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A Comparison of Cryptanalytic Tradeoff Algorithms

Jin Hong - Sunghwan Maoon

Abstract Three time memory tradeoff algorithms are compared in this paper. Specifically,
the classical tradeoff algorithm by Hellman, the distinguished point tradeoff method, and
the rainbow table method, in their non-perfect table versions, are treated.

We show that, under parameters and assumptions that are typically considered in theo-
retic discussions of the tradeoff algorithms, Hellman and distinguished point tradeoffs per-
form very close to each other and that the rainbow table method performs somewhat better
than the other two algorithms. Our method of comparison can easily be applied to other
situations, where the conclusions could be different.

The analysis of tradeoff efficiency presented in this paper does not ignore the effects
of false alarms and also covers techniques for reducing storage, such as ending point trun-
cations and index tables. Our comparison of algorithms takes the success probabilities and
pre-computation efforts fully into account.

Keywords time memory tradeoff Hellman- distinguished point rainbow table

1 Introduction

There are numerous security systems in use today that rely on passwords. Access to many
contents on the network requires one to login with a password and many file formats today
have security features that restrict access to the file until the correct password is supplied.
These systems are usually based gassword haskechnique, which is to store a one-way
function image of the password in the file or on the system. Indeed, storing the password
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in its raw form within the file one wishes to set access corttvalvould be meaningless.
Authentication of a user is performed by recomputing the-wag function image from a
freshly supplied password and comparing the result wittstbeed password hash.

A time memory tradeoff algorithm attempts to recover thespasd from the knowledge
of the one-way function image, with the help of a table crédkleough pre-computation.
The massive pre-computation that is required before theahattack can be mounted is the
largest barrier in applying the time memory tradeoff tegluei to any specific security sys-
tem. However, the pre-computation cost is roughly propal to the size of the password
space and, since many users do not use strong passwordedheft attacker is free to
choose a manageable set consisting of short or more likalywazrds and decide to be sat-
isfied with recovering only those passwords belonging ®dbt. Then the pre-computation
requirement does not stand as an impenetrable barrier teattheoff attack.

It has long been known that propedgltinga password can remove any realistic threats
of the time memory tradeoff attacks. The security systencatamates a randomly generated
string (salt) of sufficient length to the user-supplied pass before computing the one-way
function image. The salt value that was used is stored aldagjse computed password hash
so that it is available to the system for the one-way functénomputation whenever a user
needs to be authenticated. The effective number of passusincreased by the use of salts
and this can increase the pre-computation requirementrafdadff attack to an unrealistic
degree.

Nevertheless, the salting countermeasure is still notgo@sed in many proprietary sys-
tems and some systems are known to be using both the neweat aalt the older non-salted
versions of the security system simultaneously to remaimpadible with older systems.
Hence, the time memory tradeoff technique still remainsvaguful tool against these vul-
nerable password hash systems. Since human generatecbpissmll continue to be used
for the foreseeable future, one would like to fully undemst#he powers and limitations of
the tradeoff techniques.

There are a large number of tradeoff algorithm variants vemaill restrict ourselves to
the three major tradeoff algorithms in this work. The firgialthm we study is the original
tradeoff algorithm [14] devised bylellman The second algorithm is thdstinguished point
method, which is attributed to Rivest in [10]. The numberadfle lookups that are required
by a Hellman tradeoff is significantly reduced in this slighthodified method. The final
algorithm we consider is theinbowtable method [24], announced by Oechslin. The pre-
computation table for this method is structurally diffear&om the previous two versions.

Let us briefly mention some of the more notable tradeoff vasiaor techniques that
we are not treating in this work. The first is therfect tableversion of the distinguished
point method [8]. This is a variant of the distinguished poirethod where some of the
redundancies contained in the pre-computed tables areveshend replaced with non-
overlapping data generated through additional pre-coatipmt The more efficient usage
of storage leads to better performance during the actuatigtat the expense of higher
pre-computation cost. The removal of redundancies isifaibt by the distinguished point
technique and cannot be done as easily with the classiclhBieklgorithm, but the rainbow
table method also admits a perfect table version [24] nbiyufiche perfect table versions of
tradeoff algorithms are of interest due to their better ifficy during the attack phase. How-
ever, analyzing them at the accuracy level aimed for by tmeentipaper is quite delicate,
and is left as a subject of future study.

Another class of tradeoff variants that we do not considérésmulti-target versions of
the tradeoff algorithms [2, 5, 6, 13], which are usually redd to as the time memojata
tradeoffs. The objective of these algorithms is to recovdeast one of the many original



inputs that were used to create the multiple one-way fundtizages that are supplied as
inversion targets. This class of algorithms attractechéitia as realistic attacks on stream-
ciphers, but present-day streamciphers are designed Istesitd these attacks. The most
practical application of the tradeoff technique today ifhwhe password hash systems and
we will present the current work with this application in min

Even though a considerable portion of this paper is devatélet performance analyses
of the three major tradeoff algorithms, the main motivationthis work was to determine
which time memory tradeoff algorithm is the bdatoviding a fair and acceptable answer to
this seemingly simple question is the ultimate goal of tlpey.

It has been shown [3, 4] that, if we restrict ourselves to taeclass of algorithms, the
explicit tradeoff algorithms that are known today alreadiiave the best tradeoff efficiency
one can hope for, at least asymptotically. However, the oreasf efficiency considered
by this theory is only accurate up to a small multiplicatieetbr. In practice, experience
seems to be a critical factor in deciding which algorithm $e,uand researchers have varied
opinions on which algorithm performs better.

Comparison of tradeoff algorithms has been a controvessibject. There are claims
of superiority of one algorithm over another, but, in mangess these are either heuristic
arguments or based on complexity analyses that are noteteayy to small constant factors.
There are at least two obstacles to providing a fair compared tradeoff algorithms. The
first is that the online time of each algorithm is hard to pcediccurately, due to certain
events called false alarms. Some answers to this problembedgund in [1, 15] for the
Hellman and rainbow cases. The current paper relies heanilhese results. The second
obstacle concerns the minimal number of bits required teesach pre-computation table
entry. In particular, a technique for storage optimizatiafied ending point truncation has
not yet been fully analyzed.

There is a naturally occurring measure of how efficientlyaaléoff algorithm balances
time against storage in achieving its goal and the accuedte\of this efficiency measure
becomes accessible once the first obstacle mentioned aboysolved. As was first noted
in [3, 4], the measure of tradeoff efficiency has been expkssdifferent units for different
algorithms. In this work, by extending the approach of [3@ carefully convert the trade-
off efficiency measures for the three algorithm to a commansarthat they may directly be
compared. The unification of units is intimately connectethe second obstacle mentioned
above. We also carefully treat the time taken for table Ipskduring our initial transition
of units.

The above two obstacles that are due to our lack of accurapyesenting the trade-
off efficiency figures can be overcome through rigorous dilgar analyses, but there is yet
another problem which is related to the pre-computation. €&@srrently there is no widely
accepted way of comparing two algorithms that can achiefferdnt tradeoff performances
only after the investment of different pre-computatiorogf. Due to this difficulty, many
comparisons of tradeoff algorithms have focused on the @bwentioned measure of bal-
ancing capability and have ignored the cost of pre-comjmutat

In this work, we clear all the obstacles mentioned so far aoglige a fair comparison
between tradeoff algorithms. More precisely, we presenethod to visualize what can be
achieved by each algorithm in terms of pre-computation aasttradeoff efficiency. This
will be done in a unified way so that the range of choices madsiple by each algorithm
can directly be compared against each other. A tradeoffdmphter can use this information
to decide on which algorithm to use and which set of pararegteuse with the algorithm.
The judgement of which algorithm is more suitable depend$i@m the user values the



pre-computation cost and tradeoff efficiency relative toheather, and, in most cases, the
judgement cannot be done in an objective manner.

While presenting the above comparison method, we will ngdiotus on a certain set
of parameters and environmental assumptions that areatiypeonsidered during theoretic
analyses of tradeoff algorithms. Under the circumstanoegiufocus, the classical Hellman
and the distinguish point methods are shown to perform veagecto each other. When
placed under the additional requirement that the successaéthe tradeoff algorithms must
be high, the rainbow table method is shown to outperform therdwo algorithms. These
comparison conclusions will stand true for any relativeuireg of the pre-computation cost
and tradeoff efficiency, as long as we are working with thedgipsituation. Comparisons
at other situations can easily be done by following throughraethods, and the resulting
conclusions can be different.

The remainder of this paper is organized as follows. In the section, we fix notation
and terminologies while reviewing previous results ralatethis work. Section 3 clarifies
the connection between the theory of tradeoff algorithnts the use of the algorithms in
attacking password hash systems. In Section 4, Sectio%5ection 6, we study the distin-
guished point, Hellman, and rainbow table tradeoff algoni, in turn. For each algorithm,
we present an accurate tradeoff efficiency figure that doeggnore small multiplicative
factors and also analyze the applicable storage reducitmiques. These sections over-
come the first and second obstacles that were mentionedeb&omparisons of tradeoff
efficiencies under different parameter sets for the sameritigh are made in Section 7.
Finally, our goal of algorithm comparison is reached in 8ecB, and the work is sum-
marized in Section 9. Experiment data supporting the argtsnaf this paper are given in
Appendix E. We acknowledge that a small part of this work wavipusly made public
through [21].

2 Time Memory Tradeoff Algorithms

In this section we review the basic theory of time memoryewdfs and fix notation that is
used throughout the paper. We introduce previous resutstk related to the results of this
paper, but make no attempt at providing a complete histoiguorey of the time memory
tradeoff technique. In particular, the perfect table todfdealgorithms are explained, but
advancements concerning their analyses or comparisomotirgroduced.

Below, after stating some simple technical facts, we dbedfie three major tradeoff
algorithms, and then explain some auxiliary techniquet ¢ha enhance their tradeoff ef-
ficiency. The descriptions are dense and readers that ar¢onthe time memory tradeoff
technique should consult the original papers for more Hetai

Throughout this paper, the functién: .4~ — .4 will always act on a set/” of sizeN
and thek-times iterated compositioRi o - - - o F of F is written asF.

2.1 Technical preliminaries

Many of the results given in this paper are expected valuesaftdom functions. In very
rough terms, a random functidhis a function that assigns independent and random values
F(x) € A4 to each of its argumentsec .4 . As briefly discussed in [12, 16, 23], working
with a random function is equivalent to choosing a functioifarmly at random from the



set of all functions of certain domain and codomain. In otlerds, any expected value
expressed for a random function is an average computed byenetion.
For large positive integersandb such that = O(b), we can use the approximation

(l— }>a ~ e’%,
b
which is very accurate. For example, whes: b, the error in the approximation is bounded
by £. This approximation is frequently used in the tradeoffriitare without any expla-
nation and is also used very frequently in this paper. Itsaasebe justified through easy
computation, which is explicitly carried out in Appendix A.
The final technical fact we present concerns the image sizerahdom function. Let
F : .4 — 4 be the random function. li#Z C .4 is of sizemy, then the size oF (.#Z) is
expected to be

mlzN{l—(l—%)%}%hul—ei%) )

An elementary proof of this statement can be given by trgatias a classical occupancy
problem.

More generally, the expectddth iterated image sizey = E(\Fk(///)\) can be itera-
tively computed through

m=N(l-e F) (j=1..K), @)

starting frommy = |.#|. This is stated in [11, 20] to hold asymptotically. The egjlstate-
ments given there are only for the case when the input&eds the complete domaint’,
but the case whereZ is strictly smaller than the complete domain is used in [®4§thte
the success probability of a non-perfect rainbow table. rEtegion between (1) and (2) is
carefully discussed in Appendix B.

2.2 Overview of the tradeoff technique

Let F be fixed to a publicly known one-way function. The goal of amadeoff algorithm is
to recover the inpux, when it is given the function image= F(x). Thecorrect answex
and theinversion targety may occasionally be referred to as th@sswordand password
hash respectively.

Any tradeoff algorithm consists of pre-computation phasand anonline phaseThe
pre-computation phase algorithm gathers information att@uone-way functiofr through
extensive computation and stores a condensed digest ofthergd information in are-
computation tableThe online phase is when the algorithm is given the taygetF (x) to
invert and tries to recover using the pre-computation table.

To be meaningful as an attack, the sMeof the pre-computation table must be smaller
thanN and the online phase algorithm should return the answemiaTi that is shorteN.
Note thatN is the size of the complete dictionafy(x, F (X)) }xc.» and is also the time
required for an exhaustive search. A tradeoff algorithmusthallow tradeoffs between
storage and online time in the sense that online attack Tincan be reduced by using a
larger storag® and, conversely, small& could be used if longeF is acceptable. Trade-
off algorithms are usually implemented with the intensidrrunning a large number of
online phases after a single pre-computation phase. Thés gine justification for a pre-
computation effort that is larger than exhaustive search.



Even though every implementation of the tradeoff technigogks with a specific one-
way functionF, analyses of the tradeoff techniques are always done witlagisumption
thatF is a random function.

2.3 Hellman tradeoff

The first algorithm we explain is the classical tradeoff adpon by Hellman [14].

2.3.1 Parameter setup

Certain parameters need to be fixed before the pre-compuifattiase can be started. Positive
integersm andt that satisfy the relatiomt? ~ N are fixed. This equation is referred to as
the matrix stopping rule Another positive integef ~ t, which will become the number of
tables, is also fixed.

In this paper, we let the parametensandt satisfymt? = Hnsd\, with amatrix stopping
constantyscthat is neither very large nor too close to zero. Much of tadéoff literature
setsdinsc= 1. The conditions we have giveniigscand/ may (inaccurately) be expressed as
Hmsc= ©(1) and? = O(t), respectively. The parameters are always assumed to limedds
in the sense that & m,t < N. The tradeoff algorithms behave somewhat differently when
instantiated with extreme parameters.

Thereduction functions R: .4 — .4/, one for eactk = 1,...,¢, are fixed. These may
be any family of simple bijections that are very easy to cormpwhenN is a power of 2 and
A consists of non-negative integers less thamit permutations or XOR-ing by constants
are practical choices for reduction functions. Tatorediterating functiond : A4 — A4~
are defined throughy = R¢oF.

2.3.2 Pre-computation phase

In the pre-computation phase, what is explained below isatgul/ times, once for each
1<k</, tobuild? tables.

We start by choosing1 randomstarting pointssp'i,sp'{, ...,5p% € .#. Hellman speci-
fied for each starting point to be chosen independently aoran but most researchers today
see the starting points as being distinct. For eaghi K m, we initially setx}fo = sp}‘ and
recursively compute{}fj = Fk(x}fjfl) for 0 < j <t. The final point reached by each chain of
iterative computations is said to be anding pointepk = x¥, = F!(sp). The ordered pairs
{(Spg‘,ep}‘) i, are stored as thieth Hellman table after being sorted with respect to the
ending points.

The collection of all points{x}f i}i.j» associated with an iterating functidf of one
color k, is said to be a&Hellman matrixof sizemx t. One usually visualizes a Hellman
matrix as follows.

k ok ook Aok R R, ok P, ok ok
M1 =X1g — > Xy — > Xgp — > — Xip-1 — X1 =€Pg
k ok ook Aok K R ok oo ok ank
P =Xp9 — > Xpp — > Xgp — > o — Xpp_1 — X =€Pg
kK ok ook Rk K R ok K ank
Spm*Xm,O ’ Xm,l ’ Xm,2 AR Xm,t 1 > Xmt = Pm



It consists ofm rowsandt + 1 columns We number the columns so that the starting point
column is the 0-th column and the ending point column istthle column. Each row of

a Hellman matrix is gre-computation chainAny chain of points from4” that has been
formed by iteratively applying aRy of the same colok is aHellman chain

2.3.3 Online phase

Once the inversion targgt= F (x) is given, the process explained below is repeated for each
1 <k <4, until the correct answeris found. Occasionally, the algorithm will report failure
in returning the answer after processing/athdicesk.

We first computey'{ = Rk(y) = K(x) and check if this appears as one of the ending
points in thek-th Hellman table. The table lookup is repeatedly done faheacursively
computedy'j‘ = Fk(ylj(,l), until y¢ = F(x) has been searched for in the table. The Hellman

chain
F ook

Fic Ao, kR
(X —9) i o ys o ys = e oy
that is computed through this process is referred to asitliee chainfor thek-th Hellman
table.
Whenever a matcik = ep}‘ is found, the corresponding starting pohpﬁ‘ is retrieved
from thek-th Hellman table, and the associated pre-computatiomdbldpartially) regen-
erate to obtaimp=x_; = F ! (sp}). Since

FJ (xump) = R (R (01)) = epk =y = R (ya) = R (%),

there is a chance thagmp = x. This is why thej-th iteration of the online phase for a specific
table is sometimes referred to as searching for the ansarrong thegt — j)-th column of
the Hellman matrix. If multiple ending points match the emtrend of the online chain, one
must not forget to regenerate all the corresponding prepotation chains.

Even though the existence win the (t — j)-th column of a Hellman matrix will surely
imply the collision of y'j‘ with an ending point, the converse is not true unlgsis injective.
An ending point collision could be caused byn@rgebetween the online chain and a pre-
computation chain. Hence, the online phase algorithm mhstlc whether the candidate
answerxmp is the correct answet. The candidate is clearly incorrectRf(ximp) # y, but
a full verification requires more information than is contd iny and this is explained in
more detail in Section 3. If the candidatg, is found to be incorrect, the event is referred
to as afalse alarm in which case the online phase resumes the iterative catipus of the
online chain.

2.3.4 Success probability

The algorithm description for the Hellman tradeoff is coatpland we now give some rough
analyses.

The success of inversion is intimately related to how masgirttit points are covered
by the Hellman matrices. Assume that there are not too mapljcdtes in armx t Hellman
matrix and consider the addition of one more pre-compuiatt@in to this matrix. The ex-
iting Hellman matrix and the new chain contain approximatet andt points, respectively.
Since the matrix stopping rule give#-t =~ N, we know from the birthday paradox that there
is a high chance that the new chain and the existing Hellmariveill contain a common
element. Hence, the new chain is likely to merge into an iexjgire-computation chain and



much of the computation that was done to create this additichmain goes to waste. Hence,
it makes little sense to continue enlarging a Hellman maigyond them x t bound set
through the matrix stopping rule. This is the reason for gisinultiple small tables, rather
than a very large table. The discussion given so far alscates that the duplicates within
the matrix will not be too many until one comes close tortie t bound.

Let us usgHM| to denote the expected number of distinct nodes containadiellman
matrix. The probability of successful inversion after theqessing of a single Hellman table
is % Hellman [14] provided the lower bound

|HM| 1

N Nig(l—%y ®)

and used it to explain the appropriateness of the matrixpgtgpule. The arguments given
above that involves the birthday paradox are from [5, 6], @iagf not be found in [14].

When all¢ = t tables are processed, assuming that the reduction fusgtiowide inde-
pendence between tables, the probability of success bacome

1— (1—%>Zmlfexp(f%>. @

Since the number of duplicates within each Hellman matrkeijst low by the matrix stop-
ping rule, we haveiM| ~ mt. Recalling? ~t and applying the matrix stopping rule, we can
state that the probability of the Hellman tradeoff in sustalyy recovering the correct an-
swerx is approximately 1 —é ~ 63.2%. This is sufficiently large for the Hellman algorithm
to be meaningful as an attack.

Interestingly, the original paper [14] does not explicilypress the success probabil-
ity (4) of the complete algorithm. It is only stated that timedrse of the right-hand side
of (3) should be taken as the approximate number of pre-ctatipno tables that are to be
created. However, statements similar to (4) may be foundoirksvas far back as [17, 18].

In [18], the right-hand side of (3) was carefully approxiedtso that the bound could
be rewritten as

Hmsc 1 — @ X
|HM| N mt 1 / ) dx 5)
0

‘N = N Hmsc X

Experiment data provided in the work supports the corresstra# this bound, but it also
showed that this bound was far from being tight. For examgi&nsc= 1, the test data
provided wa§HWMI = 0.85, while the right-hand side of (5) was8D .

This discrepancy was resolved by [9, 19], which compute@ipected valug| itself,
rather than its lower bound. This result is copied as Projpos21 in the main body of the
current paper.

Success probability of the Hellman tradeoff was also stitli¢26]. However, the inver-
sion problem considered there is different from that cagr@d by the current paper. Their
analysis is applicable if one wishes to recoaay pre-image corresponding torandom
image This is neither of the two inversion problems that are dised later in Section 3.4
of the current paper in that the inversion target is directigsen without the involvement of
an input.



2.3.5 Cost of resolving alarms

An upper bound for the number of false alarms per table waema’as“%sc in [14]. This was
combined with the fact that resolving each alarm requirenctt iterations to argue that
the side effects of false alarms on the online time compfexés limited.

A much better bound on the effects of false alarms is gived &} s

. H
(cost of resolving alarms for all tables: 'gscét. (6)
Almost the same content reappears in [15], expressed irothe f
(expected cost of resolving alarms per tabiegné—sct. @)

The proofs given by the two paper for the above two statensetessentially identical.

2.3.6 Tradeoff curve

We havel ~t tables, each containing entries, so that the total storage siz®is=- m¢ ~ mt.
Disregarding the time taken to treat false alarms, it takiesations of the one-way function
to process each of thex t tables, so the online time complexity is at maste t¢ ~ t2.
Applying the matrix stopping rule td andM, one can arrive at thigade-off curve

TM? ~ N2 (8)

for the Hellman tradeoff.

Conversely, suppose that certain valdeandM satisfy the trade-off curve (8). Then
the parameters= /T andm= M/+/T satisfy the matrix stopping rule. When the Hellman
tradeoff is implemented with thesem, and/ ~ t, it will require storagevl and run in online
timeT.

The tradeoff curve (8) did not appear in the original pulilaa[14]. The above presen-
tation has been adopted from [5, 6].

2.4 DP tradeoff

The distinguished point method, which we shall simply refeas theDP tradeoff is a
simple modification of the Hellman tradeoff. Introductioftlbe DP technigue is attributed
to Rivest in the book [10], but no corresponding publicattan be found. Theerfect table
version of the DP tradeoff was first studied in [7, 8] and thasvfollowed by some further
analyses in [1, 25, 29], but literature analyzing the noriqué DP tradeoffs, which we deal
with in this work, is hard to find.

2.4.1 Parameter setup

As in the Hellman tradeoff, one fixes positive integerandt satisfying the matrix stopping
rule mt? =~ N. Reduction functionsR : .#* — .4 are chosen and colored iterating func-
tions i, = R o F are defined as before. Our work will use the notatiol = DysdN with
amatrix stopping constarimsc= ©(1). As in the Hellman tradeoff{ = ©(t) will be the
number of tables. The parameters are always assumed to senadde in the sense that
l<mt<N.
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One fixes a property which is satisfied by a random elementofvith probability %
Thisdistinguishing propertghould be very easy to check. For example, supposeé amaiiN
are powers of 2 and that the sét consists of non-negative integers less tNaThen, one
usually defines an element.of to be adistinguished poin or a DP, if the first log bits of
its binary representation are zero.

2.4.2 Pre-computation phase

Rather than fixing the length of each pre-computation ctainthe pre-computation itera-
tionsx‘; = F(xf; ;) are continued until the current chain exfd is found to be a DP. The
resultingm pre-computation chains will be of varying lengths, but ttaierage length will
bet. As in the Hellman tradeoff, thi starting point and ending point pairs are stored as a
DP tableand/ tables are constructed, each corresponding to a diffecdot £ < k < /.

Any chain computed through iterative applications of a k&irig that ends at a DP is
a DP chain The collection of all pre-computed DP chains associateti mme DP table
is referred to as ®P matrix even though the collection can no longer be visualized as a
rectangular shaped matrix.

2.4.3 Online phase

Given the inversion target = F(x), the online phase of the DP tradeoff proceeds quite
similarly to the Hellman tradeoff online phase. Howevarcsionly DPs can be found among
the ending points, table lookups are done only when thetitetg computedy® is found to
be a DP. Since no pre-computation chain contains a DP in tHdlenpart of the chain, the
online chain iterations for any single DP table is termidageits first DP occurrence.

Resolving alarms is slightly tricky with the DP tradeoffsedause the length of each
pre-computation chain is not known, one regenerates the@rgutation chain until either
y'{ is reached or a DP, which sits at the end of the pre-computatiain, is reached. One can
store the length of each pre-computation chain in the DR f@hB] to remove this problem,
but this has the side effect of increasing the pre-comprtatible size, and is not considered
in the current work. If multiple ending points match the emtrend of the online chain, all
corresponding pre-computation chains need to be regederat

2.4.4 Preliminary analysis

The success probability (4) is also valid for the DP tradeasffen|HM| is replaced with the
number of distinct entries in a DP matrix. Since the averaggth of the pre-computed
DP chains ist, each DP matrix covers approximateatyt points and the previous rough
approximation L% for the success rate remains valid for the DP tradeoffs. Tiime
chain is likely to reach a DP in approximatdlyiterations, so that the number of online
iterations isT ~ /t ~ t2, when the efforts made to resolve alarms are ignored. Cantpin
this with the pre-computation table size, whichMs= /m~ mt, we find that the tradeoff
curve (8) is also valid for the DP tradeoff.

2.4.5 Chain length bound

In practice, a chain may fall into a loop that does not congaDP and never reach a DP.
Hence, any implementation of the DP tradeoff sets a chaigthebound [7, 8], which we
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denote byf, and any chain that fails to reach a DP within this bound,rapgither the pre-
computation phase or the online phase, is discarded. Theopnputation phase of a DP
tradeoff must generate additional chains to fill in the dided chains.

Even though some of our results are stated in a way that gisftiadependence di
we are mainly interested in the case wheiig sufficiently larger thar. The number of
discarded chains is minimized by such a choice and most gfrlseomputation is put to
good use. Since pre-computation cost is the main barriemydaaige scale implementation
of the tradeoff technique, such a choice is natural in practi

If a chain is generated with the random function, the prdiigbor it to become a DP
chain within the chain length bourids

1- (1—%)%1—@“. 9)

This easy statement may be found in [7].

2.5 Rainbow tradeoff

The rainbow table method was introduced by Oechslin [249nf-this point on, we will
refer to the rainbow table method simply as thmbow tradeoff

2.5.1 Parameter setup

One starts with positive integensandt satisfying the matrix stopping rutat ~ N. Notice
that this equation is different from the matrix stoppingesifor the previous two algorithms.
In this work, we use the notatiant = RysdN with thematrix stopping constamnsc= ©(1).
Unlike the previous two algorithms, a small number of tatfles ©(1) is used with the
rainbow tradeoff. The parameters are always assumed toadsemrable in the sense that
1< m,t < N. Reduction function&: .4+ — .4 are fixed as before, but these have double
indices that are made torun ovee 1,....t andk=1,... /. The doubly colored iterating
functions are defined throudf = R‘Jﬂo F.

2.5.2 Pre-computation phase

Instead of using a single reduction function for each tabtifferent reduction functions
are sequentially applied to creatpr@-computation chaiof lengtht. Eachpre-computation
table stores the information frorm chains. More explicitly, théth pre-computation chain
for thek-th rainbow table takes the form

F F F. R R
Kk ok 1k k kUK 3k t—1k =k tk ok -k
i = Xio Xi1 Xig—> X1t-1 Xit = €py,

where 1< i < mand 1< k < /. Each of these is minbow chain

The complete set ah chains for any fixed is anm x t rainbow matrixand the set of
pairs{(sp}‘, ep}‘)}i is stored as thk-th rainbow tableafter being sorted on the ending points.
Columns of a rainbow matrix are numbered from the 0-th, doimntg the starting points, to
thet-th, containing the ending points.
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2.5.3 Online phase

Let the inversion targey = F(x) be given for the online phase. For eagck 1,...,t and
k=1,...,¢, we compute thg-th online chain for thé-th table

Rk

Rojiik \ kj Rojiok  kij R-jak -1k
(X ) : :

K, j K, j
Yilj Yiljgo ——— Y1 Yo,

through iterative computation, starting from the po}ﬁle = R{iHl(y) = R_jt1k(X).

After each chain computation, the chain eyﬁd is searched for among the ending points of
the k-th rainbow table. The absence of a collision indicates thatcorrect answex does
not belong to thét — j)-th column of the rainbow matrix. The appropriate pre-cotapan
chain is regenerated whenever a collision is found. Manhedé regenerations will lead to
the announcement offalse alarm

The order of incrementing the double indices during therenfphase requires clarifi-
cation. One should take the chain lengtmdex to be the outer loop and the table number
k-index to be the inner loop. In other words, for any indexone computes thgth online
chains for all¢ tables, before computing any of thg+ 1)-th online chains. This is referred
to as the parallel processing of rainbow tables. The oppasisting of the loops is called the
sequential processing of tables. As was already noted intf2e parallel approach is more
efficient in terms of the expected number of one-way funcimvocations. Parallel process-
ing of tables is more commonly considered and this is theagmbr we assume throughout
this work.

2.5.4 Success probability

In [24], one can find the success probability of a rainboweddlthat uses a single table

written as
=T
1 ,EL( N), (10)

wheremy = mandm; are recursively computed through (2). However, this wassimopli-
fied into a closed form formula there.

While studying the perfect table version of the rainbow éaft] the work [1] restricts
to them= N case and gives the approximation

t—1 i i
m; t—it—i+1

—— )= —_ 11

) t t+1 (D

N,0-%

j=t—i

Notice that the range of indices in the left-hand side prodsishorter than that appearing
in (10). The left-hand side product ofterms expresses the probability for the firsin-
line chain computations for a single table (non-perfedt)lraw tradeoff to fail in returning
the correct answex. This expression is valid for ary, even though the right-hand side
approximation is appropriate only fan= N.

After almost repeating the computations done by [1], thekwib] obtains a general-
ization of (11) that is valid for anyn. The result is restated as Lemma 28 in the main body
of this paper. Neither (11) nor Lemma 28 were explicitly sthas separate results in the
referenced papers, but they can be inferred from parts ofpiheofs.
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2.5.5 Preliminary analysis

A collision of points from two rainbow chains will result inerging chains only if the
collision occurred at a matching color index. When a newlmaim chain is added to an
existingmx t rainbow matrix that contains no collisions within each eofy the probability

of not experiencing a merge can be expressegdlaﬁ@\l)t ~e W, Hence, the matrix stopping
rulemt~ N is the correct boundary at which collisions among pre-cdatmn chains start
to become problematic.

Let us assume the use of a single table for the rest of thishraumglysis. Ignoring
collisions within each rainbow matrix column, the succeasbpbility (10) may roughly be
approximated as 4 (l— %)t ~l-eNalo —é This is equal to what we saw during the
rough analyses for both Hellman and DP tradeoffs.

Notice that the computations for thjeth online chain cannot reuse any of the informa-
tion computed for previous online chains. Hence, the nurabene-way function iterations
required for the computation of all online chainslis=0+1+--- 4+ (t—1) = % The stor-
age size for the single rainbow tableNs= m. Recalling the matrix stopping rulat ~ N,
the tradeoff curve can be written as

TM? ~ Zn2.

; 12)

The above time complexity analysis appears in [24], fromchtihe tradeoff curve directly
follows.

2.5.6 Further analysis

The preliminary analysis given above corresponds to thestaaase where the complete
table is processed. In practice, the online phase is liketgitminate before computing the
t-th online chain. On the other hand, the cost of resolvinghadehas been ignored. Hence,
the rough analysis does not give the true worst case contylexi

The work [15] provides an accurate analysis of the time cexipy for rainbow trade-
offs. The expected number of one-way function iteratiomgiiied to process a single rain-
bow table was expressed as an explicit rational functiokn@f timest2. Similar result for
the additional number of one-way function iterations reggito process alarms was also
stated. However, the results were restricted to the siragike tcase. We do not state their
results here, but their results are reobtained if we sulbstit= 1 into (22), appearing in the
main body of this paper.

2.6 Perfect table tradeoffs

The main objective of introducing the DP technique was taicedthe number of table
lookups that occur in the Hellman tradeoff. However, it wasrsnoticed that DPs allow easy
detection of merging chains. During the pre-computatioasghof aperfect tableversion
of the DP tradeoff [7, 8], one removes chain collisions bygieg only the longest of the
merging chains. Chains are additionally generated omibn-merging DP chains have been
collected. The resulting perfect DP matrix contains no leygaing points. The online phase
of the perfect DP tradeoff is identical to the non-perfeasian. The work [7] gives credit
to the unpublished work [27] for independently introducthg same algorithm.
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Detection of merging chains is also easily done with thebramtradeoff. Theperfect
tableversion of the rainbow tradeoff [24] stores information jigst one chain from each set
of merging chains. Unlike the DP case, a perfect rainbow imatay contain overlapping
points if they belong to different columns.

The perfect table version of the Hellman tradeoff refershtotase where the Hellman
matrix contains no overlapping points. Some discussionslmedound in [1, 26]. However,
generating a perfect Hellman table is costly and its usetismasidered to be practical.

Since there are less or no overlaps in a perfect table, thesilp better coverage of the
search space than their corresponding non-perfect verfioithe same amount of storage.
Hence, perfect tradeoffs are likely to be more efficient tthennon-perfect tradeoffs. How-
ever, this gain in tradeoff efficiency is paid for with the fm@mputation that was wasted in
generating the discarded chains.

The extra pre-computation required for the use of perfectetoffs may not seem to be
of importance. However, the pre-computation cost can lieakivhen implementing trade-
offs at the limit of one’s resources. Consider a large saal@eémentation for which the
pre-computation may take several months on a large cluStroputers. In such a situa-
tion, extending the pre-computation period by another femtim or doubling the number
of computers allocated to the pre-computation task will b@ta viable option, even if it
promised a significant advantage in the online tradeoffieffizy.

Even though there are analyses of perfect tradeoffs [1,1B,24, 29], dealing with them
at the accuracy level aimed for by the current paper is censidy more complicated than
the non-perfect tradeoffs. This is especially true with plegfect DP tradeoffs. In view of
relative practicality and theoretic accessibility, we ldealy with the non-perfect versions
of tradeoff algorithms in this work. Inclusion of the perféradeoffs into the comparison
results obtained in this paper is left as a subject for fustuely.

2.7 Storage optimization

The storage siz® appearing in the tradeoff curves (8) and (12) refers to tted taumber

of starting point and ending point pairs that need to be dtimethe tradeoff tables. In
practice, it is important to know the physical size, or thenber of bits, required for the
table. Each starting point and ending point pair can surelgtbred in 2lo@\ bits, but there

are techniques that allow more efficient use of storage.

Below, we assume a suitable method of enumerating the eteroe” has been fixed
and treat elements of” as log\-bit integers. This enumeration is trivial whe#r is the set
of all bit strings of certain length, but may require a smaibaint of work when#” is given
as the set of passwords satisfying certain complicatediikitig structures.

2.7.1 Consecutive starting points

The first storage reduction technique we review is the ustadirsg points that require less
storage. The work [6] does this while implementing an attala specific system and [7]
mentions this as a well-known trick without giving any refiece. A clear understanding of
the random functions shows that the starting points may beserhin any manner, as long
as it has no relation to the graph structure of the specifievamefunction under attack.

A practical method of choosing starting points is to use eonsve integers [1]. The
integers 0 througim— 1 will work for any (non-perfect) table. Inter-table colbss among
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11101001 101001
11001010 001010
10111001 111001
01101110 101110
01011100 1 011100
01010101 10 010101
00101100 01—~ 101100
00010110 00 010110

Fig. 1 Index table technique (The sorted list on the left-hand Edeansformed to the right-hand side list,
which contains two less bits per entry.)

the starting points can be removed by concatenating the tatiex to the consecutive in-
tegers [4]. Note that the table index need only be recordee éor each table. However,
the effect of joining table numbers is almost nonexistenteen the second columns of the
pre-computation matrices, so this detail is not very imguatrtin any case, the starting points
can be stored in log bits, rather than loly bits.

The experiment provided by Hellman [14], supporting theuargnts concerning the
success probability, was executed with starting pointsosetall numbers, rather than ran-
dom points. However, it is not clear if this was intended tuee the storage size.

2.7.2 Taking advantage of the DP definition

In the case of DP tradeoffs, any information that can be reiel/from the definition of a
distinguished point may be removed from the ending poinbiee$torage. For example, if a
prefix consisting of log zero bits defines a DP, the lbgits of zeros can be removed from
each ending point without any loss of information. This noeltlwas actively used in [6]
and clearly stated in [29], but seems trivial enough to haentwidely known before these
works.

2.7.3 Index table

The work [6] introduces thandex tablemethod. This is a degenerate form of a widely known
technique called hash tables, which is explained in AppeBdi

To facilitate fast table lookups, the pre-computationealare usually sorted on the end-
ing points before being written to storage. Let us focus e ffogm) — £} most significant
bits of each ending point in the sorted table, wheigany small positive integer. Assuming
that the ending points are randomly distributed, for eatégier 0<i < 42, we can expect to
find approximately 2 consecutive entries in the sorted table that have togm) — €} bit
prefix of the ending point equal to integeHence, one can remoyé¢logm) — £} bits from
each ending point and replace it with an index table thattpdamthe starting positions for
eachi value without loosing any information. The number of ergrgentained in the index
table is onlyz? and hence the additional storage required by its introdnatan be ignored.
An example is illustrated by Figure 1.

In practice, the index table could store the number of entrigresponding to each index
value rather than the full physical addresses. With suctpanoach, since only very small
number of bits are required to store each count, even thefuse-@ could be considered.
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2.7.4 Ending point truncation

The methods described so far reduce the storage size wittgng any information con-
cerning each starting point and ending point pair. Howethés, is not so with the final
storage reduction method we describe, which is to simphycte a part of the ending point
before storage.

The truncation of ending points was done in [6] for a speciid¢off implementation,
where it was simply stated that the number of bits they atisasufficient for identification
purposes. In [4, under the assumption that~ N%, it is claimed that the ending points of
a DP table can beompressedo slightly more tharé logN bits. It is also claimed that the
ending points for the rainbow tradeoff can be compressetigiotly more than% logN bits.
The paper does not provide any justification for these claims

During the online phase, when a table lookup is requiredptiject to be searched for
in the table is truncated to the same length and comparedtiétiruncated ending points
of the table. The table lookups may now falsely return a matem when a merge between
the online chain and a pre-computation chain did not happtlh. since we were already
expecting false alarms, no new measure needs to be devidedltwith the new type of false
alarms. Aggressive ending point truncation will cause nfi@quent false alarms, hence the
degree of truncation should be carefully controlled.

The word truncation may give the impression that such a ndathapplicable only when
the space/” consists of bit strings. On spaces that look different, amjestive map that is
pre-image uniform, in the sense that the number of pre-isiégreeach element in the range
is identical, can serve as the truncation operation. Intmmcpassword hashes are usually
bit strings and one does not apply the reduction functioheagnd of a chain, so truncations
can easily be done.

2.8 Parameter optimization

Choosing the parametens t, and/ for a concrete tradeoff implementation is not an easy
task.

The work [18] starts with the assumption that the cost, idads| of a tradeoff attack
implementation is proportional to the storage size and timelrer of one-way function com-
putations the online phase machine can perform per unit flihis allows one to consider
the lowest possible monetary cost of an attack machine thst succeed with a given
probability and finish within a preset real-world time. Eggsions giving lower and upper
bounds for the optimal cost are presented and paramgtersand/ that can achieve the
optimal cost are also found. The optimal parameters thastated depend on the relative
cost of storage versus one-way function computations aspeied.

This analysis is one of the few that takes false alarms into@tt when computing the
time complexity of the online phase. However, the analydied on the bounds (5) and (6),
which are not very tight, and the upper bound for the optinast evas simply taken to be
an approximation for the optimal cost. Also, while definihg bptimal cost, the amount of
pre-computation was fixed to what is required for a singleaestive search.

The measure of efficiency used in the current work is diffefesm the monetary cost
discussed by [18]. Our interest is in how efficient each toéfddgorithm is in balancing stor-

1 The paper refers to the Hellman tradeoff, but it seems tleaDfh tradeoff was implied. Many researchers
view the Hellman tradeoff as always incorporating the Dnégue.
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age against online time. This balancing ability changeh thieé amount of pre-computation
that is invested and the required success rate. The optioratary cost for implementation
can easily be computed whenever this balancing abilitydsii@tely fixed.

In [17], an attempt was made to optimize the success protyabflHellman tradeoff,
while keeping both the time and storage complexities corisfiéne gain in success proba-
bility was paid for with larger pre-computation.

There are two parts of their argument that introduce inaaguimto their results. Since
they did not have access to a good expression for the timelegityp it was not possible
for them to keep the time complexity exactly constant. Thay to be satisfied with keeping
£t, which is an upper bound for the time complexity in the absesfdalse alarms, constant.
The second point was that they lacked knowledge of the exacess probability and had
resorted to using its lower bound given by (5).

The general conclusions of [17] may still be correct, butdeéails, in particular, the
explicit optimal parameters and values, will need to be mgmated with the information
given in the current paper. A little more light was shed on dliempt by [24], but the
discussion there still relied on rough estimates of timemexity and success probability.

2.9 Comparison of tradeoff algorithms

Let us attempt a comparison of the three tradeoff algoritimdave explained, based on
their tradeoff curves that are already available. Both telirkbn and DP tradeoff curves are
given by (8) and the rainbow tradeoff curve is given by (12)n€idering the case where
the same storagd is given to the three tradeoff algorithms, the tradeoff esrimply that
the rainbow tradeoff will require only half the number of emay function invocations
compared to the other two algorithms during the online phasaddition to giving an
argument that is equivalent to what we have just descrileeytitk [24] argues heuristically
that the rainbow tradeoff is at an advantage over the DP afadencerning false alarm
issues.

The claimed efficiency of the rainbow tradeoff over the DRI¢wif is refuted in [3, 4
with the observation that the number of physical bits rezplito store each entry of the
tradeoff table has been ignored by [24].

Assume the use of typical parametars-t =/ = N# for the DP tradeoff. Recalling the
contents of Section 2.7, one finds that the starting pointshi® DP tradeoff can be stored
in %IogN bits. It is claimed in [4] that the ending points can first benppessed to slightly
more than% logN bits and then further compressed to a very small number Yigpplying
the index table method. Hence each entry of a DP table reqsiightly more tharé logN
bits to record. In the case of rainbow tradeoffs, one asstinegtypical parameters = N%,
t= N%, and/ = 1. Then each starting point requirémgN bits. The ending point is first
compressed té logN bits and then most of this is removed through the index talathod.

Accepting the above arguments, we see that each entry oflzomaitable requires twice
the number of bits required by an entry of a DP table. Whenrgikie same physical amount
of storage, the DP tradeoff can store twice as many startiigt pnd ending point pairs.
This translates to a gain in online time by a factor of founotlgh the tradeoff curve. In
conclusion, the DP tradeoff will run two times faster thae thinbow tradeoff for the same
physical amount of storage.

2 It seems the DP tradeoff was implied, even though the pafensro the Hellman tradeoff.
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The more recent work [1] once again advocates the rainbaledfaand tries to explain
that the arguments of [4] that we have explained so far aréeading. They emphasize
that the advantage of the rainbow tradeoff claimed in [243 Vg a factor ofat leasttwo,
rather than just two. This is a reasonable point to make,H®it ensuing arguments seem
to indicate that they were not aware of the ending point tatinoo method, which was taken
into accountin [4]. One could interpret this as showing hainformative [4] was in treating
the ending point truncation method.

As we will verify in this work, the claims of [3, 4] were mosthlorrect, but there are
hidden issues that can overturn their conclusion. The firitat the tradeoff curves given
by (8) and (12) are not accurate. Both of these correspontigawbrst case where the
algorithms are executed to the end without the correct anlseiag found. In fact, this was
the point made by [1], although it was used to support onlyrdirgbow tradeoff. One must
also note that the effects of false alarms have been ignordmbth tradeoff curves so that
neither accurately reflects even the worst case complexity.

The second issue is that the success probabilities of thealgarithms may not be
precisely equal at the typical parameters. We have alreatidrthat both algorithms have
approximate success probability of—l% at the typical parameters, but this is an extremely
rough estimate, and the running time of a tradeoff algorithrery sensitive to the required
success rate. The controversy explained here are discirssedre detail in Section 8.4,
after we have developed the necessary tools.

The comparison claims by [24] and [3, 4] were made using patars that require pre-
computation equal to a single exhaustive search. Recerpaion claims that deal with
the perfect tables, which we do not treat in this paper, hheeténdency to completely
ignore the pre-computation cost. Neither approach reflgletg can be done in practice. The
difficulty of including the pre-computation cost into thengparison of tradeoff algorithms
seems to have been one reason why perfect tradeoffs haveeteoeore focus recently.
They certainly appear more attractive, when pre-compnas ignored.

2.10 Checkpoint

The checkpoint1] technique allows for the resolving of alarms without tlegeneration
of the pre-computation chain. This technique is applicableoth Hellman and rainbow
tradeoffs. Application to the DP tradeoff is also possihlé slightly more complicated due
to the variations in chain lengths.

A column of the pre-computation matrix is designated asdfeckpointbefore pre-
computation. After generation of each pre-computationrm;hbe least significant bit of the
chain element that sits at the checkpoint column is appetadibe starting point and ending
point pair that is to be recorded in the pre-computationetaburing the online phase, we
proceed as usual until an alarm is encountered. At eaclsicoljithe online chain is aligned
with the colliding pre-computation chain at the ending p®irif the online chain is long
enough, the least significant bits of the two points thatglo the checkpoint column are
compared. If the two checkpoint bits do not match, the engioigit collision must have
resulted from a merge of chains, and the collision is dedlaralse alarm. If the checkpoint
bits do match, the pre-computation chain is regeneratedws to resolve the alarm.

The use of checkpoints filters out some of the efforts sperrercomputation chain
regeneration. One can generalize what has been explaimeditiple checkpoint columns,
consider other methods of extracting a checkpoint bit, tecomore than one bit of infor-
mation from each checkpoint column.
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An analysis of the effects of checkpoints in reducing ontinee was given by [1] for
the perfect rainbow tables. Analysis for Hellman tradeaffsl single table (non-perfect)
rainbow tradeoffs were done in [15]. With a single checkpainthe optimal position, the
Hellman tradeoff online time decreases by 3.17%iaic= 1, and the online time of a
single table non-perfect rainbow tradeoff decreases b¥%.8tRnsc= 1. The effects of
checkpoints are more visible at hightsc andRmsc values.

The advantage of checkpoints must be compared with its ffielet en the storage size.
After the techniques of Section 2.7 have been applied, ewnge bit difference in table
entry size could translate to a meaningful size ratio chakge example, at 50 bits per
table entry, if the increase of single bit per table entrysealby the use of checkpoints was
instead allocated to enlarge the number of table entriesynthine time would have reduced
by 1— (22)* — 3.88%. This is better than the above mentionet7% reduction effect of
checkpoints on the Hellman tradeoff and th81%% reduction effect on rainbow tradeoff
should be interpreted as achieving only approximated¢@extra reduction.

Since the effects of checkpoints are small and selectivicapipns of checkpoints will
affect all algorithms in the positive direction, its effext the final comparison of algorithms
will be minimal. On the other hand, consideration of the &peint technique would add
another layer of complication to our analysis. Hence, tredyais given in the current pa-
per does not consider the use checkpoints. However, we arelaiming that the use of
checkpoints should not be considered in practice.

3 Applying Time Memory Tradeoff to Password Hashes

One usually states the objective of a tradeoff algorithmhasriversion of a one-way func-
tion. A closer look reveals that there are two versions ofitliersion problem and we will
explain how one of these corresponds to the applicationBeofradeoff technique to pass-
word hash systems. Issues concerning the use of randomdiosiah the theoretic analysis
of tradeoff algorithms are also discussed in this section.

In this section, we refer to the one-way function image aspéesword hasland the
input as thepassword

3.1 Password hash

Let us briefly explain how the security features of many filerfats that rely on passwords
for access control work in its very basic form.

The designer of the system chooses and fixes a one-way fomttidhis one-way func-
tion is a part of the file format specification and is usuallpsidered to be public. In fact,
the one-way function definition can be extracted from thatesl software even if it was not
originally made public. When the owner of a file followinggHormat wants access control
to be applied to the file, the user supplies a passworh encryption key is derived from
the password, and the main content of the file is replacedsbgnitryption under this key.
Then the image = H(x) of the user password, under the one-way function specified fo
the file format, is added to the file. Finally, any record of éreryption key and the raw
password supplied by the user is destroyed.

Later, when authentication is required for file access, thgparting software asks for
a password. The one-way function imagéx’) of the newly supplied passwosd is com-
puted by the software and is compared with the corresporidiogmationy stored within
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the file. If a perfect match = H(x') is found, equalityx = X’ is assumed, the main body of
the file is decrypted using the key derived from the passwqraind access to the decrypted
content is granted. Note that the one-way function imagéthe correct password is stored
within the file without any protection and is accessible tgae that has obtained the file.

User authentication procedure for computer system logor&svin much the same way.
At the time of initial user registration to the system, theeaway function image of the
password supplied by the user is recorded in a file that iedteithin the system. In this
case, access to the one-way function images may be hardiefattacker than the above
case, but this information is often sent over the networkédear to a group of computers,
so that each of these computers may allow authenticateddagia user that has registered
at a central server.

3.2 Uniqueness of the pre-image to a password hash

Out of theoretic curiosity, we first ask whether a passworshhaniquely determines the
password. This should seem obvious in any practical usdghs password hash systems.

Proposition 1 Let H: &2 — JZ be the random function. Given any passwrrd &, the

number of inputs that H maps to the password hagk)Hs expected to bé+ ‘@;‘1.

Proof SinceH is the random function, we can first assign a randomly choa&reof 7’
to H(x) and then define all the other function values. The probghitit any one of the
later assignments to striké(x), which is an explicitly fixed value i??, is ﬁ Each later
assignment is independent of all other assignments, ancaivexpect the number of later

assignments tbl (x) to be "@;‘1. O

Readers should not misinterpret the above propositionvaisggthe pre-image size of
a randomy € s under a randont. For the random functioi, the distribution ons#’
produced byH(x) is the uniform distribution for each fixed € &7, and everyy € JZ is
expected to hav#:— many pre-images, rather thar%l| ZI-1 This is not in contradiction
with the proposition, as the proposition deals with therdJstlon on.7Z produced from
random inputs by the specifid that has been constructed, and this is different from the
uniform distribution ons#. Those points of##” that lie outsideH (#?), for the specifically
constructedd, do not have any chance of appearing.

One can also ask for the pre-image size of a random passwehdyt@aH (). Note
that this question can only be asked after the random fumgtibas fully been constructed.
The corresponding answer will depend on the sizé10#?), but, when|Z?| = |.57|, this
should be close to

7l 1
E(H(2))  1-1%

Once again, this question is not related to the content ofaieve proposition. It deals
with the uniform distribution orH(2?), which is different from the distribution oH (%)
given by the fully specifiedd. Those points with larger pre-image sets will have a larger
probability of appearing than those with smaller pre-imsges.

Consider an application of the tradeoff technique to a ligaher whose key length is
equal to its block length. In such a case, one is working With = |.7#’| and Proposition 1
states that there will be approximately two keys, on aver#iigg map to a given target
ciphertext. This is probably larger than what many wouldehaaively expected. Of course,

~ 1.582
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in practice, one usually assumes the use of a second cightrtalmost uniquely identify
the key. In fact, if one interprets the key to two-ciphersertapping as a new one-way
function, then Proposition 1 claims that the key is almostjuely determined from the two
ciphertexts.

Let us next discuss what Proposition 1 implies for systerastly on passwords for
access control. These systems are usually designed sd¢hspaces#” of potential hash
values is significantly larger than the spageof admissible passwords. A typical password
hash would be a bit string of at least 128 bits in length andntimaber of alphanumeric
passwords consisting of ten characters is onl{?622°%°, In such a case, Proposition 1
shows that a password hadlx), produced from a passwoxdwill almost always identify
uniquely.

Furthermore, in practice, the set of all passwords adniesbipthe security system is not
of much importance. Since human generated passwords aneifamly distributed within
the complete admissible password space, the tradeofkattéicst fixes a manageable sub-
set#?’ C & from the set of all passwords and decides to be satisfied withvering only
those passwords that lie i#?’. The size of this subset is determined by the computational
power that the attacker can allocate to the pre-computaif@ase and should preferably
cover the passwords that are most likely to be used. In fabas been shown [22] that
human-memorable passwords can be enumerated efficiendieri$uch a setting the pass-
word hash set7 is immensely larger than the set of passwagdsthat is being considered
and hence the password hash determines the password yniquel

For the remainder of this paper, we assume that the targetsyer the application of
the tradeoff technique is such tha?| < |.77|, implying that the password hash uniquely
determines the password.

3.3 The reduction function

The tradeoff technique requires the one-way function tddrated. Since the codomai#’

of the one-way functiorH : & — 7 is usually larger than the domaig?, iteration is
achieved by utilizing aeduction function R # — £2. One role of the reduction function
is to let a password hash be interpreted as another passgehy theoretic treatment of
the tradeoff technique assumi@s H to be a random function, let us check whether this is
appropriate.

Proposition 2 Let | 2| be a divisor of|.7# |‘g‘|
be any fixed function that is pre-image uniform in the senaeiths exactly ‘Igl‘ -to-1. If
H: 2 — 5 is arandom function, then&H : & — £ is a random function.

, SO that

is an integer. Let R %7 — &

Proof In more precise terms, we want to show that the distributio#” , produced from
the uniform distribution on#’? , through the mappingl — RoH, is the uniform distribu-
tion.

Let /: & — & be any specific function. It suffices to show that, after randmn-
struction of a functiorH : &2 — 7, we will find RoH = Fy with probabilityW. Note
that {R"1(2)},c» is a partition of /# into cells of size%. The eventy = RoH will
happen if and only if the value assignedH«) belongs to the celR*l(Fo(x)), for every

x € 2. Since the size oR 1 (Fy(x)) is always%o", and since the assignment i{x) is
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independent and random for eveqythe probability of arriving aFp = RoH is

(\jf\/\,@\)m 1
] EZd

as claimed. O

Every application of the time memory tradeoff technique s@eurity system involves a
specific one-way functiohl : &2 — 2 and there is no strictly logical reason to believe that
the specificH will display the properties expected of a random functioente we need
to discuss if predicting the behavior of an explicit tradeofplementation with arguments
concerning random functions can be justified in practice.

There can be two ways to resolve this problem. The first is fieabto our intuition.
When one ignores his knowledge of the inner working of theegigpecific function, it
will seem as if the function is returning independently aaddomly generated values to
each given input. Hence, viewed from the outside, it looks #e specific function is the
random function in the construction sense. The second aguynvhich seems slightly more
plausible, is that the one-way function used in the secssistem is in fact a function that
has been selected from the pool of all functions. Unless wiehasen the one-way function
in an unusual way, any property exhibited by a specific fumctvill be close to the property
averaged over all functions. Further discussion relatélissecond argument may be found
in Appendix B.

We have thus partly justified the use of random functions &c@lof specific one-way
functionsH : &2 — s when analyzing the behavior of time memory tradeoffs. What w
have shown through Proposition 2 is that if we may treat thezific one-way functiorH
as a random function, then the same can be done with thedariRtiH : &7 — &. Hence,
throughout this paper, while analyzing the behavior of tmemory tradeoffs, we shall work
with a random functiort : .4/~ — .4 whose domain and codomain coincide.

3.4 Two versions of the inversion problem

Discussions of this subsection should be read with the Helltradeoff in mind. However,
the content can easily be translated to language that i©ppate for any other tradeoff
algorithm.

We have already mentioned that we shall work in the situation®? — ¢ where
the sets satisfy7?| <« ||, so that a password hash almost always determines a unique
password. We also know that any analysis of time memory tfdehavior is usually done
with a random functiorF : .4~ — .47, whose image does not uniquely determine the input.
In actual implementations, reduction functioRg: /# — & are defined and the online
phase algorithm works with the colored iterating functibfis= R¢oH : & — .

The unique passwond corresponding to inversion target= H(x) is obtained through
the tradeoff algorithm as follows. The online phase al@poniis giveny andRy(y) = Hk(X)
is passed onto its sub-algorithm that processek-theable. The best the sub-algorithm can
do is return inputx € &7 satisfyingHg(x) = Hk(X). Since this relation is weaker thar= X,
the parent algorithm must verify whether the password aitdk is the correct password
by testing the relatiof (x) =y.

Let us discuss how often during the online phase such catedztecks need to be
performed. Assume that the pre-computation algorithmiredwe|&?| iterations ofH to
complete. We will have = ©(1) in practice. For exactly the same reason given in the proof
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of Proposition 1, the expectation for the numbexappearing in thé-th Hellman matrix
that maps tdHy(x) underHy, combined over alk, is upper bounded by + 1, which is a
small number. Hence, the cost of such candidate checks rfely ba ignored.

During a tradeoff algorithm analysis, one does not mentigyttdng aboutH or R, the
source of the inversion problem, and simply assumes thaintlesion targety = F(x)
is given, for some functioir : .4~ — .#". Note that in this setting, the password hash
does not uniquely determine the passwertlowever, the goal of the tradeoff algorithm in
this paper will be to findhe correct password that was used to creaye rather tharany
password that corresponds to the givgrthroughF (x) = y. Theanyversion may be useful
when working to find the pre-image of a cryptographic hasletion, but thethe version
is suitable when looking for the correct password to an accestrol mechanism. A clear
distinction between these two inversion problems was fiesderin [15].

Since it is logically impossible to distinguish between thany pre-images with only
they € .4 information, our analysis will focus on whetheis among the possibly multiple
pre-images toy, returned by the tradeoff algorithm. The determination dfether each
returned value ishecorrect password is assumed to be done outside the tradgofitm.

The difference between looking ftite pre-image versuany pre-image implies that the
tradeoff algorithm will succeed under different circunmstas. Thethe version succeeds if
and only if the correct passwoxkthad appeared as aputto the one-way functiof during
the pre-computation phase, i.e.xifs among the pre-computation matrix entries excluding
the ending points. On the other hand, #mey version succeeds if and only if the image
y = F(X) had appeared as the functiontputduring the pre-computation phase, i.ey i
among the pre-computation matrix entries excluding thetistgapoints. The two approaches
will show differences in properties such as success préiyahind online running time.

Let us add a final word of caution that both inversion problemshave discussed re-
quire the targey = F(x) to be fixed through a random choice of timput x. One should
distinguish this from the case where the inversion targdirectly chosen at random from
either the image space or the codomain. These variants deeeot to fit any naturally
occurring real-world situation.

4 DP Tradeoff

A complexity analysis of the DP tradeoff is given in this $ect We present a formula for
computing the probability of success for the non-perfectlj@rithm and provide a tradeoff
curve which takes the effects of false alarms into accoumt.al§o discuss the number of
bits required to efficiently store the starting point andieggoint pairs.

In this work, to simplify some of our proofs, we assume that $itarting points are
always chosen among non-DPs. Hence, in a pre-computed D, ekiary point preceding
the ending point, including the starting point, is a non-BPigorous treatment that allows
starting points to be DPs can be done, but differences betvesailts from such an analysis
and those presented in this work will be negligible.

Recall the probability for a random chain to become a DP chitimin the chain length
boundf, given by (9). Rather than requiring each table to contaimctix m entries, we
assume that each pre-computation DP matrix is always gekiram

m

T1_e it
distinct starting points. Then we can expect to collect appnatelym chains that terminate
at DPs.

Mo (13)
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All of our tradeoff algorithm analyses are done under theimggion that the one-way
function is the random function. In particular, many expdiohs mentioned hereinafter are
to be understood as averages made over the choice of alidnacMost of our arguments
will be made over a single table, so we remove the display péddence on the reduction
functions from all notation.

4.1 Probability of success

Let us discuss the probability of success for a DP tradeaftuma given set of parameters.
We first present a general formula connecting pre-compurtagind probability of success
and then show how to compute these for specific parameterdirS€illemma is quite trivial.

Lemma3 The number of one-way function invocations required inegitreating a DP
chain or stopping at théth iteration without having reached a DP is expected to be

t(1—e /Y.

Proof It suffices to add the probabilities of having to compute tbecessive iterations.
Since the nextiteration is computed if and only if a DP hag/ebbeen reached, the expected
one-way function invocation count is

(-8 =l D))

which we can approximate to what is stated. ad

In the above proof, we have implicitly assumed the one-wagtion to be a random func-
tion and computed the probability for the fiishssignments to be non-DPs. A more exact
analysis would additionally consider the possibility fbetnext assignment to produce a
previously assigned value. We have not done so becausedkie alas good enough as an
approximation.

Clearly, the success rate of a tradeoff algorithm is intelyatonnected to the amount of
pre-computation. So, let us present a way to write down teecpmputation.

Proposition 4 The pre-computation phase of the DP tradeoff is expecte@daire m¢
one-way function invocations.

Proof We know from Lemma 3 that each attempt at a DP chain creati@xpected to
requiret(1— e /!) one-way function invocations. Recall that the creation sirgle DP
table is to start withmp = H?t # chains. Together, these imply that the creation of a single
DP table is expected to consum@ one-way function invocations. Hence, the total pre-
computation requirement may be writtenrat. ad

This proposition is trivially true when the chain length bduis not set, but what we
have shown is that the pre-computation cost does not depenideochain length bound.
We define thgre-computation coefficierior the DP tradeoff to b®pc = %g so that the
pre-computation cost of a DP tradeofig:N.

The coverage ratep., of a DP table, is defined to be the expected number of distinct
nodes that appear among the DP chains as inputs to the oné&setion, divided bymt.
Since our starting points are always non-DPs, all of the sitldat are counted will be non-
DPs. The mentioned expectation is an average over the chbiore-way functions. In
other words, the coverage rate is a certain expected valukdaandom function. Our next
statement reduces the search for success rate to the coimputethe coverage rate.



25

Proposition 5 The success probability of the DP tradeoff is

Dps = 1— e PerPre,

Proof If we are giveny = F(x) as the inversion target, the DP tradeoff will succeed in
recovering the correct answgy if and only if x had appeared as one of the inputs to the
one-way function during the creation of the DP table. As wiasutsed in Section 3.4, this
is not equivalent to asking for the appearancg afmong the output values. The objective of
recoveringthe correct rather tharanyinverse, corresponds to findirgamong the one-way
function inputs.

By definition of the coverage rate, a single DP matrix is exgeto contairde,mt dis-
tinct nodes that were used as inputs to the one-way funcliemce the processing of a
single table will fail in returning the correct answer wittopability (17 %’"‘) The suc-
cess probability of the complete DP tradeoff process isrgbse

Dcrmt)f

mt¢
Dps=1— (1— wl—exp(—Dch> =1—ge PePpc,

assuming that the multiple tables are independent. ad

We confide that our treatment in the proof of separate taldd®ing independent does not
strictly conform to the assumption &f being asinglerandom function.

This lemma is almost identical to (4), which had already appé in many works. We
wrote out the proof in detail, only because most previouske/diid not clarify whether the
inputs or outputs of the random functions were being courtedact, many of these did
not even clarify which version of the inversion problem wagly considered, as it did not
matter for their intended rough analysis.

If the creator of the inversion targgt= F(x) choosesx to be a DP, the online phase
will definitely fail. The success probability would be vegw for such challenges even if
the starting points were allowed to be DPs. For our analgdietapplicable, the challenge
needs to be chosen without reference to the structure of fhieddleoff table. Note that this
is not as strong a requirement as asking for the choicetofbe random. In practice, since
distinguishing properties are defined with reference topdmsword hashes rather than the
passwords, such challenges do not cause any problem.

For the remainder of this subsection, all chains belongintpé DP matrix will be seen
as having been aligned at the starting points, rather thidoe &nding points, and the starting
point column will be referred to as the 0-th column.

The above expression for probability of success can onlyubéopuse if we know how
to compute the coverage rate. Our computation of the coeeraig@ will be done in two
steps. Of tharny chains generated, oniy will be DP chains, but we disregard this in the
first step and count the number of new nodes added by each raiithe extended matrix.
The sum of these values is the total number of all distinattirgmtries. In the second step,
we will count the number of nodes that belonged to chains nding at DPs and subtract
these from the total count.

Let us writem; for the number of new non-DP nodes added by ik column. The
numbermy of distinct starting points, stated by (13), conforms t@ thdtation.

Lemma6 The number of new non-DP nodes added by each column satisiescurrence

relation - ) zj’lm
m = n{a-eo( T} 0-3) (- H25g)
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Proof Suppose a node positioned in thie— 1)-th column is old, in the sense that it has
appeared in one of the 0-th through— 2)-th columns. Application of the random function
to this node will not result in a random element.of, but a node that had appeared in one
of the 1-st througH{ j — 1)-th columns. Hence when counting new nodes ofjtile column
we need only consider the nodes of th¢éh column that are assigned as images to new
nodes of thgj — 1)-th column. Recalling (1), we write this as tlhe{l— exp( — %)}
part appearing in the claimed equation.

Of the distinct entries that have appeared in jhb column, that are not automatically
old, we want to filter out the DPs. The previous count is madmteespond to the non-DPs
by multiplying a(1— %) factor.

Still, not all of these non-DPs are new nodes. Those that bapeared in previous
columns are removed by multiplying. — 377 ). Notice that we havel(1- 1), rather
thanN, in the denominator, as we are dealing only with non-DPsiafathint. ad

The next two lemmas are technical computation results. \&ettirn the recursive for-
mula form; into a difference equation concerning a certain summof

Lemma7 Lety = ﬁ andoj = zij:ol Ui. Then,o; satisfies the recursive formula

1 1 .
Oji1—0j= %—faj—ﬁojz with o =0,

which is accurate up to modulo ().

Proof It is straightforward to rewrite the recursive formula ofrhma 6 in terms of the

(el Due- T

This may be rewritten once again as

o (- D) =1 2 - %

Now, by taking products of both sides ovee 1,...,k, we can find

1 1- 0k
exp( — 17—)a> ="
p( ( t K 1-01
We have thus arrived at a relation involving only thenotation.
By expanding the exponential function in its Taylor serigs,obtain

2
Oii=1—(1— 01){1— (1— %)ok+ % (1— %) a,f—---},
and we can modify the above into the difference equation
2
Oki1— Ok = 01— (al+flf %)akf %(1701)(17 %) OF+---.
Noting that the left-hand sidei1 — ok = i is of orderO(J) = O(tiz) we remove every
term on the right-hand side Gf(t%v) order. This may easily be done after noting tbiat= Lip
is O(%) and thatoy is O(F¥), which is at mosD({). The simplified equation is now

1 1, 1
O‘k+1*0—k:“07 ?kaéo_k +O(t—3>
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It is clear that the initial conditiom; = g may be replaced by = 0, under this recursive
formula. As a final tweak, we subtraﬁt(%, which is ofO(t%) order, from the constant

termpp = ﬁ =R+ ﬁ) to arrive at the claimed formula. O

Now that we have a difference equation, we can obtgithrough an application of the
Euler method.

Lemma8 For each non-negative integer k, we have
mc~N(o(k+1)—o(k))
where
=21 exp(Z¥) -1

. _ 2Dmsc
a(k) = with = =,/1+ =
) t (E+Dexp(EH+(=-1) 1-efht

Proof Let a functiono : R — R be the unique solution to the differential equation

d m 1 1, B
k=N 1% 39 and o(0)=0. (14)

If one defines the sequenési }k>o through the corresponding difference equation

m 1 1,
Oki1— Ok = — — — Ok — =G
k+1 k N t k 2 k
then the Euler method tells us thatk), the evaluation of the functioa at the non-negative
integerk, may be approximated by the sequence valué/Ne may turn this the other way
around to present approximate valueopthrough the function evaluatiorss(k).

The unique solution to differential equation (14) is

2mt eXp<\/@fk) !
' (ViR ) e(1 B (Vi B )

The form of o (k) stated by this lemma is obtained when (13) amd = D\ are substi-
tuted.

Since the definition o given by (15) is identical to the approximate recursivetiefa
of Lemma 7, we have

and gp=0, (15)

o(k) =

k—1 m
o(k) =~ oy = i, Wwhere [j=———.
(k) ~ ok i;u. W= N1

This allows us to write
1
My~ N(lf ?) (a(k+1)— o(K)) ~ N(a(k+1) — o (K)),
where thetl term removal is justifiable, as it is of strictly smaller orde ad

This completes the first step of the coverage rate computafibe coverage rate cor-
responds to the number of distinct non-DP nodes contain@astrthe DP chains, but the
currently computedry includes all points contained in even the non-DP chains. ¥églro
account for these nodes belonging to non-DP chain nodes.igthie second step to finding
the coverage rate.
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Proposition 9 The coverage rate of a single DP table is expected to be

_ 2 exp(Zu) —1
Dor = G 1 /0 (Z+1)expZu)+(=-1) exp(u) du

where= = | /1+ A:jg

Proof To count the number of distinct non-DPs belonging to all DRikk, we need to
subtract the number of all new points belonging to non-DFRnsh&rom z};ém. Before
doing this, we first need to consider whether any of thesetpamay not also appear within
a DP chain and take the status of being a new point when théRodhain is removed.

It is clear that any new node belonging to a non-DP chain dahaee appeared in a
column previous to its position, as the node is supposed toebe Furthermore, such a
node cannot appear within the DP chains in the same columnydfugure columns, since
it would then reach a DP before the chain length bound is eleskeHence new nodes
belonging to non-DP chains do not appear within any DP chaim$we may safely remove
all of these new points without worrying about their possibbntribution to coverage by
DP chains.

Now, let us count how many points belong to non-DP chains,cofigmn at a time. We
start with the 0-th column. Among affp chains, even though we do not know ahead of time
which ones they would turn out to be, there willing(1— %)t chains that do not reach a DP
even aftef more iterations. Hencm)(l— %)f nodes among they nodes belonging to the
0-th column need to be removed from the count of new nodesoA#hé 1-st column, we
had focused om; chains, bu'ml(l— %)Pl nodes among these will not reach a DP before
exceeding the chain length bound, and they need to be remdhedgeneral term is now
clear.

The coverage rate of a single DP table can thus be stated as

f—k

w9 )

Using Lemma 8, we can approximate this to

miti_lN(a(k+ 1)-ok){1-(1- %)tfk}
_ %%o(f) + %ttk_la(k) (1 })H‘t}
~ gni)c+ Dmscexp( — g) f_la(k) exp(%) %

k

Since the coverage rate is©f1) order and the first terrﬁn% is of O(%) order, we simply
discard the first term, and the summation term can be appat&ilrby the integral

t o [
— e / o(tu)exp(u) du.
Dmsc 0

when% is small. The claimed formula follows after substitution @ftu), as given by
Lemma 8, and some simplifications. ad
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We state the case whefrés sufficiently large separately for later use.
Proposition 10 The expected coverage rate of a single DP table is approeipnat

2
VI+Dmeet+1’

when the chain length bourids sufficiently large.

Der =

Proof When the chain length bourids sufficiently large, almost all of they ~ m chains
that are generated will terminate with a DP, and hence therage rate may be computed
1 <f-1
asSi 2i—o M- _
Based on Lemma 8, we may write

- sam No(®) 2 et
T mt mt 1-e (=414 (Z-1)
where= = ,/1+ %emj%. Whent is sufficiently larger than, this is approximate to what is
claimed. O

A careful reading of this proof shows th%does not need to be very large for the final
approximation to be accurate. A ratio betwdesndt of such a not too large order is all
we assume when we use the expressigsufficiently large We are not referring to the
limit f — . To the contrary, we wish to hadeandt of somewhat similar order so that the

approximation(1—1)' ~ e/t remains valid.

4.2 Time memory tradeoff curve

Our next goal is to summarize the ability of the DP tradedfoathm in balancing storage
against online time into a single tradeoff equation.

This subsection is easier to follow if one visualizes therchaf the DP matrix as having
been aligned at the ending points. The online iterationgHerprocessing of a single DP
table are counted starting from the 1-st iteration. Thathecking whethey = F(x) is
among the DPs in the DP table is referred to as the 1-st iberati

Ouir first task is to find the probability for merges to occumiestn DP chains.

Lemmall Fix a random function F .4 — .4~ and suppose that we are given a pre-
computed DP chain of length< f, generated with F from a random non-DP starting point.
If a second chain is generated with F from a random startingppdhe probability for it to
become a DP chain of length i and merge with the given pre-coeapchain is

t min{i, j} i
oo - tew( )
Proof Within this proof, let us refer to the event of the second shmEcoming a DP chain

of lengthi and merging with the pre-computed chain simplyrasevent
We first restrict ourselves to the< j case and fix notation for the two chains as follows.

Xo = = Xj—i = Xj—it1 = Xj—i42 — = = Xj—1 — Xj
0 — 71 — 22 —> > 21 — Zi
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The nodes, . ..,Xj_1 are non-DPs anx is a DP.

Let us consider all possible scenarios by which the eventocaar. If the randomly
chosen starting poirdy happens to be equal tq_;, then the second chain will follow the
first chain and the event surely will occur. On the other héradther zg is one of the points
X0, « s Xj—i—1: Xj—i+1, - - -, Xj—1, OF iS @ DP, then the event cannot occur. In the remaining
case, i.e. whemg is neither a DP nor any one of the points . ..,xj_1, then the possibility
of the event occurring remains. Furthermore, in this lasecawe may freely sét(zp) to a
randomly chosen point off”.

The above argument may now be repeated. If the randomly olmse F (zp) is equal
to Xj_i+1, then the event occurs. 1i is either a DP or one of the points, . .., Xj_i, Xj—it+2,
..., Xj—1, then the event cannot occur. Andzifis neither a DP nor one of the pointg, .. .,
Xj-1, then the event occurrence is yet undecided and we are frdefiteez, = F(z1) to a
random point of /.

Hence, when < j, the probability for the event to occur may be written as

R L

which is equal to

Noting thatd; < 2 and using(1— 2)""" ~ (1— 1)' ~ exp(—!), we can approximate this

to
t i
—J1—ex ( — —) }
N { P t
We can similarly work with the > j case. The event can occur only if the beginning

random choicegy, ..., z_j_1 are made among non-DPs that are different fogm. . .,
Xj—1. The probability for the event to occur is

1 jy\i-i1l 1 jy\i-i+11 1 jyil
(l t N) N+<l t N) N+ +<l t N)N’
which is approximately
t i—j i
niew(-—) —en(-p)}
The results for the casés< j andi > j can be combined and stated as claimed. O

With the probability of alarms in our hands, we can compugedbst induced by false
alarms.

Lemma 12 The number of extra one-way function invocations inducedlagms is ex-
pected to be

Dmsc _qa-f/2t £ 71-A 2\ —f/t —2f/t
tlieif/t{Z 8e /2 + (5+3(/1) — 5 ({/1)?) eV +e }

for each DP table.
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Proof When the chains are generated franon-DP starting points as given by (13), one
can expect to collect

LN LT
1-e t/ t 1-eil

exp( — %) (16)
DP chains of length.

The probability of collision between the online chain ang ane of these DP chains
of length j, at thei-th iteration of the online phase, is given by Lemma 11. Hdre,1-st
iteration deals with an online chain of length one, rathantkero, that starts at the unknown
correct answer and ends at the inversion target.

The third component is the work required at each collisibrwe take advantage of
the fact that there is a chain length bound, in most casesiuimber of iterations required
to deal with a collision between a pre-computed chain of lerjgand an online chain of
lengthi will be min{f —i 41, j}. The only exception is when a pre-image to the inversion
target is found, which is rare enough to be ignored.

Multiplying the three components and summing over all gassindicesi and j, the
expected number of iteration can be expressed as

i f m . T .
_ T exp(-1). L mindi, i}y _ Y minff—ig 1
i;]: T o exp( t) N{exp( . ) 1}exp( t) min{ft—i+1,j}.
Replacing% with u and% with v, the above can be approximated by the integral
thzt it it _ A £ dvd
m/o /0 exp(—u) exp(—v){ exp(min{u,v}) — }mln{{—u,v} vdu
WhenT1 is small. The claimed value appears when this definite iategicomputed. ad

Finally, we write the tradeoff curve for the DP tradeoff in aythat takes the extra cost
of alarm resolving into account.

Theorem 13 The time memory tradeoff curve for the DP tradeoff is T#DiN?, where
the tradeoff coefficient is

f 2
g/ i &/t J (1— e U D2 Do
Proof Thei-th DP table is processed if and only if all previous tables midt return the

correct answer. The probability of such a failure{ls— D%mt)i*l. The time required in pro-
cessing a single table is the sum of one-way function invooatounts given by Lemma 3
and Lemma 12. Hence the expected total running time of tha@off may be written as

L R e D

The summation index appears only in the first multiplicative factor, and we casilga
check that

Dic = {(Emsc"' 1) -

Dermty i—1 N Dermty ¢ D
() ) e @
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where the second equality follows from Proposition 5. Thenig time can now be rewrit-
ten as

_ D fq gty Pmse (8 5TR e, 1yyp
B Dchmsc{ (l © )+ 1—e it (2 d/2 t it + ezf/t)}t : (18)

Since the storage ¥ = m¢, we have

3t 2
2_ Dos [ fay, Dms ¢, 8 StT—m 1 2
™ {a-e™s (- gmr—r T gm)

DCFDI’T'ISC

cof2
8Dmsc 5+ % - ?)Dmsc— 2 Dmsct 1} DpS,D'%cN2
(1

= {(ZDmsc+ 1) - /2 + dh e/t —e*f/t)Dchmsc.

The claim is reached by observing that

2
(Dchpc)2 _ { In(1— DDS)}
D% D%

2
Dpc_

I

where the second equality is again an application of Prdpashs. ad

Let us emphasize that the tradeoff coefficient is an expected value rather than a
bound. The tradeoff curve was computed without restrictmghe worst case, in which
the algorithms fails after processing all tables. The feilg statement is an immediate
consequence of the above theorem.

Corollary 14 The time memory tradeoff curve for the DP tradeoff isT#¥DicN? with
1 1 2
Do = (2+ =) = Dps{ IN(1-Dps) }%,
Dmsc Dcr

when the chain length bourids sufficiently large.

We make the number of table lookups explicit for later use.

Lemma15 The online processing of the DP tradeoff, that use the pararsen, t,¢, andf
is expected to requireﬁgr)g’—:15C lookups to the DP tables.

Proof Thei-th DP table is processed if and only if all previous tablegetfailed in returning
the correct answer and processing of each table requiregle $able lookups. Hence, the
expected total number of table lookups is given by (17), asned. ad

The dependence of this result on the chain length béumdidden inside the., term.

4.3 Efficient use of storage

The storage siz& appearing in any tradeoff curve refers to the total numbestafting
point and ending point pairs that need to be stored in theetfhdables. As explained in
Section 2.7, the number of bits required to store a singktistieand ending point pair will
be different for each tradeoff algorithm. The focus of théston is in analyzing the ending
point truncation technique explained in Section 2.7.4 ier DP tradeoffs.
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It seems that the intensions of the works [4, 6] while usindire point truncation was
to keep slightly more than lag bits of each ending point so that each ending point within
a DP table could be identified almost uniquely. However, Wosild also imply that almost
every lookup to the pre-computation table will generate &hnaf truncated points.

Let us start with a rough preliminary analysis of the sitoiativhere logn bits are stored
for each ending point. The online chain creation during essing of a table require3(t)
iterations of the one-way function and will generate a srigbkup to the table. The alarm
that is almost surely generated by the lookup will req@¢) additional one-way function
iterations to resolve. Hence, the total cost per table @sing remains ab(t) even with
ending points truncated to logbits and the truncation to lag bits seem reasonable. Trun-
cation to smaller than log bits will result in the return of multiple collisions at thengle
table lookup and will quickly become problematic.

Although one is guaranteed not to see a radical change inrtliredime complexity
after truncating ending points to logbits, the above analysis does not provide implementers
with the information on how close to lagbits one may venture without experiencing visible
side effects to the online time complexity. For now, impletees can only repeatedly tweak
and make test runs to decide on the appropriate degree cbtian.

Consider an ending point truncation method for which twalman points of. 47, trun-
cated in the specified manner, will have probabifjtyof matching with each other. We shall
express such a situation as hav';-lngrobability of truncated match. For example, if tdgjts
from the ending points were truncated withsc= 1, so thaflogm+logt) bits remain, then
the truncated matches would happen with probabiiﬁiLWVhen truncating ending point DPs,
one should truncate the random-looking part, rather thanligtinguished part. Removal of
the distinguished part can always be undone, and does ns¢ eany loss of ending point
information.

Lemma 16 Assume the use of ending point truncation with the truncatatth probability
set to%. The number of extra one-way function invocations indugettimcation related
alarms is expected to be i X
1-2(t/t) e/t —e 2/t mt
t - J—
1-ett r

)

for each DP table.

Proof Consider a random functidh : .4~ — .4 and suppose that the first chain, generated
with F and a random non-DP starting point, became a DP chain ofHepgt f. Now,
suppose a second chain is generated Wwitlhom a random non-DP starting point. Let us
compute the probability for the second chain to become a Rihdfi lengthi and not merge
with the first chain, but have the same truncated ending paithe first chain.

The firsti nodes of the second chain must be chosen among non-DPsedtdiffarent
from the j pre-ending points of the first chain. Théh node chosen, when truncated, needs
to agree with the truncated ending point of the first chairnteNbat this agreement already
requires the final point to be a DP. Thus the probability weeairo write can be expressed

as
1 jNi/1 1 i\ 1
(1-5-7) G-g)=ee(-)7 (19)
Now, we can combine the number of DP chains of lengths given by (16), together

with the probability of non-merging truncated collisiontiwsuch a chain, as given by (19),
to write the cost of truncation related false alarms as
m
/

A SR ) I LR
1= J:
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It now suffices to simplify this expression. Replacihg/ith u andti with v, the above can
be approximated by the definite integral

mz2 1 i Cf
717@{/&/0 /o exp(—u)exp(—v)mln{f—u,v}dvdu

whenTl is small. We arrive at the claimed value when this is expjid@bomputed. ad

Combining Lemma 3, Lemma 12, and Lemma 16, we know that the@pkocessing
of a single DP table requires

t(l—e’f/‘)
_Dmsc [, gof/2 ey Looov i ot
—Hl—e*f/t{z g2+ (5+3(/1) — 5(E/1)7) eV +e }
1

o

{120 et e} mTt

invocations of the one-way function. Whéis sufficiently large, this simplifies to

mt

with each additive term corresponding to the three termargbefore. The ratio of original
number of iterations to the number of extra iterations inediby truncations is

mt mt
t+t2D t—==r: —.
( msc) r 1+ 2Dmsc

The choice of = H%}msc will give an implementation whose added cost of truncaten r
lated alarms increases the non-truncated original costOd@¢6l Noting that a truncated

match probability of% is achieved by leaving lagbits after truncation, we summarize what
we have discussed in the following statement.

Proposition 17 Fix a set of parameters for a DP tradeoff such that the changte bound

is sufficiently large. Suppose that the online phase of tharBéeoff implementation that
stores each ending point in full requires T iterations of dre-way function to complete.
Then, an implementation that leaves

logm+logt — log(1+ 2Dmso) + £

bits per ending point after truncation, whegés a small non-negative integer, requirgst T
additional iterations of the one-way function to complete.

Let us recall the contents of Section 2.7 and summarize howablR storage can be
optimized. Sequential use of starting points allows eaaktigg point to be recorded in
approximately logn bits. One can truncate and leave slightly more tharmmaglogt bits
in each ending point and experience minimal side effect enotfiline running time. The
decision on the exact degree of truncation can be made véthelp of Proposition 17. Of
the remaining approximately lag+ logt bits of the ending point, we do not need to store
the logt bits that are fixed through the distinguishing propertytf@mmore, the index table
technique allows us to remove almost tagnore bits without any loss of information. In
all, logm bits are required to store each starting point and a verylsmaiber of bits are
required to store each ending point. We have thus confirmeed#ims of [4, 6] theoretically.
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Example 18Consider an extremely large tradeoff implementation Wit 27 and assume
the typical parameterm~t ~ ( ~ N3 = 225 Each starting point requires 25 bits. The
DP definition allows removal of 25 bits from each ending poiMe assume removal of
23 further bits through the index table method. Let us apprate log1+ 2Dysg) = 2.
Then, each table entry will require 25¢ bits.

Let T be the number of one-way function iterations required ferdhline chain creation
and the resolving of alarms in the absence of ending pointations. Wherz is changed
from 4 to 3, the storage decreases@8y22 ~ 3.45% while the iterations increase by 5.88%
from (14 2—14)T to (1+ 2—13)T. This tradeoff is better than the tradeoff achievable tgothe
changes imm, t, and /. However, when similar calculations are made for the charige
from 3 to 2, one can confirm that the increase in online timeoisworth the decrease in
storage.

In summary, for the assumed rough range of parameters, divisable to allocate ap-
proximately 28 bits per table entry and accept%lTeonIine time, even though this is visibly
different fromT.

5 Hellman Tradeoff

In this section, we gather facts about the complexity of tteliralan tradeoffs. As in the
previous section, reduction functions are kept hiddennduainalysis.
Ouir first statement is quite trivial.

Proposition 19 The pre-computation phase of the Hellman tradeoff requingsone-way
function invocations.

We define thepre-computation coefficierfor the Hellman tradeoff to bép. = mW“,
so that the pre-computation cost of a Hellman tradeoffyiN. The next proposition is a
restatement of (4).

Proposition 20 The success probability of the Hellman tradeoff is
Hps = 1 - eﬁHcerC.

We next state the coverage rate, so that the above exprdesiprobability of success
can be put to use. This is a trivial modification of stateméais [9, 19].

Proposition 21 The coverage rate of a single Hellman table is expected to be
\/é ev 2Hmsc __ 1
B VHmsc evZimse 1

The tradeoff efficiency of the Hellman tradeoff is compaetkpressed by the following
time memory tradeoff curve. This result takes the cost daflv@sg alarms into account, and,
unlike (8) that semi-corresponds to an upper bound on thaeifiy, expresses the average
behavior.

HCI’

Theorem 22 The time memory tradeoff curve for the Hellman tradeoff iSZTEVE N2,
where the tradeoff coefficient is

R 2
Hic = (m"— 6) H—ngps{In(l—Hps)} .
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Proof Thei-th Hellman table is processed if and only if all previousléathave failed in
returning the correct answer. The probability of such aifailis (1— H%m‘)'*l. Recalling
the number of one-way function invocations required perrhi@h table to resolve false
alarms (7), the number of all iterations required per table lze written a£1+ H%“)t. The
expected total running time of the Hellman tradeoff may bitem as

T3 - e &

The summation indekappears only in the first multiplicative factor, and we casilga
check that

£ N Hermt N HerHmsc
where the final equality follows from Proposition 20. Retagto (20), the execution time
can now be written as 1 N
T=(=+5)2e 21
Hmsc 6 HCI’ ( )
Since the storage sizeli$ = m¢, we have

1 1\ H 1 1\ H
TMZ:( +—)—ps mwzz( +—)£H2N2
Hmsc 6 Hcr( ) Hmse 6/ Her P©

2
_ ( 1 n }) Hps(HerHpc)? N2 — (i Jr}) Hps{ IN(1—Hps) } N2
Hmsc 6 H3, Hmsc 6 B3 ’

where the final equality again relies on Proposition 20. ad

The timeT, stated during the above proof as (21), counts the numbenexfa@y func-
tion computations, and includes the efforts for resolvitggras. Since the number of table
lookups will be smaller, we make this count explicit.

Lemma 23 The online processing of the Hellman tradeoff, that use tmampeters m, t,
and/, is expected to require?liﬁ";‘15C lookups to the Hellman tables.

The proof to this lemma is almost identical to that of LemmaTle only difference is that
the processing of each table requitédsokups, rather than one.

After reading the proof to Theorem 22, one can easily wriéeetkpected cost of resolv-
ing alarms for the Hellman tradeoff %%’C—Srtz, and by following through the relations

HpS 2 l_echrHPC P < 1— (1*Hcerc) t2
6Hcr 6Hcr - 6Hcr 6N 6

we can recover the old approximation (6). This shows thabthend (6) is far from being
tight, unlessicHpe < 1.

We have so far secured access to the pre-computation cestiticess probability, and
the tradeoff efficiency of the Hellman tradeoff. It remaiagliscuss the use of storage. Three
of the approaches to storage reduction that were discussgelction 2.7 are applicable to
the Hellman tradeoff and we provide an analysis of the engioigt truncation method
below.

Let us start with a preliminary analysis. Assume that engioigts are truncated so that
logm bits are stored for each ending point. Then the table erdriesiniquely identifiable,

mt¢ H
= —t?= "=,
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but each table lookup would return one truncated match oragee The cost of resolving
alarms become+ (t—1)+---+ 1~ % per table. This dominates the online chain creation
cost oft, so truncation to logn bits is not an acceptable method.

A more exact analysis of ending point truncation is giventnéke reuse the concept
of truncated match probability, previously defined for the Dadeoff, with the Hellman
tradeoff.

Lemma24 Assume the use of ending point truncation with the truncatatth probability
set to%. The number of extra one-way function invocations indugettincation related

alarms is expected to be X

m

t —

2r’
for each Hellman table.

Proof Fix a random functiorF : .4 — .4 and suppose that we are given a pre-computed
chain of lengtht, generated with- from a random starting point. Now consider a second
chain generated witk from a random starting point. The probability for it to praguan
alarm related to truncation, i.e., a truncated ending pwoiatch without a merge with the
first chain, on the-th iteration, is

1I\i/1 1 iy/1 1 1
(-5 G-0)=~0-9GE-3)=r
This is because the firstnodes of the second chain must be chosen among nodes that are
different from thet pre-ending points of the first chain.

Taking account of alin pre-computed chains, the cost induced by the truncatiereme|
alarms can now be written as

ig?au1yz%?g(1%)%

When% is small, by replacing with u, the above can be approximated with the definite
integral
mt?
T

1
/ (1—u)dy,
0
which computes té‘z‘—f, as claimed. ]

Combining this with what we saw during the proof of TheoremtR2 total online time
required to deal with a single Hellman table can be stated as

Hmsc mt
t+t —+t —.
e T

Arguing as we did in the previous section concerning endimigtgruncations for the DP
tradeoffs, we can come to the following conclusion.

Proposition 25 Fix a set of parameters for the Hellman tradeoff and suppbaeits imple-
mentation which stores full ending point information regsiT iterations of the one-way
function to complete the online phase. Then, an implementtiat leaves

logm+-logt — log (2 + H';“) +e

bits per ending point after truncation, whegés a small non-negative integer, requirgst T
additional iterations of the one-way function to complete.



38

We can summarize how Hellman table storage can be optimfzedracalling the con-
tents of Section 2.7. Each starting point requiresidgts. Ending points may be truncated
so that slightly more than lag+logt bits remain without experiencing visible side effects
on the online running time. The decision on the exact dedr&gemcation can be made with
the help of Proposition 25. Using the index table techniglpst logn additional bits can
be removed without any loss of information. In all, logits are required for each start-
ing point and slightly more than ldgoits are required for each ending point. This is very
different from the conclusions for the DP tradeoff.

Example 26Let us reuse the parameters of Example 18. Assuming thantlexitable
allows removal of 23 bits and accepting the approximati(g\(M H%SC) ~ 1, each table
entry is seen to require 2526+ ¢ bits.

With T equal to the non-truncated iterations, wlgeis changed from 5 to 4, the storage
decreases b2 ~ 1.79% while the iterations increase bfi+ )T — (1+ %) T}/{(1+

2—15)T} ~ 3.03%. This is an acceptable tradeoff. However, the changdrofn 4 to 3, results
in 1.82% decrease in storage, which cannot justify the corratipgns.88% increase in
online time.

In summary, for the assumed rough range of parameters, divisable to allocate ap-
proximately 55 bits per table entry and accept %é@ online time, which is slightly higher
thanT.

6 Rainbow Tradeoff

In this section, we gather facts about the rainbow tradd®dcall that multiple rainbow
tables are to be processed in parallel. The 1-st iteratianrafnbow tradeoff online phase
will refer to the /-many searchings oj{“’l = R k(x) among the ending points of theth
rainbow table with the indek running from 1 to/. The j-th iteration will require(j — 1) - ¢
invocations of the one-way function afidookups to different tables.

Ouir first claim is a direct consequence of the relatiani= RsdN that defines the nota-
tion Rmse

Proposition 27 The pre-computation phase of the Rainbow tradeoff reqaigels one-way
function invocations, where the pre-computation coefiiti®€Rpc = Rmsd-

Contents of the following lemma for the= 1 case was already used in certain compu-
tations of [15], but let us restate it here in a more readiteasible form. The first statement
of this lemma is a trivial extension of the past result (10).

Lemma 28 The probability for the first k iterations of the online phdedail is

where iy = m and ™2 = 1—exp(— ). This product may be approximated by

(1_ 2ils;sc#>%'
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Proof The second statement is based on the approximation
m o 1
N~ N/m+i/2’

which appears in [15]. This is a very small generalizatioa oésult from [1], which treated
them= N case. After rewriting this as

17m[,iN2N+m(t—i—2)
N~ 2N+mt—i) ’

the sequential cancelations within the product becoméleisand we arrive at
k (17 E)Q {2N+m(t7kfl) 2N +m(t—k—2) }ZN {17 RmsctE }24
ﬂ N/ U 2Nfmit—1) 2N+mt-2) J ~ 2+Rmse)

which is the claimed approximation. ad

We can arrive at the next claim by substitutikg- t into the above lemma and ignoring
an insignificant term.

Proposition 29 The success probability of the rainbow tradeoff is
2 20
2+ Rmsc> .

Rps= 1 (

The tradeoff efficiency of the rainbow tradeoff is compaetipressed by the following
theorem. The average efficiency, rather than the worst dasgisn, is expressed by this
result, and the effects of false alarms have been taken actmuat.

Theorem 30 The time memory tradeoff curve for the rainbow tradeoff is2T=MRicN?,
where the tradeoff coefficient is

/3 {(25* 1)+ (%+1)Rmsc} (ZJFRmsc)2

(20+1)(20+2)(2¢+3) 74{(2671)+€(2€+3)Rmsc}(2++>%

Ric =

Proof Substitutingk =i — 1 into Lemma 28, we know that theth iteration is processed

with probability (l— ZH;CSC%)%. The probability of alarm occurrence associated with a
single chain in a single rainbow matrix at theh iteration may be inferred from [15] to
be % The reasoning behind this second statement is identi¢hketproof that lead to the
older results (6) and (7).

Hence, the expected total running time of the rainbow trfigeith the cost of resolving

alarms associated with atl rows taken into account, may be written as

T= gé{(i o e-ien ™I (0 e 1)

- . . .
o205y (1o e V(1o e 121
“’wi;{t+(1 t)RmSCt}(l 2+Rmsct> t
This may be approximated by the definite integral

1 R 2
_ 12 _ - msc
T=t 2/0 u{1+Rmsd1 u)}(l 2+Rmscu) du,
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which computes to

{ (20—-1)+ (26 + 1)Rmsc} (2+ Rmsc)2
2
—4{(20— 1)+ 020+ HRmsc} (572—)”
T—t% + Bmsc (22)
(20+ 1) (20 +2)(20 + 3)RZ ¢
It now suffices to combine this with the storage size= m¢ and simplify to arrive at the
claim. ad

The timeT appearing in the above tradeoff curve gives the count ofveenefunction
invocations and ignores table lookups.

Lemma 31 The online processing of the rainbow tradeoff is expecteddaire

2
2+ Rmsc— 2( 2++msc)

(20 +1)Rmsc

lookups to the rainbow tables.

Proof At the start of the proof to Theorem 30, we saw thatitlile iteration is processed

with probability (l— ZH;CSC%)%. Since each iteration requirégable lookups, it suffices to
compute

t i 1
Rmsc 112/ / Rmsc 2
21— - ~ t/ 1-———u) du,
i; ( 2+Rmsct) 0 ( 24 Rmsc )
to arrive at the expected number of table lookups. ad

We now turn to the issue of efficient storage use. The numbenlofe iterations, which
is of O(t?¢) order, is much larger than the number of table lookups, glwetthe above
lemma as being d®(t¢) order. This indicates that truncation to slightly more tlkegmbits,
which allows unique identification of table entries, shobddreasonable. A more accurate
analysis is given below. We reuse the concept of truncatedmmaiobability, defined for the
DP tradeoffs, also in the rainbow tradeoff case.

Lemma 32 Assume the use of ending point truncation with the truncatatth probability
set to%. The number of additional one-way function invocationsucetl by alarms related
to ending point truncations is expected to be

)22

r (20 +1)(2¢ + 2)RZ o
Proof For exactly the same reason given in the proof of Lemma 24ptbkability for a

randomly generated second chain to produce a truncatiarcéttalarm without merging
with the first chain is

1I\i/1 1 iy/1 1 1
(-3 G- =G =F
After recalling Lemma 28, the probability for theth iteration to be processed, and taking
all themv pre-computed chains into account, the expected onlinecemsbe written as

t . I'ng Rmsc | 2
t—i+1)—(1— -] .
i;( 1+1) r ( 2+Rmsct)
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Replacing% with u, the above can be approximated by the definite integral

mtzg 1 Rmsc 2
— [ A-u(1—-=—Xu) d
r /o (1-w ( 2+ Rmsc u) Y

WhenT1 is small, and the claimed value appears when this is computed ad

After reviewing the arguments concerning ending point¢ation made for the DP and
Hellman tradeoffs, we can combine (22) and Lemma 32 to whmiteeffects of ending point
truncation in terms of the number of bits remaining.

Proposition 33 Fix a set of parameters for the rainbow tradeoff and suppbaeits imple-
mentation which stores full ending point information is esied to require T iterations of
the one-way function for the online phase. Then, an impléatien that leaves

20+ {2 + ()}

[ {(26 -1+ (20+ 1)Rmsc}

te
“%D+a%+$%mﬁﬂﬁﬁyﬁ]

logm+-log

bits per ending point after truncation, whegés a small non-negative integer, requirgst T
additional iterations of the one-way function to complete.

Referencing Section 2.7, let us summarize the number ofrégaired to store each
starting point and ending point pair. Each starting poinuies logn bits. Ending points
may be truncated so that slightly more thanrogits remain without visible side effects
on the online running time. The index table method allowstrobthe remaining logn bits
to be removed from the ending point without any loss of infation. In all, logm bits are
required for each starting point and only a very small nundidsits are required for each
ending point. We have thus confirmed the claims of [4, 6].

Example 34The parameters for a rainbow tradeoff that roughly corredpo those used in
Example 18 and Example 26 ame= 2%, t = 225, and¢ = 1. Assume that the index table
allows removal of 48 bits. The middle term appearing in theatign of Proposition 33 for
the parameters being used is @Q ~ 0. Each table entry will require 502+ ¢ bits.

Let T be the number of iterations expected of a non-truncatedeimehtation. Whes
is changed from 6 to 5, the storage decrease'%%@z ~ 1.72% while the iterations increase
by {(1+ %)T — (1+ %)T}/{(1+ %)T} ~ 1.54%. This is an acceptable tradeoff. However,
the change of from 5 to 4 results in a.¥5% decrease in storage, which cannot justify the
corresponding B3% increase in online time.

In summary, for the assumed rough range of parameters, divisable to allocate ap-
proximately 55 bits per table entry and accept gé* online time, which is only slightly
higher thanT .

7 Optimal Tradeoff Parameters

In this section, we find the optimal set of parameters for kiee tradeoff algorithms. The
notion of optimality in this section ignores the cost of p@nputation.
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Let us present our initial arguments in terms of the Hellnradeoff. The balance be-
tween time and memory achievable by the Hellman tradeofkjsessed by the tradeoff
curve TM2 = HcN?. It is clear that the Hellman algorithm at parameterst, and? that
bring about a smaller tradeoff coefficier, will require less resources to run. In other
words, tradeoff coefficiert;; is a measure of the tradeoff efficiency, with a smaller value
representing a more desirable balancing of storage andeotifne.

The tradeoff coefficien. is fully determined by the parameters t, and/. It should
first be noticed that a better tradeoff coefficient shouldagisvbe achievable, if one decides
to sacrifice the success probability of finding the correciwaer. Hence, any comparison
between two Hellman tradeoff coefficients, achievableuplotwo different sets of param-
eters, should be done under the condition that they prodieceame success probability.

Arguments similar to the above may be made for the DP and ewittkadeoffs. Hence,
for each of the three algorithms, we will work to find the sraslltradeoff coefficient achiev-
able under a fixed requirement on the success rate.

The smallest possible tradeoff coefficient value for a todfdalgorithm is referred to
as thetradeoff characteristién [1], where it is used to compare the perfect version of the
rainbow table method against other algorithms. Howeverwigh for the optimal trade-
off coefficients given in this work to be understood sepdyafa each algorithm. Using
it to argue superiority of one algorithm over another mayns@éausible, but is of limited
value in practice. Parameters achieving better tradedffieficy may require more pre-
computation, and with large scale implementations of thdeoff technique, lowering the
pre-computation cost may be significantly more valuable tizhieving better tradeoff effi-
ciency. Our purpose of locating the optimal tradeoff par@rgeis so that they may be used
in the next section to bound the range of parameters, whemmégdir comparisons between
different algorithms.

7.1 DP tradeoff

The parameter sets that achieve the optimal DP tradeoffegftig, under a fixed requirement
on the probability of success, is given below.

Proposition 35 Let0 < Dps < 1 be any fixed value. The DP tradeoff, under any set of pa-
rameters m, t¢, andf, that are subject to the relations

mt? = 126453, (= 128007 —In(1—Dps)}t, and f=2.5916Q,

attains the given valupps as its probability of success, and exhibits tradeoff perfance
corresponding to

Dc = 5.49370D ps{ IN(1—Dyps) 1,
as the four parameters are varied. Under any such choice ddrpaters, the number of
one-way function invocations required for the pre-compataphase is

The three relations restricting the parameter choices gigémal parameters in the sense
that no choice of m, ¥, andf can lead to a tradeoff coefficient smaller than the aboveevhi
achievingdps as its probability of success.
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Proof The relation of Proposition 5 may equivalently be stated as

1

Dcr Dmsc

{~In(1—Dpg) }t. (23)

Now, referencing Proposition 9, we know that the DP coveratgd, = D¢r[Dmso £/t] may
be treated as a function of the two variabb@g&nd%. Hence, given any, t, f, andbps, if

we setDysc= thz andD¢r = Der[Dmso /1], and also fix! through the relation (23), then the
DP tradeoff with these parameters will always achieve theeess probability obys. We
remark that¥ must be set to an integer, but since the right-hand side 9fi§2ather large,
the error to the success probability, introduced by takiegtearest integer to the right-hand
side value, will be very small.

Keeping in mind that we may freely choosg t, andf, and still obtain any requested
success probability, we now work to minimize the DP tradeoffficientd;c, as given by
Theorem 13. We drop from the expression ey any part that depends only @ps and
consider

e 2
R D (5+%*L2)Dmsr2 D 1
) @t For—F

th (1* eff/t) Der [Dmso %]3 Dmsc

Dtmp[Dmsc, : (24)

which is a function of the two variable®,sc and E It is clear that, when the probability
of success requirement is fixed, minimizing is equivalent to minimizin@¢mp[Dmsc £/t].
Note that, even thoughysc= thz andf/t share the parametersince we are free to set,

t, andf to any value, there are enough degree of freedom, and we ea@ptrcandf/t as
independent variables when looking for the minimunb@fpDmse £/1].

After D¢r[Dmso /1], as given by Proposition 9, is substituted into the rightehaide
of (24), we can use numerical methods to find its minimum. Qseoders that the minimum
value ofDymp = 5.49370 is obtained atysc = 1.25453 and/t = 2.59169. The claimed
relation betweer andt follows from (23). The final claim concerning the pre-congiign
cost is obtained by combining Proposition 4 with the first tetations stated by the claim.

O

The parameter set that achieves the minimum tradeoff caftifor the DP tradeoff is
visible through Figure 2. It plotBy,p = Dc , Which is given by (24), as a function

~ Dps{In(1-Dps)}
of the variable®scandt/t.

The tradeoff curve reflected by this proposition allows usap more about the tradeoff
than the previously known rough curve (8). Suppose thatsfone fixed set of parame-
ters, the success rate of the DP tradeoff is not too small sapgose that one wishes to
increase the success rate, to the extent that the failleebeatomes the square of its cur-
rent value. Then, for optimal choice of parameters,dthgfactor will change little and the
{In(1—Dps)}? factor will increase by a factor of four. Hence, one mustvaln increase
in the online time by a factor of four or use twice the currantage. The proposition also
shows that one must endure twice the pre-computation caesttieve this aim. Of course,
the simplest way of doing this would be to double the numbeables, while keeping all
other parameters the same.

While the above result gives the parameters that achieeesptimal tradeoff efficiency,
in practical applications, pre-computation is very costhyl one is more likely to choose a
sufficiently largef, so as not to discard any of the pre-computed results.
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Fig. 2 Tradeoff coefficient for DP tradeoff at fixed probability af@essfimp = m)

Proposition 36 LetO < Dys < 1 be any fixed value. When the use of a sufficiently laige
assumed, the DP tradeoff, under any set of parameters mgt/,ahat are subject to the
relations

mt* = 0.56204MN and ¢ = 2.18614{ —In(1-Dps) }t,
attains the given valueps as its probability of success, and exhibits tradeoff perfance
corresponding to

Dt = 7.01057Dps{ IN(1—Dys) 1,

as the three parameters are varied. Under any such choicaapeters, the number of
one-way function invocations required for the pre-compiataphase is

The two relations restricting the parameter choices givérogl parameters in the sense
that, wherf is sufficiently large, no choice of m, t, aiccan lead to a tradeoff coefficient
smaller than the above while achievings as its probability of success.

Proof The proof is almost identical to that of Proposition 35. Théydifference is that we
rely on Proposition 10 to view, as a function obysc and obtain the tradeoff coefficient
from Corollary 14, so that

1 vV/1+2Dmget+1\3
Dic = (2+—) ($> Dps{ln(lpos)}? (25)
Dmsc 2
It suffices to minimize
D 1 vV 1+ 2Dmsct+1\3
Dtmp[Dms& = % = <2+ —> <¢) 5
DPS{ n(l DDS)} Dmsc 2

which is a function of the single variabig,se O

In comparison to the previous optimal set of parametersutii@esf as a free variable,
this version shows a less efficient tradeoff, but requires {ge-computation. The behavior
of the DP tradeoff coefficient with sufficiently lardeunder a fixed requirement for suc-
cess rate is given as the left-hand side graph of Figure 3.pbhe of minimum tradeoff
coefficient is marked, together with the position corresfiog to the more commonly used
matrix stopping rule obmsc= 1. The advantage of using a smaller matrix stopping constant
than usual is clearly visible.
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Fig. 3 Tradeoff coefficients at fixed probability of success for Bfe tradeoff with a sufficiently largéand
the Hellman tradeoff

7.2 Hellman tradeoff

We now turn to the Hellman tradeoffs. This is very similarlie DP tradeoff case that uses
a sufficiently largd.

Proposition 37 Let0 < Hps < 1 be any fixed value. The Hellman tradeoff, under any set of
parameters m, t, and, that are subject to the relations

mt? = 2.25433N  and ¢ = 0.598941{ —In(1— Hps) }t,

attains the givertips as its probability of success, and exhibits the tradeoffqremance
corresponding to

Hie = 1.50217Hps{ IN(1—Hps) }%,

as the three parameters are varied. Under any such choicaapeters, the number of
one-way function invocations required for the pre-compataphase is

The two relations restricting the parameter choices givérogl parameters in the sense
that no choice of m, t, anfélcan lead to a tradeoff coefficient smaller than the aboveeavhil
achievingtps as its probability of success.

Proof The proof given here shall be concise, since it is similahtse of Proposition 35 and
Proposition 36. Based on Proposition 20, we may ftxﬁmsc {—In(1—Hps) } . Reference

to Proposition 21 shows that the Hellman coverage ¥ate= He [Hnsd Mmay be seen as a

function ofHmsc= thz Hence, given anyn, t, andHps, We can set to an appropriate value
with which the Hellman tradeoff achieves success prolgiaifi Hps.

We now work to minimize the Hellman tradeoff coefficient. Byntbining Theorem 22
and Proposition 21, we obtain

_ (1 1\ /vHmsc gVimse 1143 2
te= (- +5) (5 ammy) Pelin-m)”

For a fixed success probability, it suffices to minimize the fiaat depends only on the
single variabléimse

One can use numeric methods to identify the minimum v e n(HlthpS” =1.50217,
which is attained afmsc= 2.25433. The two remaining constants appearing in the preposi
tion may now be obtained through appropriate evaluations. ad

(26)

Hmsc
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The most typical Hellman tradeoff, which is set to ns = N and/ =t attains a success
probability of 5768% and the tradeoff curvEM? = 0.779M2, when the cost of resolving
alarms is taken into account. In comparison, the choigatéf= 2.2543 and/ = 0.516Q,
suggested by Proposition 37, givé$i? = 0.640N?, while achieving the same success
rate. This improvement in tradeoff efficiency is visibledtgh the right-hand side graph of
Figure 3, where the two dots mark the two parameter choicasawe just discussed.

The price paid for this better tradeoff efficiency is the ewse in pre-computation
from N to L.163(N. Indeed, after combining Proposition 20 and Propositioimgi

_— \/WSC ev2Hm30+1
pc— \/é eVZHmsc — 1

{=In(1—Hps)}, 27

one can check that the pre-computatitya[Hmsd required under any fixed probability of
success is an increasing function Hyse Hence, while any point that is situated to the
left of the minimal point in Figure 3 may not be optimal in view tradeoff efficiency, it
corresponds to less pre-computation. Depending on thébl@icomputational resources,
one may choose to lower pre-computation cost rather thaease the tradeoff efficiency.
On the other hand, increasim,sc beyond the minimizing value.25433 will have bad
effects on both the pre-computation and the tradeoff eff@ieand should be avoided.

Let us briefly return to the DP tradeoff that uses a sufficielattgef. By combining
Proposition 5 and Proposition 10, we can write

V14 2Dmee+ 1
and, as with the Hellman tradeoff, confirm tigt is an increasing function dfiyse Since
we know from Proposition 36 that the best performance isesglti atbnsc = 0.562047,
the choice obms: < 0.562047 may be reasonable in view of lower pre-computatist, co
but usingdmsc > 0.562047 should be avoided. In particular, the usegf.= 1 cannot be
justified.

7.3 Rainbow tradeoff

The analyses of optimal parameters for the DP and Hellmatedfés were very similar.
However, the rainbow tradeoff does not allow the same apgprobecause we have less
control over the parametérThe number of tableSused with the DP and Hellman tradeoffs
are quite large and we had treatis if it were a continuous variable. In the rainbow tradeoff
case, the table count is usually a small integer and we megt ikemind that it takes only
discrete values.

Let us start with a fixed number of tablésFor any given requirement on the success
rate, we can rewrite Proposition 29 as

Rmsc=2{(1—Rps) 7 — 1} (29)

and understand this as a lower boundrgia. that can be used withto achieverps. It is
clear that increasingnscunder a fixed will increase the pre-computation c@sts¢/ N. One
can also work with the tradeoff coefficieht, as provided by Theorem 30, to confirm that
increasingkmsc under a fixed will reduce the tradeoff efficiency. Hence, under any fixed
the exact value okmse suggested by (29), should be used to achieve the requicegss
rate.
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Fig. 4 Tradeoff coefficient of rainbow tradeoff as a function of cegs rate requirement at small number
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Table 1 Range of success probability requirements for which edade tount¢ is optimal

4 Rps |092(1 — Rps) Ing Rtc Rmsc[Rszz ﬂ Rmsc[RpS, 4 ”
0 0 —e 0

; 0734166  -1.91140  0.565848  1.87905 0.785335
0886651  -3.14116  2.08082 1.44688 0.874929
3 | 0.046562  -4.22600  2.88968 1.25878 0.884357
41 0973305 522729  3.41666 1.14577 0.873341
2 0986146  -6.17353  3.79818 1.06812 0.856920
©|o992618 708171  4.09387 1.01079 0.839893
0095992  -7.96295  4.33425  0.966542 0.823891
8 | 0.997795  -8.82486 453663  0.931326 0.809415
9 1 0998775  -9.67274 471157  0.902658 0.796529
10 | 0999314  -105104  4.86585  0.878902 0.785129
E 0099614  -11.3404 500406  0.858929 0.775059
0099782  -12.1649 512941  0.841927 0.766150
13 | 0.999877  -12.9850 524421  0.827299 0.758246
ig 0999930  -13.8020 535019  0.814594 0.751208
0999960  -14.6163 544869  0.803466 0.744914

We can now treatmscas a function of the success rate requirensggtfor any fixed?.
After substitutingkmse as given by (29), into the tradeoff coefficient of Theorem &oe
can rewrite it as

403
(20+1)(20+2)(2013)
{—(2043)+2(20+1)(1—Rps) 7 }(1—Rps) T
+{(2041)2—20(20 4 3)(1—Rps) 7 }(1—Rpg)

Rtc =

(30)

For each fixed, this is a function of the single varial#tgs. A plot of this is given as Figure 4
for table countd = 1, 2, and 3. The the right-hand side box is a magnified partal of
the left-hand side box in logarithmic scale.

Recalling that a smaller tradeoff coefficient implies bettadeoff efficiency, one can
clearly read from the figure that the use/ef 1 is optimal when the requirement for success
rate is very low and that the use of successively higher nummbtables becomes optimal
as the success rate requirement is made more stringent.W&ehmerically solved for the
explicit probabilities at which the transition to the neabte count should be made and have
recorded this in Table 1.
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Let us briefly explain the content of the table with examp®sppose one aims to
achieve the success probability of 99.9% with the rainbededoff. Since ®99 sits between
0.998775 and 99314, it is optimal to use ten tables. If one is requestesttdhe proba-
bility of failure to 2—17 we locate—7 between-6.17353 and-7.08171 and conclude that six
tables would be optimal. To understand the other three awumfi the table, let us focus on
the row that sits betweefh= 1 and? = 2. The use of a single table witty,sc= 1.87905, or
the use two tables &y,sc= 0.785335 will both result in the optimal tradeoff coefficierit o
Ric = 1.48026= 20-565848 3n(d success rate 73.4166%.

Note that any given success rate requireniggimakes a certain number of tabléas
optimal, and thée value fixessmscthrough (29). Since the tradeoff coefficient of Theorem 30
is already determined b¥/andRmse and since the relation (29) guarantegssuccess rate,
any parameter set satisfying the mentioned restrictiohbeibptimal in view of the tradeoff
coefficient. Let us gather what we have discussed in a priposi

Proposition 38 Let 0 < Rps < 1 be any given fixed value. Locate the table coifiom
Table 1 that corresponds to the givegs and compute

Rmsc: 2{(1— Rps)ijl[ - l}.

Then the rainbow tradeoff that uses the locatethd any parameters m and t satisfying the
relation

mt == Rmsd\l

attains the given valugps as its probability of success. The tradeoff performanceezor
sponding to

Ric =

03 {(2¢—1) + (20 + 1)Rmsc} (2+ Rmsd)?
(26+1)(20+2)(20+3) | —4{(2r-1) +e(ze+3)am3c}(1—aps)] ’

can be observed as m and t are varied under the restrictioth 8viy such choice of param-
eters, the number of one-way function invocations requicedhe pre-computation phase
is

Rch = Rmscg N.

The choice of through Table 1 and the single relation concerning m and tlleaoptimal
parameters in the sense that no choice of m, t, &mdn result in a tradeoff coefficient
smaller than the above while achieviRgs as its probability of success.

To be strictly logical, one must also consider the possibitiat allowing the multiple
tables to be of different sizes may lead to better tradeddfffazients. The case of three
tables with the most general table sizes is analyzed in [Bdl] the conclusion is made
that optimal tradeoff performance is achieved at equaldsiables. The method used can
probably be extended to larger number of tables, but theinegjcomputations will be
much more complicated than the computations done in thik.w8ince the examination
of the 3-table case showed that we are not likely to gain amytfrom the more general
analysis, we chose to work with equal sized tables. Howéwethe case of perfect rainbow
tables, we have reasons to believe that this extra flexihilitl bring about better tradeoff
performance.

Finally, we want to provide an argument that is analogoushatwas discussed at the
end of Section 7.2. One can check that

Rpo = Rmscl = 20{ (1~ Rp) 7 — 1} (31)
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is a decreasing function @f for each fixedkps. Hence, use of aficount that is larger than
what is suggested by Table 1 will decrease the pre-computatiquirement at the cost of
reduced tradeoff efficiency. This may be preferable in soitvatsons. On the other hand,
use of an/ count that is smaller than the optimal count will have ba@é&# on both the

pre-computation cost and tradeoff efficiency, and shoulevoéded.

8 Comparison of Tradeoff Performances

All the ingredients required for a fair comparison of penfiances between the tradeoff
algorithms are now ready. Any discussion of the DP tradextfiis section assumes that the
chain length boundlis sufficiently large.

8.1 Conversion of the tradeoff coefficients to a common unit

It is clear that for any comparison of tradeoff algorithmseofair, the algorithms must be
made to present the same probability of success. One mastaisider the pre-computation
cost required by each algorithm, and this aspect will be idened later on in this section.
For now, we focus on the fact that the tradeoff coefficientrisemsure of tradeoff efficiency.
Let us assume that the DP, Hellman, and rainbow tradeoffithgas display the respective
tradeoff curves

THMZ =D eN?, TyMZ=HN?, and TaM2 =RiN?, (32)

at the same success rate. We will discuss how to interpreatiosd;. : H : Ric Of the tradeoff
coefficients as a ratio of tradeoff efficiencies.

8.1.1 Unit for storage

Let us first consider the storage variabe For the moment, we will disregard any issues
concerning the time unit.

In all three tradeoff algorithmsyl represents the number of starting point and ending
point pairs that need to be stored, but the actual numbert®fréguired to store each ta-
ble entry will be different among the tradeoff algorithmse \8aw through Proposition 17,
Proposition 25, and Proposition 33 that the number of bisired to store each table entry
is as follows for each tradeoff algorithm.

DP : slightly more than logy, bits
Hellman : slightly more than logy; + logty bits
rainbow : slightly more than logy, bits

Let us assume from this point on that the ending point triosatfor the three algorithms
were done in such a way that their effects on the online tirax@nimal. In particular, we
assume that the contents of Corollary 14, Theorem 22, andréhe30 remain valid after
ending point truncation. We further assume thatstghtly morebits mentioned above can
be ignored.

A fair comparison of tradeoff performances would expressastes for the three algo-
rithms in terms of number of bits that are required for theg@mputation tables rather than
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the number of starting point and ending point pairs. Undert#p assumptions made, one
is lead to focus on the ratio

(logmp)?Dyc : (logmg + logty)Hie © (Iogmg)Rec, (33)

rather than the raw tradeoff coefficient rabiQ : Hic : Ric. The bit sizes per entry are mul-
tiplied in squares because any change in storage affectsattheoff efficiency through a
square factor.

The implementation environment and tradeoff requiremevilisplace the choice of
suitable parameters into a certain range, and it is reagot@abssume that the parameters
that would be chosen for each algorithm would be relatedutiio

logtp ~ logty ~ logtg, logmp ~logmy, and logmg ~ logmy + logty. (34)

Some readers may object that our discussion on the numbdtsafelguired for each ta-
ble entry makesn, = 2my more reasonable tham, = my, but this difference by a factor
of two is lost in the approximations when they are converticsizes, as is done in the
expression (34).

Assuming the rough correspondence (34) between paramtétensatio (33) simplifies

to
(Iogrrb
logmg

When issues concerning time units are ignored, this is theecoratio to focus on when
comparing the tradeoff efficiencies of different algorithm

2
) Dtc : Htc : Ric- (35)

8.1.2 Unit for online time

Unification of the time unifl is now considered. Issues concerning the storage unithwhic
we have already discussed, are ignored for the moment.

Recall that the time variabl& used in the tradeoff curves counts the number of one-
way function iterations and ignores the table lookups. leeparameter sets which lead to
identical timeTy, = Ty = T does not guarantee that the simultaneous executions dfribe t
algorithms will finish at the same time. For a fair interptieta of a tradeoff coefficient ratio
as a ratio of tradeoff efficiency, the difference in the tinmtsiused by the algorithms must
be taken into account.

It is reasonable to expect the time taken for a single onefwagtion iteration by the
three algorithms to be quite similar. Let us fix notation axgress this common time length
as|ltr|. We also fix notatiofTL-D|, |TL-H|, and|TL-R| for the time required for lookups
to the DP, Hellman, and rainbow tables, respectively. Ddjpgnon the implementation
platform, it is possible to experiend&L-D| ~ |TL-H| < |TL-R|, even when equal sized
storages are allocated to the three algorithms, since therliman tradeoffs utilize a
large number of small tables, whereas the rainbow trades##faismall number of large
tables.

Referencing Lemma 15, the real-world time required to pgsdie online phase of
a DP tradeoff can be written & |Itr| +t, —2— |TL-D|. Since we know from (18) that

DcrDmsc

T =t2 Dos (1+ 2Dmsg), the real-world online time for DP tradeoff can be expressed

D DerDmsc
1 ‘TL-D‘
1+ ——— —— | Tp|ltr|. 36

( 1+2DmsctD|Itr\) olttrl (36)
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Similarly, gathering information from (21) and Lemma 23 tieal-world execution time for
the Hellman online phase can be written as

6 |TL-H|
1+ — | Tg|ltr|. 37
( 6-+Hmsc |ltr] ) i =7

The corresponding expression for the rainbow tradeoffjimglon (22) and Lemma 31 is
given by
|TL-R|

(1+Rtmpw,aps] W) Talit], (38)

where

(20+2)(20+3) [(l_Rps)Z (R ]

- (1*Rps)172% +(1—Rps)
2(20+1)(1—Rpe) % — (2 +3)(1—Rps)
— 20(20+3)(1—Rp) " 7 + (20 + 1)2(1—Rpg)

is of ©(1) order. We have used (29) to remove all occurrences@f in the expression,
because our graphs for each fixigd in the later part of this section are drawn usihas a
parameter.

The three equations (36), (37), and (38) can be used to diasilthe correct way to com-
pare tradeoff coefficients. For example, consider the sstalase where all table lookups
are negligible, i.e., whefiTL-D|,|TL-H|, |TL-R|,< |ltr|. Then, all the second terms in the
three equations are negligible. Hence, the raw coefficetia b;; : Hic : Ry reflects the true
tradeoff efficiency ratio of the three algorithms.

Let us next consider the case whétel < |TL-D| ~ |TL-H| < |TL-R| < tp|ltr| ~ tg|ltr|.
This might be the situation experienced by a large impleatant that requires disk accesses
for table lookups. The probable use of latgandty partially justifies the third inequality. In
this case, the second term of (37) dominates all other fives@f the three equations. The
Hellman tradeoff clearly cannot compete with the other thgmathms and the comparison
between the DP and rainbow tradeoffs can fairly be done byjthRr;c.

The final example we consider is whéltr| = |TL-D| & |TL-H| < |TL-R| < tp|ltr| ~
tg|Itr|. Then neither of the two terms of (37) dominates the othemaither can be ignored.
The appropriate ratio to study when comparing tradeoffritlgms would be

Rtm p[ga Rps} = [

6 |TL-H
D¢ - (

——— ) Hic : Rec. 39
6+Hnsc |ltr] ) te - He (39)

There are many other cases to consider, but the correct wadjust the tradeoff coef-
ficients so that they reflect the tradeoff efficiency ratiotwf tradeoff algorithms can easily
be found from (36), (37), and (38).

This ends our discussion on the unit of time, but let us bridityess and discuss the
exceptional situation ofTL-R| > ty|Itr| for the rainbow tradeoff. This could happen when
the pre-computation tables must be reached over the inteaniag the online phase. Then,
table lookups dominate the online phase, and we can coriihire®(t¢), Mg = ©(m¢), and
¢ =0(1) to conclude thalzMg O N. At first thought, this might seem to be a much better
tradeoff curve than the usu@M? O N2 curve.

The counterintuitive conclusion hides the fact that the ohitime Ty is now |TL-R|,
rather than|ltr|. Furthermore, unleshl is small, the assumptiofTL-R| >> tz|Itr| cannot
continue to hold a% is increased, so that the tradeoff curve will eventuallymeto the
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usualTM2 O N2 after a certain point. The tradeoff curfgMy O N remains valid wheitg
is moved in the decreasing direction, but haviadylz constant is worse than havifigM2
constant in that direction.

Similar arguments may be made for the DP tradeoff, but loska®P tables over slow
network are even less likely to be seen than with the rainbadebffs. Since each individual
DP table is rather small, each could be stored on the nodedmaputes the online chain
corresponding to that table.

8.1.3 Combined unit conversion

The storage unit conversion and the time unit conversioroahmgonal, and the two con-
versions may simply be multiplied to give modified tradeaféfficients that are appropriate
for comparisons of different tradeoff algorithms. For exdenunder the reasonable assump-
tion (34), we know that the storage conversion must follo®) (3f the one-way function
computation and table lookup speeds satj#fyf ~ |TL-D| ~ |TL-H| < |TL-R| < tp]ltr| =
tz|Itr|, the time unit conversion must follow (39). Combing the tw@ know that compar-
isons of tradeoff algorithms must focus on

<Iong)2 ) (l+ 6 |TL-y|
logmg/ ~'° 6+Hnse [Ir]
under the stated circumstances.

In our further discussions below, we will mainly restrictselves to parameter sets that
roughly satisfy

)Htc * Ric,

1 2
logmp =~ logmy = logtp =~ logty ~ logtg ~ 3 logN and logm ~ 3 logN

and mostly assume that the time required for a single tableulp is negligible in compar-
ison to that required for a single one-way function compatatUnder these assumptions,
the ratio that needs to be studied when comparing traddaffesfcies is

%Dtc * Hic : Ric. (40)
We shall refer to the situation that has just been describéldetypical situation as it often
appears during theoretic developments of the tradeoffigae. However, we do not claim
this to be typical in practical applications of the tradeeffhnique.

We emphasize that our further discussions given below comgetradeoff performance
comparisons will only be valid under the typical situati@samption. If the environment
and tradeoff performance requirements make parametecehgiich that logy % logtp
more appropriate, or if the table lookup delays cannot beriggh the algorithm comparison
conclusions will be different. Still, one will be able to ue information explained in this
subsection to easily make the proper adjustments.

Even for the typical situation, the ratio (40) can be madeenamcurate for each explicit
situation. Based on Example 18, Example 26, and Example 8¢an state that

28 g Dic : 55 %H‘C . 557 z—gmc = 1.00D : 3.64Hy : 3.54Rc,
is a more accurate version of (40), for the typical situatidth N = 27°. This new ratio does
not ignore the extra one-way function invocations causeeérging point truncations and
does not ignore thslightly morebits discussed at the start of Section 8.1.1.
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8.2 DP tradeoff versus Hellman tradeoff

As discussed in the previous subsection, it suffices to coen%mc againstt for a fair
comparison between the DP and Hellman tradeoffs. We arer@sguhe typical situation
explained at the end of the previous subsection and any usinok we make could be
different under different circumstances. The pre-comraeffort is finally considered
during tradeoff comparison in this section.

The contents of Proposition 36 and Proposition 37 show tiebptimal tradeoff effi-
ciencies of the two algorithms are given by

One may want to conclude that the Hellman tradeoff, with thalker tradeoff coefficient,
is more efficient, but this is acceptable only when the prejqmatation cost can be totally
ignored. In practice, pre-computation cost is the largasiér to any large scale deployment
of tradeoff algorithms and is hard to ignore.

The pre-computation costs required to achieve the abodedfaefficiencies are

Dpe = 1.22871{ —IN(1—Dps)}  and Hpe = 1.35021{ — In(1— Hys) }.

The pre-computation cost of the DP tradeoff is lower and vesfaced with the problem of
comparing high efficiency at high cost against low efficieatiow cost.

After a moment of thought one must admit that such a compadaanot be done in an
objective manner. The comparison must reflect how valuabtiedff efficiency is to the user
and how willing one is in investing more time and resourcés the pre-computation phase.
There is no unit with which to express either of these undfiabte values. Furthermore,
one must also question whether it is reasonable to comparémh tradeoffs at parame-
ters giving their respective optimal tradeoff efficiencibon-optimal parameters may be
preferable under many situations in view of lower pre-cotapion cost.

We can conclude that all we can do is present the range ofehtiat can be made with
each algorithm and allow the users to make their concludiased on their explicit circum-
stances. The crucial information that must be displayedidwa easy judgement of which
tradeoff is more suitable is the relation between tradefiftiency and pre-computation
cost. This must be done at each fixed requirement for thesioresuccess rate.

As was previously noted through (28) and (27), when undereai fprobability of suc-
cess requirement, both,. andHye are functions of their respectivig,sc andHmsc values.
The tradeoff coefficients,c andH;c, under a fixed success rate requirement, were similarly
expressed as functions of the correspondifig: andHnyscvalues in (25) and (26).

For a comparison of the DP tradeoff against the Hellman ofid& now suffices to
present the graphs

{ (DpolDmsds %Dm[nms&) | Dmso < 0.562047 (a1)

and
{ (Hpc[Hmsd, Brc[Hmsd) | Bmsc < 2.25433}, (42)

where the bounds avy,scandinscwere placed in accordance with the discussion at the end
of Section 7.2. These graphs are given in Figure 5. Sincemb@taphs are to be compared
at identical success rate requirememyis = Hps, we have removed the common parts that
depend on the success probability from both of the casesebplotting the graphs. Hence,
the graphs do not depend on the success rate and are valildoceess rate requirements.
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Fig. 5 The tradeoff coefficien%Dw (dotted) andi;. (dashed) in relation to their respective pre-computation
cost

Both graphs extend further upwards, but the right endsespanding to the optimal tradeoff
performances, are clearly marked with dots.

The two graphs are very close to each other. Even thoughtlgligetter tradeoff effi-
ciency can be obtained with the Hellman tradeoff at higherqgomputation cost, in practice,
unless parameters far from the typioad= t ~ N3 region are to be used, the DP tradeoff will
be favored in view of less number of table lookups. For examipithe table lookup time
makes%DtC : Hic @ more appropriate measure of tradeoff performance radio tiie current
%Dtc : Hic, the dotted curve for the DP tradeoff would move down andgareisself as a more
advantageous algorithm.

If table lookup time is absolutely negligible in comparigorthe one-way function com-
putation time, there is a short range of parameter sets witbhathe Hellman tradeoff can
slightly outperform the DP tradeoff using the same amounprefcomputation. If table
lookup time is negligible and pre-computation is not to besidered, the Hellman tradeoff
can be slightly better.

8.3 Rainbow tradeoff versus DP and Hellman tradeoffs

We now include the rainbow tradeoff into the comparison gsap\s was discussed in Sec-
tion 8.1, we assume the typical situation concerning theagmate range of parameters
and table lookup time, and consider comparisons betvﬁeQmHtc, andg; to be fair.

In addition to the graphs (41) and (42), we need to plot alsjie (Rpc, Ric) points. We
can first check through (31) thape can be seen as a function of the table coiyrwhen
success rate requiremenys is fixed. As for the tradeoff coefficient, equation (30) prdse
it as a function of just, whenRps is fixed. Given any requirement on the successRaigit
is now possible to draw the graph

{(Rpc[€],Rec[f]) | € > optimal table count foRps}, (43)

where the optimal table count can be obtained from Table 1e it this is no longer a
continuous graph, but a discrete set of points. In the stense, previous graphs for the DP
and Hellman tradeoffs were also discrete set of points, kassN is very small, the points
are extremely close to each other.

Unlike our comparison between DP and Hellman tradeoffspéies that depend @y
appearing in the expressions (31) and (30) are not identiclose appearing in the cor-
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Fig. 6 Tradeoff coefficient%{DtC (dotted),H¢ (dashed), andyc (large dots) in relation to their respective pre-
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#Dtc, Hic, andRyc)

responding expressions (28), (27), (25), and (26). Heregggrate graphs need to be drawn
for each success rate. This is given in Figure 6 for some ssgetes.

In all of the graphs, one can see that the curve for the rairtbageoff sits closer to
the origin than the curves for DP and Hellman tradeoffs. Nbt& a graph sitting lower
shows better tradeoff efficiency and being positioned morthe left implies lower pre-
computation cost. In all the cases except for the ones qamneng to 25% and 50% success
rates, given any position on the curve for either the DP olrhiah tradeoff there is a rainbow
tradeoff position that presents better tradeoff perforreaat a smaller pre-computation cost.
Use of the rainbow tradeoff is definitely advisable in theases.

The existence of better rainbow position is also mostly inube 50% case. The excep-
tion is marked with ar® on the curve for the Hellman tradeoff. This position is vdigtgly
to the left of the optimal rainbow position and hence coroesis to less pre-computation
than the optimal rainbow position. At the same time, it isiposed lower than the second
best rainbow position and hence shows better tradeoff efitgi than this second best posi-
tion. Hence, there can be no rainbow tradeoff parametehaetan replace the Hellman po-
sition marked with ar® without at least very slightly sacrificing either the pravgqautation
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cost or the tradeoff efficiency. Still, anybody will agreeattthis exception is quite unrea-
sonable and one would normally choose to sacrifice the ertgesmall amount of either
the pre-computation cost or the tradeoff performance fdsily better value of the other
factor.

The 25% case also displays the rainbow tradeoff requirisg f@e-computation than
the other two tradeoffs in achieving equal tradeoff efficigrbut the awkward exceptional
position discussed for the 50% can be found here as rathggr $smgments. In addition, the
best tradeoff efficiency achievable by the rainbow trad&di§ short of what is reachable by
the other two algorithms. Hence there will be situations nettbe DP or Hellman tradeoffs
is preferable over the rainbow tradeoff, when required toexe 25% success rate.

The relative advantage of using rainbow tradeoff is cleselyn to grow with the increase
in the success rate requirement. For the 99% success rateitcssems almost safe to say
that the rainbow tradeoff performs approximately twice etsdy than the other two tradeoff
algorithms in any of their reasonable usages.

In conclusion, the use of rainbow tradeoff is advisable fghisuccess rate requirements
and there may occasionally be low success rate applicatithsspecial situations where
the other two tradeoffs are preferable. We emphasize once that this conclusion is only
valid under the typical situation assumption explained éctf®n 8.1. For example, if we
must work with parameters such that 2iag~ logtp and 2logny = logty and table lookups
are negligible, then comparison of the coefficieélrxf,c, Hic, andRc would be appropriate.
This would bring the curve for the DP tradeoff lower and we ldoarrive at a different
conclusion.

8.4 Reuvisit to the preliminary tradeoff comparison

In Section 2.9, we recalled how [24] claimed the rainbow ecftito be more efficient than
the DP tradeoff by a factor of two. We also explained how [Jdihted out that the two
algorithms require different number of bits to represerthetable entry and argued that
the DP tradeoff was twice as efficient as the rainbow tradeRifice our conclusions of
Section 8.3 are once again supportive of the rainbow trédiedfus explain where in the
arguments of [3, 4] the inaccuracies were introduced. Bedéihe current paper, including
the proofs, need to be understood if the computations ok#gtion are to be followed.

According to Proposition 5, Proposition 10, and Corollady the DP tradeoff perfor-
mance at parameters=t = ¢ = N3 and a sufficiently large chain length bound is given
by

Dps=519%, Dic=213 Dpc=1 (44)

In comparison, Proposition 29 and Theorem 30 allow us te ket the rainbow tradeoff at
the naturally corresponding parameters- N3 = N%, and/ = 1 shows the performance

Rps == 55.6%, th == 0.4227 Rpc == l (45)

As claimed in [3, 4] and confirmed in Section 8, we must applyadjustment factor to
compensate for the difference in bits required per tableydygfore comparing these two
sets of figures. Comparinﬁotc = 0.532 againsk;c = 0.422, we can conclude that, for the
same amount of physical storage, the rainbow tradeoff ib EBdter and succeeds more
often than the DP tradeoff. This disagrees with the clain3p#] and does not go against
our conclusion, which stated that the rainbow tradeoffighsly better than the DP tradeoff
at low success rates.
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The main argument of [3, 4] that the number of bits requiredttwe each entry of the
rainbow tradeoff is twice of that required for the DP tradesés certainly correct. The
primary source of their incorrect conclusion is the inaaetairestimations of running time
complexities for the two algorithms. The tradeoff coeffitiéor the DP was estimated at 1,
but in reality, it was a much largeg; = 2.13.

After understanding the details of the proof to Theorem 1@, @an compute that, out of
the value 213, the part that corresponds to the online chain computéionly Q709. This
is smaller than 1, the estimate of [3, 4], but the remainig@ lwhich is due to the resolving
of alarms, was much larger. In the case of the rainbow trédinef tradeoff coefficient was
estimated at & by [3, 4] and the actual valug; = 0.422 was smaller. Details of the proof
to Theorem 30 show that, out of thed@2, the cost of online chain creation corresponds to
a mere B06 and the cost of resolving alarms corresponds to an evales117.

The true online chain creation efforts for the two algorithtreing smaller than the
initial rough estimates is a consequence of the algorittermainating prematurely with the
discovery of the correct answer, and the upper bounds focdkeof online chain creation
given by the preliminary analysis [3, 4] were correct. Sirﬁce 0.709 is less than.306, a
comparison of the two algorithms based only on the onlinénctygation time would have
concluded that the DP tradeoff was superior. In fact, the %%/64 ~ 0.579 is somewhat
in agreement with the performance ratio of two that was cairby [3, 4], based on their
rough upper bounds. However, when the costs of resolvirgalavere taken into account,
the conclusions were quite the opposite. This is a cleacatidin that a careful analysis of
the cost associated with resolving of alarms was necessagyféir comparison of tradeoff
algorithms.

Let us now discuss how sensitive a role the success rate playsking algorithm
comparisons. Note that the parameters used in [3, 4] adhiswecess probabilities,s =
51.9% andrps = 55.6%. According to Proposition 36, the optimal tradeoff pariances of
the DP tradeoff at the two success rates are

Dps == 519%7 Dtc = :I..957 Dpc == 08997 (46)

and
Dps=55.6%, Dic=256, Dpc=0.996 47

The figures of (46) show that the typical parameters-t = ¢ = N3 considered in [3,
4] should not be used. We can obtain the success probabili@#4) at a better tradeoff
efficiency and with a smaller investment in pre-computation

A comparison of (46) and (47) clearly shows that a small diffiee in success rate can
lead to a large difference in the optimal tradeoff coeffitiéhcan be seen from Proposi-
tion 36 that the optimal tradeoff coefficient will become ewaore sensitive to the success
probability as the demand on success rate is increased.

The figures we gave concerning the success rate difference me¢ as dramatic as
those concerning the alarm resolving cost in that no coimiusas overturned. However,
since performances of different algorithm are close to edbhr, it is clear that the ability
to accurately predict the success probabilities of tredalgbrithms is critical in making
comparisons of tradeoff algorithms.

9 Conclusion

In this work, we analyzed the running time complexities & P, Hellman, and rainbow
tradeoffs, and summarized their abilities to balance gmagainst online time as tradeoff
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curves that are correct up to small multiplicative factditsese results were used in the later
part of this work to compare the performances of tradeofbidtlgms against each other. Our
comparison is different from previous attempts in that tffieres for pre-computation have
been taken into account.

Although we did provide explicit statements comparing thee¢ tradeoff algorithms,
our conclusions are only true under certain assumptionseroing the tradeoff environ-
ment. We emphasize once more that one should not blindlyéxar conclusions to other
situations. Rather, one should see this work as providiagdbls and methodology for fair
comparisons of tradeoff algorithms and use these to artitheir own final judgements
specific to their circumstances.

One conclusion we can provide about the relative perforesit different tradeoff al-
gorithms is that their differences will be small. The preatiinconvenience of having to
align each entry of the pre-computed table at a byte bounidasynot been considered in
this work, and the performance differences between algustcan be so small that such
obscure issues may be of equal importance in practice. @hts$ disappointing to us as
authors of the current work, but should be relieving to ptiacters of the tradeoff algo-
rithm that are not concerned with small performance diffees. Nevertheless, even if one
decides to ignore small performance differences, compaggsaphs of the previous section
show that meaningful reduction in pre-computation costlmaachieved with only a small
sacrifice to tradeoff efficiency and being able to take achgetof this knowledge will be
of practical importance. Furthermore, with extremely éasgale implementations, having
accurate access to the small differences will be of sigmifigalue.

Complexity analyses of perfect table versions of the trédagorithms at the accu-
racy level treated in this paper and their inclusion into tiiaeleoff performance compari-
son picture remains to be done. Perfect table tradeoffsxqected to display better trade-
off efficiency and are certainly of interest, even thougtytregjuire larger amount of pre-
computation.
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A Technical Approximation

The lemma below shows that the approximat(dn— %)a ~ e b, which we have used frequently in this
work, is very accurate for large integergndb such that = O(b).

Lemma 39 For positive integera andb, we have
a 1\2 1a 1 a\atl a
lexe(-5)-(1-3) | < {3+ @+l (5) tewl5):
Proof We start by writing expﬁ — %) in its Taylor series form and fully expanding the te¢fn— %)a.
a 1\2
lexp(—5) - (1-35)
a 1l/a\2 a\ 1 a) 1 Jfa) 1
3O (g e ()
After noting that the beginning two pairs of terms cancel, @ collect corresponding pairs from the two

sequences of terms and bound the above by
1 1 a\atl
§}+{(a+1)1(5) o b (48)

{5-G)lg+15-()
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Itis easy to see that

k
0< ﬁ7<i> :%{akfa(afl)-u(akarl)}

i{Makfl—mJr (-1 (k-1)ta}

Tkl 2
1k(k=1) g 1 a7
SWoo2 T T 2k-2r

for everyk > 2, where the last inequality can be checked through induciiok. This shows that the terms
of (48) that appear inside the first set of braces is bounded by

lal a1 a%1 at 1
z{apW@*ay*“*—(Fz)!?}
:%%{lJr%%Jr%(E)ZJF‘”JF(afz)!(%)H}
S}iexp(i)
2 p? b

As for the second set of braces from (48), it is easy to see that

(e o)

can serve as its very rough bound. It now suffices to gathemtbdounds to arrive at the claim. O

B Random Function Arguments

Any analysis of a tradeoff algorithm assumes the one-waygtiom F to be a one-way function and most
results given in this work as equations are certain valupe@rd of a random function. In other words, we
have been stating values that had been averaged over the diail functionsF : .4 — _#". In this section,
we point out that many of the arguments made during these atatigns are not strictly correct and then try
to justify heuristically that the existing logical error gnaafely be ignored.

B.1 Existence of a logical gap

Recall the expected image size of a random function giverijpgr{d the expected iterated image sizes given
by (2). The claim that (1) implies (2) is acceptable in thdmeaf cryptology. In this subsection, we clarify
that there is a small logical gap in such a claim.

Let us rewrite (1) as an explicit self-contained statememittvis precisely correct.

Lemma40 LetF:._4# — .4 be the random function on a finite set of shkeelf .# C .4 is of size g, then
the size of F.#) is expected to be
1\Mo
m =N {1— (1— N) }

The proof of this lemma is quite trivial. It suffices to coreidhe ratio of points among/” that remain un-
touched throughout the sequential assignments made teetsmwf.# for the random function construction.

We want to emphasize two things about this lemma. The firsiasthe value claimed by this lemma is
the exact expected value and does not involve any appraximan fact, the largest reason for rewriting the
statement here was to remove the approximate expressiensédond point we make is that the statement
of this lemma does not contain any averaging over input 3éts.expected image size claim holds true for
every set# C ./ of sizemy.

Discussing just the double iteration case will be sufficfenour purposes. Let us define

mnfe- (-3)" na menfa- (1)) 2
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for any givenmy. One might believe thaty, is the expected size &% (.# ), whenF : .4 — .4 is the random
function and.# C .4 is of sizemy. Since Lemma 40 contains no approximation, some might ¢xgég
to hold exactly. However, this reasonable prediction ismet, at least in the strict sense, by the explicit
example given below.

The set of all function$ : {0,1} — {0,1} can be visualized as follows.

o >l
When the input set/ is a single point, the image size expectation is clearly 1s hn agreement with the
value Z1— (1- %)1} =1, computed according to Lemma 40. When the input set is theplsie domain
{0,1}, the image size expectationts [|F({0,1})[] = -1+ 1.2+ 1.2+ 1.1= 3, and this is also identical
to the valueEr [|F({0,1})|] =2{1- (1- %)2} = 3, computed according to Lemma 40. We have just verified

that Lemma 40, which had already been proved, heldgtlyfor the.#” = {0, 1} case, regardless of the input
set size and the choice of the set itself. Now, the four famstF2 = F o F can be visualized as follows.

= = )]} = L N =
When the input set# is taken to be the complete domain, the expected image sthe double iteration is
2 2 3
2 = - _ — =
Er[FP(0.1)] = 3-1+52= 3. (50)

In comparison, the corresponding value computed throughi¢4

1\2(1-(1-3)% 1\ 3
2{1—(1—5) 2 }:2{1—(1—5)7}“293 (51)
The two values given above are clearly in disagreement.

A cryptographer would naturally attempt to rectify the et situation by relaxing the strict correlation
between the two functions that are being composedFLety” — .4 andG: .4/ — .4 be two independent
random functions operating on a finite set of dizeOne would like to claim that if#Z C ./ is of sizemg,
then the size OG(F(///)) is expected to be they, value given by (49). This second version for the doubly
iterated image size expectation seems structurally munplei to analyze than the previous attempt, and
one might be tempted to say that the modified claimtisvéal consequence of Lemma 40.

We again turn to the example G : {0,1} — {0,1}. The complete set of all possible double iterations
can be visualized as follows.

= L= XT=T N =
=S = X}IED =
END D XK X

I =EN I =N DN =N NN =N
When the input set is the full domain{0, 1}, after separately counting the number of functions withgea
sizes one and two, the expected image size can be computed as

12 4 5
Erc[|G(F({0.1})] = Tc 1+ 2= 3. (52)
Once again, this disagrees with (51), which was computeaigir (49).
It is now clear that (2) does not directly follow from (1). Thiaims to the iterated image sizes are not
consequences of the single step image size, at least nauwdldditional arguments. The logical gap persists
even when all iterations are allowed to be independent rarfdoctions.

B.2 Narrowing the logical gap

The failed attempt (49) at giving a doubly iterated image sixpectation had substituted timg value in the
place ofmy in the single step result Lemma 40. This reuse of average\althe computation of another
average value was the source of our problem. In reality, adeaseen in the two counterexamples, inputs to
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the second step function are not allrof size, but of varying sizes that only averagertn After this simple
observation, we can state that,#p is a set of sizeng such that the image siZ€ (.#))| is exactlymy for
every choice of functior and the image sizéF(.#1)| is exactlym, for every choice of functiorF and
every input set#; of sizemy, thenmy, is the exact expected size B(.#)). The assumptions included in
this statement cannot be met, but it is reasonable to expeatdnclusion to hold approximately, when a
slight relaxation is given to the assumptions. We are thasfied in stating that, if for the vast majority of

the sets# C .4 and functions~ : .#" — ., the image siz¢F (.«)| is very close taN {1— (1— %)M‘ }
then them, of (49) will be a good approximation for the doubly iteratetbtige size expectation.

Therefore, we consider the images of a fixed.gétunder different functiong and discuss how their
sizes|F (. )| are distributed around its average. Let us ugg, andoy n, to denote the average and standard
deviation of the image set siZE(.#)|. These are to be computed for a fixed input #t .4 of sizemand
with F : %" — _# running over all possible function choices. We already kmgy, ~ N {1—exp(—§) }.

A proof of the following lemma is given in Appendix C.

ON.m 2
Lemma4l We havem <N for all N and m.

According to Chebyshev's inequality, at least 99% of M image sizes will fall within the range
Hn,m £ 100N m. The above lemma states that these deviation of sizes frerméan is bounded b%?”%.

Hence, the distribution or clustering of image sizes arcilnedexpected valugy m will tighten, at least in
comparison to the expected value Nass increased.

This observation can be restated in more plain terms asafellS8uppose we take some input set and
measure its image size under a single function, chosen domanand take it to be an estimate of the true
average image size. We make it clear that the averaging ouéiipta measurements made with multiple
functions is not being performed here. In such a situati@can expect each measurement to return a larger
numbersignificant digitsasN is increased. Let us briefly work with some explicit numbéis:. parameters
N = 254 andm = 250 the average image size can be computed tqfpg ~ 1.13 x 106, For the same
parameters, the standard deviation is boundedyy < 5.24 x 10P. Chebyshev’s inequality insures that at

least 99% of the\ image sizes will lie in the ranggy m+ 100y m, which is 113x 1016 +5.24x 10° in the
current situation. For any practical purposes, we can\eelieat close to 10 significant digits from any single
measurement are highly likely to be identical to those oftthe expected value.

Let us summarize the discussion of this subsection. Forwargtibn acting on a large set that was chosen
at random and any input set of size, the image size of the first iteration will be very close to tiwevalue
given by (49). At the second iterated application of the s&metion, even though the input size was not
exactlymy, we can expect the output size to be very close tarthgalue given by (49). Actually, the output
size could be different from, even if the input size was exactiy. In any case, the fact that the standard
deviation of the image sizes is very small relative to itsestpd value implies a tight clustering of image
sizes, and allows us to believe that the formula (2) will sedoubly iterated image sizes with accuracy, in
the sense that a large number of significant digits are retfhe heuristic arguments of this subsection has
added further justification to the already acceptable ogatphic argument that (1) implies (2).

B.3 Other reuses of average values

The intension of this section was not in testing the validity2). In fact, although the authors of the current
paper are unfit to verify its correctness, a full proof is ded in [11] for at least the case whe#' is the

full domain. What we have done so far in the current sectioio ifirst point out that average values have
erroneously been reused in the computation of other averages and then argue heuristically that such
methods are still acceptable as long as the distributionabfes that are being treated is tightly gathered
around the average. This reasoning does not have to betedtro the discussion of iterated image sizes, or
even random function arguments.

There are many occasions in this paper where an average waki@ised during the computation of
another average value. It should now be clear that (10)ngtétie success probability of a single rainbow
matrix, is also slightly problematic, but acceptable. Titerent reduction functions at each rainbow matrix
column do not provide independence of the colored iterdtingtions, and the exiting logical gap would not
be closed even if different columns were processed withgaddent random functions. However, the small
standard deviation of image sizes justifies (10) as a goorbajppation.

The success probability (4) of the DP and Hellman tradeaffsnputed from the average number of
points in a tradeoff matrix is another example of averageesatuse. We have not checked if the standard
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deviation of the coverage rate is small, but know from exgrexe that (4) predicts the correct value accurately,
so this should not be a problem. In fact, this situation is @®blematic than the iterated image case, because
the arguments become strictly correct when independedbrarfunctions are used in different tables.
Readers may have noticed that we were more careful in reasiapge values in Section 4.2. The
distribution of chain lengths in a DP matrix can be inferrezhf (16) and it is clear that the lengths are not at
all centered around the average lengtHence, we were careful to work with the full range of possitain
lengths, rather than tretias being the typical pre-computation or online chain lengtiparticular, we did
not treat the DP matrix as consistingrathains of identical length This cautious handling of chains should
not be confused with our free use of the value (16) itself civlis an expected value, in other computations.

C Standard Deviation of |mage Sizes

The purpose of the section is to provide a proof to Lemma 4T@ming the standard deviation of image
sizes. We first prepare a couple of technical lemmas.

Lemma42 LetF:.# — .4 be the random function. Fix a subset C .4 of size m and ley1,y, € .4 be
any two distinct points. The probability for(F#') to contain botty; andy, is

()RR 7))
Proof The probability under consideration may be computed aevisll
(D))" 52"
R DT 7))
+ e
o) @) () - (7))
In each additive term, the paf}) (ﬁ)k(lf %)mfk gives the probability for exactli out of theminputs to
k

map toy:. The remaining{1— (1— ;)™ "} partis the probability for at least one of the— k) inputs
that are known not to have reachgdto map toy,. The above sum is equal to the expression

(fr G- R - 0D ) () 72"
To check this claim, it suffices to expand the first two pairbrafces. This expression can be rewritten in the
form stated by this lemma. O

Lemma 43 For positive integerdN and m, we have
(1_ %)m_ (1_ NJ_-l)m = N(Nm— 1) (l_ Nil)mil'
Proof It suffices to check the following sequence of equalities iarduality.
()" (o y)”
() HE Q) ) ) o (o))

anept -8 +R) g gD

N(le 1 m(1- g - 1)m71

Y

In fact, a similar upper bound is also easy to obtain. O
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In the remainder of this section C .4 will be a fixed set of sizen. For eachy € ./, let us define the
function xy : A4 — {0,1} by
1 ifyeR(#),
Xy(F) = { YEF(4)

0 ifygF().

The dependence gf, on.# was not made explicit in the notation since we will kegpfixed for the rest of
this section. The size of the image.af under any functiorF : .4/~ — 4" can be expressed in terms of this

indicator function as
|F(A)| = z Xy(F).
yeN

Using this observation, one can present
E[IF(# [ 3 %P = 3 EDy(F)] =NEy(F)] =N{1-(1- O e
yeV

wherey’ is any fixed point of 4, as an alternative way of writing down the proof to Lemma 40.
Let us fix the notation

X=> X
yeN

and view this as a random variable defined on the spécé, which is given the uniform probability distri-
bution. It maps each elemeRtto the positive integef (.#)|. Equation (53) is equivalent to

1\m
-nfi- (- 9" (54)
and we need to work with the standard deviation
stdev(x) = \/E[x?] - (E[x])2.

One can easily check that

EX=E[(30)° =E[ 5 xuxe] <E[Sx0+ 5 xuxe] <EXI+ 5 EDouxe]

= E[X] + N(N - 1)E[Xany’2}7

wherey) andy, are any two distinct points off". The expectatior [xy/lxy/z} is equal to the probability for

bothy}; andy}, to belong to the image space, and this is the content of Len2nRdferring also to (54) and
Lemma 43, we can compute a bound for the variance as follows.

{stdev(x)}* = E[x? - (E[x])? = E[X] + N(N = 1) E [xy; Xy, | — (E[X])?
=N )" (o (o %)m} o{(-n)" ()Y
Nl 03 R0
SO )}—ﬁS%

Here, the second inequality follows from the observat(mn )

The final expression allows us to state that sfatgw }

1— g, which holds whenevem > N.

On the other hand, from the observatiﬁh— ) <1- m(m ) , which holds for everyn > N, we
know that ( 0
m m(m— m m m
> - .o 1 Ant .
Bl =N{ - N2 }>N(N ) =2
Finally, by combining the two bounds, we can state that
stde\x) - 2
E(x] VN

This concludes the proof of Lemma 41.
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D Note on the Index Tables M ethod

The index table method can be seen as a special case of a nman@lgend widely known data structure
calledhash tablesTo storem starting point and ending point pairs, one first fixésaah functiorthat maps
elements of # to logm-bit strings. This function need not be a cryptographic Hasittion, although the
same term is used. Instead of sorting the data, each staming and ending point pair is recorded at the
position in the storage addressed by the hash value of thegepdint. Collisions of addresses are inevitable,
but there are various ways to deal with this problem.

Table lookups to hash tables are performed by first hashagriding point to be searched for in the table
and fetching the data located at the address pointed to hiyatbie value. Since the address holdsnidgjts
of information, even if almost log bits from each ending point are removed before storage, weeatiably
determine whether or not a match has occurred.

One advantage of the hash table method, other than reduirege and not requiring any sorting, is
that it provides constant time table lookups. In comparisolookup to a sorted table requires time that is
logarithmic in the table size.

If the hash function is set to return the fifglogm) — €} bits of its input and buckets to hold approxi-
mately Z table entries are placed at the position pointed to by eash Value, then the hash table technique
reduces to the index table technique.

E Experiment Results

In this section we verify that the main parts of our argumeugtee well with experiment results. Experiments
are done to check the validity of our results concerning therage rate and the cost of false alarms for the
DP tradeoff. Analogous testings for the Hellman and rainti@geoffs are not provided, as these testings
were done in [15]. We also provide experimental evidencesrtimg our arguments surrounding the effects
of the ending point truncation method.

Since averaging over all functions defined on any reasonatgg space is not at all possible, all our tests
were conducted with a very small subset of explicitly camsted one-way functions. The one-way function
used was always the encryption key to ciphertext mappindeua fixed plaintext, computed with the block-
cipher AES-128. Different randomly chosen plaintexts wesed to provide multiple one-way functions. The
size of the input space was controlled by utilizing only a kmamber of key bits and padding the remain-
ing key bits with zeros. The output space size was contrddiethasking the ciphertext to an appropriate bit
length. When working with the DP tradeoff, as discussedeasthrt of Section 4, we constructed = 17—2“717
pre-computation chains and gathered every resulting D ctaher than incrementally generate additional
chains untilm DP chains were collected.

E.1 Coverage rate of DP tradeoffs

Experiment results supporting Proposition 9, which preséme coverage rate of a DP table, are given in
Table 2. The coverage rate was measured by simply storinDRiimatrix entries while constructing the
DP chains and later counting the number of distinct matrixies that were used as inputs to the one-way
function. Each test result value given in the table is anayemover 100 experiments. Different randomly
generated plaintexts for AES were used for each of theseaiexpet. All the tests were done on a space of
sizeN = 230, One can check that the test figures are very close to whatéaeyt predicted.

E.2 Cost of resolving alarms for the DP tradeoff

Our next goal is to check the validity of our arguments conicey the time complexity that incorporates the
extra cost of false alarms. We could do this with the expogs®ir time complexity stated during the proof
of Theorem 13, but such an approach would hide much of the innekings. Hence, we decided to verify
the following lemma, which allows access to much finer detail

Lemma44 Consider the DP tradeoff. The expected number of chainsamtis at the i-th iteration of the

online phase is ) ) .
et (e e ten( )+ en(- )}
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Table 2 Coverage rate of DP tradeoffi(= 230)

logm logt €/t | Dmsc test theory

11 9 12 0.5 | 0.225357 0.224285

9 10 12 0.5 | 0.225368 0.224285
11 9 1 0.5 0.400071 0.399566

9 10 1 0.5 | 0.398824 0.399566
11 9 2 0.5 0.628349 0.627405

9 10 2 0.5 | 0.629802 0.627405
11 9 5 0.5 | 0.816415 0.814339

9 10 5 0.5 0.811530 0.814339
12 9 12 1.0 | 0.221190 0.219643
10 10 12 1.0 0.220655 0.219643
12 9 1 1.0 | 0.384839 0.383464
10 10 1 1.0 | 0.385049 0.383464
12 9 2 1.0 0.582370 0.581801
10 10 2 1.0 | 0.581019 0.581801
12 9 5 1.0 0.722192 0.723263
10 10 5 1.0 | 0.721465 0.723263
13 9 12 2.0 | 0.212476 0.211204
11 10 12 2.0 0.212538 0.211204
13 9 1 2.0 | 0.357424 0.356587
11 10 1 2.0 0.355287 0.356587
13 9 2 2.0 0.515214  0.515495
11 10 2 2.0 0.514631 0.515495
13 9 5 2.0 0.611834 0.612748
11 10 5 2.0 | 0.610616 0.612748

Proof The expected number of chain collisions is the sum over alkrof the DP matrix of the respective
probabilities for the-th iteration to sound an alarm in association with that rafter reading the proof to
Lemma 12, it should be clear that the sum of probabilities meda@oking for is

m

3 e ool )y {oe( ™) -tew( )

In integral form, this is approximately

1o L i
T 1 en exp(—f) ./0 exp(—v){exp(mln{f7v}>—1}d\4

which simplifies to what is claimed. O

This lemma contains the core of our arguments given in the teat concerning the cost of alarms, and its
verification through experiments should provide good supieo the correctness of our theory.

To test this lemma, we first initialized an arrayfofounters to zeros. Next, we fixed a one-way func-
tion by randomly choosing a plaintext and constructed a Dk taith the fixed function. Then, a random
password (= zero-padded encryption key) was generatechamhssword hash (= masked ciphertext) corre-
sponding to that password was computed. The online chaitingtdrom the password hash was computed
until a DP was found or thé&th iteration was reached. If the online chain terminated &P and it was
found to reside within the DP table, the counter correspundd the current online iteration count was in-
cremented. The online chain generation was repeated teutiipes with the same table, but with newly
generated random keys. Note that, since we are not usinggpéables, it is possible for the online chain to
collide simultaneously with more than one entry of the DRetalZare was taken to increment the counter
corresponding to the current iteration count as many tinseth@ number of collisions found. The whole
process described after the counter initialization stepnepeated multiple times, with each repetition using
a newly generated one-way function and a DP table.

The test results for four different parameter sets are ptedein Figure 7. Each of these experiments
was done with 2000 tables and 5000 random online chains pler. tm each of the four boxes, the barely
visible thin dashed line represent our theory as given byrnam4. There arémany tiny dots in each box



67

T T T T T T T T T T -
m=768, £512,t=5t, N=22" m=768, £512,i=5t, N=2%° -
0.001¢ 1 0.0005F -
Dps=1.5 Dinsc=0.7E -
& 0.000¢ 1 & o000 ]
2 2
© o
© 0.000¢] 4 © 0.000: -
o o
2 ]
5 3 !
2 0.0004 & oooozf | -
x x
@ O ]I
0.0002 0.0001 f -
! I
0.000CE! . . . . i 0.000ck] . . . . L=
500 1000 150C 200C 2500 0 500 1000 1500 200C 2500
iteration coun iteration coun
T ——— T T T T . . . . . —
i _ P 28
woosdh fﬁi& m=1536, £512,i=10, N=2® | b
Dms=1.5
. { .
S 0.000€F 4 & o0.0002F
2 } 2
3 / 5
© 0.0006- | 4 O o0.0001fF
° i o
1} i Q
g ' g
g 00004 | 1 & ooo0uf
) f &
o.ooozfj‘ j 0.0000¢
1
’ [
0.000¢E] . . A 4 0.0000( . . . . . L s
o 1000 2000 300C 400C 5000 0 500 100¢ 150¢ 200C 2500 3000
iteration coun iteration coun

Fig. 7 Expected number of collisions at each iteration of the DBeo#f (dots: experiment; dashed line:
theory)

and these represent our experiment results. The heigheéftithdot, counting from the left, is the value of
thei-th iteration counter at the end of the experiment divide@®90x 5000, the total number of chains that
were utilized. All the experiment results match our theospywell.

E.3 Ending point truncation

Finally, we test the validity of our arguments concerning &nding point truncation method for reducing
storage. The straightforward approach would be to sim@yltemma 16, Lemma 24, and Lemma 32 that
present the cost of truncation related alarms, but we déc¢@work with the probability of alarms related to

truncations, so as to expose more of our argument detaietests.

Lemma45 Consider the DP tradeoff that uses ending point truncatibé truncated match probability. At
the i-th iteration of the online processing of a single DPléalthe number opseudo-collisionghat are due
to the ending point truncations, i.e., those that are nobaited with any true chain collisions, is expected
to be Mexp(—1 ). The corresponding value for the Hellman tradeoffisand that for the rainbow tradeoff
is also T, if one decides to fully process a single rainbow table withierminating, even when the correct

answer is found.

Proof The proof to Lemma 16 shows that the claimed expected valuinéoDP tradeoff case can be com-
puted as

m .
T |

3 gt en(-)on(- )i = o envaven(—{)

which simplifies to what is claimed. The statement for thelidah tradeoff case follows immediately from
the proof of Lemma 24, and the rainbow tradeoff case can leered from the proof of Lemma 32. O

The three claims given by this lemma are at the core of ournaegils concerning the ending point
truncation method, and experimental verification of theatements should provide confidence to the validity

of our arguments given in the main text.
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Fig. 8 Expected number of collisions, induced by ending pointdation, at each iteration of the DP tradeoff
(dots: experiment; dashed line: theory)
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Fig. 9 Expected number of collisions, induced by ending pointdation, at each iteration of the Hellman
tradeoff (dots: experiment; dashed line: theory)

0.8 q

2.0 B

0.6 T e e R R A e e R

0.4 —

m=10000, £300, N=221, r=214 ] m=30000, £500, N=224, r=214

0.2

expected truncated collisio
expected truncated collisio

0.5 B
Rinsc=1.431, mir=0.610¢ Rinsc=0.8941, nir=1.831
0.0

0.0 - B
L L L L L L L L L L
0 50 100 150 200 250 30C 0 100 200 300 400 50C

iteration coun iteration coun

Fig. 10 Expected number of collisions, induced by ending pointd¢ation, at each iteration of the rainbow
tradeoff (dots: experiment; dashed line: theory)

As in the previous section, we generated random traded#égatnd tested with random online chains for
the occurrence of alarms induced from truncations. We dttire full ending points, together with the trun-
cated ending points, in the pre-computation table. Theefudling point information was used to distinguish
between alarms that were caused by ending point truncagiotishose that arose from true chain collisions.

The test results are given in Figure 8, Figure 9, and FiguréAs(before, the thin dashed lines are the
graphs claimed in Lemma 45 and the numerous tiny dots rapregperiment data. All the test results are
in good agreement with the theory. Each of the two diagramthsDP tradeoff was obtained by averaging
over 2000 tables and 5000 online chains per table. For thiendeltradeoff we generated 2000 tables and
5000 inversion targets per table. The online chain was coedpto the full lengttt for each inversion target
and truncated match with the table elements was searchedtéoreach one-way function iteration. In the
rainbow tradeoff case, each diagram is the result of 10@salvith 5000 inversion targets per table. Recall
that thek-th iteration for the rainbow tradeoff refers to a proces# tonsists ofk — 1) invocations of the
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one-way function and one table lookup. Ruiterations were tried for each inversion target and hench ea
inversion target generateédearches to the table for truncated matches.





