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Abstract

Network coding is a method for achieving channel capacity in networks. The key idea is to
allow network routers to linearly mix packets as they traverse the network so that recipients re-
ceive linear combinations of packets. Network coded systems are vulnerable to pollution attacks
where a single malicious node floods the network with bad packets and prevents the receiver
from decoding correctly. Cryptographic defenses to these problems are based on homomorphic
signatures and MACs. These proposals, however, cannot handle mixing of packets from multiple
sources, which is needed to achieve the full benefits of network coding. In this paper we address
integrity of multi-source mixing. We propose a security model for this setting and provide a
generic construction.

1 Introduction

Network coding [2, 18] is an elegant technique that replaces the traditional “store and forward”
paradigm of network routing by a method that allows routers to transform the received data before
re-transmission. It has been established that for certain classes of networks, random linear coding
is sufficient to improve throughput [12]. In addition, linear network codes offer robustness and
adaptability and have many practical applications (in wireless and sensor networks, for example)
[11]. Due to these advantages, network coding has become very popular.

On the other hand, networks using network coding are exposed to problems that traditional
networks do not face. A particularly important instance of this is the pollution problem: if some
routers in the network are malicious and forward invalid combinations of received packets, then
these invalid packets get mixed with valid packets downstream and quickly pollute the whole
network. In addition, the receiver who obtains multiple packets has no way of ascertaining which
of these are valid and should be used for decoding. Indeed, using even one invalid packet during
the decoding process causes all the messages to be decoded wrongly. For a detailed discussion of
pollution attacks, we refer the reader to [5, 21, 13].

To prevent the network from being flooded with invalid packets, it is desirable to have “hop-
by-hop containment.” This means that even if a bad packet gets injected into the network, it is
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detected and discarded at the very next hop. Thus, it can be dropped before it is combined with
any other packets, preventing its pollution from spreading.

Hop-by-hop containment cannot be achieved by standard signatures or MACs. As pointed out
in [1], signing the message packets does not help since recipients do not have the original message
packets and therefore cannot verify the signature. Nor does signing the entire message prior to
transmission work, because it forces the recipient to decode exponentially many subsets of received
packets to find a decoded message with a consistent signature. Thus, new integrity mechanisms
are needed to mitigate pollution attacks.

Previous Work. Security of network coding has been considered from both the information-
theoretic and cryptographic perspectives. In the former, the adversary is modelled as having control
over a limited number of links in the network. Such approaches, though useful for wireline networks,
have limited application in wireless networks. For a detailed discussion of these techniques, see
e.g. [7, 10, 14, 15]. Cryptographic techniques have also been proposed, e.g. in [8, 19, 21, 5]. These
authors construct digital signatures for signing a linear subspace. If V is a subspace and σ its
signature, then there is a verification algorithm which accepts the pair (v, σ) for all v ∈ V , but it
is difficult to construct a vector y 6∈ V for which the pair (y, σ) verifies. An alternative approach
is to use a MAC (instead of a signature) for integrity of a linear subspace; see [1, 20].

While the signature and MAC schemes in [8, 19, 21, 5, 1] are elegant, they are quite limited:
they only allow routers to combine vectors from a single sender. (Furthermore, the constructions of
[8, 19, 21] require a new public key to be generated for each file, thus hurting efficiency.) Traditional
network coding assumes a network where many senders simultaneously send messages and network
routers linearly combine vectors from multiple senders. This setting is essential in showing that
network coding can improve the efficiency of 802.11 wireless networks [16].

Our Contribution. Our goal is to construct a signature mechanism that provides integrity when
network routers combine packets from many sources. This problem is considerably harder than the
single source problem. First, defining security is more difficult. It is necessary to model “insider”
attacks where the attacker controls network routers as well as some senders. The attacker’s goal is
to generate valid signatures on mixed packets; after decoding these packets the recipient believes
that an honest sender sent a message M∗ that was never sent by the honest sender.

More precisely, if there are s senders in the network, we allow the attacker to control s − 1
of them. Furthermore, the attacker can mount a chosen message attack on the single honest
sender. The attacker’s goal is to generate a mixed packet with a valid signature that after decoding
corresponds to an existential forgery on the single honest sender.

In Section 3 we show that a natural generalization of the single-sender security model in [5] to
the multi-sender setting results in a model that cannot be satisfied. We do this by constructing
a generic attack against an abstract multi-source network coding signature scheme. In Section 4
we present a security model that captures the constraints of the multi-sender problem. Our model
retains the desirable properties of the single-source model, such as hop-by-hop containment of
forged packets, and is achievable.

In Section 5 we present a construction satisfying our security model. We give a generic con-
struction from a new primitive called a vector hash, which captures the properties of homomorphic
hashing that are necessary to produce secure signatures, and we show how to instantiate the con-
struction based on the discrete logarithm assumption. We also prove a lower bound that shows that
our model necessitates a relatively space-inefficient construction; our discrete log scheme (asymp-
totically) achieves this lower bound.
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2 Network Coding

We refer the reader to [18] for a detailed introduction to network coding. Here we present a brief
overview for completeness; this description describes the operation of a network coding system and
is independent of any security model. We model a network as a directed graph consisting of a set
of vertices (or nodes) V and a set of edges E. We assume the graph is connected. A node that
only transmits data is called a source node. We start with the basic model, in which one source
wishes to transmit one file F through the network. The source interprets the data in F as a set of
m vectors v̂1, . . . , v̂m in an n-dimensional vector space over a finite field Fp. (The prime p and the
dimensions n and m are fixed parameters in the system.) We sometimes refer to individual vectors
as blocks or packets. The source then appends a unit vector of length m to the vectors v̂i to create
m augmented vectors v1, . . . ,vm given by

vi = (—v̂i—,

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+m
p .

The augmented vectors comprise the data to be transmitted through the network. We call the first
n entries of the vector vi the data component and the last m entries the augmentation component.

The “coding” part of network coding works as follows: an intermediate node in the network
receives some set of vectors w1, . . . ,w`, chooses ` random elements βi ∈ Fp, and transmits the
vector y =

∑`
i=1 βiwi along its outgoing edges. The key property of the augmentation is that the

augmentation component contains exactly the linear combination coefficients used to construct y.
That is, we know that y =

∑m
i=1 yn+ivi even though the intermediate node may never see the vi.

This property allows any node that receives a set of m linearly independent vectors y1, . . . ,ym to
recover the original vi. Specifically, if we let D be m × n matrix whose ith row consists of the
data component of yi, and A be the m × m matrix whose ith row consists of the augmentation
component of yi, then the rows of A−1D are exactly the initial vectors v̂i.

Since network coding consists of linearly combining vectors, the subspace spanned by the (aug-
mented) vectors of a file remains invariant under network operations. Hence we can equivalently
consider a file to be represented by the subspace spanned by the vectors that comprise it.

Notation: We use n to denote the dimension of the data space and m to denote the dimension
of a vector subspace that represents a single file. The number of files in the system is denoted by
f . For v ∈ Fn+`

p , we will use v̂ to denote the data component of v, i.e., the first n coordinates of
v, and βv to denote the augmentation component of v, i.e., the remaining ` coordinates. When we
use a vector space V as input to or output of an algorithm we assume that V is described by an
explicit basis {v1, . . . ,v`}. Such a basis is properly augmented if for i = 1, . . . , `, the augmentation
component βvi

is the unit vector ei with a 1 in the ith place.
We will refer to the augmented vectors that the source wishes to transmit as primitive vectors.

Here, “primitive” alludes to the fact that these vectors have not been mixed with any other; their
augmentation components are unit vectors. Aggregate vectors, on the other hand, refer to vectors
that have been formed as a result of linearly combining primitive or other aggregate vectors.

2.1 Multiple sources, multiple files

In general networks may have multiple sources, each of which can transmit multiple files into the
network. We now describe this situation, assuming that all nodes in the network are honest. In
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principle the network coding setup is the same as in the single-source situation described above,
but there is some more bookkeeping to do. This bookkeeping is implicit in previous work that
considers multiple sources (e.g. [18]); here we give an explicit description that we will use in our
discussion of security. The complication arises from the fact that the intermediate nodes wish to
combine vectors from files produced by different sources, but each source knows nothing of what
the other sources are doing.

In the single source case, each file is associated with a file identifier id. The identifier allows the
receiver to group together packets that belong to the same file. This prevents, for example, delayed
honest packets from a previous file transmission from being decoded along with the current file’s
vectors. Hence each vector (primitive or aggregate) that traverses the system carries with it the
identifier of the file it belongs to.

In the multi-source case, the file identifier id plays an even more crucial role — it allows the
intermediate nodes to combine vectors arising from different files. In this scenario, an aggregate
vector may be associated with multiple files, and the identifier attached to an aggregate vector
v must carry with it the identifiers of all of the files whose vectors went into making v. Upon
receiving two vectors, where each vector contains a (probably different) list of identifiers id, an
intermediate node will need to “merge” the lists of identifiers to a common list and adjust the two
vectors’ augmentation components so that they can be linearly combined.

For example, suppose a node receives two vectors v1,v2 ∈ Fn+m
p with identifiers id1 and id2,

respectively. Splitting vi into its data and augmentation components, we write vi = (v̂i,ai). If
id1 = id2 then the vectors come from the same file and the situation is analogous to the single
source case and no additional adjustment is needed. However, if id1 6= id2 then the vectors came
from different files and we must introduce additional augmentation before we can linearly combine
the vectors. In this case we define v′1 = (v̂1,a1,0) and v′2 = (v̂2,0,a2) ∈ Fn+2m

p , where 0 denotes
a length-m zero vector. Thus when we compute a linear combination v = av′1 + bv′2, the data
components are mixed together but the augmentation coefficients remain separate. We can then
use the identifier id = (id1, id2) to indicate which set of augmentation coefficients correspond to
which file.

More generally, we define an algorithm Merge that merges the lists of identifiers contained
in aggregate vectors and adjusts the vectors’ augmentations. This algorithm is intrinsic to the
multiple-source setting: the algorithm does not itself linearly combine vectors, but rather it prepares
aggregate vectors (coming from different sources, made up of different files) to be mixed together.
If v ∈ Fn+mf

p is an aggregate vector, we continue to call the first n entries of v the data component;
we call the rest of v the augmentation component, and we divide the augmentation component
into f augmentation blocks of length m. (Here and in the remainder of the paper we assume for
simplicity the dimension m is the same for each file and is publicly known; the generalization to
variable dimension is straightforward.)

Algorithm 2.1 (Merge).
Input: lists of identifiers id1, id2 of lengths f1, f2, respectively, with no repeated entries, and vectors
wi ∈ Fn+mfi

p for i = 1, 2.
Output: vectors w′1,w

′
2 ∈ Fn+mf ′

p and a list of identifiers id
′ of length f ′.

1. Let id
′ be the list whose entries are the union of the elements of id1 and id2, ordered in some

pre-determined way (e.g. lexicographically). Let f ′ be the length of id
′.

2. For i in 1, 2, define w′i ∈ Fn+mf ′
p by setting the data component of w′i equal to the data

component of wi, and for j in 1, . . . , f ′, setting the jth augmentation block of w′i as follows:
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• If the jth element of id
′ is the kth element of idi, the jth augmentation block of w′i is

equal to the kth augmentation block of wi.

• If the jth element of id
′ is not an element of idi, the jth augmentation block of w′i is 0.

3. Output the list id
′ and the vectors w′1,w

′
2.

The intermediate node can now compute a random linear combination y of the w′1 and w′2 and
use the list id

′ as the identifier component of the signature on y. (In the example above we executed
this algorithm on two vectors each with an identifier list of length fi = 1.)

We also define an algorithm called MergeSpaces that uses the Merge algorithm to combine two
files described as vector spaces.

Algorithm 2.2 (MergeSpaces).
Input: disjoint lists of identifiers id1, id2 and two vector spaces V = span(v1, . . . ,vk) ⊂ Fn+k

p and
W = span(w1, . . . ,w`) ⊂ Fn+`

p .
Output: a subspace Z ⊂ Fn+k+`

p and an identifier id
′.

1. Let B be the set of nonzero vectors produced by

Merge(id1, id2,v1,0), . . . ,Merge(id1, id2,vk,0),

Merge(id1, id2,0,w1), . . . ,Merge(id1, id2,0,w`).

2. Let id
′ be the identifier output by any of the calls to Merge in Step (1).

3. Output Z = span(B) and id
′.

By applying MergeSpaces repeatedly using concatenated lists of identifiers, the algorithm generalizes
to take any number of vector spaces and identifiers as input. The decoding operation works as
before: given a set of vectors whose (merged) augmentation components form a full-rank matrix,
we can recover the original data vectors by inverting this matrix.

3 Signatures and File Identifiers

For single sources, a network coding signature scheme consists of three algorithms, Setup, Sign, and
Verify, whose functionality correspond to the usual notions for a signature scheme. In this setting,
the Sign algorithm produces signatures on a vector space, and the Verify algorithm checks whether
the signature is valid on a given vector. In addition, both Sign and Verify take as additional input
a file identifier id, which binds a signature to a file. Informally, the correctness condition is that if
σ is a signature on a vector space V with identifier id, then for all v ∈ V , Verify(id,v, σ) outputs
“accept.” (For formal definitions, see [5, Section 3.1].)

For multiple sources, we need to add an additional algorithm Combine that will be used by
intermediate routers to produce signatures on vectors that are linear combinations of vectors from
different files. More precisely, Combine takes as input two tuples (vi, idi, σi, ai) for i = 1, 2, where
vi are vectors, idi are (lists of) identifiers, σi are signatures, and ai are network coding coefficients.
The algorithm outputs a signature σ′. The correctness condition is that if σi is a valid signature
on vi with identifier idi for i = 1, 2, then σ′ is a valid signature on a1v′1 + a2v′2 with identifier id

′,
where v′1,v

′
2, id

′ are output by Merge(id1, id2,v1,v2).
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In the single-source setting, the Sign algorithm takes id as input. Thus, a vector v carries a
pair (id, σ) where id is the file identifier chosen arbitrarily, and σ is generated by Sign. In the
multi-source case however, allowing senders to pick file identifiers gives them the ability to frame
other users in the system, so that receiver Bob can be made to believe that user Alice sent him
a packet which, in fact, Alice did not. In most network coded systems with multiple senders,
such as BitTorrent [9], insider attacks form the real threat, so this attack has significant practical
implications. Fortunately, this attack can be thwarted by enforcing that the file identifiers be
cryptographically verifiable. In the subsequent sections, we will formalize these notions. We first
describe the attack, and then use the intuition gained from the attack to construct a framework
that can circumvent it.

3.1 Generic Attack (for arbitrary file identifiers)

Here we construct an attack against an abstract multi-source network coding signature scheme that
consists of the algorithms Setup, Sign, Combine, Verify discussed above. We make no assumptions
about these algorithms beyond their functionality. We show that it is impossible to achieve hop-
by-hop containment if the identifier id is chosen arbitrarily by the sender and is given as input to
the Sign algorithm. We construct a generic attack in which an intermediate node is fooled into
accepting invalid packets as valid. As mentioned before, the attack is an “insider” attack where one
of the senders is malicious. The malicious sender can assign two different vector spaces the same
id and sign both using his secret key. An intermediate node has no hope of ever detecting this,
since two packets constructed using these two vector spaces are both individually valid, but they
are not pairwise valid, and can cause the receiver to incorrectly decode an honest user’s message.
We make this formal below.

We explain the attack with subspace dimension m = 1; the attack easily generalizes to arbitrary
m. In our system, the honest sender is Alice, the receiver is Bob, and the malicious user is Mallet.

Honest User Alice. Alice wishes to send a file described as a single nonzero vector v̂1 ∈ Fnp . She
sets v1 = (v̂1, 1), chooses a file identifier idα and uses her secret key skα to create a signature
τ1 on the one-dimensional subspace V1 ⊂ Fn+1

p spanned by v1, with identifier idα. Then she
transmits the packet P1 = (v1, idα, τ1).

Malicious User Mallet. Mallet receives P1 and does the following:

1. Generate a key pair (skµ, pkµ).

2. Pick two vectors v̂2, v̂3 ∈ Fnp such that the set {v̂1, v̂2, v̂3} are linearly independent. Let
V2, V3 be the subspaces of Fn+1

p spanned by v2 = (v̂2, 1) and v3 = (v̂3, 1), respectively.

3. Choose an identifier idµ 6= idα, and use the key skµ to compute signatures τ2, τ3 on sub-
spaces V2, V3 with identifier idµ. Create the packets P2 = (v2, idµ, τ2), P3 = (v3, idµ, τ3).

4. Run Merge on (v1,v2) and (idα, idµ) to obtain id = (idα, idµ) and vectors v′1 = (v̂1, 1, 0),
v′2 = (v̂2, 0, 1).

5. Run Combine
(
(v1, idα, τ1, 1), (v2, idµ, τ2, 1)

)
to produce a signature τ4 on the vector v4 =

v′1 + v′2 = (v̂1 + v̂2, 1, 1) ∈ Fn+2
p . Let P4 = (v4, id, τ4).

6. Send P3 and P4 to Bob.
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Receiver Bob. Bob receives P3 and P4, each of which pass the verification test (by the correctness
of Sign and Combine). Bob then tries to decode the received data to recover Alice’s file.

The identifier id = (idα, idµ) indicates that v∗ = v4 − (v̂3, 0, 1) is a primitive vector sent by
Alice, since the augmentation component of v∗ is (1, 0). However, the data part of v∗ is
v̂1 + v̂2 − v̂3, which cannot be in the subspace spanned by v̂1 since {v̂1, v̂2, v̂3} are linearly
independent. Thus v∗ is an invalid vector accepted by Bob.

In the above attack, Mallet was able to frame Alice by secretly reusing idµ for two different
vector spaces. Note that this attack is more insidious than simply inserting data with identifier
idα, which would have the same effect of corrupting Alice’s data. We see from this attack that
arbitrary file identifiers provide a malicious insider too much power. It is thus necessary to tie the
identifiers cryptographically to the files they represent, in a way that is verifiable at every node in
the network. In particular, the Sign algorithm should output both an identifier id and a signature
σ. To verify the identifier we use an algorithm IdTest that takes as input a public key pk, a vector
y, and a list of identifiers id, and outputs “accept” if y is in the subspace V identified by id. To
avoid the above attack, the following tasks must be infeasible for Mallet:

1. Given a public key pkα, find an identifier idα and a vector y such that IdTest(pkα,y, idα)
outputs “accept.” (This is a type of “collision-resistance” property.)

2. Given a vector space V , a public key pkα, and (idα, σ) := Sign(skα, V ) (where skα is the secret
key corresponding to pkα), find a y 6∈ V such that IdTest(pkα,y, idα) outputs “accept.” (This
property is unique to the network coding scenario.)

If Mallet can succeed at either task, then Bob is convinced that the vector y belongs to a file sent
by Alice, when in fact it does not. (Indeed, in the first case Alice didn’t even send a file!)

These two tasks are quite familiar: they are analogous to the two ways of breaking a single-
source network coding signature scheme [5, Section 3.1]. This analysis leads to our key observation:
the file identifier produced by Sign must itself be a vector space signature. It follows that
all the security properties of the system are carried in the identifier id, so we can set the “signature”
part σ equal to id or eliminate σ entirely. We formalize these ideas in the following section.

4 Network Coding Signatures

We formally define the multi-source network coding signature scheme. Here the Sign algorithm
generates an element σ that is used both as a signature and a file identifier. The Verify algorithm
implements the functionality of the IdTest algorithm in the previous section and allows every node
to validate the identifier/signature of an incoming packet. Since signatures and identifiers play
the same role, the Combine algorithm provides the same functionality as the Merge algorithm of
Section 2, while also keeping track of the public keys involved. Note that in contrast to traditional
signatures, the Verify algorithm does not take as input the original message (i.e., vector space).

Definition 4.1. A multi-source network coding signature scheme is a tuple of five PPT algorithms,
Setup,KeyGen,Sign,Combine,Verify, with the following properties:

Setup(1λ, n,m): On input the unary representation of a security parameter 1λ, a data space di-
mension n, and a subspace dimension m, outputs a description of system parameters params.
This description includes the prime p used to define the field over which vector spaces are
defined, as well as n and m.
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KeyGen(params): Outputs a randomly generated user key pair (sk, pk).

Sign(params, sk, V ): On input a secret key sk and a subspace V ⊂ Fn+m
p , outputs a signature σ.

Combine
(
params, (v1, ~σ1, pk1, a1), (v2, ~σ2, pk2, a2)

)
: Takes as input two vectors v1 ∈ Fn+mf1

p and
v2 ∈ Fn+mf2

p , two lists of signatures ~σ1, ~σ2, two lists of public keys pk1, pk2, and two coefficients
a1, a2 ∈ Fp. The algorithm outputs a list of signatures ~σ and a list of public keys pk.

Verify
(
params, pk,v, ~σ): On input a list of public keys pk, a vector v ∈ Fn+mf

p , and a list of signa-
tures ~σ, outputs > (accept) or ⊥ (reject).

Correctness. We require that for any set of system parameters determined by Setup(1λ, n,m),
the following hold:

1. For primitive signatures: Consider a key pair (sk, pk) ← KeyGen(params) and a vector space
V ⊂ Fn+m

p . Let σ be the output of Sign(params, sk, V ). Let pk = {pk} and ~σ = {σ}. Then
for all v ∈ V , we require that
Verify(params, pk,v, ~σ) = >.

2. Recursively, for combined signatures: Consider two lists of public keys pk1, pk2, two vectors
v1,v2, two lists of signatures ~σ1, ~σ2 such that

Verify(params, pk1,v1, ~σ1) = Verify(params, pk2,v2, ~σ2) = >.

Let v′1,v
′
2, ~σ
′ be the output of Merge(v1,v2, ~σ1, ~σ2). For any a1, a2 ∈ Fp, we require that if

~σ, pk is the output of the Combine algorithm on inputs (v1, ~σ1, pk1, a1), (v2, ~σ2, pk2, a2), then:

(a) ~σ′ = ~σ,

(b) For j in 1, . . . , f = |~σ|, if the jth element of ~σ is the kth element of ~σi for i ∈ {1, 2},
then the jth element of pk is the kth element of pki.

(c) Verify
(
params, pk

′
, a1v′1 + a2v′2, ~σ) = >.

In the second correctness condition, (a) tells us that identifiers and signature play the same
role, while (b) requires that the list of public keys produced by Combine corresponds (in a natural
way) to the list of identifiers produced by Merge.

4.1 Security

The security game captures the fact that if the system is secure, even an attacker who controls
all sources but one and is given a chosen message oracle for the honest source cannot create an
existential forgery on the honest source. The game between a challenger and an adversary A with
respect to a signature scheme S proceeds as follows.

Init. The challenger runs Setup(1λ, n,m) to obtain system parameters params and runs KeyGen(params)
to obtain sk∗ and pk∗. It sends pk∗ and params to A. It keeps sk∗ to itself.

Signature queries. A adaptively requests signatures for vector spaces V1, . . . , V` ⊂ Fn+m
p . The

challenger responds by computing Sign(params, sk∗, Vi) for i = 1, . . . , ` and sends the resulting
signatures to A.
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Forgery attempt. A eventually outputs a 4-tuple (pk
†
,v†, ~σ†,W †), where pk

† is a list of f (not
necessarily distinct) public keys pk

† = (pk1, . . . , pkf ) that contains the challenge public key
pk∗, v† is a nonzero vector in Fn+mf

p , ~σ† is list of f signatures, and W † = span{w1, . . . ,wt} ⊂
Fn+t
p for some t.

Adjudication. Let ~σ† = (σ1, . . . , σf ) be the list of (distinct) identifiers output by A, where,
w.l.o.g. we assume the first k components σ1, . . . , σk are returned as the signatures for the
chosen message queries V1, . . . , Vk, k ≤ `. Let ~σw be the last f − k elements of ~σ†. Let V ∗ be
the vector space output by MergeSpaces(V1, . . . , Vk,W

†, σ1, . . . , σk, ~σw).

The forger wins the game if Verify(params, pk
†
,v†, ~σ†) = > and at least one of the following

two conditions holds:

1. There exists i in 1, . . . , f such that the ith component of pk† is equal to pk∗, but σi is
not any of the signatures obtained in response to chosen message queries.

2. For i = 1, . . . , t, we have Verify(params, pkw,wi, ~σw) = >, but v† 6∈ V ∗.

Definition 4.2. The advantage NC-Adv[A,S] of A is defined to be the probability that A wins the
security game. A multi-source network coding scheme S is secure if for all probabilistic, polynomial-
time adversaries A the advantage NC-Adv[A,S] is negligible in the security parameter λ.

In the security game, the attacker requests signatures for files V1, . . . , Vk and creates his own
file W †. Intuitively, W † corresponds to the vector space (the set of files) whose data the adversary
mixes with the honest user’s data in order to frame the honest user. Winning condition (1) implies
that the attacker can create a valid fake signature for one of the files that he requests signatures for,
i.e., for a file signed with sk∗. Winning condition (2) implies that the attacker can produce a fake
file W † whose basis vectors pass the verification test, and a vector v† that passes the verification
test but lives outside the subspace V ∗ that is the span of network coding combinations of the files
he requested and created. A receiver that decodes the basis vectors of W † together with the vector
v† will be fooled into accepting a vector from the user with public key pk∗ that this user never sent.

Implied properties. The security model implies that even given the secret key sk, no PPT
adversary can construct distinct vector spaces V1, V2 ∈ Fn+m

p such that Sign(params, sk, V1) =
Sign(params, sk, V2). Note, however, that this is no ordinary collision resistance property. During
signature verification the vector space V is not available and therefore the Verify algorithm must
validate the signature given only y ∈ V .

This collision resistance property is crucial during decoding. The decoder collects all incoming
packets with a specific identifier into a full rank matrix and runs the decoding procedure. Collision
resistance ensures that all packets with the same signature belong to the same vector space.

To see that this collision resistance property follows from our definition, it is not difficult to
give a generic attack that works on any scheme for which this property is not satisfied. The attack,
in fact, is essentially the same as the attack presented in Section 3.1.

The vector space W †. Recall that the forgery attempt by the adversary consists of the 4-tuple
(pk
†
,v†, ~σ†,W †) where pk

† is a vector of public keys containing the challenge public key pk∗. The
other public keys in the vector pk

† are invented by the adversary and it is therefore possible that
the adversary knows the corresponding private keys.

9



The vector v† and the signature ~σ† are the adversary’s existential forgery. Suppose that (v†, ~σ†)
verify as a valid vector-signature pair with respect to pk

†. We require the adversary to output the
vector space W † to prove that he is capable of exploiting v† to fool a recipient to incorrectly accept
a vector from the single honest sender. To fool the recipient, the attacker can generate valid vector-
signature pairs for all basis vectors of W † using the secret keys at his disposal. Since all these
vectors have valid signatures, a recipient might try to decode the basis of W † along with the vector
v†. If v† 6∈ V ∗, after decoding this set of vectors (i.e. after subtracting from v† the projection of
v† onto W †), the recipient obtains a vector u that he believes came from the honest sender, but
which the honest sender never sent since u is not in MergeSpaces(V1, . . . , Vk, σ1, . . . , σk).

Hence, if the attacker is capable of producing a forgery for which condition (2) of adjudication
holds, then an adversary can fool a recipient by sending it a sequence of properly signed vectors.
We would like to require that for a secure signature scheme it should be impossible to produce a
valid forgery where v† 6∈ V ∗. Unfortunately, this strong requirement appears to be unsatisfiable.
We therefore weaken it to require that v† 6∈ V ∗ only when there is a possibility that the vectors
in W † will be jointly decoded with v†, namely when Verify(params, pkw,wi, ~σw) = > for all basis
vectors wi of W †. This is an acceptable weakening of the security requirement since the decoder
will never group together vectors with different identifiers. In Section 5 we show that the resulting
definition is satisfiable.

We note that requiring the adversary to output W † is analogous to the security model of
aggregate signatures [6] where the attacker outputs an aggregate signature from s public keys,
where s − 1 of them are invented by the attacker. Moreover, the attacker must output the list
of s − 1 messages that went into the aggregate forgery, for each of the public keys the attacker
invented. Our vector space W † plays the same role as the s− 1 messages in the aggregate forgery.

5 Construction of a Multi-source Signature Scheme

In this section, we construct an explicit multi-source network coding signature scheme satisfying
Definition 4. In order to give a generic construction, we first define an auxiliary primitive called
vector hash. This primitive captures the properties of the homomorphic hashes used by Krohn et
al. [19] that are necessary for secure signatures.

5.1 Vector Hashes

A vector hash consists of three algorithms, Setup,Hash,Test, with the following properties:

HashSetup(1λ, n): Input: unary representation of a security parameter λ and dimension of the data
space n. Output: public parameters pp.

Hash(pp,v): Input: public parameters pp and a vector v ∈ Fnp . Output: hash h of the vector v.
We require that this algorithm be deterministic.

Test(pp,y, β,h): Input: Public parameters pp, a vector y ∈ Fnp , a vector of coefficients β ∈ Fmp and
a vector of m hash values h. Output: > (true) or ⊥ (false).

Let h be a set of hashes of a basis v1, . . . ,vm of a vector space V . Intuitively, we want the Test
algorithm to tell us whether y was constructed correctly from the basis, i.e., whether y =

∑
βivi.

This means that Test should output > whenever y is constructed correctly, and it should be difficult
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for an adversary to find a vector y 6∈ V and a β such that Test outputs >. We now formalize these
correctness and security conditions.

Correctness. For correctness, we require the following for all public parameters pp← HashSetup(1λ):

1. For all v ∈ Fnp , if h← Hash(pp,v) then we have Test(pp,v, 1, h) = >.

2. Let v ∈ Fnp , let β ∈ F`p for some `, and let h be a list of hashes of length `. Fix i ∈ {0, . . . , `},
let β′ ∈ F`+1

p be the vector β with a zero inserted between the ith and (i + 1)th place, and
let h′ be the vector h with any hash value inserted between the ith and (i+ 1)th place. We
require that if Test(pp,v, β,h) = >, then Test(pp,v, β

′
,h′) = >.

3. Let v1,v2 ∈ Fnp , let β1, β2 ∈ F`p for some `, let h be a list of hashes of length `. Let a, b ∈ Fp,
let y = av1 + bv2, and β = aβ1 + bβ2. We require that if Test(pp,vi, βi,h) = > for i = 1, 2
then Test(pp,y, β,h) = >.

Security. Let VH = (HashSetup,Hash,Test) be a vector hash. Let A be a PPT algorithm that
takes as input public parameters pp ← HashSetup(1λ, n) and outputs a vector v∗ ∈ Fnp , an m-
dimensional vector space V ⊂ Fnp (for some m) represented as basis vectors v1, . . . ,vm, an m-tuple
of coefficients β, and a vector of hashes h = (h1, . . . , hm).

Definition 5.1. With notation as above, we say that A breaks the vector hash scheme VH if
v∗ 6∈ V , Test(pp,v∗, β,h) = >, and Test(pp, v̂i, ei, hi) = > for i = 1, . . . ,m. (Recall that v̂i is the
data component of vi.) We define the advantage Hash-Adv[A,VH] of A to be the probability that
A breaks VH. We say that a vector hash VH is secure if for all PPT algorithms A the advantage
Hash-Adv[A,VH] is negligible in the security parameter λ.

Example Vector Hash VH-DL. We now construct an example of a vector hash, which we call
VH-DL. Our vector hash is based on the construction of Krohn et al. [19], and uses a finite cyclic
group G of order p. This vector hash is secure if the discrete logarithm problem is infeasible in G.
The construction is as follows:

Hash-Setup(1λ, n): Input: security parameter λ (in unary) and dimension of the data space n.

1. Choose a group G of prime order p > 2λ.

2. Choose generators gi
R← G \ {1} for i = 1, . . . , n.

3. Output pp := p, (g1, . . . , gn), and description of G.

Hash(pp,v): Input: public parameters pp and a vector v ∈ Fnp .

1. Output the hash h :=
∏n
j=1 g

vj

j .

Test(pp,y, β,h): Input: public parameters pp, a vector y ∈ Fnp , a vector of coding coefficients β,
and a vector of hash values h.

1. If |β| 6= |h|, output ⊥.

2. If |β| = |h| = m and
(∏n

j=1 g
yj

j

)
=
(∏m

i=1 hβi
i

)
, output >; otherwise output ⊥.
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The correctness conditions are easily verified; we note that (3) follows from the fact that the
exponents of the two sides of the verification equation are linear in y and β, respectively. For
security we have the following:

Theorem 5.2. The vector hash VH-DL is secure assuming the discrete logarithm problem in G is
hard.

In particular, let A be a PPT adversary that breaks vector hash VH-DL. Then there exists a
polynomial-time algorithm B that computes discrete logarithms in G such that

Hash-Adv[A,VH-DL] ≤ 2 ·DL-Adv[B,G],

Proof. Given the output (v∗, V, β,h) of algorithm A that breaks the vector hash, we can produce
distinct vectors v,w ∈ Fnp such that

∏n
j=1 g

vj

j =
∏n
j=1 g

wj

j . By standard arguments [4], an algorithm
A that produces such a collision with probability ε can be used to compute discrete logarithms in
G with probability at least ε/2. For further details, see [19, §VI].

5.2 The Construction

For this construction, we use as a black box a vector hash as defined in Section 5.1.

Signature scheme NS: Let VH = (HashSetuph,Hashh,Testh) be a vector hash and let S =
(Setups,KeyGens,Signs,Verifys) be a signature scheme for signing messages in {0, 1}∗. Our network
coding signature scheme is as follows:

Setup(1λ, n,m): Run HashSetuph(1λ, n) to obtain hash parameters and Setups(1λ) to obtain signa-
ture parameters. Let params contain m, n, and the outputs of these algorithms.

KeyGen(params): Run KeyGens to obtain public key pk and the private key sk. Output (pk, sk).

Sign(params, sk, {v1, . . . ,vm}): For i = 1, . . . ,m, set hi := Hashh(params, v̂i). Set h = (h1, . . . , hm),
η := Signs(sk,h), and σ :=

(
h, η

)
. Output σ.

Combine
(
params, (v1, ~σ1, pk1, a1), (v2, ~σ2, pk2, a2)

)
:

1. Let ~σ′,v′1,v
′
2 := Merge(~σ1, ~σ2,v1,v2).

2. To create a list pk
′, do:

For j in 1, . . . , k = |~σ|, if the jth element of ~σ is the kth element of ~σi for i ∈ {1, 2},
then the jth element of pk

′ is the kth element of pki.

3. Output ~σ′ and pk
′.

Verify(params, pk,y, ~σ): Interpret ~σ as a list of f signatures where each σi = (hi, ηi). Write H =
(h1, . . . ,hf ). Do the following:

1. For i in 1, . . . , f , compute Verifys(pki,hi, ηi).

2. Compute Testh(params, ŷ, βy,H). (Recall βy is the augmentation component of y.)

If all steps output >, output >; else output ⊥.
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The only difference between the Combine algorithm in our signature scheme and the Merge
algorithm of Section 2.1 is that the Combine algorithm also keeps track of the public keys associated
with the signatures.

Instead of sending a separate signature ηi in each σi, we can aggregate these signatures together
for space efficiency. (We have not used aggregate signature schemes in our description for com-
pactness and clarity.) If we instantiate the system using the vector hash VH-DL and the aggregate
signatures of Boneh et al. [6], then a signature on f files can be as short as (fm + 1) log2 p bits.
Specifically, for the vector hash we let G be the group of points on an elliptic curve over a finite
field with prime order p, and we instantiate the aggregate signatures using a pairing-friendly elliptic
curve of order close to p, such as a Barreto-Naehrig curve [3]. In Section 6 below, we prove a lower
bound showing that for large values of f and m this length is optimal.

Correctness. We verify the correctness conditions of Definition 4.1.

1. For primitive signatures: Consider a key pair (sk, pk) ← KeyGen(params) and a vector space
V ⊂ Fn+m

p described by a properly augmented basis v1, . . . ,vm. Let σ be the output of
Sign(params, sk, V = {v1, . . . ,vm}). Interpret the signature σ as σ = (h, η).

For primitive signatures, there is only one file f = 1. We examine each step of Verify in turn:

1. Since η = Signs(sk,h), we have Verifys(pk,h, η) = > by correctness of S.

2. Since hi = Hashh(params, v̂i), and βvi is the unit vector ei since we are using a properly
augmented basis, correctness conditions (1) and (3) of VH imply that

Testh(params, v̂i, βvi ,h) = >.

It follows that every basis vector vi passes the signature verification test, i.e.,

Verify(params, pk,vi, σ) = >.

2. Recursively, for combined signatures: Consider two lists of public keys pk1, pk2, two aug-
mented vectors v1,v2, two lists of signatures ~σ1, ~σ2 such that

Verify(params, pk1,v1, ~σ1) = Verify(params, pk2,v2, ~σ2) = >. (5.1)

Let v′1,v
′
2, ~σ
′ be the output of Merge(v1,v2, ~σ1, ~σ2) and f = |~σ|. Let Hi be the list of all the

hash elements in ~σi for i = 1, 2. Let a1, a2 ∈ Fp be network combination coefficients, and let
y = a1v′1 +a2v′2. Let ~σ, pk be the output of the Combine algorithm on inputs (v1, ~σ1, pk1, a1),
(v2, ~σ2, pk2, a2).

Conditions (a) and (b) are now immediate. For (c), we note that in our scheme, σ′j = (hj , ηj)
for j = 1, . . . , f . Let H = (h1, . . . ,hf ). We examine each step of the Verify algorithm:

1. By the assumption (5.1) and the way we have set up the correspondence between indices
of pk and ~σ, we have Verifys(pkj ,hj , ηj) = > for j in 1, . . . , f .

2. By assumption (5.1) we know that Testh(params, v̂i, βvi
,Hi) = > for i = 1, 2. By

correctness property (2) of VH, for i = 1, 2 we have Testh(params, v̂′i, βv′i
,H) = >.

Then, by correctness property (3) of VH, we have Testh(params, ŷ, βy,H) = >.

Thus, we have that Verify
(
params, pk

′
,y, ~σ) = >.

13



We have the following security theorem.

Theorem 5.3. The network coding signature scheme NS is secure assuming that VH is a secure
vector hash, and assuming S is a secure signature scheme.

In particular, let A be a polynomial-time adversary as in Definition 4.1. Then there exists a
polynomial-time adversary B1 that forges signatures for S and a polynomial-time algorithm B2 that
breaks the vector space hash VH, such that

NC-Adv[A,NS] ≤ Sig-Adv[B1,S] + Hash-Adv[B2,VH],

where Sig-Adv[B1,S] is the probability that B1 wins the security game for the standard signature
scheme S (see [17, §12.2]).

Proof. We use the notation of Section 4.1. Let A be an adversary that attacks the network
coding signature scheme NS instantiated with the vector hash VH and the signature scheme S.
Let (pk

†
,v†, ~σ†,W †) be the output of A. As before, let ~σ† = (~σ1, . . . , ~σf ) be the list of (unique)

signatures/identifiers in the composite signature ~σ†, where w.l.o.g., we assume that the first k
components σ1, . . . , σk are the identifiers returned in the signatures obtained from the chosen mes-
sage queries V1, . . . , Vk. Let pk

† = (pk1, . . . , pkf ). Each identifier σi is of the form (hi, ηi), where
hi is a list of m hashes in the range of Hashh and ηi is a signature in the range of Signs. Let
H = (h1, . . . ,hf ).

Suppose A wins the security game. The fact that Verify(params, pk
†
,v†, ~σ†) = > implies that

Verifys(pki,hi, ηi) = > for all i, and (5.2)
Testh(params, v̂†, βv† ,H) = >. (5.3)

Now suppose winning condition (1) holds. Let i be such that pki = pk∗. If σi = (hi, ηi) is not
in any of the signatures obtained in response to the chosen message queries, then the message hi
was never queried to the Signs algorithm. Condition (5.2) thus implies that we have forged an S
signature ηi on the message hi.

On the other hand, suppose winning condition (2) holds. Let V ∗ be the vector space output by
MergeSpaces in the adjudication step, i.e. V ∗ = MergeSpaces(V1, . . . , Vk,W

†, σ1, . . . , σk, ~σw), where
σw = (hw, ηw) is the signature corresponding to space W †. We write H = (h1, . . . ,hk,hw).

Let w1, . . . ,wt be the basis vectors of W † output by the adversary. By correctness condition (3)
of VH, we can assume without loss of generality that the basis vectors wi are properly augmented.
Since the winning condition implies that Verify(params, pkw,wi, ~σw) = > for all i, we have that
Testh(params, ŵi, ei,hw) = > for all i.

Since the signature scheme is correct, for each space Vi, i = 1, . . . , k, with signature σi = (hi, ηi)
we have Verify(params, pk∗,vij , σi) = >, where pk∗ is the challenge public key and vij is the jth
basis vector of vector space Vi. Since we can again assume without loss of generality that the basis
vectors vij are properly augmented, this implies that Testh(params, v̂ij , ej ,hi) = > for all vectors
vij , i ∈ [f ], j ∈ [m].

It now follows from our description of the Merge algorithm that the basis of V ∗ output by
MergeSpaces is also properly augmented. Let U ⊂ Fnp be the subspace spanned by the data
components of vectors in V ∗, and let {uα} be the basis of U consisting of the data components of
the vij and wi. Correctness property (2) of VH now implies that Testh(params,uα, eα,H) = > for
all α. Since v† 6∈ V ∗, the data component v̂† is not in U . It now follows from Definition 5.1 and
equation (5.3) that we have broken VH.
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6 A Lower Bound on File Identifier Size

In Section 3 we showed that a cryptographically verifiable file identifier must have the properties of
a vector space signature. In particular, this implies that if the identifier satisfies certain additional
(mild) assumptions, then we can use the argument of [5, Section 6] to show that any secure identifier
for an m-dimensional subspace of FNp must be of length at least m log2 p bits.

Recall that in our generic setup of Section 3, where file identifiers are distinct from signatures,
the algorithm IdTest determines whether an identifier id is valid for the vector v. (Here id can
identify either a single file or a collection of files.) The correctness requirement is that if id is
associated to the vector space V , then IdTest(pk,v, id) = > for all v ∈ V . A slightly stronger
requirement is that the function IdTest(pk, ·, ·) is additive. A function g : FNp × {0, 1}∗ → {>,⊥} is
additive if for all vectors v1,v2 and all x such that g(v1, x) = g(v2, x) = >, we have g(v1 +v2, x) =
>. The function Verify(params, pk, ·, ·) of our construction in Section 5 using any vector hash is
additive; indeed, this seems to be a natural property of network coding signature schemes.

We also assume that for fixed m < N , file identifiers for m-dimensional subspaces V ⊂ FNp are
all of the same size. This is a mild assumption that serves chiefly to facilitate our exposition. We
derive our lower bound from the following theorem, whose statement and proof are straightforward
adaptations of [5, Theorem 9].

Theorem 6.1. Let `,m,N be integers with 0 < m < N and let p be a prime. Let f be a determin-
istic function that maps m-dimensional vector subspaces V ⊂ FNp to identifiers id ∈ {0, 1}`, and let
g : FNp × {0, 1}` → {>,⊥} be an additive function. If ` ≤ m log2 p− 4m/p− 1, then at least half of
all m-dimensional subspaces V ⊂ FNp have the property that g(v, f(V )) = > for all v ∈ V .

In the application of the theorem, we fix a challenge secret key sk and public key pk as well as any
randomness used in the system. The function f gives the identifier output by Sign(params, sk, V ),
while the function g computes IdTest(pk,v, id). An adversary attacks the system by choosing
a random subspace V , obtaining an identifier id for V , and producing a vector y 6∈ V . With
probability at least 1/2, we have IdTest(pk,y, id) = >. Thus if y is used in a network coding
system, honest users will believe that y is associated with the file identified by id when in fact it is
not.

A similar argument applies to lists of identifiers produced as a result of the Merge algorithm,
since the list of identifiers produced must satisfy the correctness properties with respect to the
subspace Z produced by MergeSpaces on the original files. As a result, we conclude that not only
must the identifier of a single file be large, but the identifiers of multiple files in a secure multi-source
network coding system must grow linearly with the number of files in the system. Unfortunately,
the lower bound is large, and limits the practicality of security in this setting.
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