
Compact Implementations of BLAKE-32 and
BLAKE-64 on FPGA

Jean-Luc Beuchat, Eiji Okamoto, and Teppei Yamazaki

Graduate School of Systems and Information Engineering
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

jeanluc.beuchat@gmail.com, okamoto@risk.tsukuba.ac.jp, yamazaki@cipher.risk.tsukuba.ac.jp

Abstract—We propose compact architectures of the SHA-
3 candidates BLAKE-32 and BLAKE-64 for several FPGA
families. We harness the intrinsic parallelism of the algorithm to
interleave the computation of four instances of the Gi function.
This approach allows us to design an Arithmetic and Logic Unit
with four pipeline stages, and to achieve high clock frequencies.
With careful scheduling, we completely avoid pipeline bubbles.
For the time being, the designs presented in this work are the
most compact ones for any of the SHA-3 candidates. We show for
instance that a fully autonomous implementation of BLAKE-32
on a Xilinx Virtex-5 device requires 56 slices and two memory
blocks.

I. INTRODUCTION

In this article we present compact architectures of the
SHA-3 candidates BLAKE-32 and BLAKE-64, proposed by
Aumasson et al. [1], on Field-Programmable Gate Arrays
(FPGAs). Such implementations are extremely valuable for
constrained environments such as wireless sensor networks
or Radio Frequency Identification (RFID) technology, where
some security protocols mainly rely on cryptographic hash
functions (see for example [2]).

After a short introduction to the BLAKE family of hash
functions (Section II), we explain how to implement the
required arithmetic operations on several FPGAs (Section III).
Then, we harness the intrinsic parallelism to interleave several
computations, and design two pipelined Arithmetic and Logic
Units (ALUs) (Section IV). We have prototyped our archi-
tecture on several Altera and Xilinx FPGAs and discuss our
results in Section V.

II. ALGORITHM SPECIFICATION

The BLAKE family combines three previously studied
components, chosen by Aumasson et al. for their complemen-
tarity [1]: the iteration mode HAIFA, the internal structure of
the hash function LAKE, and a modified version of Bernstein’s
stream cipher ChaCha as compression function. BLAKE is a
family of four hash functions, namely BLAKE-28, BLAKE-
32, BLAKE-48, and BLAKE-64 (Table I). In the following, we
focus on BLAKE-32 and refer the reader to [1] for more details
about BLAKE-28, BLAKE-48, and BLAKE-64. The main
differences lie in the length of words and in some constants
involved in the algorithm. Once one has a coprocessor for
BLAKE-32, writing a VHDL description of another member
of the BLAKE family is therefore straightforward.

TABLE I
PROPERTIES OF THE BLAKE FAMILY OF HASH FUNCTIONS (REPRINTED

FROM [1]). ALL SIZES ARE GIVEN IN BITS.

Algorithm Word Message Block Digest Salt
BLAKE-28 32 < 264 512 224 128
BLAKE-32 32 < 264 512 256 128
BLAKE-48 64 < 2128 1024 384 256
BLAKE-64 64 < 2128 1024 512 256

BLAKE-32 involves only two arithmetic operations: the ad-
dition modulo 232 of two 32-bit unsigned integers (denoted by
�) and the bitwise exclusive OR of two 32-bit words (denoted
by ⊕). The latter is sometimes followed by a rotation of k
bits to the right (denoted by≫ k). The compression function
of BLAKE-32 produces a new chain value h′ = h′0, . . . , h

′
7

from a message block m = m0, . . . ,m15, a chain value
h = h0, . . . , h7, a salt s = s0, . . . , s3, a counter t = t0, t1,
and 16 constants ci defined in [1, p. 8]. This process consists
of three steps. First, a 16-word internal state v = v0, . . . , v15
is initialized as follows:

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15



←


h0 h1 h2 h3
h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7

 .

Then, a series of ten rounds is performed. Each of these
rounds consists of a transformation of the internal state v based
on the Gi function described by Algorithm 1, where σr de-
notes a permutation of {0, . . . , 15} parametrized by the round
index r (see Table II). A column step updates the four columns
of matrix v as follows: G0(v0, v4, v8, v12), G1(v1, v5, v9, v13),
G2(v2, v6, v10, v14), and G3(v3, v7, v11, v15). Note that each
call to Gi updates a distinct column of matrix v. Since
we focus on compact implementations of BLAKE-32 in
this work, we interleave the computation of G0, G1, G2,
and G3. This approach allows us to design an ALU with
four pipeline stages and to achieve high clock frequencies.
Then, a diagonal step updates the four diagonals of v:
G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13),



Algorithm 1 The Gi function of BLAKE-32.
Input: A function index i and four 32-bit integers a, b, c, and

d.
Output: Gi(a, b, c, d).

1. a← a� b;
2. a← a� (mσr(2i) ⊕ cσr(2i+1));
3. d← (d⊕ a)≫ 16;
4. c← c� d;
5. b← (b⊕ c)≫ 12;
6. a← a� b;
7. a← a� (mσr(2i+1) ⊕ cσr(2i));
8. d← (d⊕ a)≫ 8;
9. c← c� d;

10. b← (b⊕ c)≫ 7;

and G7(v3, v4, v9, v14). Here again, each call to Gi modifies
a distinct diagonal of the matrix, allowing us to interleave the
computation of G4, G5, G6, and G7.

At the end of the tenth round, a new chain value h′ =
h′0, . . . , h

′
7 is computed from the internal state v and the

previous chain value h (finalization step):

h′0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8, h′4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12,
h′1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9, h′5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13,
h′2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10, h′6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14,
h′3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11, h′7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15.

In order to guarantee that the length ` < 264 of a message
is a multiple of 512, Aumasson et al. suggest the following
approach [1]: first, they append a bit 1 followed by a sufficient
number of 0 bits such that the length is congruent to 447
modulo 512. Then, they append a bit 1 followed by the 64-bit
binary representation of `. The hash can now be computed
iteratively (Algorithm 2): the padded message is divided into
16-word blocks m(0), . . . ,m(N−1) and the chain value h(0) is
set to the same initial value as SHA-2 [1, p. 8]. The counter
t(i) denotes the number of message bits in m(0), . . . ,m(i)

(i.e. excluding padding bits). Note that, if the last block
contains only padding bits, then t(N−1) is set to zero. In
the following, we assume that our coprocessor is provided
with padded messages. A hardware wrapper interface for the
SHA-3 candidates comprising communication and padding is
described in [3].

Algorithm 2 Iterated hash.
Input: A padded message split into N 16-word blocks and a

salt s.
Output: A 256-bit digest.

1.
(
h
(0)
0 , . . . , h

(0)
7

)
← (IV0, . . . , IV7);

2. for i← 0 to N − 1 do
3. h(i+1) ← compress

(
h(i),m(i), s, t(i)

)
;

4. end for
5. return h(N);

III. FPGA-SPECIFIC ISSUES AND THEIR IMPLICATIONS ON
THE DESIGN OF BLAKE

Modern FPGAs are mainly designed for digital signal pro-
cessing applications involving rather small operands (16 to 64
bits). Several FPGA manufacturers (Altera, Xilinx, etc.) chose
to include dedicated carry logic enabling the implementation
of fast Carry-Ripple Adders (CRA) for such operand sizes.

Let us study the architecture of a Xilinx Spartan-3 de-
vice [4]. The slice is the main logic resource for implementing
synchronous and combinatorial circuits (one finds the same
kind of slices in several other Xilinx FPGAs: Virtex, Virtex-
E, Virtex-II, Virtex-II Pro, Virtex-4, etc.). Each slice embeds
two 4-input function generators (G-LUT and F-LUT), two
storage elements, carry logic (CYMUXG and CYMUXF),
arithmetic gates (GAND, FAND, XORG, and XORF), and
wide-function multiplexers. Each function generator is imple-
mented by means of a programmable Look-Up Table (LUT).

A Full-Adder (FA) cell computes the sum of a carry-in bit
carryj (coming from a lower bit position) and two bits of same
magnitude xj and yj . The result is encoded by a sum bit sumj
and a carry-out bit carryj+1 such that 2carryj+1 + sumj =
xj + yj + carryj . Let zj = xj ⊕ yj . Then, we have:

sumj = zj ⊕ carryj , (1)

carryj+1 =

{
xj if zj = 0 (i.e. xj = yj),
carryj otherwise.

(2)

Assume that the F-LUT function generator outputs zj . Then,
the XORF gate computes the sum bit sumj . The generation of
the carry-out bit carryj+1 according to Equation (2) involves
three multiplexers (CYOF, CYSELF, and CYMUXF). Thanks
to the G-LUT function generator, one can implement a second
FA cell within the same slice, which thus embeds a 2-bit CRA
(Figure 1a). The gates GAND and FAND allows one to build
multipliers: one can generate two partial products and compute
their sum with a single stage of LUTs.

Since we focus on compact coprocessors for the BLAKE
family in this work, we perform a single arithmetic operation
at each clock cycle (� or ⊕). A first solution consists in
implementing a modular adder and an array of XOR gates, and
selecting the operation by means of a multiplexer commanded
by a control bit. However, several Xilinx devices (Virtex,
Virtex-E, Virtex-II, Virtex-II Pro, Virtex-4, and Spartan-3)
offer a much more elegant and compact solution: we can
enable or disable carry propagations using a control bit ctrl
as input to the gates GAND and FAND (Figure 1b). Thus,
Equation (2) becomes:

carryj+1 =

{
xj · ctrl if zj = 0 (i.e. xj = yj),
carryj otherwise.

(3)

Assuming that carry0 = 0, we easily check that our operator
now behaves as a CRA when ctrl = 1 and computes the
bitwise exclusive OR of its inputs when ctrl = 0 (since
ctrl = carryj = 0, the output carry carryj+1 is also equal
to zero and carry propagations are disabled). Note that the



TABLE II
PERMUTATIONS OF {0, . . . , 15} USED BY THE BLAKE FUNCTIONS (REPRINTED FROM [1]).

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

functionality described in Equation (3) is that of a dual-field
adder [5]. On Spartan-3 FPGAs (and on all other Xilinx
FPGAs based on the same slice architecture), it is possible
to compute a sum or any function of up to three Boolean
variables (Figure 1c).

The latest FPGA families introduced by Xilinx (Virtex-5,
Virtex-6, and Spartan-6) are based on 6-input LUTs, each of
them having six independent inputs and two independent out-
puts. It is for instance possible to implement any two 5-input
logic functions with shared inputs thanks to this building block
(LUT6 2 primitive). Each slice embeds four LUTs and a carry
chain that consists of a series of four multiplexers and four
XOR gates (CARRY4 primitive). Figure 1d describes how to
implement an operator returning either the sum or the bitwise
exclusive OR of its two inputs according to a control bit.1 The
carry-out bit carryj+1 is determined according to Equation (3),
the only difference being that the product xj · ctrl is now
computed within a LUT6 2 primitive. The main drawback of
this approach is that design tools are unable to generate such
an architecture from a high-level VHDL description of the
operator. It is necessary to use specific libraries provided by
the FPGA manufacturer and to modify the VHDL code for
each device.

Additionally, modern FPGAs feature embedded memory
blocks to store relatively large amounts of data. They support
several modes (e.g. single port, true dual-port, ROM, etc.) and
port-width configurations. We refer the reader to the technical
literature provided by Altera or Xilinx for further details. In
this work, we will take advantage of such memory blocks to
implement our register file and store the micro-code of our
coprocessors.

IV. TWO COMPACT COPROCESSORS FOR THE BLAKE
FAMILY

Our compact coprocessor for BLAKE-32 is based on the
observation that the four calls to Gi in a column step or a
diagonal step can be computed in parallel. In order to achieve
a high clock frequency, we suggest to design an ALU with
four pipeline stages and to interleave the computation of four
Gi functions. A closer look at Algorithm 1 indicates that each
instruction involves the result of the previous one. Thus, our

1The LUT6 2 primitive offers even more flexibility. One can for instance
compute a sum or any function of up to four Boolean variables.

ALU includes a feedback mechanism to bypass the register
file of the coprocessor.

A. Arithmetic and Logic Unit

Figure 2a describes our first ALU designed for FPGAs
based on 4-input LUTs. It consists of four stages performing
the following tasks:

À Operand selection. The first operand comes from the
register file implemented by means of dual-ported mem-
ory. Routing a signal from a memory block to a slice
is usually expensive in terms of wire delay and it is
recommended to store this signal in a register before per-
forming arithmetic operations. Since a flip-flop is always
associated with a 4-input LUT, we can perform some
simple pre-processing without increasing the number of
slices of the ALU: a control bit ctrl0 selects either a
word read from port A or the bitwise exclusive OR of
two words read from ports A and B. This allows us to
compute mσr(2i)⊕ cσr(2i+1) and mσr(2i+1)⊕ cσr(2i) for
free (Algorithm 1, lines 2 and 7).
As explained above, the second input is almost always
the result of a previous operation. However, we have to
disable this feedback mechanism during the initialization
step: the computation of v8 ← s0 ⊕ c0 involves for
instance two words stored in the register file. An array
of AND gates controlled by ctrl1 allows us to force the
second operand to zero in such cases. The critical path
is limited to a single LUT and a flip-flop.

Á Addition modulo 232 or bitwise exclusive OR. This
stage consists of the arithmetic operator described in the
previous section.

Â Rotation of 0, 7, 8, or 12 bits to the right. The two
multiplexers commanded by ctrl3 are implemented by
means of LUTs. On Xilinx FPGAs, the output of this
stage is then selected thanks to a F5MUX primitive.

Ã Rotation of 0 or 16 bits to the right. The final stage
allows us to perform the rotation of 16 bits towards less
significant bits requested to update d in Algorithm 1
(line 3). Here again, the critical path is limited to a single
LUT and a flip-flop.

Recall that recent FPGAs embed 6-input function genera-
tors. We propose here a simple rewriting of the Gi function
that allows us to take advantage of these new building blocks.



ctrl

carryj+2

carryj+1

CYMUXF

FAND

XORF

F-LUT

ctrl
xj

yj

carryj

xj+1 · ctrl

xj · ctrl

(b) Addition or bitwise exclusive OR of two
operands on a Spartan-3 device

xj+1 · ctrl

zj+1

carryj+1

xj · ctrl

XORF

CYMUXF

carryj+1

yj+1

xj+1

GLUT

Spartan-3 slice

(c) Addition or function of three Boolean variables

XORG

operands on a Spartan-3 device

CYMUXG

carryj

(a) Addition of two operands on a Spartan-3 device

sumj+1

10

1

zj+1

zj

CYMUXG

GAND

XORG

Spartan-3 slice

GLUT

xj+1

yj+1

carryj

0

sumj+1

yj

xj

10

10

(d) Addition or bitwise exclusive OR of two operands on a Virtex-5 device

LUT6 2

yj+3

xj+3

ctrl

1

sumj+3

LUT6 2

yj+2

xj+2

ctrl

1

sumj+2

carryj+2

10

F-LUT

LUT6 2

yj+1

xj+1

ctrl

10

1

sumj+1

sumj

1

1

Spartan-3 slice
carryj+2

carryj

carryj+1

sumj

10

XORF

CYMUXF

LUT6 2

zj

L
U

T
3

F-LUT

yj

FAND

xj

ctrl

0

xj · ctrl

sumj+1

1

10

sumj

XORG

CYMUXG

zj+1

L
U

T
3

G-LUT

GAND

0

xj+1 · ctrl

CARRY4

carryj+4
Virtex-5 slice

zj

zj+1

zj+2

zj+3

wj

xj+3 · ctrl

yj

xj

ctrl

carryj+3

0 1

wj+1

10

zj

sumj

yj+1

xj+1

xj+2 · ctrl

carryj+2

ctrl

0

0

1

1

0

0

1

1

Fig. 1. Addition and bitwise exclusive OR on Xilinx FPGAs.

It suffices to notice that rotation operations always follow a
bitwise exclusive OR and can thus be performed in two steps.
We have for instance:

(d⊕ a)≫ 16 = ((d≫ 7)⊕ (a≫ 7))≫ 9.

Algorithm 3 describes an alternative version of the Gi function
based on this observation. We obtain a new ALU with three
stages (Figure 2b):

À Operand selection. We slightly modified the selection of
the first operand in order to include the rotation of 7 to
the right: the computation of the first operand involves
now an array of 5-input LUTs.

Á Addition modulo 232 or bitwise exclusive OR. This
stage consists again of the arithmetic operator described
in the previous section.

Â Rotation of 0, 1, 5, or 9 bits to the right. This stage
simply consists of a 4-input multiplexer implemented by
means of an array of 6-input LUTs.

We have two options for the fourth pipeline stage (Figure 2b).
The first one consists in storing the inputs in registers in
order to reduce the critical path between the register file and
the ALU (note that the embedded memory blocks available
in several FPGA families include optional output registers).
The second one is to introduce pipeline registers to shorten
the worst-case carry path of the modulo 232 adder. We
strongly recommend to consider both solutions and to select
the most appropriate one according to place-and-route results.
According to our place-and-route results on Virtex-5 FPGAs,
we obtain the best throughput for BLAKE-32 with the first
option, whereas the second one seems to be more appropriate
for BLAKE-64.

B. Scheduling

We have to be careful in order to avoid pipeline bubbles
between a column step and a diagonal step. Figure 3 describes
the state of the ALU depicted in Figure 2a at the end of a
column step. It suffices to process the four calls to Gi of the
diagonal step in the following order: G7, G4, G5, and G6.



Optional

1 0

0 1ctrl0

ctrl5 0 1

ctrl2

ctrl4

ctrl3

ctrl5

ctrl1

pipeline stage
Optional

Port A Port B

≫ 1

0 1

≫ 5 ≫ 9

0 1

0 1

Â

Á pipeline stage

Port A Port B

or

≫ 7

0 1

≫ 12≫ 8

0 1

≫ 16

0 1ctrl5

ctrl4

ctrl30 1

ctrl2

0 1

ctrl1
ctrl0À

Á

Â

Ã

(a) ALU for FPGAs based on 4-input LUTs (b) ALU for FPGAs based on 6-input LUTs

or

≫ 7

À

≫ 7

Fig. 2. Two arithmetic and logic units for BLAKE-32. (N.B. All control bits ctrlj belong to {0, 1}.)

Algorithm 3 The Gi function of BLAKE-32 revisited.
Input: A function index i and four 32-bit integers a, b, c, and

d.
Output: Gi(a, b, c, d).

1. a← a� b;
2. a← a� (mσr(2i) ⊕ cσr(2i+1));
3. d← ((d≫ 7)⊕ (a≫ 7))≫ 9;
4. c← c� d;
5. b← ((b≫ 7)⊕ (c≫ 7))≫ 5;
6. a← a� b;
7. a← a� (mσr(2i+1) ⊕ cσr(2i));
8. d← ((d≫ 7)⊕ (a≫ 7))≫ 1;
9. c← c� d;

10. b← (b≫ 7)⊕ (c≫ 7);

We check for instance that the ALU outputs the new value
of v4 (last instruction of G0) at time τ + 3. If we load v3
from the register file, we can start the computation of G7 at
time τ + 4. We easily check that this scheduling also avoids
pipeline bubbles between a diagonal step and a column step.
Since each call to Gi involves ten instructions, we need 80
clock cycles to perform a round of BLAKE-32.

The initialization and finalization steps involve 16 and 24
clock cycles, respectively. Furthermore, we need four clock

cycles to load v4, v5, v6, and v7 in the pipeline before the
first call to G0, G1, G2, and G3 (the first operation of G0 is
for instance v0 ← v0 � v4; recall that we bypass the register
file thanks to a feedback mechanism: when we load v0, we
expect the ALU to output v4). Therefore, we need 16 + 4 +
10 · 80 + 24 = 844 clock cycles to process a 16-word block.
In terms of scheduling, the only difference between BLAKE-
32 and BLAKE-64 lies in the number of rounds. The latter
involves four additional rounds and requires 1164 clock cycles
to process a block.

C. Register File and Control Unit

The register file stores the 16 constants ci, a message block
m = m0, . . . ,m15, the internal state v = v0, . . . , v15, the
chain value h = h0, . . . , h7, the salt s = s0, . . . , s3, and
the counter t = t0, t1 (Figure 4). When we process several
message blocks (iterated hash), we use the same salt s for each
call to the compression function. Therefore, the four words
s0⊕c0, s1⊕c1, s2⊕c2, and s3⊕c3 involved in the initialization
step are constants that can be computed only once and stored
in the register file for subsequent calls. Note that no instruction
of BLAKE involves at the same time the salt s and the counter
t. Therefore, if we store s and t from addresses 64 to 69, we
save a control bit: all variables are accessible from port A (7
address bits), but Port B is restricted to the 64 least significant
words of the register file (6 address bits).



v6 and v10

v6← v6 ⊕ v10
v6← v6≫ 7

v6← v6

v7← v7≫ 7

v7← v7

v7← v7 ⊕ v11

v7 and v11

v0← v0� v5

v0 and v5v3 and v4

v3← v3� v4

v3← v3

v1 and v6

v11← v11

v11← v11

v11← v11� v15

v10← v10

v10← v10v9← v9

v4 and v8

v4← v4 ⊕ v8
v4← v4≫ 7

v4← v4

À
Á
Â
Ã

G0 G1 G2 G3 G7 G4 G5

G0 G1 G2 G3

τ τ + 1 τ + 2 τ + 3 τ + 4 τ + 5 τ + 6

Time [clock cycles]

v5← v5≫ 7

v5← v5

v5← v5 ⊕ v9

v5 and v9

Fig. 3. Avoiding pipeline bubbles between a column step and a diagonal step. The digits À to Ã refer to the four stages of the ALU depicted in Figure 2a.

The control unit mainly consists of a program counter that
addresses an instruction memory implemented by means of a
memory block. Our micro-code for BLAKE-32 involves only
14 distinct control words ctrl5:0 and it is therefore possible
to encode them with 4 bits, thus reducing the size of an
instruction to 18 bits at the cost of 6 4-input LUTs. Recall
that BLAKE-32 involves 844 instructions2 and that several
FPGAs embed memory blocks whose aspect ratio (i.e. width
versus depth) is configurable. The 18Kbit blocks available in
Spartan-3 or Virtex-4 devices allow one to store 1024 words
of 18 bits. Consequently, we can load our micro-code in a
single memory block on such FPGAs.

V. RESULTS AND COMPARISONS

We captured our architectures in the VHDL language and
prototyped our coprocessors on several Xilinx and Altera
FPGAs with average speedgrade (Table III). To the best of our
knowledge, the only compact implementations of BLAKE-32
and BLAKE-64 have been proposed by Aumasson et al. [1].
Their lightweight architecture consists of an initialization unit,
a single Gi unit, and a finalization unit. Since they have to
read four elements of the internal state v at each clock cycle,
they can not implement the register file by means of dual-
ported memory and need 16 registers. Our approach leads
to a lower throughput, but our architectures are significantly
smaller and improve the area–time trade-off of the compact
implementations proposed by Aumasson et al. [1].

A few researchers have proposed compact implementations
of other SHA-3 candidates. We include in our comparisons the
results reported in the SHA-3 Zoo [6], in the hash-forum@nist.
gov mailing list, and in the proceedings of the Second SHA-
3 Candidate Conference held in late August 2010. Currently,
only seven algorithms have been evaluated on FPGA, and it
is unfortunately difficult to draw conclusions. Among these
algorithms, the BLAKE family offers one of the best area–
time trade-offs and leads to the smallest coprocessors on
reconfigurable devices.

2Note that it is possible to reduce the size of the code by storing the table
defining the permutation of {0 . . . , 15} parametrized by the round index r
(Table II) and by generating the addresses of mσr(2i) and cσr(2i+1) on the
fly. However, this approach would require a more complex control unit. As
long as the micro-code fits into a single block of memory, there is no need
to try to reduce the number of instructions.

On Xilinx FPGAs, Shabal [7] ranks first in terms of through-
put and area–time trade-off. Detrey et al. [8] noted that only
a small fraction of the internal state of Shabal is used at any
step of the algorithm. They exploited this fact and minimized
the area of the circuit by taking advantage of the dedicated
shift register resources available in the recent Xilinx devices
(SRL16 primitive).

Blue Midnight Wish (BMW) [9] involves almost the same
arithmetic operations as BLAKE: integer addition and subtrac-
tion modulo 232 (or modulo 264), and bitwise exclusive OR
of two 32-bit (or 64-bit) words. On Xilinx FPGAs, BMW
benefits from the technique we proposed in Section III in
order to enable or disable carry propagations (Figure 1). A
second control bit is necessary to select the sign of the operand
Y , however this modification is straightforward and has no
impact on the circuit area. BMW requires a more sophisticated
shifter/rotator and a significantly more complex datapath than
BLAKE. Although it is possible to design a low-area copro-
cessor, the throughput turns out to be disappointing [10].

Several algorithms submitted to the SHA-3 competition
are strongly influenced by the Advanced Encryption Standard
(AES) [11] (Fugue [12] and Grøstl [13]), or even built around
the AES round function itself (ECHO [14] and SHAvite-
3 [15]). We have proposed a compact coprocessor based
on an 8-bit datapath for ECHO-256 [16]. Even though our
architecture does not compete with Shabal or BLAKE in
terms of throughput, ECHO has a clear advantage over the
other candidates: at the price of a small hardware overhead,
it is possible to design a unified architecture for the AES
(encryption, decryption, and key expansion for 128-, 192-, and
256-bit keys) and ECHO (224-, 256-, 384-, and 512-bit mes-
sage digests) [17]. This property is a key asset for embedded
systems, and should be taken into account when selecting the
new SHA-3 function. Even if a low-area coprocessor is not
available yet, Fugue and Grøstl also allow one to combine the
hash algorithm and the AES with reasonable overheads [18].

VI. CONCLUSION

We took advantage of the intrinsic parallelism of the
BLAKE family of hash functions to interleave the computation
of four instances of the Gi function. Thanks to this approach,
we designed an ALU with four pipeline stages and achieved



c0, . . . , c15

m0, . . . , m15

v0, . . . , v15

h0, . . . , h7

s0 ⊕ c0, . . . , s3 ⊕ c3t0 ⊕ c4, . . . , t1 ⊕ c7

s0, . . . , s3t0, t1

Po
rt

B
Po

rt
A

0

48

16

32

56

64

Accessible only from port A

Register file (dual-ported memory block)

O
pt

io
na

lp
ip

el
in

e
st

ag
e

WE

Address

Data

Address

Data

Arithmetic and
logic unit

Port A Port B

Control
unit

WE

Done

Start Instruction memory (ROM)

WE Address (7 bits)Address (6 bits)

Arithmetic and logic unit

ctrl5:0

ctrl5 ctrl4 ctrl2ctrl3 ctrl0ctrl1

Port B Port A

Fig. 4. General architecture of a BLAKE coprocessor.

high clock frequencies. A careful scheduling allowed us to
totally avoid pipeline bubbles and memory collisions. We
also addressed FPGA-specific issues: we described how to
enable or disable dedicated carry logic in Xilinx devices, thus
sharing slices between addition and bitwise exclusive OR of
two operands. We showed that a rewriting of the Gi function
allows us to fully exploit the 6-input LUTs available in the
most recent FPGAs. For the time being, our designs are the
most compact ones for any of the SHA-3 candidates.

ACKNOWLEDGEMENT

The authors would like to thank Simon Kramer, Jean-Michel
Muller, and Francisco Rodrı́guez-Henrı́quez for their valuable
comments.

REFERENCES

[1] J.-P. Aumasson, L. Henzen, W. Meier, and R. Phan, “SHA-3 proposal
BLAKE (version 1.3),” 2009, available at http://www.131002.net/blake.

[2] J. Zhai, C. Park, and G.-N. Wang, “Hash-based RFID security protocol
using randomly key-changed identification procedure,” in Computational
Science and Its Applications–ICCSA 2006, ser. Lecture Notes in Com-
puter Science, M. Gavrilova, O. Gervasi, V. Kumar, C. K. Tan, D. Taniar,
A. Laganà, Y. Mun, and H. Choo, Eds., no. 3983. Springer, 2006, pp.
296–305.

[3] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W. Marnane, “A hardware wrapper for the SHA-3 hash algorithms,”
2010, cryptology ePrint Archive, Report 2010/124.

[4] Xilinx, “Spartan-3 FPGA family,” Dec. 2009, available at http://www.
xilinx.com/support/documentation/data sheets/ds099.pdf.

[5] E. Savaş, A. Tenca, and Ç.K. Koç, “A scalable and unified multiplier
architecture for finite fields GF(p) and GF(2m),” in Cryptographic
Hardware and Embedded Systems–CHES 2000, ser. Lecture Notes in
Computer Science, Ç.K. Koç and C. Paar, Eds., no. 1965. Springer,
2000, pp. 277–292.

[6] “The SHA-3 zoo,” http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo.
[7] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr,

A. Gouget, T. Icart, J. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin,
J. Reinhard, C. Thuillet, and M. Videau, “Shabal, a submission to
NIST’s cryptographic hash algorithm competition,” 2008, available at
http://www.shabal.com.

[8] J. Detrey, P. Gaudry, and K. Khalfallah, “A low-area yet performant
FPGA implementation of Shabal,” 2010, cryptology ePrint Archive,
Report 2010/292.

[9] D. Gligoroski, V. Klima, S. Knapskog, M. El-Hadedy, J. Amundsen,
and S. Mjølsnes, “Cryptographic hash function BLUE MIDNIGHT
WISH,” 2009, available at http://people.item.ntnu.no/∼danilog/Hash/
BMW-SecondRound.

[10] M. El-Hadedy, M. Margala, D. Gligoroski, and S. Knapskog, “Resource-
efficient implementation of Blue Midnight Wish-256 hash function on
Xilinx FPGA platform,” in The Second SHA-3 Candidate Conference,
Aug. 2010.

[11] J. Daemen and V. Rijmen, The Design of Rijndael. Springer, 2002.
[12] S. Halevi, W. Hall, and C. Jutla, “The hash function ”Fugue”,” 2009,

available at http://domino.research.ibm.com/comm/research projects.
nsf/pages/fugue.index.html.



TABLE III
COMPACT IMPLEMENTATIONS OF SHA-3 CANDIDATES.

(a) Xilinx Spartan-3 device

Algorithm FPGA
Area Memory Frequency Throughput

[slices] blocks [MHz] [Mbps]
This work BLAKE-32 xc3s50-5 124 2 190 115
This work BLAKE-64 xc3s200-5 229 3 158 138

Jungk et al. [19] Grøstl-224/256 xc3s5000-5 2486 – 63.2 404
Jungk and Reith [20] Grøstl-224/256 xc3s200 1276 – 60 192
Jungk and Reith [20] Grøstl-384/512 xc3s200 2110 – 63 144

Baldwin et al. [21] Shabal xc3s5000-5 1933 – 89.71 540
Detrey et al. [8] Shabal xc3s200-5 499 – 100 800

(b) Xilinx Virtex-4 device

Algorithm FPGA
Area Memory Frequency Throughput

[slices] blocks [MHz] [Mbps]
This work BLAKE-32 xc4vlx15-11 124 2 357 216
Aumasson et al. [1] BLAKE-32 xc4vlx100 960 – 68 430
This work BLAKE-64 xc4vlx15-11 230 3 250 219
Aumasson et al. [1] BLAKE-64 xc4vlx100 1856 – 42 381

(c) Xilinx Virtex-5 device

Algorithm FPGA
Area Memory Frequency Throughput

[slices] blocks [MHz] [Mbps]
This work BLAKE-32 xc5vlx50-2 56 2 372 225
Aumasson et al. [1] BLAKE-32 xc5vlx110 390 – 91 575
This work BLAKE-64 xc5vlx50-2 108 3 358 314
Aumasson et al. [1] BLAKE-64 xc5vlx110 939 – 59 533

El-Hadedy et al. [10] BMW-256 xc5vlx110 84 2 116 28

Beuchat et al. [16] ECHO-256 xc5vlx50-2 127 1 352 72

Bertoni et al. [22] Keccak xc5vlx50-3 448 – 265 52

Baldwin et al. [21] Shabal xc5vlx220-2 2307 – 222.22 1330
Feron and Francq [23] Shabal not specified 596 – 109 1142
Detrey et al. [8] Shabal xc5vlx30-2 153 – 256 2051

(d) Altera Cyclone III device

Algorithm FPGA
Area Memory Frequency Throughput
[LEs] blocks [MHz] [Mbps]

This work BLAKE-32 EP3C5E144A7 285 2 192 116
This work BLAKE-64 EP3C5F256I7 542 3 140 123

Bertoni et al. [22] Keccak EP3C5F256C6 1559 – 181 47.8

(e) Altera Stratix III device

Algorithm FPGA
Area Memory Frequency Throughput

[ALUTs] blocks [MHz] [Mbps]
Namin and Hasan [24] Skein-256 EP3SL340F1760C3 1385 – 161.42 573.9

[13] P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. Thomsen, “Grøstl – a SHA-3 candidate,” 2008,
available at http://www.groestl.info.

[14] R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Rob-
shaw, and Y. Seurin, “SHA-3 proposal: ECHO,” 2009, available at
http://crypto.rd.francetelecom.com/echo.

[15] E. Biham and O. Dunkelman, “The SHAvite-3 hash function
(tweaked version),” 2009, available at http://www.cs.technion.ac.il/
∼orrd/SHAvite-3.

[16] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “A compact FPGA
implementation of the SHA-3 candidate ECHO,” 2010, cryptology ePrint
Archive, Report 2010/364.

[17] J.-L. Beuchat, “A unified architecture for AES and the SHA-3 candidate
ECHO,” Aug. 2010, announced on hash-forum@nist.gov.

[18] K. Järvinen, “Sharing resources between AES and the SHA-3 second
round candidates Fugue and Grøstl,” in The Second SHA-3 Candidate
Conference, Aug. 2010.

[19] B. Jungk, S. Reith, and J. Apfelbeck, “On optimized FPGA implementa-

tions of the SHA-3 candidate Grøstl,” 2009, cryptology ePrint Archive,
Report 2009/206.

[20] B. Jungk and S. Reith, “On FPGA-based implementations of Grøstl,”
2010, cryptology ePrint Archive, Report 2010/260.

[21] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. McEvoy, W. Pan, and
W. Marnane, “FPGA implementations of SHA-3 candidates: CubeHash,
Grøstl, LANE, Shabal and Spectral Hash,” 2009, cryptology ePrint
Archive, Report 2009/342.

[22] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak sponge
function family main document (version 2.0),” 2009, available at http:
//keccak.noekeon.org.

[23] R. Feron and J. Francq, “FPGA implementation of Shabal: Our first
results,” 2010, available at http://www.shabal.com.

[24] A. Namin and M. Hasan, “Hardware implementation of the com-
pression function for selected SHA-3 candidates,” Centre for Applied
Cryptographic Research, University of Waterloo, Tech. Rep. CACR
2009–28, 2009, available at http://www.vlsi.uwaterloo.ca/∼ahasan/web
papers/technical reports/web five SHA 3.pdf.


