Noname manuscript No.
(will be inserted by the editor)

Non-Transferable Proxy Re-Encryption Scheme for
Data Dissemination Control

Yi-Jun He - Tat Wing Chim - Lucas
Chi Kwong Hui - Siu-Ming Yiu

Received: date / Accepted: date

Abstract A proxy re-encryption (PRE) scheme allows a proxy to re-encrypt
a ciphertext for Alice (delegator) to a ciphertext for Bob (delegatee) without
seeing the underlying plaintext. With the help of the proxy, Alice can delegate
the decryption right to any delegatee. However, existing PRE schemes gener-
ally suffer from at least one of the followings. Some schemes fail to provide the
non-transferable property in which the proxy and the delegatee can collude to
further delegate the decryption right to anyone. This is the main open problem
left for PRE schemes. Other schemes assume the existence of a fully trusted
private key generator (PKG) to generate the re-encryption key to be used by
the proxy for re-encrypting a given ciphertext for a target delegatee. But this
poses two problems in PRE schemes if the PKG is malicious: the PKG in their
schemes may decrypt both original ciphertexts and re-encrypted ciphertexts
(referred as the key escrow problem); and the PKG can generate re-encryption
key for arbitrary delegatees without permission from the delegator (we refer
to it as the PKG despotism problem).

In this paper, we propose the first non-transferable proxy re-encryption
scheme which successfully achieves the non-transferable property. We show
that the new scheme solved the PKG despotism problem and key escrow prob-
lem as well. Further, we find that the new scheme satisfies requirements of
data dissemination control which seeks to control information and digital ob-
jects even after they have been delivered to a legitimate recipient. We explore
the potential of adopting our new scheme to achieve data dissemination con-
trol and implement a non-transferable re-encryption based encrypted PC/USB
file system. Performance measurements of our scheme demonstrate that non-
transferable re-encryption is practical and efficient.

Yi-Jun He, Tat Wing Chim, Lucas Chi Kwong Hui, Siu-Ming Yiu
Department of Computer Science, The University of Hong Kong
Tel.: +852-28578440

Fax: +852-25598447

E-mail: {yjhe, twchim, hui, smyiu}@cs.hku.hk

2 Yi-Jun He et al.

Keywords proxy re-encryption - certificateless public key encryption -
non-transferable property - data dissemination

1 Introduction
1.1 Proxy Re-encryption

In daily life, the following situations are likely to happen. A boss is on leave,
but he still wants to read emails regularly for checking if there are urgent
matters requiring his attention. People might think that checking emails could
easily be done anywhere via a mobile phone or a notebook. But in reality,
you could be situated in a place where it is not convenient to access the
network, or the network is too slow for checking emails. Then, the boss may
ask his secretary or subordinate to check emails for him. The simplest and
most common way is to give his password to his secretary or subordinate.
However, by doing so, his personal information would not be safe anymore if
the password is leaked outside. Consider another situation. Suppose that you
have kept some encrypted photos, videos or sensitive files in the file server
to facilitate sharing the data with a group of target users. The distribution
of decryption keys to the target users could become a big problem. The file
system employed could be similar to Cephesus [6]; it uses a trusted access
control server to distribute the keys. So, the group members must contact
the access control server to obtain their decryption keys for accessing files.
However, the above keys distribution method may not be satisfactory, since
the underlying access control server model relies on a complete trust in the
server operator. Furthermore, in practice, the server operator could abuse the
keys kept by the server to decrypt any data. Even if the access control server
operator can be trusted fully, letting all critical key data kept by a single server
could make it become an attack target.

The proxy re-encryption, a cryptographic scheme, introduced in [4] can be
employed to address the problems mentioned above. It allows a third-party
(the proxy) to re-encrypt a ciphertext which has been encrypted for one party
without seeing the underlying plaintext so that it can be decrypted by an-
other. This is illustrated in Figure 1, where Alice keeps some photos, videos
or sensitive files in encrypted form in the file server; Bob fetches encrypted
files from file server, and then transmits the encrypted files to proxy; Alice
sends a re-encryption key to the proxy which re-encrypts the encrypted files
and sends Bob the re-encrypted ciphertext which can be decrypted by Bob
with his own private keys. The above scheme aroused much interest in the
encryption community [3,4,9,11,13,14,20-24] since it could be exploited in a
number of applications for achieving better information security and privacy,
such as:

— Email forwarding: Delegator wishes to delegate his email decryption right
to a delegatee. The proxy can “forward” re-encrypted emails to a delegated

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 3

X

Fie Sewe

e g
(O

Fig. 1 Proxy Re-Encryption

i

recipient. The recipient then accesses the emails without needing to know
the delegator’s decryption key.

— Encrypted files distribution: The encrypted files are stored in a file server.
Only the content owners can grant the access right of the files to the target
users; even the file server operator has no right to access the files.

— Law-enforcement monitoring: The encrypted communication data is trans-
ferred via an Internet service provider (ISP). The ISP can require the
content owners to provide the access right to the law enforcement officers
to let them monitor the data being transferred to various users; however,
the ISP operator cannot access the data.

1.2 Review of the Transferable Problem

However, the main problem of existing PRE schemes (details of existing schemes
will be given in the next section) is failing to provide the non-transferable
property which was first introduced by Ateniese et al. in 2005 [3]. A proxy
re-encryption scheme is said to be non-transferable if the proxy and a set of
colluding delegatees cannot re-delegate decryption rights to other parties. On
one hand, this is a very desirable property. For example, user A saves some
encrypted private confidential files on the file server. If A delegates B the de-
cryption right for accessing those files, A may need some guarantee that his
files ”go no further”. It requires that the delegatee B plus the proxy cannot
re-delegate decryption right to others. On the other hand, researchers [3,11]
are even not sure that transferability can be preventable since the delegatee
B can always decrypt and forward the plaintext to another party. However,
this approach requires that the delegatee remains an active, online participant.
What we want to prevent is the delegatee (plus the proxy) providing other par-
ties with a secret value that it can be used offline to decrypt A’s ciphertexts.
Again, the delegatee can always send its secret key to another party. But in
doing so, the delegatee puts itself in a risky situation. Therefore, achieving a
non-transferable PRE scheme, in the sense that the only way for delegatee to
transfer decryption capabilities to another party is to expose his own secret
key, seems to be the main open problem left for PRE.

4 Yi-Jun He et al.

1.3 Limitations of Existing Solutions

Libert and Vergnaud [11] indicated that it is quite difficult to prevent the proxy
and delegatees from colluding to do re-delegation and that discouraging col-
lusion rather than preventing illegitimate re-delegation is an easier approach.
Thus, they try to trace the malicious proxy after its collusion with one or more
delegatees. No doubt that it works to deter collusion from happening. How-
ever, it is more desirable to have a better way to prevent collusion, not just
discourage collusion. Some identity-based PRE schemes [13,20-24] assume the
existence of a fully trusted private key generator (PKG) which helps to gen-
erate the re-encryption key to be used by the proxy for re-encrypting a given
ciphertext for a target delegatee. Since the re-encryption key is generated us-
ing the master key of the PKG, the proxy and the delegatee(s) cannot further
delegate the decryption right to others without the help of the PKG. However,
this creates two problems in PRE schemes. First, there is another key escrow
problem for which the PKG in their schemes may be able to decrypt both
original and re-encrypted ciphertexts; And the PKG despotism problem, in
which the PKG itself has the power of generating re-encryption key for trans-
ferring decryption right to arbitrary delegatees. Thus those PKG-based PRE
schemes just transformed the ” delegatee-proxy-collusion transferable problem”
to a "PKG alone transferable problem”. So it is fair to say that they did not
solve the transferable problem.

1.4 Data Dissemination Control

Data Dissemination control [19] seeks to control information and digital ob-
jects even after they have been delivered to a legitimate recipient. Control
encompasses the usage of the digital object by the recipient (e.g., permission
to view a document on a trusted viewer) as well as further dissemination
(e.g., permission to distribute a limited number of copies of the document to
colleagues but with no further dissemination allowed). Dissemination control
is needed in many different domains ranging from the dissemination of dig-
ital music and movies, eBooks, business proprietary and sensitive electronic
documents, healthcare [10,18].

Non-redissemination is a requirement of dissemination control, i.e. the dis-
seminator, such as A, disseminates an object to a recipient B, but B is not
allowed to disseminate the object any further. It would be a nightmare if non-
redissemination control does not exist, for example, one day, you suddenly find
that your encrypted private information in the file server can be accessed by
anyone, but actually you disseminated it only to a recipient B before.

1.5 Our Contributions

To tackle the transferable problem as well as the key escrow problem and
PKG despotism problem, a new PRE model based on certificateless public

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 5

key encryption [2] is built in this paper. We borrow the idea of using PKG
to generate a re-encryption key, but our new non-transferable re-encryption
scheme successfully solved the problems in previous PKG-based works. The
characteristics of our proposed scheme are summarized as follow.

— The proposed scheme has the non-transferable property. The re-encryption
key is generated by a key generating centre (PKG); Delegator participants
actively to help generating partial decryption key for delegatee using part
of his private key. Thus delegatee and proxy cannot collude to re-delegate
decryption rights since they do not have knowledge of PKG’s master secret
and the delegator’s private key.

— Without the participation of the delegator, PKG is unable to generate any
useful re-encryption key for delegating decryption right, thus completely
resolves the PKG despotism problem.

— PKG cannot decrypt the original ciphertext and re-encrypted ciphertexts
as well, thus solving the key escrow problem.

Dissemination control literatures [17,19] have been focused on mechanisms
and policies. In our research, we find that the non-redissemination requirement
is similar to the non-transferable requirement in proxy re-encryption scheme.
Thus we propose to use our non-transferable proxy re-encryption scheme
to achieve non-redissemination in a cryptographic way. Non-transferable re-
encryption may be not the only way to control illegitimate redisseminating
digital object, but using PRE scheme brings three main advantages:

— Disseminated digital object is invisible to proxy though it is responsible
for doing re-encryption.

— Disseminator does not need to reveal his private key to the recipient for
decrypting ciphertext.

— Disseminator and recipient do not need to share the same decryption key.
Recipient just needs to use his own private key to decrypt the re-encrypted
ciphertext.

2 Related Work

Blaze, Bleumer and Strauss [4] proposed the first proxy re-encryption scheme,
which is based on ELGamal encryption. But this scheme is bi-directional, that
is, when the proxy is allowed to re-encrypt Alice’s messages under Bob’s key,
it can also re-encrypt Bob’s messages under Alice’s key. Bob may not like
this. Another weakness is that if the proxy colludes with Alice, they can easily
learn Bob’s secret key SKp. Likewise, the proxy and Bob may collude to learn
Alice’s secret key. Furthermore, in order to compute the re-encryption key from
A to B, denoted as rka_~p, one party must share his or her secret key with
the other or they must rely on a trusted third party. The other drawback is
that the scheme is transitive in the following sense. Suppose that the proxy
is allowed to generate two re-encryption keys rka_~p and rkp_~¢; then the

6 Yi-Jun He et al.

proxy can derive an additional re-encryption key rks_~ ¢ for delegation from
Ato C.

Later, Ivan and Dodis [9] proposed three unidirectional proxy re-encryption
schemes based on ElGamal, RSA, and IBE (ID-based encryption) respectively.
Their main contribution is that they solved (i) the bi-directional problem and
(ii) the transitive problem in [4]. But in their schemes, Alice’s private key is
split into two parts DK; and DK5, with DK distributed to proxy and DK
distributed to Bob. Thus when the proxy colludes with Bob, they can derive
Alice’s private key.

In 2005, Ateniese et al. [3] presented three proxy re-encryption schemes
which are considered to be more secure than other approaches. Their major
advantages are the following. The schemes are unidirectional and the del-
egator’s private key is protected from being disclosed by the collusion of
proxy and a delegatee. They implemented one of their proposed schemes
in a secure distributed file system to show that the scheme can work effi-
ciently in practice. They summarized nine important properties of proxy re-
encryption schemes, which include the non-transferable property. Lacking the
non-transferable property in all existing schemes was considered an open prob-
lem of the contemporary PRE schemes.

This open problem was first addressed in 2008 by Libert and Vergnaud
[11]. They indicated that it is quite difficult to prevent the proxy and delega-
tees from colluding to do re-delegation and that discouraging collusion rather
than preventing illegitimate re-delegation is an easier approach. Thus, they
proposed, instead of preventing the collusion of proxy and delegatee, tracing
the malicious proxy after its collusion with one or more delegatees. It is the
first attempt to address the open problem. However, it still cannot prevent
re-delegation from happening.

Matsuo’s PRE schemes [13] use the PKG to help generating re-encryption
key for the delegator and the delegatee. Based on this approach, they proposed
two PRE schemes: one for the decryption right delegation from a user of PKI-
based public key encryption system to IBE system users, and the other for
the delegation among IBE system users. This is the first set of schemes that
use PKG to generate re-encryption key. However, the PKG in the schemes can
decrypt all re-encrypted ciphertexts; so, there is a potential security problem
as long as PKG is untrusted or malicious.

In 2008, Wang et al.[23] extended the idea of Matsuo’s scheme by allowing
PKG to generate re-encryption keys based on its master secret key. They
proposed several proxy re-encryption schemes:(i) PRE from IBE to Certificate
Based Public Key Encryption; (ii) PRE based on a variant of the first system
of Selective identity secure IBE [5]; (iii) PRE based on the second system of
Selective identity secure IBE [5];and (iv) PRE based on Sakai-Kasahara IBE
scheme [15]. Based on this work, Wang et al. proposed five other schemes
[14,20-22,24] to address different problems of proxy re-encryption schemes.
However, there are still some issues not yet addressed in each one of them. In
[20], the proxy can re-encrypt on its own the ciphertext for the delegator into
ciphertext for any delegatee; this is not a desired property of PRE. In [21],

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 7

it seems that they solved the open problem related to the non-transferable
issue, since proxy and delegate cannot collude to re-delegate decryption right;
however, in the scheme, the PKG alone can delegate arbitrarily to anyone as
it can generate a re-encryption key for any delegatee. In [22,24], the PKG can
also delegate arbitrarily as what it could do in [21]. Among the five schemes,
[21] seems to be the best in solving the non-transferable issue, we will compare
our scheme with [21] in Section 5.

3 Preliminaries
3.1 Bilinear Map

Let G and Gp be multiplicative cyclic groups of prime order p, and g be
generator of G. We say that G has an admissible bilinear map e: GXG — G,
if the following conditions hold.

— e(g% g") = e(g, 9)* for all a, b.
—e(g,9) # 1.

— There is an efficient algorithm to compute e(g?, g°) for all a, b and g.

3.2 Assumption

The security of our concrete construction is based on a complexity assumption
called “Truncated Decision Augmented Bilinear Diffie-Hellman Exponent As-
sumption (Truncated ¢-ABDHE)”proposed in [7], which is defined as follows:

Let e : G x G — Gr be a bilinear map, where G and G are cyclic groups
of large prime order p. Given a vector of g+3 elements:

(¢,g' ") g.g% ... gl®") e GI TP

and an element Z € G as input, output 0 if Z = e(g(aq+1),g’) and output 1
otherwise.

An algorithm B has advantage ¢ in solving the truncated ¢-A BDHE if:

1
q+)

ait? o af o
1Pr(B(g,g" ") g,9%, ..., gD e(g "), ¢')) = 0]

—Pr[B(d, g ") g,g% ..., 9", Z) = 0] > ¢

where the probability is over the random choice of generators ¢, ¢’ in G, the
random choice of « in Z,, the random choice of Z € G, and the random bits
consumed by B.

8 Yi-Jun He et al.

4 Our Non-Transferable PRE Scheme
4.1 Non-Transferable PRE Model

Our Non-Transferable PRE scheme is based on certificateless public key en-
cryption. It is composed of nine algorithms:

— Setup. On input a security parameter 1¥, the public parameters mpk and
master secret key msk are generated.

— Key Generation.

— Set-Secret-Value. algorithm generates a secret value which is only known
to user himself.

— Partial-Private-Key-Extract. On input a user’s identity ID, msk, algo-
rithm generates partial private key for user.

— Set-Private-Key. On input the partial private key and the secret value,
algorithm outputs the whole private key for user.

— Set-Public-Key. On input a user’s identity ID and secret value, algo-
rithm generates public key.

— Private Key Correctness Check. Algorithm checks the correctness of the
private key.

— Encryption. The encryption algorithm takes public key upk; of delegator i
and message m as input, outputs a ciphertext C; encrypted under upk;.

— Decryption(delegator). The decryption algorithm takes private key usk; of
delegator 7 and ciphertext C; as input, outputs message m. This algorithm
actually is not necessary for PRE scheme. We put it here just for indicating
that delegator has the ability to decrypt the original ciphertext Cj.

— Re-Encryption Key Generation. Algorithm verifies the delegator i’s signa-
ture, and extracts delegatee j’s ID from signature. The re-encryption key
generation algorithm outputs a re-encryption key 7k;_,; and other rela-
tional values.

— Partial-Decryption-Key Generation. Algorithm checks the correctness of
the re-encryption key, and generates a partial decryption key.

— Re-Encryption. The re-encryption algorithm takes re-encryption key rk;_,;
and ciphertext C; as input, outputs a re-encrypted ciphertext C; under
upk;.

— Decryption(delegatee). The decryption algorithm takes private key usk;
of delegatee j, partial decryption key and ciphertext C; as input, outputs
message m.

4.2 Security Model for Identity-Based Encryption

Chosen ciphertext security for proxy re-encryption systems is defined via the
following game between an adversary A and a challenger C:

Setup. C runs algorithm Setup, and outputs params to A.

Phase 1. A adaptively issues queries q1,...,gm, with query ¢; being one of
the following:

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 9

(pkextract, I1D;): public key extraction for user ID;
(encrypt, ID;, m;): encryption of plaintext for user I.D;
— (pskextract,1D;): partial private key extraction for user ID;
(rkextract, ID;, ID;/): re-encryption key extraction for delegator ID; and
delegatee I D;
— (decrypt, ID;, ¢;): decryption of ciphertext for ID;
— (reencrypt,ID;,ID; ,¢c;): re-encryption of ciphertext for ID; to ID;

Challenge. The adversary submits two plaintexts My, M, € M and an iden-
tity I.D;. ID; must not have appeared in any key generation query in Phase 1.
The challenger selects a random bit b € {0, 1}, sets C = Encrypt(params, ID;, My),
and sends C' to the adversary as its challenge ciphertext.
Phase 2. This phase proceeds as in Phase 1. However A is restricted from
issuing the following queries:
1. (encrypt,I1D;, My) and (encrypt, ID;, M)
2. (decrypt,IDj, c;)
3. Any pair of queries (rkextract, ID;, 1D}) and (decrypt, ID’, ¢}

%, c;) where ¢}
is the re-encrypted ciphertext using rk;_, ;.

Guess. Finally, A submits a guess b’ € {0,1}. The adversary wins if b = ¥'.
We call an adversary A in the above game a IND-ID-CCA adversary.

Definition 1. A proxy re-encryption scheme is said to be (t, qip, qe, €)
IND-ID-CCA secure, if all t-time IND-ID-CCA adversaries making at most
qrp private key queries and at most q. chosen ciphertext queries have advan-
tage at most € in winning the above game.

Recipient- Anonymity. Informally, we say that a system is anonymous
if an adversary cannot distinguish the public key ID under which a ciphertext
was generated. More formally, we can incorporate anonymity into our game
above through the following simple modification. In the Challenge phase, the
adversary outputs two identities I Dy and I D1 not queried in Phase 1 and two
messages My and M;. The challenger picks two random bits b, ¢ € {0, 1}, uses
1Dy to encrypt M., and sends the resulting ciphertext C' to the adversary.
Phase 2 is like Phase 1, except that the adversary cannot request a private
key for I Dy or 1D, or the decryption of C' under either identity. Finally, in the
Guess phase, the adversary guesses two bits b’ ¢’ and wins if b = b’ and ¢ = ¢/.
We define the adversary’s advantage in this game to be |Pr[b=b' A c=¢]—i ,
and we call an adversary A in this modified game a ANON-IND-ID-CCA
adversary.

Definition 2. A proxy re-encryption scheme is (t, qip, qc, €) ANON-
IND-ID-CCA secure, if all t-time ANON-IND-ID-CCA adversaries making at
most qrp private key queries and at most q. chosen ciphertext queries have
advantage at most € in winning the modified game.

4.3 Non-Transferable PRE Scheme Construction

We construct the Non-Transferable PRE scheme based on the basic IBE sys-
tem proposed in [8]. However, the IBE system in [8] cannot fully satisfy our

10 Yi-Jun He et al.

security requirement. We transformed this IBE system into a certificateless
public key encryption system [2], so that our PRE scheme based on this new
certificateless public key encryption system can successfully solve the trans-
ferable problem in existing PRE schemes. The main ideas of the scheme are
as follow: Before delegation, delegator will send delegatee’s identity to PKG.
PKG is responsible for generating the re-encryption key, and sending this key
and some other information to delegator. Delegator checks the correctness of
the re-encryption key, and generates a partial decryption key making use of
the information received from PKG. Then, delegator sends the re-encryption
key to the proxy, and the partial decryption key to delegatee. The proxy re-
encrypts the original ciphertext from delegator, and sends the re-encrypted
ciphertext to delegatee. The delegatee can decrypt the ciphertext using his
private key and the partial decryption key received from delegator.

In the following sections, we let Alice (A) be the delegator, and Bob (B)
be the delegatee.

Setup:

Let G and Gp be groups of order p such that p is a k-bit prime, and
let e : G x G — Gr be the bilinear map. H:{0,1}* — Z,, H:{0,1}* —
Zp, H':Gr — Z, are secure hash functions. The PKG selects four random
generators hi, ha, h3, g € G and randomly chooses a € Z),. It sets g = g*.
Define the message space M € Gp. The public parameters mpk and master
secret key msk are given by

mpk = (gaglahl;h2;h3;HI;HaH/aM)vak = (a)

Key Generation:

This is a protocol through which a user U with an identity ID can securely
get his partial private key from PKG.

On input the public key/master secret key pair (mpk, msk) and an identity
ID, € {0,1}* of entity A, the PKG computes ida = H;(ID4). If ids = « ,
it aborts. Otherwise, the protocol proceeds as follow:

— Set-Secret-Value. Entity A selects r4 € Z, at random. 74 is A’s secret
value.
— Partial-Private-Key-Extract.
1. Asends R = h1"™ to PKG, and gives PKG the following zero-knowledge
proof of knowledge:
PK{?“A :R= her}

2. PKG randomly selects 17y, 7 2, 7a,3 € Z, and computes
hiﬁl _ (Rg—vﬂjq)1/(@—1‘(1,4)7 hA,z — (h2g—7'A,2)1/(0’—idA)’ hA,B — (hgg_m’3)1/(°‘_idf“)
and sends A’s partial private key (4, h'y, 74,2, haz2, 743, hags) to A.
— Set-Private-Key. A computes

ran =rifrashay = (W)t = (g™t eia)
Then, A’s private key can be denoted as

uska = (ra,ma1,ha1,7a2,ha2,7a3,ha3)

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 11

Similarly, the delegatee B’s private key is denoted as
uskp = (rB,rB,1,hB1,7B,2,hB,2,7B,3, "B 3)

— Set-Public-Key. A publishes her public key upks = (pa,1,pa,2), where
pa1 = g1", and pao = g“idA. Anyone can verify the validity of upka
by checking if the equalities e(g*¥4,pa1)=e(g1,pa2), and e(h]*,g1) =
e(h1,pa,1) hold (i.e., h1* can be obtained from PKG).

Private Key Correctness Check:
On input (mpk,uskrp) and an identity ID € {0,1}*, A computes ids =
H;(IDy4) and checks whether

e(haisg1/g"") = elhig™"",9)

for 1=1,2,3. If correct, output 1. Otherwise, output 0.

Encryption:

To encrypt a message m € G using public key, sender checks that whether
the equalities e(gidA,pAJ):e(gl,pAQ) and e(hi*,g91) = e(h1,pa,1) hold. If
not, output | and abort encryption. Otherwise, sender generates a unique
randomly-selected secret parameter s € Z,, and computes idg = Hr (IDy4).
Finally, sender outputs the ciphertext C' where:

C= (Clv CQ; C?n C47 C57 CG) :(pA,lspAQiSa e(ga g)sa m~e(g, hl)isv e(ga g)Hl(m)a
g* P () e(g, hy)*e(g, hs)*P).
We set 8 = H(Cl, Cs, Cs, 04)

Decryption(delegator):
To decrypt a ciphertext C' = (Cy, Ca, Cs3, Cy, Cs5, Cs) using secret key usk 4,
delegator Alice computes 8 = H(C1,Cs,Cs,Cy) and tests whether

€(C5,g) = C§C4

and
Cs = e(CY, hA72hA735)1/’I"A . CQTA’2+TA135

If it is not equal, outputs L. Else computes

m=Cs-e(Cy, hAJ)l/rA Oy

If e(g, g)H'(m) = Cy holds, return m; otherwise return L.
The following Re-Encryption process is done through an interactive proto-

col among Alice, Bob, PKG and Proxy, which is shown in Figure 2.

Re-Encryption Key Generation:

1. In our PRE scheme, Bob is only allowed to decrypt messages intended
for Alice during some specific time period i. To achieve this property, the
delegator Alice generates a random value a; € Z, for each time period i,
where ¢ > 1. a; will be invalid after the period i. Alice signs Bob’s identity
IDpg, and sends the signature o, IDp, a; to PKG via a secure channel.
Delegator Sign:

12 Yi-Jun He et al.

2 Verification

S

/

. /
1.5,0Dpa 37kALBLB:

AN

%
N,)

| 5,6.Verification

/ H\\\
., e 1fr, i
& . B"-\Hh'n ’ ,BI' N
.

AT Alice

- An
/ S
c]’a c14 Czr cg: Cs, Cs e

.,

Proxy Bob

Fig. 2 Proposed Non-Transferable Proxy Re-encryption framework

— Choose z € Z,, and compute U = g*.
— Compute V = H; (IDp,U).
— Compute W = goratV,
— The signature on IDpg is 0 = (U, W).
2. PKG verifies Alice to identify the identity of the delegator.
PKG Verify:
— Compute V = H; (IDp,U).
— Accept the signature iff e(hy, W) = e(h1"*, g%)e(h1,9)".
3. If verification passes, PKG generates a unique randomly-selected secret
parameter y € Z,, and computes re-encryption key rka_,p = (a=idp 4

a—id
Y , \ aiy/(a—ids) !
a;y) mod p, Ay = (hf“g‘“) ,B1 = (herg_’“B>
and sends rka_, g, A1, By, Bo to Alice.

a;
7B2 :hl Y

Partial-Decryption-Key Generation:
4. Delegatee Bob sends h'y to Alice via a secure and authenticated channel.
5. Alice checks whether

e(hl, Bl) = 6(32, h/B)

to ensure Bj is a valid value which will help delegatee for decryption later.
If correct, output 1, otherwise, output 0.
6. Alice checks whether

; ; ’ ’ ka_,
h/A(’LdAfldB) . Alaq‘, . (thAg—T‘A) — (herg_TA)”" A B

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control

13

to ensure that rka_, g is a re-encryption key generated properly for dele-

gation from her to Bob.

7. Alice sends the re-encryption key rks_,p to Proxy via an authenticated

channel.

8. Alice computes h%l/“ and B1Y/"4, and sends them to Bob as partial

decryption key.

Re-Encryption:
Proxy computes 5 = H(C4,Cs, Cs,C4) and tests whether

6(0559) = C(2/6‘6(4

If it is not equal, output L. Else computes C;' = C, "4~ =
and sends (C;’, C1,Cq,C3,Cy, C5) to Bob.

Decryption (delegatee):
Bob computes g = H(C,Ca,Cs,Cy4) and tests whether

€(C5,g) = C2ﬁC4

If it is not equal, output L. Else Bob computes
C e(cl”h/B(1/"'A)(1/7'B))02"'B,1
3 (B /Ty

a—idp
a—id

ras(a—idg)(+a;v)
>

1
(hag”"B-1) (*=*B)7A) (e(g,9)°) "B 1
a;y

=Cs e(g
e(gTAS(Q—MA)7(hlg*"'B,1)W)
. a—id
_ C3e(gs(afsz)(_afm§‘), (hlg—v"BJ)M)e(g,g)st)l
. 1

=m-e(yg, hl)fse(gS(ozfde)7 (hig~"B1) @5)e(g, g)* B
=m

If e(g,g)H/(m) = (C4 holds, return m; otherwise return L.

5 Comparison with Existing Proxy Re-encryption Schemes

grAs(oz—idA)(

a—idp

a—id

+aiy)
)

The main advantage of our scheme is: It achieved Non-transferable property,
Non-Key-escrow property and Non-PKG-despotism property, in which Non-
Key-escrow property and Non-PKG-despotism property are defined by us es-
pecially for estimating security of a PKG involved PRE schemes. To compare
some existing proxy re-encryption schemes with our proposed scheme as fully
as possible, we also analyze below some important properties defined in [3].

The comparison results are presented in Table 1.

— Non-transferable: In PRE, the proxy and a set of colluding delegatees can-
not re-delegate decryption rights. This is called Non-transferable. For ex-

ample, from rky_, g, skp and pkc, they cannot produce rky_,c.

Proof:Now go back to our scheme for a concrete discussion. After one del-
egation, the proxy holds rka_,p, and the delegatee Bob holds (rg,rp1)

and (DK, = h’Bl/rA, DK, = Bi/“). If proxy and Bob want to launch

14

Yi-Jun He et al.

an attack in order to re-delegate the decryption right to others, Bob may
compute DKy = DKé/TB and DK3 = DKll/rB by himself, then the proxy
exponentiate the DKs by rka_,g. Given (C1,Co,C5) which is the origi-
nal ciphertext for the delegator, anyone who holds (DKy, DK3,7rp 1) can
decrypt by C3-¢(C1, DK>)-Cy”" /e(C1, DK3). However, notice that what-
ever method (2-party computation, or oblivious computation) the proxy
and delegatee used to compute the DKs, DK3, this re-delegation will suc-
cess only when Bob wishes to send his secret key rp,1 explicitly to other
parties, because rp 1 must be used to exponentiate Co for decrypting the
ciphertext. Further, Cs is changeable in each delegation due to the random
number s is changing, so C;B’l cannot be computed offline, and rp ; must
be sent explicitly to other parties. But by doing so, Bob may put himself
in danger, because his private key would be known to PKG once other par-
ties report rp 1 to PKG. Since the only way for Bob and proxy to transfer
decryption capabilities to other parties is to expose Bob’s secret key, Bob
would not run the risk of launching such attack. Thus we achieved the
purpose of preventing delegatees from colluding with proxy to re-delegate
the decryption right. Non-transferable property is achieved in our scheme.
Non-Key-escrow: In PRE, PKG should not be allowed to decrypt both
original ciphertext and re-encrypted ciphertext for anyone, this is called
Non-Key-escrow.
Most of PKG-based PRE schemes do not achieve this property as dis-
cussed in section 2. However, in our proposed scheme, the original cipher-
text is decrypted by m = Cj - e(Cl,hAﬁl)l/rA - Cy"*' in which ry is
needed for decryption. Moreover, the re-encrypted ciphertext is decrypted
e(C1' 'y /70 /TB) 0, B A
e(Cy,B, (/T 1/rB)y
Notice that r4 is the secret value of delegator, and rg is the secret value of
delegatee. PKG holds neither r4 nor rg. Thus only users themselves can
decrypt the ciphertext, not the PKG. Non-Key-escrow property is achieved
in our scheme.
Non-PKG-despotism: In PRE, PKG is not allowed to generate a proper
re-encryption key arbitrarily for delegating decryption right without per-
mission from delegator, this is called Non-PKG-despotism.
In our proposed scheme, delegator participants actively to help PKG gen-
erating re-encryption key by sending the random value a;, and the valid-
ity of the re-encryption key will be verified by delegator by checking if

)) , s \Tka_,
pida=ids) . giai (pyrag=ra) = (hy"4g T " If PKG misbehaved,

delegator can detect it via validity verification. Further, delegator is respon-

by m = Cjs , in which rp is needed for decryption.

sible for generating a partial decryption key (hggl/ TA,B%/ "4) for delegatee
using his own secret value r4. Without the participation of the delegator,
delegatee is unable to decrypt the re-encrypted ciphertext, even if PKG
may collude with proxy to do re-encryption illegally (PKG can do this by
sending the re-encryption to proxy directly, without passing the delegator).
In another word, the re-encryption key generated by PKG alone is useless

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 15

unless delegator is willing to help to generate the partial decryption key.
Thus completely resolves the PKG despotism problem.

— Unidirectional: Delegation from A — B does not allow re-encryption from
B — A.

In our scheme, rk4 _, g is in the form of (
to modify it into a valid 7kp_, 4.

— Non-interactive: Re-encryption keys can be generated by Alice using Bob’s
public key; no trusted third party or interaction is required.

In our proposed scheme, PKG is employed to generate re-encryption keys,
so delegator needs to interact with PKG to generate the keys.

— Prozy invisible to delegator: In Ateniese’s scheme, a property called proxy
inwisibility is achieved. This property in their work means the sender needs
to know the existence of proxy, in order to decide whether to generate
first-level encryption or second-level encryption, but the delegatee need
not to know the proxy existence. However, in our proposed scheme, proxy
is invisible to delegator, since there is only one form of encryption, but
visible to delegatee because delegatee needs to decide whether to decrypt
a normal form of ciphertext or a re-encrypted form of ciphertext. Thus, we
differentiate these two situations by using ”Proxy invisible to delegator”
and ”Proxy invisible to delegatee”. Our scheme achieved ”Proxy invisible
to delegator”, on the contrary, Ateniese’s scheme achieved ” Proxy invisible
to delegatee”.

— Original-access: Alice can decrypt re-encrypted ciphertexts that were orig-
inally sent to her.

This has been proved in our scheme construction.

— Key optimal: The size of Bob’s secret storage remains constant, regardless

of how many delegations he accepts.
Like Ateniese’s scheme, delegatee is allowed to decrypt re-encrypted ci-
phertext during some specific time period i. Thus information received
from PKG for decryption only need to exist temporarily in delegatee’s
side. After a time period i, the information would be invalid. Delegatee
can delete the information immediately. Thus in the long run, our scheme
is still key optimal.

— Collusion- “safe”: Bob and the proxy’s collusion cannot recover Alice’s se-
cret key.

In our proposed scheme, secrecy of Alice’s secret key depends on a ran-
dom value r4. It is chosen by Alice, and is not used in re-encryption key.
Although Bob and proxy collude, they cannot recover it.

— Temporary: Bob is only able to decrypt messages intended for Alice that

were authored during some specific time period 1.
In our scheme, to achieve temporary proxy re-encryption, for each time
period ¢ > 1, Alice generates a random value a; € Z,. Because a; will
be invalid after time period i, the re-encryption key’s life cycle is also pe-
riod 7. We remark that in most existing schemes we are aware, including
our scheme, the temporary property is achieved based on the assumption
that the proxy will update the re-encryption key after each period expires

(X—idB
a—ida

+a;y) mod p. It is impossible

16 Yi-Jun He et al.

Table 1 Security Comparison of existing PRE schemes and our proposed scheme

Property BBS [4] ID [9] Ateniese [3] Wang [21] Our Scheme
Uni-directional No Yes Yes Yes Yes
Non-interactive No Yes Yes No No
Proxy invisibility Yes No Yes# Yes Yes#
Original-access Yes Yes Yes No Yes
Key optimal Yes No Yes Yes Yes
Collusion-safe No No Yes Yes Yes
Temporary Yes! Yes! Yes! No Yes!
Non-transitive No Yes Yes Yes Yes
Non-transferable No No No No* Yes
Non-Key-escrow —— No —— No Yes
Non-PKG-despotism —— No —— No Yes

(*) PKG alone can transfer

(#) Ateniese [3] can only achieve proxy invisible to delegatee, our scheme can only achieve
proxy invisible to delegator.

(1) possible to achieve with additional assumption and overhead.

and re-encrypt the ciphertext using the updated re-encryption key. Oth-
erwise, if proxy always uses the expired re-encryption key to re-encrypt a
ciphertext, as long as the re-encryption is correct, the delegatee can always
decrypt the re-encrypted ciphertext using expired decryption key. In this
case, Temporary property cannot be achieved.

— Non-transitive: Based on the re-encryption keys, rka_,p and rkp_, o, the
proxy cannot produce rka_,c.
In our proposed scheme, the re-encryption key is generated using the master
secret key of the PKG, proxy cannot generate rks_,o without knowing
the master secret key. And the delegatee’s identity is included in the re-
encryption key, the proxy is unable to replace the delegatee with another
party. So even with the keys rks_, g and rkp_ ¢, the proxy cannot produce
’I"k?Aﬁc.

Our scheme adds more rounds of interaction for the following reasons:

— Private Key Correctness Check is added for checking the partial private
key generated by PKG, since PKG is not fully trusted in our assumption.

— In Re-encryption Key Generation, step 1 and 2 are added for PKG to
verify delegator and get delegatee’s identity, since PKG is responsible for
generate re-encryption key. Without verification, attacker may impersonate
delegator to trick PKG into generating re-encryption key.

— Partial-Decryption-Key Generation is added to prevent PKG, proxy and
delegatee re-delegating decryption right from colluding. With this step,
even if PKG, proxy and delegatee’s collude, they are unable to generate
re-encryption key for re-delegating decryption right without the original
delegator’s help.

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 17

6 Formal Security Analysis

In this section, we will prove the IND-ID-CCA security and ANON-IND-ID-
CCA security for our scheme under the security model mentioned in section
4.2.

Theorem 1. Assume the truncated decision (t, €, ¢)-ABDHE assumption
holds for (G, Gr, e). Then, the above non-transferable re-encryption scheme
is IND-ID-CCA secure even when the prozxy and the delegatees are colluding.

Proof Let A be an adversary who breaks the IND-ID-CCA security of our sys-
tem (in particular, when the proxy and the delegatees are colluding). We con-
struct an algorithm, B, that solves the truncated decision ¢-ABDHE problem,
as follows. B takes as input a random truncated decision ¢-ABDHE challenge
(9’5 9442195915+ 9q, Z) where Z is either e(gy+1,9') or a random element of

Gr (recall that g; = g(ai)). Algorithm B proceeds as follows.

Setup: B generates three random polynomials fi(x) € Z,[z], fa(x) € Zp,[x]
and f3(x) € Zp[x] all of degree q. It sets hy = g/1(®)| hy = ¢/2(®) and hy =
g7(® by computing them from (g, g1, ..., g;). It sends the public parameters
(9,91, h1, ha, hg) to A. Since g, a, f1(x), f2(z) and f5(z) are chosen uniformly
at random, hi, hy and hs are uniformly random as well and these public
parameters have distribution identical to that in the actual construction. B
maintains a list L to store the entry < IDg,pkq,pskq, skg > of every user
with identity IDq, public key pkq, partial private key pskq and private key
skq it has been queried so far.

Phase 1: During this phase, A can issue the following queries:

1. (pkextract,IDg): public key extraction for user IDg

2. (encrypt, IDg,mq): encryption of plaintext for user IDg

3. (pskextract,IDg): partial private key extraction for user IDg

4. (rkextract,IDg,IDg): reencryption key extraction for delegator D¢ and
delegatee I D¢y

5. (decrypt, IDg, cq): decryption of ciphertext for IDg

6. (reencrypt,IDg,IDg/,cq): reencryption of ciphertext for IDg to ID¢:

Note that A is not allowed to issue private key extraction queries since under
our scheme, even PKG only knows the partial private key but not the complete
private key of a user.

B responds to these queries as follows:

On (pkextract,IDgq), it IDg = o, B uses «a to solve the truncated decision
q-ABDHE immediately. Otherwise, let Fg o(x) = (fo(x)—f2(IDg))/(z—1Dg)
and Fg 3(z) = (fs(x)— f3(IDq))/(x—IDg) be two (¢—1)-degree polynomials.
B sets the partial private /key for IDq to be (rg, hy, 7Q.2, hq2, 7Q.3, hq,3)
which is (f1(IDq), (Rg™"&)"/(@=1P0), f(IDq), "4+, fo(IDg), gFa+())
respective]y, For: = 27 3’ gFQ,i(a) = g(ft(a)*fr (IDq))/(a—IDq) — (hig*rQ,i)l/(quDQ>)
Next, B computes rq1 = rg/rq and hg1 = (h’Q)l/rQ to complete the private

18 Yi-Jun He et al.

key for I Dg. The private key for I D¢ thus becomes (rq, rg.1, ho,1, 70,2, hQ.2,
rQ.3, ho,3). Note that this is a valid private key for IDg since for ¢ = 1,2, 3,

hg: = (hig*"Qvi)l/(a_IDQ) as required. B then computes the public key for
IDgq as (g,°, (g"2)*P<), stores all these information into L and returns the
public key to A.

On (encrypt,IDg,mq), if IDg = «, B uses « to solve the truncated
decision q-ABDHE immediately. If I Dg is in L, B simply extracts the public
key in the corresponding entry. Otherwise, B generates the public key, partial
private key and private key for /D¢ as in the above, stores them into L,
encrypts mg by performing the usual encryption algorithm with the public
key concerned and returns the ciphertext of mq to A.

On (pskextract,IDgq), if IDg = « or IDg = «, B uses a to solve the
truncated decision g-ABDHE immediately. If IDg is in L, B simply returns
the partial private key in the corresponding entry. Otherwise, B generates the
public key, partial private key and private key for IDg as in the above, stores
them into L and returns the partial private key to A.

On (rkextract,IDg,ID¢g), if IDg = a or IDgr = a, B uses « to solve
the truncated decision g-ABDHE immediately. If IDg or IDg: or both are
in L, B extracts the partial private key(s) in the corresponding entry(entries).
Otherwise, B generates the public key, partial private key and private key
for the identity not in L as in the above, stores them into L and uses the
partial private keys concerned for further processing as follows. B computes
the re-encryption key rkg_g+ using the usual re-encryption key calculation
algorithm except that BB generates the random value a; on behalf of IDg and
« is replaced by a random value (since B does not know the value of «). Note
that although rkg_.¢ is an invalid re-encryption key, A has no way to verify
its correctness since it does not possess the private key of IDg and it cannot
query it from B either.

On (decrypt, IDg, cq), if IDg = a, B uses « to solve the truncated deci-
sion g-ABDHE immediately. If D¢ is in L, B simply uses the private key in
the corresponding entry to decrypt cg by performing the usual delegator de-
cryption algorithm. Otherwise, B generates the public key, partial private key
and private key for /D¢ as in the above, stores them into L and uses the pri-
vate key concerned decrypt cg by performing the usual delegator decryption
algorithm.

On (reencrypt, IDg,IDgs, cq), if IDg = a or IDgr = a, BB uses « to solve
the truncated decision ¢-ABDHE immediately. If /Dq or 1Dy, or both are in
L, B extracts the public and private keys in the corresponding entry (entries).
Otherwise, B generates the public key, partial private key and private key for
the identity not in L as in the above, stores them into L and uses the public
and private keys concerned for further processing as follows. B decrypts cg
using the private key for IDg by performing the usual delegator decryption
algorithm and then encrypts the plaintext obtained using the public key for
IDg: by performing the usual encryption algorithm. This ensures that the
re-encrypted ciphertext is decryptable by the private key for IDg..

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 19

At the end of Phase 1, A outputs (IDg4, My, M7) where A may have
queried anything about D4 but must not have queried (encrypt, ID 4, Mp)
and (encrypt, ID 4, M7) before. If ID4 = «, B uses « to solve the truncated
decision g-ABDHE immediately. If ID 4 is in L, B simply extracts the partial
private key in the corresponding entry. Otherwise, 5 computes a partial private
key (r'y, W'y, ra2, haa, ras, hag) for ID4 as in the above. Next B generates
bit ¢ € {0,1}. Let f4(x) = 2972 and let Fy a(z) = (fa(z)— f4(IDA))/(z—ID4)
be a polynomial of degree ¢+ 1. B continues to set u = g Ja(@)—falIDa))ra) —
Zxe(g, 1y g™y and w = M,/e(u, ha 1)/ ™40 and t = e(g, g) (Me)
where Fy 4, is the coefficient of z* in Fy_s(x). After setting 8 = H (u,v,w,),

B sets y = e(u,hAyghAygﬁ)l/“v“vz”“ﬁﬂ, z = g’ﬁF“’A(a)ng(MU). B sends
ca=(u,v,w,t,z,y) to A as the challenge ciphertext.

Let s = (logyg')Fua(a). If Z = e(gy+1,9'), then u = gsrale=IDa) o =
e(g,9)%, Mc/w = e(u, 11,471)1/”"1“1)7”“’1 =e(g,h)*, z = g*PTH (Me) ang e(z,9) =
vPt. Since log,g’ and s are uniformly random, c4 = (u,v,w,t,z,y) is a valid,
appropriately-distributed challenge to A.

Phase 2: This phase proceeds as in Phase 1. However A is restricted from
issuing the following queries:

1. (encrypt,ID s, My) and (encrypt, ID 4, M7)

2. (decrypt,IDa,ca)

3. Any pair of queries (rkextract,IDa,I1D 4/) and (decrypt, ID 4/, ¢4) where
4 is the re-encrypted ciphertext using rka—_, 4.

At the end of Phase 2, the adversary A outputs guesses ¢’ € {0,1}. If
¢ =, B outputs 0 (indicating that Z = e(gq+1,9’)). Otherwise, B outputs 1.

Probability Analysis and Conclusion: If Z = e(gq+1,9’), then the simulation
is perfect. Assume that A has made d decryption queries in Phase 1, the
average length of a ciphertext be len. bits. A will guess the bit ¢ correctly
with probability 1/2 + d/(2!¢") + € where d/(2'") is the probability that A
has queried (decrypt, ID 4,ca) in Phase 1 where c4 is the ciphertext of M,. If
Z is uniformly random, (u,v,w,t, z,y) is an invalid ciphertext for (IDa, M)
and it carries no information regarding the bit c¢. In this case, A will guess
the bit ¢ correctly with probability 1/2. Therefore on overall, A will guess
the bit ¢ correctly with probability 1/2(1/2 + d/(2!*"¢) + €) + 1/2(1/2) =
1/4 +d/(2 x 2lene) + 1/2e + 1/4 = 1/2 + d/(2 x 2!"¢) 4+ 1/2¢. Thus A’s
advantage is non-negligible. B thus can make use of A to solve the truncated
decision g-ABDHE problem. This leads to a contradiction since the truncated
decision ¢-ABDHE problem is a well-known hard problem. As a result, our
scheme is secure under IND-ID-CCA (even when the proxy and the delegatees
are colluding).

Theorem 2. Assume the truncated (decision) (¢, €, ¢)-ABDHE assump-
tion holds for (G, Gp, e). Then, the above non-transferable re-encryption
scheme is ANON-IND-ID-CCA secure.

20 Yi-Jun He et al.

Proof Let A be an adversary who breaks the ANON-IND-ID-CCA security of
our system. We construct an algorithm, B, that solves the truncated decision
¢-ABDHE problem, as follows. B takes as input a random truncated decision
¢-ABDHE challenge (g', 9,42, 9,91, -, 9q, Z) where Z is either e(gq41,9') or

a random element of G (recall that g; = ¢(®")). Algorithm B proceeds as
follows.

Setup: B generates three random polynomials fi(z) € Z,[z], fa(x) € Zplz]
and f3(x) € Zp[x] all of degree q. It sets hy = g/1(®) hy = ¢/2(®) and hy =
¢f3(®) by computing them from (9,91, ---,9q)- It sends the public parameters
(9,91, h1, ha, h3) to A. Since g, «, f1(x), f2(z) and f3(x) are chosen uniformly
at random, hi, hy and h3 are uniformly random as well and these public
parameters have distribution identical to that in the actual construction.

Phase 1: A makes key generation queries by giving B an identity I D4 and
R = hi* wherera € Z, is arandom number. A also gives B the zero-knowledge
proof PK{r,: R=hi*}.

B responds to a query on IDj as follows. If IDy = «, B uses a to
solve the truncated decision -ABDHE immediately. Otherwise, let Fis o(z) =
(faw) — f2(IDA))/(@ — IDA) and Fas(x) = (fo(x) — fs(IDA))/(z — [Da)
be two (¢ — 1)-degree polynomials. We use the same technique as in [15] to
extract r4 from A, and sets r’y=rara 1 and h/y=hs1"*. B sets the partial
private key (r'y,hs, 74,2, ha2,743,haz3) to be (fi(IDa), (Rg~"a)t/ (@~ 1Da),
fo(ID4), gFa2(@) f3(IDy), gFa#(®). Note that for i = 2,3, gFas(@) —
g(fi(a)ffi(IDA))/(aleA) —_ (higfrA,i)l/(a_IDA> .

Next A computes 141 = 1/4/r4 and hy 1 = (h;‘)l/“ and sets its private
key as (ra,7a,1,ha1,74,2,h4,2,74,3,ha3). This is a valid private key for ID 4
since for i =1,2,3, ha,; = (hig’“vi)l/(a_mm as required.

A also makes decryption queries. To respond to a decryption query on
(IDa,C), B generates a private key for ID 4 as before. B then decrypts C' by
performing the usual delegator decryption algorithm with this private key.

Challenge: A outputs identities Dy, I D1, random values Ry, R; and messages
My, M;. Again, if IDy = o or 1Dy = «, B uses « to solve the truncated
decision ¢-ABDHE immediately. Otherwise, B generates bits b, ¢ € {0,1} and
computes a partial private key (7}, hy, 7.2, b2, 76,3, e 3) as in Phase 1.

Let fi(z) = 2772 and let Fyp(x) = (fa(x) — f2(IDy))/(xz — IDy) be
a polynomial of degree ¢ + 1. B continues to set u = g/(fa(e)=FfaIDu))rs
v=27X e(glv ngo gF4),,,,;a”)’ w = Mc/e(uv hb,l)l/rbvrb'la and ¢ = e(gvg)H/(MU)
where Fyp; is the coefficient of 2* in Fy(x). After setting 5 = H(u, v, w,),
B sets y = e(u,hbyghbﬁgﬁ)1/rbvrb:2+'“b:3ﬁ and z = g’BF”**b(a)gH'(MU). B sends
(u,v,w,t,z,y) to A as the challenge ciphertext.

Let s = (loggg')Fup(c). If Z = e(gq+1,9'), then u = g , U=
e(gag)sv Mc/w = e(uvhb,l)l/rbvrb’l = e(gvhl)sa z = gS'BJrH,(Mu)v and G(Z,g) =

srp(a—IDy)

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 21

vPt. Since loggg’ and s are uniformly random, (u, v, w,t, z,y) is a valid, appropriately-
distributed challenge to A.

Phase 2: A makes key generation queries and decryption queries, and B re-
sponds as in Phase 1.

Guess: Finally, the adversary A outputs guesses V', ¢ € {0,1}. If b = b’ and
¢ =, B outputs 0 (indicating that Z = e(gq+1,¢’)). Otherwise, B outputs 1.

Probability Analysis and Conclusion: If Z = e(gq+1, ¢'), then the simulation is
perfect. Assume that 4 has made d decryption queries in Phase 1, the average
length of a ciphertext be len, bits and the length of an identity is len;q bits. A
will guess the bits (b, ¢) correctly with probability 1/4+d/(2!¢neHlenid) e where
d/(2lenetlenia) ig the probability that A has queried the decryption on IDj
and the ciphertext of M, in Phase 1. If Z is uniformly random, (u,v,w,t, z,y)
is an invalid ciphertext for (I Dy, M,.) and it carries no information regarding
the bits (b, ¢). In this case, A will guess the bits (b, ¢) correctly with probability
1/4. Therefore on overall, A will guess the bits (b, ¢) correctly with probability
1/2(1/4+d/(2lenetlenia) ye)+1/2(1/4) = 1/8+d/(2x2lenetlenia) 11 /2¢41/8 =
1/4+d/(2 x 2lenctlenia) 1 /2¢. Thus A’s advantage is non-negligible. B thus
can make use of A to solve the truncated decision ¢-ABDHE problem. This
leads to a contradiction since the truncated decision ¢-ABDHE problem is a
well-known hard problem. As a result, our scheme is secure under ANON-
IND-ID-CCA.

Since no matter before or after re-encryption, the ciphertext resulted from
our scheme is of the same format (though involves private keys of differ-
ent users), the same security proof applies to the cases before and after re-
encryption.

7 Implementation of Non-transferable Re-encryption based
Encrypted USB/PC File Systems for Data Dissemination

We implemented a non-transferable re-encryption based file system with three
goals in mind. First, to show the correctness of our proposed scheme. Second,
to prove that our proposed scheme is acceptable and practical to improve real
systems (Encrypted USB/PC file systems are used as an example) to for data
dissemination control. Third, to assess the performance of proposed scheme.
Because of the paper length limitation, please see the implementation details
in appendix.

7.1 Overview of Non-transferable Re-encryption based Encrypted File
Systems

Scenario: An encrypted volume (V1) is for an employee (U) of a company,
working on a project. When U; is on holiday, another user (Us) takes up the

22 Yi-Jun He et al.

project from U;. The problems are how to disseminate the data in V4 to Us
securely and how to ensure Us will not further disseminate V; to other par-
ties? The most direct way is to let Uy know U;’s key. Certainly, this introduces
security problem, for example, Us could distribute U;’s key to other parties
without getting U;’s permission. This violates the requirement of data dissem-
inate control which seeks to control information and digital objects even after
they have been delivered to a legitimate recipient. Another possible way is to
let Uy decrypt Vi into plaintext using his key and encrypt again with key of
U,. However, this poses two problems: the existence of plaintext is dangerous;
and it is too time consuming to encrypt and decrypt the huge encrypted disk.
Thus, we use ”Re-Encryption” scheme based encrypted file systems for data
dissemination to solve those problems.

Two kinds of Non-transferable Re-encryption based encrypted file systems
are implemented: Non-transferable Re-encryption based Encrypted PC File
System and Non-transferable Re-encryption based Encrypted USB File Sys-
tem. We call them NTR-PC-FS and NTR-USB-FS for short respectively. Each
of them has three different encrypted volume creation ways: password only,
key files only, and password and keyfiles together. We show that both NTR-
PC-FS and NTR-USB-FS can achieve secure data dissemination from party
Uy to Us, and can still effectively prohibit re-dissemination from Us to other
parties even after data has been delivered to Us.

7.2 Main Advanced Security Features

1. Us is unable to re-disseminate the data to others, because he does not know
the password or the keyfile of U; (discussed in point 2). The only way for
him to re-disseminate is to expose his own private key, however, Us would
not be so stupid to run the risk.

2. We reduces the trust on the proxy server, the content server and PKG.
The proxy server re-encrypts the encrypted content key and keyfiles, but
it never gets to know the plaintext of the content key and keyfiles; The
content server keeps the encrypted volume, but it is unable to access it;
The PKG generates the partial private keys for users, but it does not
know the whole private keys of users. In case the proxy server, the content
server and PKG are compromised, attacker still cannot gain access to the
password, keyfiles, and encrypted volume. Thus the proposed file system
fundamentally changes the security of the general file systems, because in
general file systems, the security relies on the trust of a server operator
or a proxy server; in our proposed file system, the security relies on the
strength of the secure cryptosystem.

3. Us is not required to input the password or locate the keyfile to mount
the encrypted volume got from Uy, since he does not know the password
or the keyfile of U;. The content key decryption, keyfile decryption and
volume mounting are proceed by the NTR-PC-FS when provided Us’s pri-
vate key, the partial decryption key, the re-encrypted content key and the

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 23

Table 2 Efficiency Comparison of Ateniese PRE scheme and our proposed scheme

Ateniese [3] our scheme

Parameter size 512-bit 512-bit
Encryption 7.7 ms 27.1 ms
Decryption (by delegator) 21.9 ms 33.4 ms
Re-encryption 21.7 ms 12.6 ms
Decryption (by delegatee) 3.4 ms 55.4 ms

re-encrypted keyfile. The content key and keyfiles are never leaked outside,
which is ensured by the security of Truecrypt itself.

4. NTR-PC-FS never saves any decrypted data to a disk - it only stores
them temporarily in RAM (memory). Even when the volume is mounted,
data stored in the volume is still encrypted. When you restart Windows
or turn off your computer, the volume will be dismounted and all files
stored on it will be inaccessible (and encrypted). Even when power supply
is suddenly interrupted (without proper system shut down), all files stored
on the volume will be inaccessible (and encrypted).

7.3 Performance Analysis

Note that we do not measure time for setup, private key correctness check,
key generation or partial decryption key generation, since these algorithms
are performed only once, at initialization time. As in [3], measurements do not
take into account the transmission time also, since the encryption, decryption
and re-encryption time are the major concerns in re-encryption schemes. We
use 512-bit size for order of the base field in proxy re-encryption. Experiments
were repeated 10 times using random input points over which timings were
averaged.

To our knowledge, besides our scheme, the ” Third Attempt” of re-encryption
schemes in [3] is the only one that has been implemented. However, they im-
plemented their scheme using the MIRACL cryptographic library [16], and we
used PBC library. Thus various choices, such as parameter sizes and encryp-
tion granularity can greatly affect the efficiency of the scheme. To have a more
accurate comparison result of scheme efficiency, we re-implement the ” Third
Attempt” scheme in [3] using PBC library, and compare our experimental
result with [3] in Table 2.

Observation: The experimental results presented in Table 2 show that, when
compared with Ateniese’s re-encryption scheme, our proposed scheme could
cut down the re-encryption time by 9.1ms. This is quite a significant reduction
especially when the proxy server has to handle a large number of re-encryption
requests. Table 2 shows that our proposed scheme requires more decryption
and encryption time; however, these overheads are quite acceptable since (i)
decryption and encryption are performed on the client sides(delegators and

24 Yi-Jun He et al.

delegatees), and the time is less than 0.1 second which is acceptable for prac-
tical use. (ii) Moreover, a tradeoff between efficiency and security is often un-
avoidable: in order to achieve the non-transferable property, we have designed
a more complicated form of ciphertext which requires additional computation
for decryption. (iii) As the clients would perform encryption and decryption
for only once, the impact of the extra time is insignificant. Therefore, with
the substantial reduction in re-encryption time, the proposed scheme can be
considered a promising one.

Limitation: We exclude the discussion on secret issues related to ”hack” the
program of Truecrypt to steal the password.

8 Conclusions

In this paper, we attempt to solve the open problem pointed out in NDSS 2005,
in proposing a non-transferable proxy re-encryption scheme, and successfully
use this new scheme in data dissemination control. With the proposed PRE
scheme, the proxy and a delegatee cannot collude to transfer decryption rights.
We also introduced two important properties, namely Non-Key-escrow and
Non-PKG-despotism, into the proposed PRE scheme. The principle behind
our solution is that instead of ‘prohibiting’ a party to propagate information,
we punish the party who illegitimately propagates information by exposing
the important secrets of the party. This method is feasible due to the fact that
nobody would run the risk of exposing its own secrets to do illegal decryption
right transfer. Thus, our "punish’ method is more practicable and effective than
the ’tracing’ method in [11], because it can strongly prevent illegal decryption
right transfer from happening, but not just tracing the malicious proxy after
the illegal decryption right transfer.

To the best of our knowledge, our paper is the first paper which practically
solves the transferable problem, and the first attempt to use non-transferable
re-encryption scheme to achieve data non-redissemination.

9 Acknowledgments

We would like to show our deepest gratitude to Sherman S.M. Chow, for all his
kindness and help. Without his valuable comment, we could not have solved
the difficult part of this paper.

References

1. Truecrypt. hitp://www.truecrypt.org/.
2. S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In ASI-
ACRYPT, pages 452-473, November 2003.

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 25

3.

11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. In NDSS, pages 29-43, February
2005.

M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptog-
raphy. In EUROCRYPT, pages 127-144, June 1998.

. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without

random oracles. In EUROCRYPT, pages 223-238, May 2004.

K. Fu. Group sharing and random access in cryptographic storage file systems. Master’s
thesis, May 1999.

C. Gentry. Practical identity-based encryption without random oracles. In EURO-
CRYPT, pages 445-464, May 2006.

V. Goyal. Reducing trust in the pkg in identity based cryptosystems. In CRYPTO,
pages 430-447, August 2007.

A. Ivan and Y. Dodis. Proxy cryptography revisited. In NDSS, February 2003.

. J. Jin, G.-J. Ahn, H. Hu, M. J. Covington, and X. W. Zhang. Patient-centric authoriza-

tion framework for sharing electronic health records. In SACMAT ’09: Proceedings of
the 14th ACM symposium on Access control models and technologies, pages 125—134,
June 2009.

B. Libert and D. Vergnaud. Tracing malicious proxies in proxy re-encryption. In Pairing,
pages 332-353, September 2008.

B. Lynn. Pbc: The pairing-based cryptography library. http://crypto.stanford.edu/pbc/.
T. Matsuo. Proxy re-encryption systems for identity-based encryption. In Pairing,
pages 247-267, July 2007.

K. Niu, X. A. Wang, and M. Q. Zhang. How to solve key escrow problem in proxy
re-encryption from cbe to ibe. In DBTA, pages 95-98, April 2009.

R. Sakai and M. Kasahara. Id based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054, 2003.

M. Scott. Miracl. shamus software. hitp://www.shamus.ie/.

N. Shang, M. Nabeel, F. Paci, and E. Bertino. A privacy-preserving approach to policy-
based content dissemination. In ICDE, pages 944-955, March 2010.

J. Singh and J. Bacon. Event-based data dissemination control in healthcare. In Elec-
tronic Healthcare, pages 167—174, September 2008.

R. K. Thomas and R. Sandhu. Towards a multi-dimensional characterization of dissem-
ination control. In Policies for Distributed Systems and Networks, IEEE International
Workshop on, pages 197-200, June 2004.

X. A. Wang and X. Y. Yang. Identity based broadcast encryption based on one to many
identity based proxy re-encryption. In IEEE International Conference on Computer
Science and Information Technology, pages 47-50, August 2009.

X. A. Wang and X. Y. Yang. Proxy re-encryption scheme based on bb2 identity based
encryption. In IEEE International Conference on Computer Science and Information
Technology, pages 134-137, August 2009.

X. A. Wang and X. Y. Yang. Proxy re-encryption scheme based on sk identity based
encryption. In IAS, pages 657-660, August 2009.

X. A. Wang, X. Y. Yang, and F. G. Li. On the role of pkg for proxy re-encryption in
identity based setting. Cryptology ePrint Archive, Report 2008/410, 2008.

X. A. Wang, X. Y. Yang, and M. Q. Zhang. Proxy re-encryption scheme from ibe to
cbe. In DBTA, pages 99-102, April 2009.

A Implementation

Our file system consists of five parties: proxy server, content server, PKG, disseminator and
recipient. PKG is responsible for key generation. An untrusted proxy is used to manage the
dissemination control, and an untrusted content server is used to store encrypted volume for
disseminator. Disseminator plays the role of delegator in re-encryption scheme, and recipient
plays the role of delegatee in re-encryption scheme. We use our proxy re-encryption scheme
to grant encrypted volume access right to legal recipient.

26 Yi-Jun He et al.

We use two Intel Core 2 Duo CPU E6750 at 2.66GHz with 3GB RAM PCs as the proxy
server and the content server. The scheme is implemented in C language, with all pairing
operations implemented using PBC Library [12]. The file system is on the basis of Truecrypt
[1] which is a software system for establishing and maintaining an encrypted volume (data
storage device). No data stored on an encrypted volume can be read (decrypted) without
using the correct password/keyfile(s) or correct encryption keys. Entire file system is en-
crypted (e.g., file names, folder names, contents of every file, free space, meta data, etc). We
choose the Truecrypt because it is open source, and allows us to experiment our scheme on
top of it without putting much effort on how to establish the file system interface.

A.1 Overview of NTR-PC-FS

— Password only

NTR-PC-FS first creates a virtual encrypted volume on PC. The virtual volume is
encrypted using the password, encryption algorithm and hash function chosen by Uj.
When using the encrypted volume, user needs to input the correct password, and mount
encrypted volume as a real disk. After that, when user opens a file/project stored on a
volume (or when user write/copy a file to/from the volume) user will not be asked to
enter the password again.

When U; wants Uz to take up the project from him, the system proceeds as shown in
figure 3.

5
re-encrypted content key

3
encrypted content key

((ay/a

Proxy server

v

4 6 mount
partial decryption key volum e

2
dow nload encrypted volum e

1
upload encrypted volum e

(&4

Content server

Fig. 3 Proxy Re-Encryption

1. U; publishes the encrypted virtual volume on an untrusted content server of the
company. The content server makes the encrypted virtual volume available to ev-
eryone.

2. Uz downloads the encrypted virtual disk from the content server.

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 27

3. To let Uz access the encrypted virtual volume, U; uses the NTR-PC-FS transforms
the password into a symmetric content key € G first. Then encrypts the content
key with U1’s asymmetric public key using the encryption algorithm in section 4.2.

4. Uy sends Uz a partial decryption key, and then communicates with an untrusted
proxy to re-encrypt the encrypted content key.

5. Proxy uses re-encryption key which is generated by PKG to re-encrypt the content
key.

6. After obtaining the re-encrypted content key, NTR-PC-FS on Uz’s PC uses Uzx’s
private key, the partial decryption key, and the re-encrypted content key to mount
the volume.

Now, Uz is able to access the project in virtual volume.

— Keyfile only
The difference from the previous volume creation way is that the virtual volume is
encrypted using the keyfile randomly generated by NTR-PC-FS or chosen by U;. The
keyfile can be a file on PC or a portable storage device. When using the encrypted
volume, user needs to locate the correct keyfile, and mount the encrypted volume as a
real disk. For the whole system work flow, please see figure 4.

3
encrypted keyfile

5
Re-encrypted key file

ey

Proxy server

4
partial decryption key

upload encrypted volum e ® dow nload encrypted volum e

6 mount
volum e

Content server

Fig. 4 Proxy Re-Encryption

To let Uz access the encrypted virtual volume,

1. This step is as the same as the password only method.

2. This step is as the same as the password only method.

3. NTR-PC-FS encrypts the keyfile with U;’s asymmetric public key using the encryp-

tion algorithm in section 4.2.

4. Uy sends Uz a partial decryption key, and then communicates with an untrusted
proxy to re-encrypt the encrypted keyfile.
Proxy uses re-encryption key which is generated by PKG to re-encrypt the keyfile.
After obtaining the re-encrypted keyfile, NTR-PC-FS on Us’s PC uses Uz’s private
key, the partial decryption key, and the re-encrypted keyfile to mount the volume.
Now, Uz is able to access the project in virtual volume.

oo

28 Yi-Jun He et al.

— Password and Keyfile together

The difference from the previous two volume creation ways is that the virtual volume
is encrypted using the password chosen by U; and keyfile randomly generated by NTR-
PC-FS or chosen by U;. When using the encrypted volume, user needs to input the
correct password and locate the correct keyfile, and mount the encrypted volume as a
real disk.

To let Uz access the encrypted virtual volume, NTR-PC-FS encrypts the keyfile and
the password respectively with Ui’s asymmetric public key using the encryption al-
gorithm in section 4.2. Uy sends Uz a partial decryption key, and then communicates
with an untrusted proxy to re-encrypt the encrypted keyfile and password. Proxy uses
re-encryption key which is generated by PKG to re-encrypt the keyfile and password re-
spectively. After obtaining the re-encrypted keyfile and password, NTR-PC-FS on Us’s
PC uses Usz’s private key, the partial decryption key, the re-encrypted password, and
the re-encrypted keyfile to mount the volume. Now, Us is able to access the project in
virtual volume.

A.2 Overview of NTR-USB-FS

— Password only
The differences from the previous NTR-USB-FS (Password only) are that the encrypted
volume is created on a USB device, not on a PC; and when U; wants Uz to take up
the project from him, U; does not need to publish the encrypted virtual volume on an
untrusted content server of the company. He just passes the USB device to Usa. For the
whole work flow, please see figure 5.

<

encrypted content key 7] re-encrypted content key

(aF /4

Proxy server

3 5 mount
partial decryption key volum e

—
¢ i
M)

1 encrypted volum e

Fig. 5 Proxy Re-Encryption

— Keyfile only This volume creation way is similar to the one of NTR-PC-FS. For the
differences, please see the above ”Overview of NTR-USB-FS (Password only)”.

— Password and Keyfile together This volume creation way is similar to the one
of NTR-PC-FS. For the differences, please see the above ”Overview of NTR-USB-FS
(Password only)”.

A .3 Correctness Demonstration

Our implementation is actually divided into four executable programs. To facilitate reading
and checking on the correctness, we combine the four programs into one. A screenshot is

Non-Transferable Proxy Re-Encryption Scheme for Data Dissemination Control 29

shown in figure 6 as below. In the figure, user A represents the disseminator Uy, and user
B represents the recipient Uz. We can see the message m=m’=m”, which means that the
message m is correctly decrypted by A before re-encryption and by B after re-encryption.

30 Yi-Jun He et al.

Select E:\PBC Library\PBC-0.4.7-vc-c\l .7-vc-c\PBCVC\Debug\PBCVC. exe - |EI| X
Key Generation =
lUser A
ida hash = 1841431 THE1T 13834 2189735002657312

ra = 7195815858226227315935991 739157778484 74524872125

ral = 219109438761232342949167042001 770259164493235920

hal = [2501641T7645264 7795429441 784823 727436548124 77939843038916224100489496954 74
331048299298211917233106894 7836084 7485310841955276940209981692791662436808107955
9, 1244889029770162863654301368 7779093802701 795373618871 779539807105373406758771
4908665520704 7938320870953703582331359453623481418206273816049085556270016345]
pal = [1140093276341675169808340830421129703386968373974503155190079198937834509
08366393976920200515207984454332807671838991979045586513321742634710693231995082
6. 45T44049671T886545191562526687T42242042450429T8094576865755630101451872165222
S314286T702335053T! 14504 2505362714196130979649310521186523 733444378097

paz = [1482179960203148416256571616129624051370154629664438368798458931968559894
85059099211 745581130002091272010799096513012896794307480064497519954920865911691
T, 34162165054666669288365913492002804071 T34322767390614005756798941201657938399
313175256941899702241952062592150062528622431595189534 77 734098563495607125938]
User B

idb hash = 184167851725723835442830530792162531012694328388

rb = 306583608223429176786735052318831643697933305395

rb1 = 1 36061854 367588773782910594319598Y4

hb1 = [4309061633306195289516693199753482832775925348711677121424346999544681692
34510532484083 7887 79581939036 754338671098077032030686869196028621330129299126493
2, H208791247083494482 35652474 33979992738126711436503871882526
SHE96TTT8TH4STE557996462 1182056 9056 61111142179692]

pb1 = [3585824080847515121519620781330793648443953716323565296020290168491759231
823083534451272303027999801604794913675953085976T0TO3766002040291573362616622300
4, 44498252118636593487214204153541999286761205399462732028498683077128641093192
9895654 TH41680041602391 T94526558030973200461228311332289505560157T04691980364]

pb2 = [5970692915380784778161245267004218330514042806011736483643682132643705282
160995227691124175429958160449944170T06698T99108T0224970023T738968T02093149470644
6. 80011472571683135593733818178612965554464664152122968689436386160328192492205
28310023710643581778026892032816986372429057800081479166258547200761710886571]
Encryption
m = [840372077189273512298673264601557734828300123624140082696823012347210425008
17T16TH917100709576251951127776205699500806639196192130304221716730453783955820,
THHST695656025T76043007TTISTSTO267191963251959928553187252707730024377809413814669
T664382009137890213457199414095039726326 9638566377100245100862342486]

c1 [86922306T1877828392416T7088600449296019991991618316766029582407582133305578
676135075949372486505T74523348727431221071563629511534279318000973121449065907813
, 8015410690594286883086069448710541 1646478736033 7468387230298082284978731255265
629725102890049102079651487900973 7570500350398 4BE112353479771269] :J

Select E:\PBC Library\PBC-0. 4.7-vc-c\PBC-0. 4.7 -vc-c\PBCVC\Debug\PBCVC. exe

C2 = [86110329106246761824318968728573674251315567704500644031101914833569833861 4 |
9189741 738393696697513465529310081072471506685981942270126278286487 1444314249030

, 551530464609884 76350646 7250343032656869705075673089662971937782194530188649818
86T41875380028468862T8113768573611389679950511847675618664328557973410370918]

C3 = [72580111881742427258053133737227929028607903320T43271 76463903 7361451781404
THH9089414 751970663 T8HHHE541926T2T3194924444516126410010743690787345907490759189

, 573116757924526865701920658863377749293758502632718239065081673345851822355258
266839935323T447191117618383651958T43706196323406434453T764168T60164591259452]

main cost:0.02T467

Decryption by delegator

m'= [840372077189273512298673264601557734828300123624140082696323012347210425008
17167491 7100709576251951127776205699500806639196192130304221 716730453 783955820,
THLHETE69565602576043007TISTSTO267191963251959928553187252707730024377809413814668

TE643820091378902134571994140950397263268355359638566377100245100862342486]

main cost:0.033771

Delegator Decryption successful

Re-encryption key generation

rk = 166877452814211586124187312500963128632491065812

Partial decryption key generation

k1 = [SOO45737234949960300TTT472918603122966681797091189844969270228805702025559
1393106687171064020408190438400564964551376505912115355147271082651975558685874,
12546009667110014875902633972120621185686450618169704262296944333T4750079173872

6256181101932749932061109498976225432494 TO3HY31514THSOBTHSOSTHH4TE602522T9]

k2 = [3922211563123065315079283317657499314436987645590594T000486030722084124499

30097626189436314805T99T43034920TH3TIHTETO483651 304678230894 75402671247220204801
, 3119180685368743803479843470089811004834294708274007933001410485887482409THI6Y

81170920861670823 79307 TT4935408139381619535865777366841639345136556967395654]

Re-encryption

C1'= [7T7910740701050852468560566341997305765265623974513530067412163909918326077

4314064467 7T39404997834066563952856981131 783786559798 7S 7782509488558 7735772593904
, 34491992092274071141937098481553943 759184344 721400828810951 T458462345613634126

363587360581681287464593081564416814632359086803463001 TH59456218T05675343385]

main cost:0.012672

Decryption by delegatee

m* "= [84037207T718927351229867326460155773482830012362414008269682301234721042500)

81716T49171007R85T6251951127776205699500806639196192130304221716730453783955820,
TH49TE956560257604300TTO5TST02671919632519599285531872527077300243 7780941381466

8TE643820091378902134571994140950397263268355359638566377100245100862342486]

main cost:0.057490
Delegatee Decryption successful :J

Fig. 6 Implementation Result

