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Abstract

In this paper, we propose a class of 1-resilient Boolean function with optimal
algebraic degree and high nonlinearity, moreover, based on the conjecture proposed in
[4], it can be proved that the algebraic immunity of our function is at least suboptimal.
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1 Introduction

Symmetric crypto-systems are commonly used in encrypting and decrypting communica-
tions. Stream ciphers is a popular and traditional symmetric system, in which there are
two usual models, the filter model and the combiner model, both models have a critical
part—-boolean functions. To resist known attacks, there have been many criteria for de-
signing boolean functions, such as balanced-ness, a high algebraic degree, a high nonlinear-
ity and a high correlation immunity. The concept of correlation immunity was proposed
by Siegenthaler, then Xiao and Massey gave a simple spectra characterization[11]. For
this reason, many papers discussed functions with high nonlinearity and high-order corre-
lation immunity, and there have been many constructions [14, 15, 16, 17|, but many are
Maiorana-McFarland like functions. When n is small, some resilient functions with max-
imal nonlinearity have been obtained[18, 19, 20]. Moreover, the recent algebraic attacks
proposed by Courtois and Meier[1, 2, 3, 6] have received the world’s attention, then the al-
gebraic immunity of boolean functions has been introduced, and the study of annihilators
of boolean functions become important. Well, designing a boolean function to meet all
criteria is really a challenge. An infinite class of boolean functions with optimum algebraic
immunity, optimal algebraic degrees and very high nonlinearity, were proposed by Carlet
and K.Feng in[10]. Very recently, Tu and Deng proposed in [4] a class of algebraic immu-
nity optimal functions of even number variables under an assumption of a combinatoric
conjecture, the nonlinearity of these functions were even better than functions proposed
in [10]. Although Carlet proved in [21] that the tu-deng function was weak against fast
algebraic attacks, he could repair this weakness through small modifications. However,
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among all the main designing criteria of boolean functions, the correlation immunity was
ignored by tu-deng function.

In this paper, we propose an infinite class of boolean functions when the number of
variables n is even, which seems to satisfy all the main cryptographic criteria: 1-resilient,
algebraic degree optimal, high nonlinearity, and based on the conjecture in [4], the algebraic
immunity is at least suboptimal.

2 Preliminaries

Let n be a positive integer. A Boolean function on n variables is a mapping from [Fy
into Fo, which is the finite field with two elements. We denote B,, the set of all nonzero
n-variable boolean functions.

Every Boolean function f in B, has a unique representation as a multivariate polyno-

mials over Fy
flon, oo, ) = > ar [Ja
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where the a;’s are in Fg, such kind of representation is called the algebraic normal form
(ANF). The algebraic degree deg(f) of f is defined to be the maximum degree of those
monomials with nonzero coefficients in its algebraic normal form. A Boolean function f is
called affine if deg(f) < 1, we denote A,, the set of all affine functions in B,,. The support
of f is defined as supp(f) = {z € F§ : f(z) = 1}, and the wt(f) is the number of vectors
which lie in supp(f). For two functions f and ¢ in B, the Hamming distance d(f, g)
between f and g is defined as wt(f + ¢g). The nonlinearity nl(f) of a Boolean function
f is defined as the minimum Hamming distance between f and all affine functions, i.e.

nl(f) = Minge ,, d(f, 9)-
For any a € [F}, the value

Wf(a) _ Z (_1)f(a:)+<:r,a>

zeFy

is called the Walsh spectrum of f at a, where < x, a > denotes the inner product between
z and a ie.< z,a >= z1a1 + ... + xpa,. If Wi(a) = 0 for 1 < wt(a) < m, then f is
called m-th order correlation immune, this is the famous Xiao-Massey characterization of
correlation immune functions. Moreover, if f is also balanced, we call f is m-th order
resilient. The nonlinearity of a Boolean function f can be expressed via its Walsh spectra
by the next formula

1
nl(f) =2 L iMaxaeyg\Wf(a)].

It is well-known the nonlinearity satisfies the following inequality
nl(f) <2" !t —2:71

when n is even, the above upper bound can be attained, and such Boolean functions are
called bent [7]. Bent function has several equivalent definitions, for instance, a function f
is bent is equivalent to say that supp(f) is a (27,271 + 251 on—2 4 2%_1)—difference set
in the additive group of F.



Definition 2.1. [6] The algebraic immunity AlL,(f) of a n-variable Boolean function
f € By, is defined to be the lowest degree of mnonzero functions g such that fg = 0 or

(f+1)g=0.

3 Main Results

In this section, we give our construction which originates from Dillon’s partial spread
function in [8] and discuss its main cryptographic properties.

Construction 3.1. Let n = 2k and For be a finite field, o is primitive in For. Let
0<s<2-2and A=1{01,0a,0%-- -,anfl_l}, we define a n-variable function f :
For X For — Fa, whose support supp(f) is constituted by the following four parts:

o {(z,y):y=aiz,zeF i=s+15+2, - s+2F1_1}

( S
o {(z,y) :y=ca’x,x € A}
o {(x,0):z€Fy\ A}
o {(0,y):y €For \a®A}

Proposition 3.2. Let function f be defined as in 3.1, then f is 1-resilient.

Proof. The balanced-ness of f is trivial, we need to verify that Wy(a) = 0 for each a
satisfying wt(a) = 1. When a, b are not all zeros, we have

Wy (a,b) = Z (_1)f(:r,y)+tr(az+by)
(Ivy) GFQk

—_9 Z (_1)tr(aw+by)

(z,y)esupp(f)

we call See
t+2k—1—1
Z (_1)tr(ax+by) _ Z Z tr ((a+bat)x) + Z tr( (a+bat)x)
(z,y)Esupp(f) i=t+1  a€Fy, €A
+ Z tr(ax) + Z (_1)tr(by)
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We consider Walsh spectra of two kinds of points:
1. a #0,b =0, then

S (cflemt) gkl ok g
(z,y)€supp(f)
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2. b# 0,a =0, then

Z (_1)tr(ax+by) -1 2k—1 + 2k o |A‘

z,y€supp(f)
+ Z ( )tr(by + Z tr (by)
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Combining with the cardinality |A| = 2¥~!+1, then it is obvious to see that f is 1-resilient.

From Siegenthaler’s inequality[22], we know that for a n-variable, m-th order resilient
boolean function g, it should be satisfied that m + deg(g) < n — 1. Concerning to our
construction, we will see that f in 3.1 is algebraic degree optimal.

Proposition 3.3. Let function f be defined as in 3.1, then deg(f) =n — 2.

Proof. Note that f is a ps‘—like function. Let g,h : For X For — Fy, we define g by
supp(g) = {(z,y) ry = 'w,x € F,i = s, +1,- -, s+ 2k=1 — 1} and h by supp(h) =
{(0,0} U{(z,y) 1y = a'z,x ¢ Ay U{(2,0) : 2 ¢ A}U{(0,y) : y ¢ a"A}, then f =g+ h,
and g € ps—, we know deg(g) = k from [7], to prove deg(f) = n—2, we only need to prove
deg(h) = n — 2. By Lagrange’s interpolation formula, we have

May) =@ HDETT D+ (@40 T+ D (4 ate)” T )
ag¢A
Y (@ e T )+ Y @ T (0P )
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by collection of like terms, then

h(z,y) = a2 12 —|—Z(x+a)2k_1(y+a5a)2k_1 +22 N y+a%a) T+ (w4 a)? P!
ag¢A

Since |A| = 28~ + 1, then the coefficient of 22" =142 =1 i5 zero, and then

2] 2k — 1 k . k 2l 2k — 1 k ok
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It is easy to see deg(h) < n — 2. Now consider the coefficient of x Y
1+
s .2 _ s 2 _ s 2
E a’a —a(g a) —a(71+a )

ag¢A ag¢A

which is apparently nonzero in For, then deg(h) = n — 2.

Owning to the similarity with Dillon’s ps™ function, f must have high nonlinearity, in
fact, we can give a lower bound easily on nonlinearity from result in[10].

Proposition 3.4. Let function f be defined as in 3.1, then nl(f) > 27! —2k=1 3. k.

25In2 — 7.
Proof. From the above proof we only need to consider
Kap= Y,  (=1)ret)
(z,y)€supp(f)

for (a,b) with a-b # 0. By Carlet and K.Feng in [10], we know

1D ()T <k 22102 + 2
€A
then we can obtain an upper bound for |K(, )| easily:

1. a 4+ ba® =0, then

K] < @1 = 1)(=1) + 2571 42 (k- 25In2 4 2)

2. a+bat =0 for some i, s <i< s+ 21 then
Koy <25 4+ 143 (k25102 +2)

3. otherwise )
Koyl < =281+ 143 (k2212 + 2)
Finally we get
nl(f) =27t — 2kl 3. k.25 m2 — 7

In fact, we can improve this lower bound according to the method in [23]. From the
following table we can see the nonlinearity of f is satisfying:

n | 2n= 1 =231 [ ni(f)
4 6 4

6 28 24

8 120 112
10 496 484
12 2016 1996
14 8128 8100
16 32640 32588
18 130816 130760




Maitra and Pasalic constructed a 8-variable, 1-resilient function with nonlinearity 116
in [20], which was maximal for 1-resilient functions. According the table, when n = 8 our f
has nonlinearity 112, there is a minor difference, while from the conjecture proposed by Tu
and Deng in [4], we discover that the algebraic immunity of our function is also satisfying.
As a cornerstone of the tu-deng function, the conjecture attract many people’s attention,
some papers [12][13] try to attack this problem theoretically and some advances have been
obtained, however, the complete proof remains to be mysterious. Here we briefly describe
this conjecture:

Conjecture 3.5. assume k € Z, k > 1, for every x € Z, we expand x as a binary
string of length k, and denote the number of one’s in the string by w(x), for any t € Z,
0<t<2F—1, let

Sy = {(a,b)|a,b € Zor_y,a+b=1tmod 2¥ — 1, w(a) +w(b) <k —1}
then |Sy| < 2F1.

Using the same proof techniques, we can prove that f defined in 3.1 is at least algebraic
immunity suboptimal, first we introduce a simple lemma:

Lemma 3.6. For every 0 < t < 28 —1 | the modular equation a+b =t mod 2F —1, w(a)+
w(b) = k — 1 has at least one pair of solution.

Proof. At first we observe that, if ¢ and ' belong to a same cyclotomic coset mod 2F —
1, then the modular equations for ¢ and ¢’ have exactly the same number of solutions.
Without loss of generality we suppose ¢t have following forms:

t=11---100---01---10-+-0-+---- 1---10---0
—— N S —— —— ——
ni 2 n3 Uz nar—1 nar

In order to prove the lemma, we only need to construct a pair of a,b to be a solution. If
0<ab<2F—1satisfya+b=t mod 2¥ — 1, then w(a) + w(b) = w(t) + s, in which s
represents the number of carry when doing the modular addition. Using this relation we
can construct a pair (a, b) satisfying conditions, let

a= ---01---1---01---1------ ..« 00---10
—~ S N S — ~— N
ni—1 no nzy—1 N4 noyr—1—1 nor

b= ---00---1---00---1------ ... 00---10
—~ N N N — ~— N —
ni—1 no nzg—1 T4 nor—1—1 nor

It’s not difficult to verify that (a,b) is a solution.

Proposition 3.7. Let n = 2k, then the algebraic immunity of function f in 8.1 is at least
suboptimal i.e AI,(f) >k — 1.

Proof. We need to prove that both f, f + 1 have no annihilators with degrees < k — 2.
Let a non-zero Boolean function h(z,y) : For X For — [y satisfy deg(h) < k and f-h = 0.



We will prove h = 0. Observe that h can be written as a polynomial of two variables on
F¥ as

h(z,y) = hija'y’
2%

By deg(h) < k — 2 we have h; j =0 w(i) + w(j) > k — 1.

2k_1

h(z,yz) = higa'(yz)) = > h(y)at
i,j t=0

in which _
()= > hipd w) +w() <k -2
i+j=tmod2k—1

Since h(z,y) annihilates f, then hi(y) = 0 for v = af,s +1 < i < s+ 21 — 1, in
other words, hs(7) has consecutively 2¥~1 — 1 roots, by BCH theorem[9], the number of
nonzero coefficients in h¢(7) should be larger than or equal to 2¥~!. While according to
the conjecture in [4] and lemma 3.6, if let

S; = {(a,b)|a,b € Zop_1,a+b=1tmod 2 — 1,w(a) +w(b) < k — 2}

then |S;| < 2¥~! — 1, a contradiction happens, then h(z,y) = 0. A proof for f 4 1 is
completely similar. Then AI,(f) > k — 1.

Remark 3.8. Although we only prove the algebraic immunity of f is suboptimal, by com-
puter investigation we discover that when the number of variables n equals to 6,8,10,12,
the algebraic immunity of f is always optimal. We have tried to prove it, unfortunately
we don’t succeed, we will leave it as an open problem.

4 Conclusion

In this paper, we construct an infinite class of boolean functions when the number of vari-
ables n is even, which seems to meet all the main criteria for designing boolean functions:
1-resilient, algebraic degree optimal, having high nonlinearity and at least suboptimal al-
gebraic immunity under the assumption of conjecture in [4]. We believe that this class of
functions are of both theoretical and practical importance.
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