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Abstract. Sanitizable signatures provide several security features which
are useful in many scenarios including military and medical applications.
Sanitizable signatures allow a semi-trusted party to update some part
of the digitally signed document without interacting with the original
signer. Such schemes, where the verifier cannot identify whether the mes-
sage has been sanitized, are said to possess strong transparency. In this
paper, we have described the first efficient and provably secure saniti-
zable signature scheme having strong transparency under the standard
model.
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1 Introduction

Applications like e-government and e-tax payment systems require appropriate
alteration of digitally signed documents in order to hide personal information.
Sanitizable signatures came into much attention when recently, government enti-
ties were forced to disclose documents owing to disclosure laws. In the past, when
secret paper documents were made declassified, hiding of sensitive or personal
information in the document was done by blackening-out (sanitizing) relevant
sections of the documents. A digital signature, however, prohibits any alteration
of the original message once it is signed. So, in the world of digital signatures,
sanitization cannot be done.

A sanitizable signatures protects the confidentiality of a specified part of the
document while ensuring the integrity of the document. A solution for this prob-
lem was proposed earlier in [1] as content extract signatures. In 2005, Ateniese
et al. [2] introduced sanitizable signatures which can alter the signed document
instead of hiding it. A sanitizable signature scheme is a signature scheme which
allows a designated party, called the sanitizer, to hide certain parts of the orig-
inal message after the message is signed, without interacting with the signer.
The verifier confirms the integrity of disclosed parts of the sanitized document
from the signature and sanitized document. In other words, a sanitizable signa-
ture scheme allows a semi-trusted sanitizer to modify designated portions of the
document and produce a valid signature on the legitimately modified document



without any interaction with the original signer. These designated portions of
the document are blocks or segments explicitly indicated as mutable under prior
agreement between the signer and the sanitizer. The sanitizer can produce a
valid signature only if it modifies these portions and no other parts of the mes-
sage. Following these works several authors [3-8] proposed various sanitizable
signature schemes with different properties.

There are different types of sanitizable schemes present in literature. In some
schemes, sanitization on any part of the message can be performed by the sani-
tizer, while in other schemes, sanitization on some parts of the messages can be
restricted by the signer, and this decision can be made even after the signing
of the message performed by a signer or anyone else. Transparency is a another
property of sanitizable signature schemes [2, 9]. If the verifier knows which part
of the document is sanitized, then the scheme has no transparency. If he does not
know whether the message is sanitized, then the scheme has weak transparency.
If he also does not know whether the message can be sanitized, then the scheme
is said to have strong transparency.

1.1  Owur contributions

In this paper, we have provided two protocols for strong transparency in the
standard model using bilinear pairing. Our construction is based on Waters’s
scheme [10]. These are the first efficient and secure schemes which provide strong
transparency under the standard model. In our first protocol we achieve strong
transparency by providing some secret information to the sanitizer, where the
portions of the message to be sanitized are specified by the signer. In our second
protocol we remove the need to send secret information to the sanitizer on a per-
message basis, provided that the blocks of message which need to be sanitized
are fixed beforehand. This requirement may hold in several kinds of documents
such as forms, databases, etc. The length of our sanitized signature is equivalent
to the length of Waters’ [10] signature, hence shorter than the signatures pro-
duced by other protocols. Our scheme uses techniques similar to the sanitizable
signature scheme discussed in [9] and provides additional properties. The scheme
in [9] does not provide transparency. We also compare our scheme with other
sanitizable signature schemes proposed in literature.

1.2 Applications

As described in [2], sanitizable signatures have several applications.

Multicast and Database Applications. Sanitizable signatures are quite
well-suited for customizing authenticated multicast transmissions. For example,
in a subscription-based internet multimedia database, sponsors may wish to in-
sert personalized commercials into messages at various points of the broadcast.



It is desirable to authenticate these messages to allow the subscribers to distin-
guish legitimate contents from spam. Since real-time authentication may be too
costly, one solution is for each vendor to sign the commercial once and allow the
database administrator to customize the individual commercials by replacing the
generic identity field with the actual subscriber’s identity, at various points of
the commercial. This way, the subscriber can verify that the commercial comes
from a legitimate source (i.e., it is not spam) and the sponsors do not have to
sign each customized broadcast. Furthermore, the database administrator is not
forced to divulge personal information of its subscribers without their consent.

A related application of sanitized signatures is editing movie content. Depending
on the age of the subscriber, the administrator can replace offensive language
with watered-down substitutes rather than bleep out the words. Again, sanitized
signatures provide the desired benefits.

Medical Applications. Sanitizable signatures can be used to ensure the in-
tegrity, authenticity, and anonymity of public health information in medical
records. In general, sanitizable signatures can accommodate different levels of
data de-identification, supporting the minimum necessary disclosure standard
of the existing privacy laws. This provides flexibility not available in redactable
signatures.

Similarly, sanitizable signatures may be applied in several other scenarios
such as secure routing, e-governance, etc.

2 Preliminaries

2.1 Bilinear Pairing

Let G, G2, G be a multiplicative groups of prime order p. The elements g; € G,
and go € Go are generators of Gy and Gg respectively. A bilinear pairing is a
map e : G; x Gy — Gp with the following properties:

1. Bilinear: e(g1%, g2°) = e(g1,92)® for all g1 € G1,92 € Ga, where a,b € Z,,.

2. Non-degenerate: There exists g1 € G; and g € Go such that e(g1, g2) # 1;
in other words, the map does not send all pairs in G; x Gy to the identity
in GT.

3. Computability: There is an efficient algorithm to compute e(g1, g2) for all
g1 € G; and g2 € Go.

2.2 Security Assumptions

Definition 1. The Computational Diffie-Hellman (CDH) problem is that, given
g, g%, ¥ € G for unknown z,y € Z,*, to compute g*¥.

We say that the e-CDH assumption holds in G if no polynomial-time algorithm
has non-negligible probability € in solving the CDH problem.



2.3 Sanitizable Signature

A sanitizable signature scheme is a signature scheme that allows the sanitizer to
sanitize certain portions of the document and to generate the valid signature of
the resulting document with no interaction with the signer. A sanitizable signa-
ture is processed by three parties consisting of a signer, a sanitizer, and a verifier.
The signer generates the signature assuring the authenticity of the document.
The sanitizer receives the document and its signature from the signer. The sani-
tizer generates the sanitized document and its signature without any help of the
signer. The verifier receives the sanitized document and its signature from the
sanitizer. The verifier accepts the signature only if he verifies the authenticity of
the disclosed document.

2.4 Transparency

A sanitizable signature scheme may have various levels of transparency, which
we define below:

1. No transparency. The verifier knows which part of the document is sani-
tized.

2. Weak transparency. The verifier does not know if the message is sanitized.
The verifier only knows if the message can be disclosed and sanitizing is
prohibited or not.

3. Strong transparency. The verifier does not know if the message has been
sanitized. In this model no extra information is sent to the verifier other
than message and a signature.

2.5 State information

In our first scheme, the signer can control the states of the bits of the document,
i.e., whether sanitization is allowed or sanitization is prohibited. This state in-
formation is kept secret to achieve strong transparency. The signer generates the
secret information for each message of the document. The secret information is
necessary to generate the signature of the sanitized document. The signer sends
the secret information of the message to the sanitizer if he allows the sanitizer
to sanitize the message. Otherwise he does not send the secret information of
the message to the sanitizer.

In our second scheme, the sanitizer is given the power to control certain bits
of the message a priori in the set-up phase. In this case, no secret information
needs to be sent to the sanitizer by the signer.

2.6 Scheme Outline

— Key Generation. Algorithm KeyGen, executed by the PKG, takes as input
a security parameter 1% and outputs public parameters param, public key



and secret key pair for the signer (PK, SK) and secret information of the
sanitizer SK’, if any.

— Signing. Algorithm Sign, executed by the signer, takes as input a document
M, public parameters param and secret key SK. Let M = mqmq---m, €
{0,1}", where m; is defined as the bit at index ¢ of message M. Let Is C
{1,--- ,n} denote the set of indices that the sanitizer is allowed to modify.
The signing algorithm outputs a document M, two signatures(oy, oa) of M
and secret information ST for the sanitizer, if any.

— Sanitization. Algorithm Sanitize, executed by the sanitizer, takes message
M, public parameters param, signature o on M, sanitizer’s secret key SK',
if any, secret information from the signer ST, if any, and outputs a message
M’ and sanitized signature o’.

— Verification. Algorithm Verify, executed by the verifier, takes as input an
unsanitized document and signature (M, o) or a sanitized document and
signature (M’,0"), public parameters param, and public key PK of signer,
outputs accept or reject. The strong transparency property requires that the
verifier not be able to find out whether the document is sanitized or not.
Hence the verification procedure remains the same for both sanitized and
unsanitized documents.

3 Security Model

3.1 Correctness

We require that Verify(o, M, PK, param) = accept, for an unsanitized message
M if :

1. (PK,SK,SK', param) < KeyGen(1¥),
2. (0,81) <« Sign(M, SK, param),

We additionally require that Verify(o’, M, PK, param) = accept, for an sanitized
message M’ if:

1. (PK,SK,SK', param) < KeyGen(1%),
2. (o,81) « Sign(M,SK, param),
3. (M',0") « Sanitize(M,o, PK,SK’, SI, param)

3.2 Unforgeability
We have the following game Expy,¢ for unforgeability:

1. The simulator S gives param and PK to the adversary A.

2. A is allowed to query the signing oracle ¢, times adaptively. During the j**
query, on inputing a document M; = m; 1 ---m;y, the oracle returns the
corresponding signature o; on Mj.

3. Finally A outputs a document M* | a signature o*.



A wins if Verify(o*, M*PK, param) = accept and the message M* is not equal
to any query message M; for 1 < j < g,.

Note that the adversary is not provided a sanitization oracle, as a sanitized
signature is indistinguishable from a normal signature by the signer on the same
message. This follows from strong transparency. This security model for unforge-
ability is also present in [11].

Definition 2. A sanitizable signature scheme is (e, g5 )- unforgeable if there is no
randomized polynomial time adversary winning the above game with probability
at least € with at most g5 queries to the signing oracle.

3.3 Indistinguishability
We have the following game Expi,q for indistinguishability:

1. The simulator S gives param and PK to the adversary A.

2. A is allowed to query the signing oracle ¢, times adaptively. The oracle is
the same as the one in the game for unforgeability.

3. A sends two different signatures og, o1 on My, M; respectively and a sani-
tized message M’, where M’ differs from My and M; only at bits that are
allowed to be sanitized.

4. S picks a random bit b and sends o} to A which is the signature obtained
from the sanitization of message Mj,.

5. Finally, A outputs bit b’

A wins the game if b = b'. The advantage of A is |Pr[b =] — 1/2]|.

Definition 3. A sanitizable signature scheme is said to be unconditionally
indistinguishable if there is no adversary winning the above game with advantage
greater than 0 with any number of queries to the signing oracle.

3.4 Immutability

We have the following game Expiyy, for immutability. Let Is be the set of posi-
tions of the bits in the message that the sanitizer is allowed to modify. Here the
adversary is a sanitizer who attempts to sanitize bits outside his permissible set
Is.

1. A sends a challenge set Ig, the set of bit positions where sanitization is
allowed.

2. The simulator S gives the public parameters param and PK to the adversary
A.

3. In scheme-2, the one-time secret information corresponding to the set Igs is
also given to the adversary.



4. A is allowed to query the signing oracle ¢; times adaptively. During the
4 query, on input a document M; = mj1---mjn, the oracle returns the
corresponding signature o; on M;.

5. In scheme-1, A additionally obtains secret values SK; along with o;. This
enables A to sanitize bits at positions Ig.

6. Finally, A outputs a document M* = mj---m},

Vie{l, -+ ,qs} Ji ¢ Is:mj; #m].

a signature o*, where

A wins the game if signature ¢* on M™* verifies successfully. The advantage
of A is the probability that A succeeds. This security model is in accordance
with [12]. Note that accountability is not required in our model as this property
compromises the unconditional indistinguishability of our scheme.

Definition 4. A sanitizable signature scheme is e- immutable if there is no
randomized polynomial time adversary winning the above game with probability
at least e.

4 Scheme 1

4.1 Outline

This scheme provides a strong transparent sanitizable signature protocol where
the signer is proactive in deciding which bits need to be sanitized and by which
sanitizer. The signature protocol is based on the Water’s signature scheme [10].
The signer sends the indices which are permitted to be sanitized as well as one
time secret information that enables sanitization of the relevant portions of the
message to the sanitizer, in a secure fashion. The sanitizer may replace those
portions of the message by an appropriate message of his choice. In this section,
we describe this scheme, provide security proofs based on the CDH assumption,
as well as show extensions by which the signer can exert more control on how
the message is sanitized.

4.2 Scheme Description

KeyGen. Let Gi,Gs,Gr be groups of prime order p. Given a pairing e :
G1 x Go3 — Gp. We denote by n the number of bits of the message m. Let
g € Gy and go,u’, uy, -+ ,u, € Ga.

Public parameters: Gi,Ga,Gr,e,g,p,g2,u’, ut, - ,u,. Public key of the signer
is g1 = g%, where a € Z,.

Private parameters: Private key of the signer is a € Zj.



Sign. Let m be the n-bit message mimg---m, € {0,1}". Signer randomly
picks r € Zy and outputs the following values (01, 02):

n
(o1 = g5 (u' [T i) 02 = g")
i=1
Let Is be the set of indices that the sanitizer is permitted to modify. Then
the signer sends the values u] Vi € Is to the sanitizer in a secure channel.
Alternately, these values may be encrypted by the public key of the sanitizer
and sent across.

Sanitize. The sanitizer obtains the values (o1,02), and the secret informa-
tion u] Vi € Is from the signer. It runs the verification protocol to check if
the signature is valid. Let m’ be the message whose signature is sought, which
differs from m at positions I C Is. Define I} = {i € I : m; = 0,m} = 1},
I, = {i € I : m; =1,m} = 0}. The sanitizer chooses 7 €p Zy,. Then the required
sanitized signature is:

[Licr, i iy mie 7
T [ w™" oh = o2g7)

(01 =01
[Licr, v e}

Verify. The verifier receives the tuple: (01, 02) on a message m,
Verifier checks if the following relation holds from public parameters:

n
? )
e(ga O-l) = 6(91, 92)6(02’ u' H uZnL)
=1

Note that the verification protocol is same for a sanitized and non-sanitized
message.

4.3 Security

Correctness. To show correctness, we need to show that any valid normal
signature, as well as sanitized signature verifies successfully.

Verification: The signature o, on a given message m is given by the two-tuple
(o1 = g5 (' [T, w™)" ,00 = g"). If valid, then clearly:

91,9 )(02, o' [Tie, m')
(9%, 92)e(g" U’HZ 1)
(9 )( (u'Hflu ")
(9,95 (u H?lum))
(9,0'1)

Hence, a valid signature satisfies the verification equation.

o)
—~

e
e
e
(&



Sanitization: A sanitized signature is obtained as:

n
,_ Lier wi o miF
(01 —alﬁu Huz 0y = 029")
iely i i=1
where 1 ={i€Is:m; =0,m, =1}, L ={i € Is : m; =1,m; = 0}.
We note that m} —m, is 1 when ¢ € I, —1 when ¢ € Iz,and 0, otherwise. Hence,
we can see that:

o) = olu’"Hzezl U; /Hzelzu ]._[7, 1 U m ’
= o T o " T
= g8 o ' H:l LU T(mz) Hz L r(m;

= gSu /(T+T) H:l Lu (T+7“)(m)

The sanitized signature is of the form (o} = g$(u/ [[;—, u;" ) (r47) gl = g(r+7),
whose distribution is identical to a regular signature on m’ by the signer. Hence,
a sanitized signature also satisfies the verification equation.

—m;) TN miF
ILizi

Unforgeability. We prove the following theorem about unforgeability.

Theorem 1. The proposed sanitizable signature scheme in scheme-1 is (¢, qs)-
unforgeable under the ¢ -CDH assumption where € < (8¢2(n + 1) + 2)€’ + 2/p,
where qs is the polynomial number of queries.

Proof. Assume there is a (¢, g5 )-adversary A exists. We shall formulate another
probabilistic polynomial time (PPT) algorithm B that uses A to solve the CDH
problem with probability at least € and in time at most t’. B is given a problem
instance as follow: Given a group G, a generator g € G, two elements g%, ¢ € G.
It is asked to output another element g*® € G. In order to use A to solve for the
problem, B needs to simulates a challenger and the signing oracle for A. B does
it in the following way (Recall here that g® and ¢° are the input for the CDH
problem that B should solve).

Setup Phase. Let [ = 2¢q, . B randomly selects an integer k such that 0 < k < n.
Also assume that I(n + 1) < p, for the given values of ¢, and n. It randomly
selects:

1. 2/ €R Zl;y’ €ER Zp

2. % ER Ly, Let X = {1, %2, ,&pn}.

3. yAz €R Zp ) Let Y = {@17?)27' o 7i‘n}
We further define the following functions for binary string M = (mq, ma,- -+ ,my),
where m; € {0,1} 1 <i < n, as follows:

M) =2+ &m; — Ik
1=1



n
M) =y + Z iy
i=1
B constructs a set of public parameters as follows:

b 0 —lk+a’ 4y — i 00 ;s
g2 =g ,u =g, g% ui=gy'gVi=1,---n

We have the following equation:
ms F(M)
u'”uilfgz( )g(M)

All the above public parameters and public key g1 = g are passed to A.

Simulation Phase. B simulates the signing oracle as follow. Upon receiv-
ing the j*™ query for a document M;, although B does not know the secret key,
it can still construct the signature by assuming F'(M;) # 0 mod p. It randomly
chooses r; €r Z, and computes the signature as

*J(Mj)/F(Mj)(gg(Mj)gJ(Mj))

—1/F(Mj) r.
S JFO)) o

T4 _
7,025 =01 g’

By letting #; = r; — a/F(Mj;) , it can be verified that (o1 j,02,;) is a valid sig-

nature on M; as shown below:
_J(My)
F(M;) (QQF(Mj)gJ(Mj))rj

01,5 =91
_g_azr((#g))(ng(Mj)gJ(M]))ﬁlj)(g;(Mj) gJ(Mj))—ﬁzj) (gf(Mj)gJ(Mj))r]-
= g8(gs M) g7 (M)
02 = gfl/F(MJ) T
— gr]fa/F(M])
=g

If F(M;) = 0 mod p, since the above computation cannot be performed (divi-
sion by 0), the simulator aborts. To make it simple, the simulator will abort if
F(M;) = 0 mod [. The equivalence can be observed as follow. From the assump-
tion that {(n + 1) < p, it implies 0 < Ik < p and 0 < 2’ + Y | #;m; < p (as
' < 1,& <1). We have —p < F(M;) < p which implies if F(M;) = 0 mod p
then F(M;) = 0 mod I. Hence, F(M;) # 0 mod ! implies F'(M;) # 0 mod p.
Thus the former condition will be sufficient to ensure that a signature can be
computed without aborting.

Challenge Phase. If B does not abort, A will return a document M* =
mj ---m}) with a forged signature c* = (o7,03). The algorithm B aborts if
'+ Zi|m’f:1 Z; — lk # 0 mod [. From the verification equation, we can write:

(z +Z'L|’m _q Ti—lR)T” (yl+z7‘,|mf:1 gi)r*

= g%
ag (y +2 i jmr =1 G
2 (2

/—\

)



Hence the algorithm successfully computes the solution to the CDH problem:

**ylle‘|mf:1 Ji ab

Z =005 =95=9

O
Probability Analysis. The probability that the simulation does not abort is
characterized by the events A;, A* where:

1. A, is the event that F'(M;) # 0 mod [ where j =1,--- ,¢s.
2. A* is the event that ' + > 1 & — 1k =0 mod p.

ilmy=
The probability that B does not abort:
as

Pr[not abort] > Pr[/\ Aj N AT

j=1

As the adversary can at most make B abort by randomly choosing M*, we
have Pr[A*] = l(n%l) Also noting that A; is independent of A* we have:
Prnot abort] > Pr[AJ2, A; A A*]

Pr[A*[Pr[A\]z, A;|A%]

m(l — g;l Pr[—A;|A*])

8(n+1)%q3

IV IV IV

Indistinguishability. As shown in the correctness section, a valid signature
o, produced by a signer on a message m’ has a distribution identical to a valid
sanitization of a message m; to result in message m’ and signature o/, produced
by the sanitizer. Similarly, the distribution is also identical to a valid sanitization
of another message mq to result in message m’ and signature o}, produced
by the sanitizer. Hence the signatures o), and oj are indistinguishable as their
distributions are identical.

Immutability. We prove the following theorem to show immutability.

Theorem 2. The proposed sanitizable signature scheme in scheme-1 is e-
immutable under the ¢’-CDH assumption, where there exists constant [ : € < [€’.

Proof: We prove that the sanitizer cannot modify any bit other than bits at
positions Is C {1,---,n} for which the values {u} : i € Is} are known to the
sanitizer. We will prove the following lemma on immutability in order to prove
the above theorem.

Lemma 1. For any randomized polynomial time algorithm algorithm B with
an advantage €, in the immutability game Expiy,m, on a message of length n with
access to sanitize m bits at positions Ig, there exists a randomized polynomial



time algorithm A with an advantage €, > €, in the unforgeability game Expyps
on a message of length n —m.

Proof: Assume that there exists a randomized polynomial time algorithm B
which plays the immutability game Exp;nm with advantage €, with access to
sanitize m bits at positions Is. Consider a randomized polynomial time algo-
rithm A which plays the unforgeability game Exp,,r on messages of length n—m.
Then we show that the algorithm A can simulate the challenger interacting with
algorithm B, and thereby obtain an advantage €, > ¢, in Expyns. In the setup
phase, A interacts with B and the challenger in Exp,y,¢, denoted by C, as follows:

1. B provides A the set, Is, of bit positions where sanitization is allowed. In
general, we have Is C {1,--- ,n}. However for the ease of exposition we
assume Is = {n —m+1,--- ,n}, where m = |Is|. Note that the argument
can be easily extended for the general form of Ig.

2. C provides A the public parameters Gi, Go, G, € .9,p, go, U, UL, Up—m.

3. Achoosest; €Er Zy, i =n—m+1,--- ,n. Asets u, =gl fori=n—m,---,n

4. A provides B the public parameters G1,Go, G, e, 9,p, g2, U, U1, , Up—mm,
Wy iyt

In the simulation phase, for every message M;, j = 1,--- ,qs, requested by B,

A interacts with B and C as follows:

1. B requests signature for a message M; = m;1---m;, from A.
2. A requests a signature for message M; = m; 1 -+ M pn—m from C.

’
: ) ) I n tim;i
3. A obtains (0j,1,052) from C, and sets 0}, = o;1[[;, 410" and
/ — .
O'j’2 =042

’
iMj,0

4. A sends the signature (07} 1,07 5) to B and the secret information {a;jg
n—m+1,---,n} to B.

7::

In the challenge phase, if B is successful in obtaining a valid message signature
pair (M*',0*'), then A obtains a valid signature tuple as follows:

*/ *

1. B sends A a valid message-signature tuple (M*' =m3’---m}' o*' = o*],03").
Clearly Vj € {1, -+ ,qs} Fi¢ {n—m+1,--- ,n}:m;; #m}".
2. Asets M* =mj---m; where mf =m}’ foralli=1,--- ,n—m. A sets

n—m)’

*

01:

* */
09 = O
Hn O_tém;,i” 2 2
i=n—m-+1"-2

3. A sends C a valid message-signature pair (M*,o* = (o7,03)). Clearly, it
follows that Vj € {1,--- ,¢s} Fi € {1,--- ,n—m} : m;; #m}.

It is easy to see that if B’s signature tuple verifies, then A’s signature tuple
verifies as well. Hence the advantage of A winning the game Expunt, €4 > € ,
where €, is the advantage of B in winning the immutability game Expjmm.



From theorem-1, the advantage of any probabilistic polynomial time algo-
rithm in winning the unforgeability game Expyns is negligible under the CDH
assumption. Applying lemma-1, clearly the advantage of any probabilistic poly-
nomial time algorithm in winning the immutability game Expin,m, is also negli-
gible under the CDH assumption. This proves theorem-2.

4.4 Extensions

Control on Sanitized message. The signer can control what the sanitizer
assigns to set of bits in Igs which the latter has control over. For example,
this is applicable to scenarios where the sanitized portion can take only cer-
tain values. Consider the case where the sanitizer is only allowed to change the
message from m to n}' . Then, this is done by the signer revealing the value
U = Tlicrsim:zm, u{™ ™) instead of the individual u?|i € Is values to the
sanitizer. Then the sanitizer obtains a signature o’ from a signature o = (01, 02)
on m using ¢’ = (Uoy, 03).

Multiple sanitizations. The protocol can be readily extended to multiple
sanitizers by providing appropriate secret information to each sanitizer. If sani-
tizer S; has permission to sanitize bits in IZ, the signer must provide the values
ulli € Ifé, in a secure fashion to this sanitizer.

4.5 Salient Features

In this scheme, the signer has a high degree of control over the bits that the
sanitizer is permitted to change, as well as the possible ways in which the san-
itizer may change these bits. However, as a trade-off the signer incurs the ad-
ditional overhead of securely transmitting secret information on a per-message
basis to the sanitizer. This is inevitable in protocols where the positions where
the sanitizer is permitted to sanitize the message are not known a priori, as this
information needs to be relayed to the sanitizer on a per-message basis. However,
this may be avoided in cases where the set of bits that the sanitizer is expected
to modify are fixed during the key generation phase. This is common in cases
where the message to be sanitized has a standard format (for e.g., databases,
forms, etc.). In scheme-2, we discuss one such protocol which achieves strong
transparency under the CDH assumption in the standard model. We discuss
scheme-2 in the following section.

5 Scheme 2

5.1 Outline

This scheme provides a strong transparent sanitizable signature protocol where
the sanitizer is provided private information in the key generation phase. Using



this, he may modify certain fixed set of positions of the signature. The signature
protocol is based on the Water’s signature scheme [10]. The indices which are
permitted to be sanitized are fixed at the time of key generation. The sanitizer
may replace those portions of the message by an appropriate message of his
choice. In this section, we describe this scheme, provide security proofs based on
the CDH assumption.

5.2 Scheme Description

KeyGen. Let Gi,Gs,Gr be groups of prime order p. Given a pairing e :

Gy X Gy — Gr. Let g € Gy and ¢o,u',u € Ga. Let a1,--+ ,a, € Z,,. Compute
up =u*, e Uy = um.
Public parameters: G1,Go, G, e, g,p, g2, ', u, uy, -+ ,u, Public key of the signer

is g1 = g%, where a € Z;,.

Private parameters: Private key of the signer is o €g Z,.
Private key of a sanitizer j with access to modify bit positions Is; € {1,--- ,n}
is a; Vi € Is;.

Sign. Let m be the n-bit message mimsy---m, € {0,1}". Signer randomly
picks r € Zy and outputs the following values (01,02, 03):

n

(01 = gS(U/HU;ni)T,CTQ = gT,O'g = ’LLT)
i=1

Sanitize. The sanitizer S; obtains the values (01, 02,03), from the signer. It
runs the verification protocol to check if the signature is valid. It then computes
the values uj « 05" Vi € Is;. Let m’ be the message whose signature is sought,
which differs from m at positions I C Is,. Define Iy = {i € I : m; = 0,m; = 1},
I ={i € I :m; =1,m] = 0}. The sanitizer chooses 7 € Z;. Then the required
sanitized signature is:

r n

- u; ~ /5 - _

/o HZ€I1 T IT m,T !’ T T

(o] = 171_[ —U Huil ,09 = 029", 05 = o3u’)
i€l Wi i

Verify. Receives the tuple: (o1, 092,03) on a message m,
Verifier checks if the following relations hold from public parameters:

n
? )
e(g,01) = e(g1, g2)e(oo, v’ [ [ uf™)

i=1

?
e(g,03) = e(o2,u)
Note that the verification protocol is same for a sanitized and non-sanitized
message.



5.3 Security

Correctness. To show correctness, we need to show that any valid normal
signature, as well as sanitized signature verifies successfully.

Verification: The signature o, on a given message m is given by the three-tuple
(01 = g5 (W' [y u™)" 00 = ¢g", 03 = u"). If valid, then clearly:

g1, g2)e(o2, v [Tiy ui™)
(g, g2)e(g" v TTiy ui™)
=e(g,95)e (g, (' [Ty ui™)")
=e(g,95 (W [[;Zy w")")
6(9,0’1)

Also we note that:

o)
—~

e(g,u")
e(g", u)
= e(og,u)

e(g,03)

Hence, a valid signature satisfies the verification equations.

Sanitization: A sanitized signature is obtained as:

i
[Lics, ui ml ; "
(o] = 0171_[1 L o u'” Hui ,0h = 02g 04 = o3u’)
i€l i i=1
where I; = {i € Is :m; =0,m} =1}, [y = {i € Is : m; = 1,m}; = 0}.
We note that m} —m, is 1 when i € I, —1 when i € Iy,and 0, otherwise. Hence,
we can see that:

O—lu/r Hth U; /Hzelg THz 1 m a
_ alu”’ H r mi—m;) Hn um 7

= g o u/rl‘[z 1u7“(mz)1—[Z LU T(m mz)HZ LU
_ 93 /(r—i-r) Hn . u(r+r) m})

The sanitized signature is of the form (o} = g (v’ [[1, u; )" 09 = g™ o3 =
u("+7)), whose distribution is identical to a regular signature on m’ by the signer.
Hence, a sanitized signature also satisfies the verification equations.

!
01

Unforgeability. We prove the following theorem about unforgeability.

Theorem 3. The proposed sanitizable signature scheme in scheme-2 is (¢, qs)-
unforgeable under the € -CDH assumption where € < (8¢%(n + 1)? + 2)€’ + 2/p.

Proof: Assume there is a (e, t, ¢s)-adversary A exists. We shall formulate another
probabilistic polynomial time (PPT) algorithm B that uses A to solve the CDH



problem with probability at least € and in time at most t’. B is given a problem
instance as follow: Given a group G, a generator g € G, two elements g%, ¢* € G.
It is asked to output another element g?° € G. In order to use A to solve for the
problem, B needs to simulates a challenger and the signing oracle for A. B does
it in the following way.

Setup Phase. Let | = 2¢, . B randomly selects an integer k such that 0 < k < n.
Also assume that I(n + 1) < p, for the given values of ¢; and n. It randomly
selects:

1. x’,v €R Zl;y/ GRZp
2. &;€rZy , Let X = {&1, 80, ,&n}.
3. @z ERZpaLetYZ{glag27"'7:'971}‘

We further define the following functions for binary string M = (mq, ma,- -+ ,my),
where m; € {0,1}, 1 < i < n, as follows:

F(M) =2+ @m; — Ik
=1

J(M) =y +Z§imi
i=1

B constructs a set of public parameters as follows:

b 0 —lk+a’ oy _ v _ o Zi 00 s
g2 =g u =g, g¥ u=g"u;=gy'g",i=1,---,n

We have the following equation:
my F(M
UI | I u, = 92( )QJ(M)

All the above public parameters and public key g1 = g are passed to A.

Simulation Phase. B simulates the signing oracle as follow. Upon receiv-
ing the j*" query for a document M;, although B does not know the secret key,
it can still construct the signature by assuming F'(M;) # 0 mod p. It randomly
chooses r; €r Z, and computes the signature as

~1/F(M;) r;

—J(M;)/F(M; F(M, I\T
) (M;)/F( J)(g2( J)gJ(MJ))J,O'Q,j:gl g’

01,5 =24

03, = g;”/F(Mi)g'urj

By letting 7; = r; — a/F(M;) , it can be verified that (01,02, 03,;) is a valid
signature on M, as shown below:



—v/F(Mj;) T
1 )
= gv(ri—a/F(M;))

= ufj
If F(M;) = 0 mod p, since the above computation cannot be performed (divi-
sion by 0), the simulator aborts. To make it simple, the simulator will abort if
F(Mj;) = 0 mod [. The equivalence can be observed as follow. From the assump-
tion that I(n + 1) < p, it implies 0 < Ik < p and 0 < 2’/ + > | #;m; < p (as
' < 1,% <1). We have —p < F(M;) < p which implies if F'(M;) = 0 mod p
then F'(M;) = 0 mod I. Hence, F(M;) # 0 mod ! implies F(M;) # 0 mod p.
Thus the former condition will be sufficient to ensure that a signature can be
computed without aborting.

Challenge Phase. If B does not abort, A will return a document M* =
mj ---m? with a forged signature o* = (07,03, 0%). The algorithm B aborts if
&'+ ijme—1 i — Uk # 0 mod [. From the verification equation, we can write:
. F(M* * *

of = g3(gy g7
R B L LN (VRS SR 1
= 95(9s 1 g e
— ggg(yl+z7‘,|mz‘:1 §i)r”

Hence the algorithm successfully computes the solution to the CDH problem:

7 = 0’1‘0’;7?’/’72“’"?:1 i _

O
Probability Analysis. The probability that the simulation does not abort is
characterized by the events A;, A* where:

1. A, is the event that F'(M;) # 0 mod [ where j =1,--- ,¢s.
2. A" is the event that ' + 3, ._; &; — Ik = 0 mod p.

The probability that B does not abort:

as
Pr[not abort] > Pr[/\ Aj N AT

j=1



As the adversary can at most make B abort by randomly choosing M*, we
have Pr[A*] = m Also noting that A; is independent of A* we have:
Prnot abort] > Pr[AJL, A; A A*]

PrlA” Pr{AL, 4,[4°

W(l — 3521 Pr[—A;|A*])
8(n+1)%q?

(AVARAVARAV]

Indistinguishability. As shown in the correctness section, a valid signature
o, produced by a signer on a message m’ has a distribution identical to a valid
sanitization of a message my to result in message m’ and signature o/, produced
by the sanitizer. Similarly, the distribution is also identical to a valid sanitization
of another message mgy to result in message m’ and signature o}, produced
by the sanitizer. Hence the signatures o, and o} are indistinguishable as their
distributions are identical.

Immutability. We prove the following theorem to show immutability.

Theorem 4. The proposed sanitizable signature scheme in scheme-2 is e-
immutable under the ¢-CDH assumption, where there exists constant [ : € < l€’.

Proof: We prove that the sanitizer cannot modify any bit other than bits at
positions Is C {1,---,n} for which the values {u] : i € Is} are known to the
sanitizer. We will prove the following lemma on immutability in order to prove
the above theorem.

Lemma 2. For any randomized polynomial time algorithm algorithm B with
an advantage €, in the immutability game Expiy,, on a message of length n with
access to sanitize m bits at positions Is, there exists a randomized polynomial
time algorithm A with an advantage ¢, > €, in the unforgeability game Expynt
on a message of length n —m.

Proof: Assume that there exists a randomized polynomial time algorithm B
which plays the immutability game Expi,nm with advantage ¢, with access to
sanitize m bits at positions Is. Consider a randomized polynomial time algo-
rithm A which plays the unforgeability game Expyns on messages of length n—m.
Then we show that the algorithm A can simulate the challenger interacting with
algorithm B, and thereby obtain an advantage €, > €, in Expyus. In the setup
phase, A interacts with B and the challenger in Expyy¢, denoted by C, as follows:

1. B provides A the set of bit positions where sanitization is allowed, Is. In
general, we have Is C {1, ---,n}. However for the ease of exposition we
assume Is = {n —m+1,--- ,n}, where m = |Is|. Note that the argument
can be easily extended for the general form of Is.

2. C provides A the public parameters G1, Go, G, €, g, p, g2, u, ', U1, , Up—m-



3. Achooses t; €Ep Zy, i =n—m+1,--- ,n. Asets u; =uli, fori=n—m+
1 n
4. Aprovides B the public parameters G1, G2, G, ¢, g,p, g2, U, t', U1, + s Un_m,

li /
Up_mg1 "y Uy

5. A provides B secret information ST = {t;|i=n—m+1,--- ,n}.

S,

In the simulation phase, for every message M;, j = 1,--- ,¢qs, requested by B,
A interacts with B and C as follows:

1. B requests signature for a message M; = m;1---m;, from A.
2. A requests a signature for message M; = m; 1 - M p—m from C.

i o O o g T tim
3. A/ obtains (UJ,17</TJ,2,UJ,3) from C, and sets 0%, = 01 [[;—, ,, 11055 "
0o =0j2and 0;3=0j3.

/

4. A sends the signature (o’ |, o/,

!
§1,052,053) t0 B.

In the challenge phase, if B is successful in obtaining a valid message signature
pair (M*',0*'), then A obtains a valid signature tuple as follows:

1. Bsends A a valid message-signature tuple (M*' = m}"---m?*' o*' = o*|, 03, 0%")
Clearly Vj € {1,--+ ,qs} Ji ¢ {n—m+1,--- ,n}:m;,; #m}.
2. Asets M* =m}---m}_,,, where m} =m} foralli=1,--- ,n—m. A sets

!/
a1

* */ * */
01 = Tmr 7092 = 02,03 =03

n Mg
Hi:n—m+1 O3

3. A sends C a valid message-signature pair (M*,o* = (07, 03, 0%)). Clearly, it
follows that Vj € {1,--- ,¢s} Fi € {1,--- ,n—m} :m;; #m].

It is easy to see that if B’s signature tuple verifies, then A’s signature tuple
verifies as well. Hence the advantage of A winning the game Expyunt, €4 > € ,
where ¢, is the advantage of B in winning the immutability game Expimnm.

From theorem-3, the advantage of any probabilistic polynomial time algo-
rithm in winning the unforgeability game Expy,s is negligible under the CDH
assumption. Applying lemma-2, clearly the advantage of any probabilistic poly-
nomial time algorithm in winning the immutability game Expinm, is also negli-
gible under the CDH assumption. This proves theorem-4. O

6 Comparison

We compare our scheme against previous schemes on sanitizable signatures.



Scheme Transparency Security Model

[1] No Transparency  |RSA ROM

13 No Transparency underlying signature standard

14 No Transparency underlying signature standard

[5] No Transparency underlying signature and|standard
commitment

[6] No Transparency  |co-GDH ROM

8] No Transparency  |co-GDH ROM

[7] No Transparency strong RSA standard

[15] No Transparency underlying signature commit-|standard
ment and pseudo random
generator

[9] No Transparency CDH + XDH standard

[2] Weak Transparency [underlying signature and|standard
chameleon hash

[4] Weak Transparency |CDH ROM

[3] Strong Transparency|- -

Our Scheme|Strong Transparency|CDH standard

7 Conclusion and Open Problems

In this paper, we proposed the first provably secure sanitizable signature pro-
tocol having strong transparency property under standard model. These signa-
tures are of constant length, and shorter than most other protocols. In earlier
schemes, such as [3] which claim strong transparency, either there is no formal
proof provided or the proof is under the random oracle model. An interesting
open problem is to devise a protocol which can achieve strong transparency
without dividing the message into bits or blocks. The problem of using more
traditional techniques such as RSA, rather than pairings to provide more effi-
cient sanitizable signatures with strong transparency is open. Accountability is
a property of sanitizable signatures by which the signer can prove that a partic-
ular signature is his, and not by the sanitizer. In our schemes, accountability is
not provided as this compromises unconditional indistinguishabilty. However, an
interesting open problem would be to formulate a sanitizable signature scheme
with strong transparency that offers polynomial time indistinguishability as well
as accountability.
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