’s collude, they are unable to generate
re-encryption key for re-delegating decryption right without the original
delegator’s help.



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 17

6 Formal Security Analysis

In this section, we will prove the IND-ID-CCA security and ANON-IND-ID-
CCA security for our scheme under the security model mentioned in section
4.2.

Theorem 1. Assume the truncated decision (t, ε, q)-ABDHE assumption
holds for (G, GT , e). Then, the above non-transferable re-encryption scheme
is IND-ID-CCA secure even when the proxy and the delegatees are colluding.

Proof Let A be an adversary who breaks the IND-ID-CCA security of our sys-
tem (in particular, when the proxy and the delegatees are colluding). We con-
struct an algorithm, B, that solves the truncated decision q-ABDHE problem,
as follows. B takes as input a random truncated decision q-ABDHE challenge
(g′, g′q+2, g, g1, ..., gq, Z) where Z is either e(gq+1, g

′) or a random element of

GT (recall that gi = g(α
i)). Algorithm B proceeds as follows.

Setup: B generates three random polynomials f1(x) ∈ Zp[x], f2(x) ∈ Zp[x]
and f3(x) ∈ Zp[x] all of degree q. It sets h1 = gf1(α), h2 = gf2(α) and h3 =
gf3(α) by computing them from (g, g1, ..., gq). It sends the public parameters
(g, g1, h1, h2, h3) to A. Since g, α, f1(x), f2(x) and f3(x) are chosen uniformly
at random, h1, h2 and h3 are uniformly random as well and these public
parameters have distribution identical to that in the actual construction. B
maintains a list L to store the entry < IDQ, pkQ, pskQ, skQ > of every user
with identity IDQ, public key pkQ, partial private key pskQ and private key
skQ it has been queried so far.

Phase 1: During this phase, A can issue the following queries:

1. (pkextract, IDQ): public key extraction for user IDQ

2. (encrypt, IDQ,mQ): encryption of plaintext for user IDQ

3. (pskextract, IDQ): partial private key extraction for user IDQ

4. (rkextract, IDQ, IDQ′): reencryption key extraction for delegator IDQ and
delegatee IDQ′

5. (decrypt, IDQ, cQ): decryption of ciphertext for IDQ

6. (reencrypt, IDQ, IDQ′ , cQ): reencryption of ciphertext for IDQ to IDQ′

Note that A is not allowed to issue private key extraction queries since under
our scheme, even PKG only knows the partial private key but not the complete
private key of a user.

B responds to these queries as follows:
On (pkextract, IDQ), if IDQ = α, B uses α to solve the truncated decision

q-ABDHE immediately. Otherwise, let FQ,2(x) = (f2(x)−f2(IDQ))/(x−IDQ)
and FQ,3(x) = (f3(x)−f3(IDQ))/(x−IDQ) be two (q−1)-degree polynomials.
B sets the partial private key for IDQ to be (r′Q, h

′
Q, rQ,2, hQ,2, rQ,3, hQ,3)

which is (f1(IDQ), (Rg−r′Q)1/(α−IDQ), f2(IDQ), g
FQ,2(α), f3(IDQ), g

FQ,3(α))

respectively. For i = 2, 3, gFQ,i(α) = g(fi(α)−fi(IDQ))/(α−IDQ) = (hig
−rQ,i)

1/(α−IDQ)

.
Next, B computes rQ,1 = r′Q/rQ and hQ,1 = (h′

Q)
1/rQ to complete the private



18 Yi-Jun He et al.

key for IDQ. The private key for IDQ thus becomes (rQ, rQ,1, hQ,1, rQ,2, hQ,2,
rQ,3, hQ,3). Note that this is a valid private key for IDQ since for i = 1, 2, 3,

hQ,i = (hig
−rQ,i)

1/(α−IDQ)

as required. B then computes the public key for
IDQ as (g

rQ
1 , (grQ)IDQ), stores all these information into L and returns the

public key to A.

On (encrypt, IDQ,mQ), if IDQ = α, B uses α to solve the truncated
decision q-ABDHE immediately. If IDQ is in L, B simply extracts the public
key in the corresponding entry. Otherwise, B generates the public key, partial
private key and private key for IDQ as in the above, stores them into L,
encrypts mQ by performing the usual encryption algorithm with the public
key concerned and returns the ciphertext of mQ to A.

On (pskextract, IDQ), if IDQ = α or IDQ′ = α, B uses α to solve the
truncated decision q-ABDHE immediately. If IDQ is in L, B simply returns
the partial private key in the corresponding entry. Otherwise, B generates the
public key, partial private key and private key for IDQ as in the above, stores
them into L and returns the partial private key to A.

On (rkextract, IDQ, IDQ′), if IDQ = α or IDQ′ = α, B uses α to solve
the truncated decision q-ABDHE immediately. If IDQ or IDQ′ or both are
in L, B extracts the partial private key(s) in the corresponding entry(entries).
Otherwise, B generates the public key, partial private key and private key
for the identity not in L as in the above, stores them into L and uses the
partial private keys concerned for further processing as follows. B computes
the re-encryption key rkQ→Q′ using the usual re-encryption key calculation
algorithm except that B generates the random value ai on behalf of IDQ and
α is replaced by a random value (since B does not know the value of α). Note
that although rkQ→Q′ is an invalid re-encryption key, A has no way to verify
its correctness since it does not possess the private key of IDQ and it cannot
query it from B either.

On (decrypt, IDQ, cQ), if IDQ = α, B uses α to solve the truncated deci-
sion q-ABDHE immediately. If IDQ is in L, B simply uses the private key in
the corresponding entry to decrypt cQ by performing the usual delegator de-
cryption algorithm. Otherwise, B generates the public key, partial private key
and private key for IDQ as in the above, stores them into L and uses the pri-
vate key concerned decrypt cQ by performing the usual delegator decryption
algorithm.

On (reencrypt, IDQ, IDQ′ , cQ), if IDQ = α or IDQ′ = α, B uses α to solve
the truncated decision q-ABDHE immediately. If IDQ or ID′

Q or both are in
L, B extracts the public and private keys in the corresponding entry (entries).
Otherwise, B generates the public key, partial private key and private key for
the identity not in L as in the above, stores them into L and uses the public
and private keys concerned for further processing as follows. B decrypts cQ
using the private key for IDQ by performing the usual delegator decryption
algorithm and then encrypts the plaintext obtained using the public key for
IDQ′ by performing the usual encryption algorithm. This ensures that the
re-encrypted ciphertext is decryptable by the private key for IDQ′ .



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 19

At the end of Phase 1, A outputs (IDA,M0,M1) where A may have
queried anything about IDA but must not have queried (encrypt, IDA,M0)
and (encrypt, IDA,M1) before. If IDA = α, B uses α to solve the truncated
decision q-ABDHE immediately. If IDA is in L, B simply extracts the partial
private key in the corresponding entry. Otherwise, B computes a partial private
key (r′A, h

′
A, rA,2, hA,2, rA,3, hA,3) for IDA as in the above. Next B generates

bit c ∈ {0, 1}. Let f4(x) = xq+2 and let F4,A(x) = (f4(x)−f4(IDA))/(x−IDA)
be a polynomial of degree q+1. B continues to set u = g′(f4(α)−f4(IDA))rA , v =
Z×e(g′,

∏q
i=0 g

F4,A,iα
i

) and w = Mc/e(u, hA,1)
1/rAvrA,1 , and t = e(g, g)H

′(Mc)

where F4,A,i is the coefficient of xi in F4,A(x). After setting β = H(u, v, w, t),

B sets y = e(u, hA,2hA,3
β)

1/rA
vrA,2+rA,3β, z = g′βF4,A(α)

gH
′(Mc). B sends

cA=(u, v, w, t, z, y) to A as the challenge ciphertext.
Let s = (loggg

′)F4,A(α). If Z = e(gq+1, g
′), then u = gsrA(α−IDA), v =

e(g, g)s, Mc/w = e(u, hA,1)
1/rAvrA,1 = e(g, h1)

s, z = gsβ+H′(Mc) and e(z, g) =
vβt. Since loggg

′ and s are uniformly random, cA = (u, v, w, t, z, y) is a valid,
appropriately-distributed challenge to A.

Phase 2: This phase proceeds as in Phase 1. However A is restricted from
issuing the following queries:

1. (encrypt, IDA,M0) and (encrypt, IDA,M1)
2. (decrypt, IDA, cA)
3. Any pair of queries (rkextract, IDA, IDA′) and (decrypt, IDA′ , c′A) where

c′A is the re-encrypted ciphertext using rkA→A′ .

At the end of Phase 2, the adversary A outputs guesses c′ ∈ {0, 1}. If
c = c′, B outputs 0 (indicating that Z = e(gq+1, g

′)). Otherwise, B outputs 1.

Probability Analysis and Conclusion: If Z = e(gq+1, g
′), then the simulation

is perfect. Assume that A has made d decryption queries in Phase 1, the
average length of a ciphertext be lenc bits. A will guess the bit c correctly
with probability 1/2 + d/(2lenc) + ε where d/(2lenc) is the probability that A
has queried (decrypt, IDA, cA) in Phase 1 where cA is the ciphertext of Mc. If
Z is uniformly random, (u, v, w, t, z, y) is an invalid ciphertext for (IDA,Mc)
and it carries no information regarding the bit c. In this case, A will guess
the bit c correctly with probability 1/2. Therefore on overall, A will guess
the bit c correctly with probability 1/2(1/2 + d/(2lenc) + ε) + 1/2(1/2) =
1/4 + d/(2 × 2lenc) + 1/2ε + 1/4 = 1/2 + d/(2 × 2lenc) + 1/2ε. Thus A’s
advantage is non-negligible. B thus can make use of A to solve the truncated
decision q-ABDHE problem. This leads to a contradiction since the truncated
decision q-ABDHE problem is a well-known hard problem. As a result, our
scheme is secure under IND-ID-CCA (even when the proxy and the delegatees
are colluding).

Theorem 2. Assume the truncated (decision) (t, ε, q)-ABDHE assump-
tion holds for (G, GT , e). Then, the above non-transferable re-encryption
scheme is ANON-IND-ID-CCA secure.



20 Yi-Jun He et al.

Proof Let A be an adversary who breaks the ANON-IND-ID-CCA security of
our system. We construct an algorithm, B, that solves the truncated decision
q-ABDHE problem, as follows. B takes as input a random truncated decision
q-ABDHE challenge (g′, g′q+2, g, g1, ..., gq, Z) where Z is either e(gq+1, g

′) or

a random element of GT (recall that gi = g(α
i)). Algorithm B proceeds as

follows.

Setup: B generates three random polynomials f1(x) ∈ Zp[x], f2(x) ∈ Zp[x]
and f3(x) ∈ Zp[x] all of degree q. It sets h1 = gf1(α), h2 = gf2(α) and h3 =
gf3(α) by computing them from (g, g1, ..., gq). It sends the public parameters
(g, g1, h1, h2, h3) to A. Since g, α, f1(x), f2(x) and f3(x) are chosen uniformly
at random, h1, h2 and h3 are uniformly random as well and these public
parameters have distribution identical to that in the actual construction.

Phase 1: A makes key generation queries by giving B an identity IDA and
R = hrA

1 where rA ∈ Zp is a random number.A also gives B the zero-knowledge
proof PK{rA : R = hrA

1 }.
B responds to a query on IDA as follows. If IDA = α, B uses α to

solve the truncated decision q-ABDHE immediately. Otherwise, let FA,2(x) =
(f2(x) − f2(IDA))/(x − IDA) and FA,3(x) = (f3(x) − f3(IDA))/(x − IDA)
be two (q − 1)-degree polynomials. We use the same technique as in [15] to
extract rA from A, and sets r′A=rArA,1 and h′

A=hA,1
rA . B sets the partial

private key (r′A, h
′
A, rA,2, hA,2, rA,3, hA,3) to be (f1(IDA), (Rg−r′A)1/(α−IDA),

f2(IDA), gFA,2(α), f3(IDA), gFA,3(α)). Note that for i = 2, 3, gFA,i(α) =

g(fi(α)−fi(IDA))/(α−IDA) = (hig
−rA,i)

1/(α−IDA)

.
Next A computes rA,1 = r′A/rA and hA,1 = (h′

A)
1/rA and sets its private

key as (rA, rA,1, hA,1, rA,2, hA,2, rA,3, hA,3). This is a valid private key for IDA

since for i = 1, 2, 3, hA,i = (hig
−rA,i)

1/(α−IDA)

as required.
A also makes decryption queries. To respond to a decryption query on

(IDA, C), B generates a private key for IDA as before. B then decrypts C by
performing the usual delegator decryption algorithm with this private key.

Challenge: A outputs identities ID0, ID1, random valuesR0, R1 and messages
M0, M1. Again, if ID0 = α or ID1 = α, B uses α to solve the truncated
decision q-ABDHE immediately. Otherwise, B generates bits b, c ∈ {0, 1} and
computes a partial private key (r′b, h

′
b, rb,2, hb,2, rb,3, hb,3) as in Phase 1.

Let f4(x) = xq+2 and let F4,b(x) = (f4(x) − f4(IDb))/(x − IDb) be
a polynomial of degree q + 1. B continues to set u = g′(f4(α)−f4(IDb))rb ,

v = Z × e(g′,
∏q

i=0 g
F4,b,iα

i

), w = Mc/e(u, hb,1)
1/rbvrb,1 , and t = e(g, g)H

′(Mc)

where F4,b,i is the coefficient of xi in F4,b(x). After setting β = H(u, v, w, t),

B sets y = e(u, hb,2hb,3
β)

1/rb
vrb,2+rb,3β and z = g′βF4,b(α)gH

′(Mc). B sends
(u, v, w, t, z, y) to A as the challenge ciphertext.

Let s = (loggg
′)F4,b(α). If Z = e(gq+1, g

′), then u = gsrb(α−IDb), v =

e(g, g)s, Mc/w = e(u, hb,1)
1/rbvrb,1 = e(g, h1)

s, z = gsβ+H′(Mc), and e(z, g) =



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 21

vβt. Since loggg
′ and s are uniformly random, (u, v, w, t, z, y) is a valid, appropriately-

distributed challenge to A.

Phase 2: A makes key generation queries and decryption queries, and B re-
sponds as in Phase 1.

Guess: Finally, the adversary A outputs guesses b′, c′ ∈ {0, 1}. If b = b′ and
c = c′, B outputs 0 (indicating that Z = e(gq+1, g

′)). Otherwise, B outputs 1.

Probability Analysis and Conclusion: If Z = e(gq+1, g
′), then the simulation is

perfect. Assume that A has made d decryption queries in Phase 1, the average
length of a ciphertext be lenc bits and the length of an identity is lenid bits. A
will guess the bits (b, c) correctly with probability 1/4+d/(2lenc+lenid)+ε where
d/(2lenc+lenid) is the probability that A has queried the decryption on IDb

and the ciphertext of Mc in Phase 1. If Z is uniformly random, (u, v, w, t, z, y)
is an invalid ciphertext for (IDb,Mc) and it carries no information regarding
the bits (b, c). In this case, A will guess the bits (b, c) correctly with probability
1/4. Therefore on overall, A will guess the bits (b, c) correctly with probability
1/2(1/4+d/(2lenc+lenid)+ε)+1/2(1/4) = 1/8+d/(2×2lenc+lenid)+1/2ε+1/8 =
1/4+ d/(2× 2lenc+lenid) + 1/2ε. Thus A’s advantage is non-negligible. B thus
can make use of A to solve the truncated decision q-ABDHE problem. This
leads to a contradiction since the truncated decision q-ABDHE problem is a
well-known hard problem. As a result, our scheme is secure under ANON-
IND-ID-CCA.

Since no matter before or after re-encryption, the ciphertext resulted from
our scheme is of the same format (though involves private keys of differ-
ent users), the same security proof applies to the cases before and after re-
encryption.

7 Implementation of Non-transferable Re-encryption based
Encrypted USB/PC File Systems for Data Dissemination

We implemented a non-transferable re-encryption based file system with three
goals in mind. First, to show the correctness of our proposed scheme. Second,
to prove that our proposed scheme is acceptable and practical to improve real
systems (Encrypted USB/PC file systems are used as an example) to for data
dissemination control. Third, to assess the performance of proposed scheme.
Because of the paper length limitation, please see the implementation details
in appendix.

7.1 Overview of Non-transferable Re-encryption based Encrypted File
Systems

Scenario: An encrypted volume (V1) is for an employee (U1) of a company,
working on a project. When U1 is on holiday, another user (U2) takes up the



22 Yi-Jun He et al.

project from U1. The problems are how to disseminate the data in V1 to U2

securely and how to ensure U2 will not further disseminate V1 to other par-
ties? The most direct way is to let U2 know U1’s key. Certainly, this introduces
security problem, for example, U2 could distribute U1’s key to other parties
without getting U1’s permission. This violates the requirement of data dissem-
inate control which seeks to control information and digital objects even after
they have been delivered to a legitimate recipient. Another possible way is to
let U1 decrypt V1 into plaintext using his key and encrypt again with key of
U2. However, this poses two problems: the existence of plaintext is dangerous;
and it is too time consuming to encrypt and decrypt the huge encrypted disk.
Thus, we use ”Re-Encryption” scheme based encrypted file systems for data
dissemination to solve those problems.

Two kinds of Non-transferable Re-encryption based encrypted file systems
are implemented: Non-transferable Re-encryption based Encrypted PC File
System and Non-transferable Re-encryption based Encrypted USB File Sys-
tem. We call them NTR-PC-FS and NTR-USB-FS for short respectively. Each
of them has three different encrypted volume creation ways: password only,
key files only, and password and keyfiles together. We show that both NTR-
PC-FS and NTR-USB-FS can achieve secure data dissemination from party
U1 to U2, and can still effectively prohibit re-dissemination from U2 to other
parties even after data has been delivered to U2.

7.2 Main Advanced Security Features

1. U2 is unable to re-disseminate the data to others, because he does not know
the password or the keyfile of U1 (discussed in point 2). The only way for
him to re-disseminate is to expose his own private key, however, U2 would
not be so stupid to run the risk.

2. We reduces the trust on the proxy server, the content server and PKG.
The proxy server re-encrypts the encrypted content key and keyfiles, but
it never gets to know the plaintext of the content key and keyfiles; The
content server keeps the encrypted volume, but it is unable to access it;
The PKG generates the partial private keys for users, but it does not
know the whole private keys of users. In case the proxy server, the content
server and PKG are compromised, attacker still cannot gain access to the
password, keyfiles, and encrypted volume. Thus the proposed file system
fundamentally changes the security of the general file systems, because in
general file systems, the security relies on the trust of a server operator
or a proxy server; in our proposed file system, the security relies on the
strength of the secure cryptosystem.

3. U2 is not required to input the password or locate the keyfile to mount
the encrypted volume got from U1, since he does not know the password
or the keyfile of U1. The content key decryption, keyfile decryption and
volume mounting are proceed by the NTR-PC-FS when provided U2’s pri-
vate key, the partial decryption key, the re-encrypted content key and the



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 23

Table 2 Efficiency Comparison of Ateniese PRE scheme and our proposed scheme

Ateniese [3] our scheme

Parameter size 512-bit 512-bit
Encryption 7.7 ms 27.1 ms
Decryption (by delegator) 21.9 ms 33.4 ms
Re-encryption 21.7 ms 12.6 ms
Decryption (by delegatee) 3.4 ms 55.4 ms

re-encrypted keyfile. The content key and keyfiles are never leaked outside,
which is ensured by the security of Truecrypt itself.

4. NTR-PC-FS never saves any decrypted data to a disk - it only stores
them temporarily in RAM (memory). Even when the volume is mounted,
data stored in the volume is still encrypted. When you restart Windows
or turn off your computer, the volume will be dismounted and all files
stored on it will be inaccessible (and encrypted). Even when power supply
is suddenly interrupted (without proper system shut down), all files stored
on the volume will be inaccessible (and encrypted).

7.3 Performance Analysis

Note that we do not measure time for setup, private key correctness check,
key generation or partial decryption key generation, since these algorithms
are performed only once, at initialization time. As in [3], measurements do not
take into account the transmission time also, since the encryption, decryption
and re-encryption time are the major concerns in re-encryption schemes. We
use 512-bit size for order of the base field in proxy re-encryption. Experiments
were repeated 10 times using random input points over which timings were
averaged.

To our knowledge, besides our scheme, the ”Third Attempt” of re-encryption
schemes in [3] is the only one that has been implemented. However, they im-
plemented their scheme using the MIRACL cryptographic library [16], and we
used PBC library. Thus various choices, such as parameter sizes and encryp-
tion granularity can greatly affect the efficiency of the scheme. To have a more
accurate comparison result of scheme efficiency, we re-implement the ”Third
Attempt” scheme in [3] using PBC library, and compare our experimental
result with [3] in Table 2.

Observation: The experimental results presented in Table 2 show that, when
compared with Ateniese’s re-encryption scheme, our proposed scheme could
cut down the re-encryption time by 9.1ms. This is quite a significant reduction
especially when the proxy server has to handle a large number of re-encryption
requests. Table 2 shows that our proposed scheme requires more decryption
and encryption time; however, these overheads are quite acceptable since (i)
decryption and encryption are performed on the client sides(delegators and



24 Yi-Jun He et al.

delegatees), and the time is less than 0.1 second which is acceptable for prac-
tical use. (ii) Moreover, a tradeoff between efficiency and security is often un-
avoidable: in order to achieve the non-transferable property, we have designed
a more complicated form of ciphertext which requires additional computation
for decryption. (iii) As the clients would perform encryption and decryption
for only once, the impact of the extra time is insignificant. Therefore, with
the substantial reduction in re-encryption time, the proposed scheme can be
considered a promising one.

Limitation: We exclude the discussion on secret issues related to ”hack” the
program of Truecrypt to steal the password.

8 Conclusions

In this paper, we attempt to solve the open problem pointed out in NDSS 2005,
in proposing a non-transferable proxy re-encryption scheme, and successfully
use this new scheme in data dissemination control. With the proposed PRE
scheme, the proxy and a delegatee cannot collude to transfer decryption rights.
We also introduced two important properties, namely Non-Key-escrow and
Non-PKG-despotism, into the proposed PRE scheme. The principle behind
our solution is that instead of ‘prohibiting’ a party to propagate information,
we punish the party who illegitimately propagates information by exposing
the important secrets of the party. This method is feasible due to the fact that
nobody would run the risk of exposing its own secrets to do illegal decryption
right transfer. Thus, our ’punish’ method is more practicable and effective than
the ’tracing’ method in [11], because it can strongly prevent illegal decryption
right transfer from happening, but not just tracing the malicious proxy after
the illegal decryption right transfer.

To the best of our knowledge, our paper is the first paper which practically
solves the transferable problem, and the first attempt to use non-transferable
re-encryption scheme to achieve data non-redissemination.

9 Acknowledgments

We would like to show our deepest gratitude to Sherman S.M. Chow, for all his
kindness and help. Without his valuable comment, we could not have solved
the difficult part of this paper.

References

1. Truecrypt. http://www.truecrypt.org/.
2. S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In ASI-

ACRYPT, pages 452–473, November 2003.



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 25

3. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. In NDSS, pages 29–43, February
2005.

4. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptog-
raphy. In EUROCRYPT, pages 127–144, June 1998.

5. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, pages 223–238, May 2004.

6. K. Fu. Group sharing and random access in cryptographic storage file systems. Master’s
thesis, May 1999.

7. C. Gentry. Practical identity-based encryption without random oracles. In EURO-
CRYPT, pages 445–464, May 2006.

8. V. Goyal. Reducing trust in the pkg in identity based cryptosystems. In CRYPTO,
pages 430–447, August 2007.

9. A. Ivan and Y. Dodis. Proxy cryptography revisited. In NDSS, February 2003.
10. J. Jin, G.-J. Ahn, H. Hu, M. J. Covington, and X. W. Zhang. Patient-centric authoriza-

tion framework for sharing electronic health records. In SACMAT ’09: Proceedings of
the 14th ACM symposium on Access control models and technologies, pages 125–134,
June 2009.

11. B. Libert and D. Vergnaud. Tracing malicious proxies in proxy re-encryption. In Pairing,
pages 332–353, September 2008.

12. B. Lynn. Pbc: The pairing-based cryptography library. http://crypto.stanford.edu/pbc/.
13. T. Matsuo. Proxy re-encryption systems for identity-based encryption. In Pairing,

pages 247–267, July 2007.
14. K. Niu, X. A. Wang, and M. Q. Zhang. How to solve key escrow problem in proxy

re-encryption from cbe to ibe. In DBTA, pages 95–98, April 2009.
15. R. Sakai and M. Kasahara. Id based cryptosystems with pairing on elliptic curve.

Cryptology ePrint Archive, Report 2003/054, 2003.
16. M. Scott. Miracl. shamus software. http://www.shamus.ie/.
17. N. Shang, M. Nabeel, F. Paci, and E. Bertino. A privacy-preserving approach to policy-

based content dissemination. In ICDE, pages 944–955, March 2010.
18. J. Singh and J. Bacon. Event-based data dissemination control in healthcare. In Elec-

tronic Healthcare, pages 167–174, September 2008.
19. R. K. Thomas and R. Sandhu. Towards a multi-dimensional characterization of dissem-

ination control. In Policies for Distributed Systems and Networks, IEEE International
Workshop on, pages 197–200, June 2004.

20. X. A. Wang and X. Y. Yang. Identity based broadcast encryption based on one to many
identity based proxy re-encryption. In IEEE International Conference on Computer
Science and Information Technology, pages 47–50, August 2009.

21. X. A. Wang and X. Y. Yang. Proxy re-encryption scheme based on bb2 identity based
encryption. In IEEE International Conference on Computer Science and Information
Technology, pages 134–137, August 2009.

22. X. A. Wang and X. Y. Yang. Proxy re-encryption scheme based on sk identity based
encryption. In IAS, pages 657–660, August 2009.

23. X. A. Wang, X. Y. Yang, and F. G. Li. On the role of pkg for proxy re-encryption in
identity based setting. Cryptology ePrint Archive, Report 2008/410, 2008.

24. X. A. Wang, X. Y. Yang, and M. Q. Zhang. Proxy re-encryption scheme from ibe to
cbe. In DBTA, pages 99–102, April 2009.

A Implementation

Our file system consists of five parties: proxy server, content server, PKG, disseminator and
recipient. PKG is responsible for key generation. An untrusted proxy is used to manage the
dissemination control, and an untrusted content server is used to store encrypted volume for
disseminator. Disseminator plays the role of delegator in re-encryption scheme, and recipient
plays the role of delegatee in re-encryption scheme. We use our proxy re-encryption scheme
to grant encrypted volume access right to legal recipient.



26 Yi-Jun He et al.

We use two Intel Core 2 Duo CPU E6750 at 2.66GHz with 3GB RAM PCs as the proxy
server and the content server. The scheme is implemented in C language, with all pairing
operations implemented using PBC Library [12]. The file system is on the basis of Truecrypt
[1] which is a software system for establishing and maintaining an encrypted volume (data
storage device). No data stored on an encrypted volume can be read (decrypted) without
using the correct password/keyfile(s) or correct encryption keys. Entire file system is en-
crypted (e.g., file names, folder names, contents of every file, free space, meta data, etc). We
choose the Truecrypt because it is open source, and allows us to experiment our scheme on
top of it without putting much effort on how to establish the file system interface.

A.1 Overview of NTR-PC-FS

– Password only
NTR-PC-FS first creates a virtual encrypted volume on PC. The virtual volume is
encrypted using the password, encryption algorithm and hash function chosen by U1.
When using the encrypted volume, user needs to input the correct password, and mount
encrypted volume as a real disk. After that, when user opens a file/project stored on a
volume (or when user write/copy a file to/from the volume) user will not be asked to
enter the password again.
When U1 wants U2 to take up the project from him, the system proceeds as shown in
figure 3.

Contentserver

Proxy server

1
upload encrypted volum e

2
dow nload encrypted volum e

U 1

4
partialdecryption key

U 2

5
re-encrypted contentkey

6 m ount
volum e

3
encrypted contentkey

 
Fig. 3 Proxy Re-Encryption

1. U1 publishes the encrypted virtual volume on an untrusted content server of the
company. The content server makes the encrypted virtual volume available to ev-
eryone.

2. U2 downloads the encrypted virtual disk from the content server.



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 27

3. To let U2 access the encrypted virtual volume, U1 uses the NTR-PC-FS transforms
the password into a symmetric content key ∈ GT first. Then encrypts the content
key with U1’s asymmetric public key using the encryption algorithm in section 4.2.

4. U1 sends U2 a partial decryption key, and then communicates with an untrusted
proxy to re-encrypt the encrypted content key.

5. Proxy uses re-encryption key which is generated by PKG to re-encrypt the content
key.

6. After obtaining the re-encrypted content key, NTR-PC-FS on U2’s PC uses U2’s
private key, the partial decryption key, and the re-encrypted content key to mount
the volume.

Now, U2 is able to access the project in virtual volume.
– Keyfile only

The difference from the previous volume creation way is that the virtual volume is
encrypted using the keyfile randomly generated by NTR-PC-FS or chosen by U1. The
keyfile can be a file on PC or a portable storage device. When using the encrypted
volume, user needs to locate the correct keyfile, and mount the encrypted volume as a
real disk. For the whole system work flow, please see figure 4.

Contentserver

Proxy server

1
upload encrypted volum e

2
dow nload encrypted volum e

U 1

4
partialdecryption key

U 2

5
Re-encrypted key file

3
encrypted keyfile

6 m ount
volum e

 
Fig. 4 Proxy Re-Encryption

To let U2 access the encrypted virtual volume,
1. This step is as the same as the password only method.
2. This step is as the same as the password only method.
3. NTR-PC-FS encrypts the keyfile with U1’s asymmetric public key using the encryp-

tion algorithm in section 4.2.
4. U1 sends U2 a partial decryption key, and then communicates with an untrusted

proxy to re-encrypt the encrypted keyfile.
5. Proxy uses re-encryption key which is generated by PKG to re-encrypt the keyfile.
6. After obtaining the re-encrypted keyfile, NTR-PC-FS on U2’s PC uses U2’s private

key, the partial decryption key, and the re-encrypted keyfile to mount the volume.
Now, U2 is able to access the project in virtual volume.



28 Yi-Jun He et al.

– Password and Keyfile together
The difference from the previous two volume creation ways is that the virtual volume
is encrypted using the password chosen by U1 and keyfile randomly generated by NTR-
PC-FS or chosen by U1. When using the encrypted volume, user needs to input the
correct password and locate the correct keyfile, and mount the encrypted volume as a
real disk.
To let U2 access the encrypted virtual volume, NTR-PC-FS encrypts the keyfile and
the password respectively with U1’s asymmetric public key using the encryption al-
gorithm in section 4.2. U1 sends U2 a partial decryption key, and then communicates
with an untrusted proxy to re-encrypt the encrypted keyfile and password. Proxy uses
re-encryption key which is generated by PKG to re-encrypt the keyfile and password re-
spectively. After obtaining the re-encrypted keyfile and password, NTR-PC-FS on U2’s
PC uses U2’s private key, the partial decryption key, the re-encrypted password, and
the re-encrypted keyfile to mount the volume. Now, U2 is able to access the project in
virtual volume.

A.2 Overview of NTR-USB-FS

– Password only
The differences from the previous NTR-USB-FS (Password only) are that the encrypted
volume is created on a USB device, not on a PC; and when U1 wants U2 to take up
the project from him, U1 does not need to publish the encrypted virtual volume on an
untrusted content server of the company. He just passes the USB device to U2. For the
whole work flow, please see figure 5.

Proxy server

1 encrypted volum e

U 1

3
partialdecryption key

U 2

4
re-encrypted contentkey

2
encrypted contentkey

5 m ount
volum e

 

Fig. 5 Proxy Re-Encryption

– Keyfile only This volume creation way is similar to the one of NTR-PC-FS. For the
differences, please see the above ”Overview of NTR-USB-FS (Password only)”.

– Password and Keyfile together This volume creation way is similar to the one
of NTR-PC-FS. For the differences, please see the above ”Overview of NTR-USB-FS
(Password only)”.

A.3 Correctness Demonstration

Our implementation is actually divided into four executable programs. To facilitate reading
and checking on the correctness, we combine the four programs into one. A screenshot is



Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 29

shown in figure 6 as below. In the figure, user A represents the disseminator U1, and user
B represents the recipient U2. We can see the message m=m’=m”, which means that the
message m is correctly decrypted by A before re-encryption and by B after re-encryption.



30 Yi-Jun He et al.

 

 

 

 

Fig. 6 Implementation Result


