On Foundation and Construction of
Physical Unclonable Functions

J. Wu and M. O’Neill
ECIT, Queen’s University Belfast
Belfast, UK
{j.-wu, m.oneill}@ecit.qub.ac.uk

Abstract

Physical Unclonable Functions (PUFs) have been introduced as a new cryptographic prim-
itive, and whilst a large number of PUF designs and applications have been proposed, few
studies has been undertaken on the theoretical foundation of PUFs. At the same time, many
PUF designs have been found to be insecure, raising questions about their design methodol-
ogy. Moreover, PUFs with efficient implementation are needed to enable many applications in
practice.

In this paper, we present novel results on the theoretical foundation and practical construc-
tion for PUFs. First, we prove that, for an ¢-bit-input and m-bit-output PUF containing n
silicon components, if n < m2" Where ¢ is a constant, then 1) the PUF cannot be a random
function, and 2) confusion and diffusion are necessary for the PUF to be a pseudorandom func-
tion. Then, we propose a helper data algorithm (HDA) that is secure against active attacks
and significantly reduces PUF implementation overhead compared to previous HDAs. Finally,
we integrate PUF construction into block cipher design to implement an efficient physical un-
clonable pseudorandom permutation (PUPRP); to the best of our knowledge, this is the first
practical PUPRP using an integrated approach.

1 Introduction

A physical unclonable function (PUF) is a physical object that can take inputs and generate
unpredictable outputs; it is unclonable in that the input/output behaviour of a physical copy of
one PUF will differ from that of the original one due to some uncontrollable randomness in the
copying process. Ravikanth et. al [27] proposed the first PUF in literature, which is a piece of
transparent medium containing randomly solved particles. When a laser beam propagates through
the medium, it produces a speckle pattern that is affected by the particles. How the particles are
solved in the medium is random and uncontrollable; therefore, two such PUFs produced using the
same process will have different output speckle patterns. Ravikanth et. al’s work demonstrated
a novel way to implement an oneway function, which is a fundamental tool for many security
application; in addition, the oneway function is physically unclonable and tamper-resistant, which
may enable many new applications. After that, a large number of PUFs have been proposed
[8, 9, 10, 11, 16, 15, 18, 22, 26, 30, 32]. Except for a few instances such as the Coating PUF [32]
and the LC-PUF [11], most PUFs only use conventional silicon integrated circuit (IC) techniques
so that the PUFs can be easily integrated in IC chips. Many PUF applications have been proposed

that involve intellectual property (IP) protection [10], authenticated identification [6], and trusted
computing [31], to name a few.

Some PUFs are designed to behave as pseudorandom functions: given an input, the output
is unpredictable. To prevent the input/output from being exhausted, the PUFs should support a
large input size, say, a 64-bits input. Examples of such PUFs include the controlled PUF (CPUF)
[8, 9], the arbiter-PUF [16], and the lightweight PUF (LW-PUF) [21]. The most serious challenge
for such a PUF is security: in a standard attacking model where an adversary is allowed to test the
PUF by choosing any inputs and receiving the outputs, the adversary should be unable to predict
the output for a fresh input. A second challenge is to achieve such security using low overhead.
For example, it is desirable that a PUF does not rely on hash functions, since hash functions are
unsuitable for extremely resource-constrained devices such as RFID tags [5].

Some other PUFs are designed as cryptographic key generators or random functions with small
input size. A representative example is the SRAM-PUF [10] that use SRAM cells as raw bit
generators. Since the raw bits are noisy and are not fully random, a Helper Data Algorithm (HDA)
is needed to extract a reproducible, stable, and uniformly random secure key from the raw bits.
Furthermore, an ¢-bits-input and m-bit-output random function can be constructed by letting an
(-bits input choose m key bits out of 2¢ x m such key bits as the output. However, most HDAs use
error-correcting codes which require significant hardware and computation overhead; in addition,
the helper data of a HDA may leak information about the key in certain attacks. The main challenge
for such PUF key generators is to design robust and secure HDA with low overhead.

One group of special PUF's, namely the physical unclonable pseudorandom permutations (PUPRPs),
are of particulate interests because they can be used for encryption/decryption. A straightforward
way to construct a PUPRP is to use a conventional block cipher with a key generated by PUF key
generators. In this case, the security of the PUPRP is based on the security of the PUF key gen-
erator and the security of the block cipher separately. Armknecht et. al [2] proposed an integrated
approach to construct PUPRPs, which combines PUFs into block cipher. The tight integration
improves the tamper-resilience of the overall design. Armknecht et. al’s construction is theoretical
because its overhead increases exponentially as the input size of the PUPRP increases.

While there have been a lot of PUF constructions and applications, there is little study on
the foundations of PUFs. All PUF constructions concern with implementation overhead. One
fundamental question is that, what is the minimum overhead a PUF needs? Riihrmair et. al
[28] consider a PUF as an isolated physical system and discussed PUFs based on the maximal
thermodynamic entropy of an isolated physical system. Riihrmair et. al’s work provides a new
point of view for PUF study; however, the thermodynamic entropy is not directly related to any
mathematical property of a PUF. Another fundamental question for PUFs is that, should there be
some systematic design methodology for PUF construction? So far, the PUF designs in literature
are ad hoc, somewhat resembling the cipher designs before Shannon [29] established diffusion and
confusion as the principles for modern block cipher design. It would be interesting to investigate if
some design principles also apply to PUF.

1.1 Owur Contributions

In this paper, we study PUFs that are based on standard silicon components since they comprise
the majority of existing PUFs. We systematically study the theoretical foundations and practical
constructions for such silicon PUFs. Our contributions are as follows:

e We compute the information capacity, i.e., the information-theoretic entropy, of the PUF's,
and use the information capacity to determine the maximum input/output size that a PUF
can achieve as a random function. We further prove that diffusion and confusion are necessary
to construct PUF's as secure pseudorandom functions.

e We propose a PUF key generator consisting of a new bit generator and a novel HDA. Com-
pared to previous PUF key generators, ours significantly reduces the hardware overhead to
achieve required robustness and security.

e We propose a practical PUPRP construction that integrates PUFs in block cipher designs.
As the input size of the PUPRP increases, its overhead increase linearly as oppose to expo-
nentially in the previous integrated PUPRP construction; as a result, the PUPRP has an
efficient hardware implementation.

1.2 Organization

In Section 2, we review existing silicon PUFs. In Section 3, we present the foundations for PUF's,
including a PUF model, the PUF information capacity, and the necessary conditions for secure
PUF construction. In Section 4, we present the new bit generator and the helper data algorithm.
In Section 5, we present the PUPRP and its security analysis. Section 6 concludes the work.

2 Related Work

One line of PUF designs aims to support large input length, say, 64-128 bits. Examples include
the controlled PUF (CPUF) [8, 9], the arbiter-PUF [16], and the lightweight PUF (LW-PUF) [21].
Gassend et al. [8, 9] introduce the concept of silicon PUFs and construct Controlled PUFs (CPUF).
A CPUF contains a “weak” PUF consisting of a ring oscillator (RO) and a counter. The choice of
the delay path of the RO is controlled by an £ bits input. The counter counts the number of rounds
of the RO within a certain time interval. For the same input, the counting may vary from one PUF
instance to another, depending on the periods of their ROs. One hash function is placed before the
PUF and one hash function after to scramble the input/output. Since the output is determined by
the path delay that is affected by temperature and power supply voltage, the CPUF is sensitive to
environmental influences.

To reduce the environmental influences, Lim et al. [16] propose an arbiter-based PUF using a
differential structure. Instead of measuring one delay value, arbiter-based PUFs compare the delays
of two identical paths. Since the variation of temperature or power supply affects both paths, their
effects may cancel each other, and hence increases the stability of the output. A basic arbiter-based
PUF can be represented using a linear model that can be solved from multiple input/output pairs.
To prevent this attack, a feed-forward structure is added to provide nonlinearity in the arbiter-PUF.
However, Majzoobi et al. [21] and Rithrmair et al. [28] show that the feed-forward arbiter-PUF
(without input/output hashing) can be learned by machine learning algorithms; therefore it is not
secure.

To restore the security of the arbiter-based PUF without using input/output hashing, Maj-
zoobi et al. [21] proposed a lightweight PUF (LW-PUF), which uses linear transformation for
the input/output preprocessing and postprocessing; however, Rithrmair et al. [28] show that this
LW-PUF is also not secure.

Another line of PUF design focuses on PUF key generators, or equivalently, PUFs with small
input length. A representative example is the SRAM-PUF [10]. A SRAM-PUF with an ¢-bits
input and an m-bits output consists of 2¢ x m SRAM cells. Each cell is a bi-stable circuit that
settles to 0 or 1 after power-up. Such a SRAM-PUF uses m2¢ cells, therefore it is not intended to
provide a large number of challenge-response pairs; instead, the m2¢ bits are often used to generate
a cryptographic key.

A SRAM cell may settle to different states in different power-ups due to circuit noises. To
obtain stable outputs, several helper data algorithms are proposed [10], [7], [2], [19]. Since most
FPGAs set their SRAM memories to a known state upon power-up, several methods have been
developed to simulate the SRAM cells by using standard digital logic on a FPGA. Kumar et al.
[15] propose Butterfly PUFs based on cross-coupled latches. Maes et al. [18] propose Flip-Flop
PUFs based on the power-up values of the flip-flops present on FPGAs.

3 PUF Foundations

3.1 Preliminary

First we define some notations that will be used throughout the paper:

|S|: number of elements in a finite set S.
2 <& S x is chosen from a set S according to a probability distribution D over S.

z <& S: 1 is chosen from S according to a uniform probability distribution over S.
(¢,m)-f: a function f with an ¢-bits input and an m-bits output.

Z: the set of all functions that map a domain {0,1} to a range {0,1}™ (Fact: |Z| = 2’”24).
®(z): cumulative function of a standard Gaussian distribution.

®~!(z): inverse of the cumulative function of a standard Gaussian distribution.

@(x): density function of a standard Gaussian distribution..

B(n,p,z,y): B(n,p,z,y) =37, (1)p'(1l—p)

When it is not specified, a function has an ¢-bits input and an m-bits output. We assume that
the functions can be computed within a reasonable time for practical £ and m values.
Next we review the distinguishing game based on which pseudorandomness will be defined:

Definition 3.1 Let F be a set of functions (i.e., a function family) and D be a probability distri-
bution over F. Let E be a distinguisher. A challenger C' chooses a random bit b L {0,1}. Ifb=0,
then f & 2 s returned to E; otherwise, f & F is returned to E. Within time t and querying f

up to q times, E returns a bit b'. The advantage of E to distinguish f L F from f &z s defined
as

Advi), (E) =

Prfb = b] - ;‘ (1)

An insecure function associated to f L Fis defined as the mazximum advantage over all E:
Adv’]’;{)(q, t) = max {AdvI]’;J;(E)} .

The above definition is an extension of that by Bellare et al [3]. In the original definition, D is
a uniform distribution over F C Z, but here we allow D to be any distribution to precisely model
PUF below.

3.2 PUF Model

Our PUF model and related notations and facts are described as follows: each PUF design deter-

mines a probability distribution D over Z; each PUF instance implements a sample f Lz Dis
called a PUF distribution. The function family of D is defined as the subset of Z in which each
function is sampled with a non-zero probability. If F is the function family of D, then random

process f &z is identical to f L F
We call a PUF instance f Y za physical unclonable random function PURF, and we call a

PUF instance f L Fa physical unclonable pseudorandom function PUPRF if its insecure function
defined in (1) is small enough (under practically large g and t) to be negligible in practice. If the
PUPRF is a permutation, then we call it a PUPRP.

Among previous PUFs, the SRAM-PUF and its variants, the butterfly-PUF and the Flip-flop-
PUF, can be considered as PURF. Other PUF's with a large input length, including the optical-PUF,
the CPUF, the arbiter-PUF, and the LW-PUF, are designed as PUPRFs. A block cipher contains
PURF's to generate a key can be considered as a PUPRP.

3.3 PUF Information Capacity

Since a PUF is a silicon object that implements a deterministic function, it has to contain the
information that determines the function. We consider what is the maximum information capacity
that a PUF can achieve. Suppose that a PUF contains n silicon components. Their delay values
are n continuous random variables. We assume that their probability distribution is Gaussian
distribution with a mean value T and a variance ox2. The information source used to determine
the function is the n random variables. Measuring a continuous variable can obtain any number
of bits of information if the measurement is accurate enough. However, due to the noise in silicon
circuits, the information capacity of a continuous variable is bounded. We assume that the jitters
of delays caused by noises follow a Gaussian distribution with a mean value 0 and a variance ox?2.
The information capacity of one such variable can be computed using the following theorem: [12,

§8,89].

Lemma 3.2 Let X be a continuous random variable with Gaussian distribution with a variance
ox2, let N be a Gaussian noise with a variance on?, and let x1,...,x, be r samples of X. On
average, the mazimum information capacity of the r samples is

1 7“2014
= —lo 1+
¢ g 082 (on?(rog? + on?)

bits.

Then, the information capacity of a PUF with n components is obtained in the next theorem:

Lemma 3.3 We assume that 1) a PUF contains n components, and X1, ..., X, be their delays, 2)
the delays are continuous random variables with Gaussian distribution with a mean value T and a
variance ox?, and 3) the jitter of a delay follows a Gaussian distribution with a mean value 0 and
a variance on>. It holds that, within a time period vT,r > 1, the mazimum information capacity
that the PUF can obtain is

Imax(Xla cee aXn) < nc
bits.

Proof (Sketch). Sampling a delay with mean value T' takes a time 7" on average. Then, for each
X;, within time 7T, » samples can be made on average. The information capacity of the n random
variables is at most the sum of the information capacity of each random variables (equality holds
only when the random variables are independent). O

3.4 PURF Resource Requirement
We show that the input size of a PURF is limited by its information capacity:

Lemma 3.4 Let F be the fungction family of a PUF distribution D over Z. If each PUF instance
has n components and n < %, then it holds that | F| < | Z].

Proof. The maximum information capacity of a PUF instance is at most nc. With nc bits
information, at most 2"¢ distinct objects can be identified. It holds that

|F| < 2me.
With n < mTﬂ and |Z] = 2m2° it holds that

|F| < 27 < 272 = |Z| (2)

Corollary 3.5 If a PUF instance has n components where n < mng, then it is not a PURF.

The result indicates that it may be impractical to construct a PURF with large input size, since
the circuit size of the PUF increases exponentially as ¢ increases.

A (£,m)-SRAM-PUF uses m2‘ SRAM cells (plus some control logic). If the power-up state of
the cells settle to 0 and 1 with equal probability, then the (¢, m)-SRAM-PUF is a (¢, m)-PURF.
Therefore, n = ©(m2°) can be considered as the necessary and sufficient condition for building a
(¢,m)-PURF.

3.5 Confusion and Diffusion in PUPRF

When |F| < |Z], a PUF f & F is not a random function; but it may be indistinguishable from
a random function, i.e., a pseudorandom function. In this section, we consider how to construct
PUPRF.

Shannon [29] introduced diffusion and confusion as two principles to design symmetric key
ciphers where the key length is less than the message length. Let F be the function family of a
PUF distribution D over Z. We review diffusion and confusion in terms of PUFs.

Definition 3.6 Diffusion requires that, for y = f(x), f € F, each bit of x affects all bits of y.

Next, we review confusion. To identify if f € F, log, |F| bits of information are sufficient.
Therefore, it holds that f(x) = F(K,z) for some function F and a key K of log, |F| bits. Let b;(y)
be the j* bit of y; after querying f for ¢ times, one obtains gm pairs of (z;, b;(y;)) that correspond
to gm Boolean function equations

bi(ys) = bj(F(K, @), 0<i<m—1 (3)
0<j<q—-1

When gm > log, |F|, K is uniquely determined by the ¢m (x;,b;(y;)) pairs. Confusion requires
that, although the ¢ pairs of (x,y) uniquely determine K, it is infeasible to find out K.

Definition 3.7 Confusion requires that, for practical ¢ and m wvalues, given f L F, within a
reasonable time, it is infeasible to query f for q times and find K that satisfies the gm pairs of

(21, by (1)) i (3).
Next, we show that, if |F| < |Z|, then diffusion and confusion are necessary to achieve low
Adv Y (q,1).
Lemma 3.8 Let D be a distribution over F. It holds that
Advi] (g, 8) = AdvL(a,). (4)
Informally, Lemma 3.8 says that, for a uniform distribution U over F and a non-uniform distribution
D over F, f & F is more random than f L F we skip the proof of Lemma 3.8.

Lemma 3.9 Let F C Z. We assume that computing f(x), f € F takes a time O(¢m). If diffusion
is not satisfied, then it holds that, for a time t = O(¢mq)

A (a,t) > % <1 - <;)q> . (5)

Proof (sketch). If diffusion is not satisfied, then there exist ¢ and j such that, for f € F,

bi(f(zos -y xjy e 20-1)) (6)
= bz(f(l‘o, - ,i‘j, e ,:L‘g_l)).
A distinguisher E queries f for 2¢ times with ¢ pairs of (zo,...,z;,...,2¢—1) and (o, ..., Zj, ..., Z¢—1).

If (6) holds for all pairs, then F concludes that f & F ,and f &z otherwise.

For f € F, equation (6) holds for all ¢ pairs of selected (x,y). For f gz , which is a random

function, the probability that (6) holds for all ¢ pairs of selected (z,y) is 2% It is easy to verify

that (5) holds. O

Lemma 3.10 Let F C Z. We assume that computing f(z), f € F takes a time O(¢m). Suppose
that confusion is not satisfied so that a distinguisher E can query f and find out K that satisfies
(3) with in time t'. We also assume that, after obtaining K, E knows if f € F. Then, for some
time t =t + O(gfm), it holds that

AdZ(a,0) > (1 - (‘g)) . M)

Proof (sketch). E queries f for ¢ times and solves (3) for K. If K is obtained in time ¢ and it holds
that F'(K,x) € F, then E concludes that f L rF

E is wrong only when f &z and f € F. It is easy to show that (7) holds. O
Combining (2), (4), (5), and (7), we have the following result:

Proposition 3.11 If each PUF instance has n components where n < mTﬂ, then confusion and
diffusion are necessary for the PUFs to be secure PUPRFs.

Remark. Equation (6) defines a specific relation between x and y = f(z), f € F. In fact, any
deterministic relations between x and y = f(x), f € F would invalidate F as pseudorandom function
family. Searching for such relations is an important approach for block cipher cryptanalysis. Linear
cryptanalysis [23] and differential analysis [4] are two such examples; they are addressed in more
details in Section 5.3.

4 PUF Key Generator and PURF

4.1 Construction

In this section, we present a PUF key generator consisting of a new bit generator and a novel helper
data algorithm that we call MVBB (majority-voting-bright-bits). The bit generator is a bi-stable
ring of two NAND gates as shown in Figure 1.When the CTL signal is 0, both the outputs of the
two NANDs are 1. When CTL is 1, the two NANDs are configured as a bi-stable ring, and the
output O settles to either 1 or 0. Compared to the previous Butterfly-PUF [15], the NAND-loop
bit generator is more efficient in hardware cost and takes less response time. We note that the
NAND-loop can be implemented on an FPGA by properly configuring the FPGA synthesis tool;
this is contrary to the thought that combinational loops cannot be created on an FPGA [15].

CTL

D— Dy

Figure 1: Bit generator.

Bit generator model We review a model for the bi-stable ring from [20] with slight change to
describe the hebaviour of the bi-stable ring based on propagation delays and jitters. Let X; and
X5 be the delays of the two NAND gates and A = X1 — X5, and let N be the jitter. Without loss
of generality, we assume that the NAND ring settles to 1 if A+ N > 0, and settles to 0 otherwise.
Let o be the standard deviation of the delays and oy be the standard deviation of jitters. Let p
be the probability that a bit generator outputs 1 and let A = \/%];x It holds that

Prlp < o] = B\~ (2))
and

_ (AT (@)
Pl == ey

where ®(), ®~1(), and () are the the cumulative function, the inverse of the cumulative function,
and the density function of a standard Gaussian distribution [20].

MVBB algorithm In the MVBB algorithm, each bit generator is dark, grey, or bright according
to its p value, the probability that it outputs 1. Let each bit generator generates an odd number
of n outputs. We specify two two parameters d, (distance of grey) and dy (distance of dark),
0 <dy <dgq<n/2. A bit generator is dark if

the generator is grey if

and the generator is bright if

d n—d
O§p<—g or —24
n

<p<l1.
Figure 2 illustrates Pr[p = z],0 < z < 1, and regions of the bright, grey, and dark bits.

Suppose that a PUF uses k bit generators. The MVBB algorithm consists of two algorithms
defined as follows.

e Helper data generating: for each generator, MVBB measures the probability, p, that the
generator outputs a value of 1. A string « of k bits is generated and output as the helper
data to indicate which key bits are dark and which are non-dark. A k bit key, K’, is also
generated. If p > %, then the corresponding key bit is 1; otherwise the key bit is 0. The key
bits of dark generators are set to 0.

In practice, the probability measurement can be approximated by © where x is the number
of 1s in the generator outputs. In the analysis, we will assume that p is accurately obtained.

e Key reproducing: MVBB receives a helper data string S. For each bit generator, MVBB

generates n outputs and record z, the number of 1s. MVBB estimates p = . If a generator is

bright according to p but is marked as dark in 3, then MVBB stops key producing. Otherwise,
MVBB generates a k bit key K. For bit generators marked as dark in 3, the key bits are set

to 0. For a bit generator marked as non-dark in (3, the key bit is 1 if p > %, or 0 otherwise.

Pr[p=x]

0 x ok
bright grey dark grey bright
—_— A AT
0 dg dd n/2 n-dd n-dg n

number of 1s

Figure 2: Bright, grey, and dark bit generators.

For efficient hardware implementation of the logic, we choose n = 2¢ — 1, dy = 2% and dg = 2%
where 7,14, and 74 are integers and iy < 74 < ¢. The key bit is the most significant bit of the counter.
If the i — iy most significant bits of the counter are all 1s or Os, then the bit generator is bright; if
the ¢ — iy most significant bits of the counter are all 1s or Os, then the bit generator is bright or
grey.

Privacy amplification K is a non-uniform random string because of the dark generators, and
because the output of a bit generator may output 0 or 1 with unequal probability. We implemented
1024 generators on Xilinx FPGA. In our experiment, about 60% bit generators output 0, so the
entropy of a secure key bits is about 0.97 bits. The entropy of the k-bits key, K, is 0.97n;. K can
be compressed to generate a 0.97n; bits (both in length and in entropy) cryptographic key using
2-universal hash functions (see, e.g., [7]).

4.2 Robustness

A HDA should be robust so that the same key will be reproduced in different key generating rounds.
For the MVBB algorithm, we require that, if the helper data is not altered, then K = K’. We have
the following result:

Theorem 4.1 Let K' and K be the keys generated in MVBB helper data generating and MVBB
key reproducing respectively. If the helper data is not altered, i.e., o = 3, then it holds that

Pr[K # K'| < Pr[Ey] + Pr[E,).

where

dy—1 "
Pr[Ey) <1-B (n g . 0,dg— 1)
n

and

Proof. When the helper data are not changed, there are two cases that result in K # K': 1) the
number of 1s generated by any bright generator changes from a value less than d, to a value greater
than dg4 or from a value greater than n — d, to a value less than n — dg (an event denoted as Ej),
and 2) the number of 1s generated by any grey generator changes from a value between d; and dy
to a value greater than n/2 or from a value between n — dg and n — d4 to a value less than n/2 (a
event denoted as E;). Then the results follow immediately. 0

We give an example to illustrate the robustness of MVBB. Based on results on delay variances
and jitters in circuits ([17], [13]), we assume that 7% = 16, so we set A = 0.05. Suppose that K
has a length of 100 bits. We choose n = 127, and set d;, = 8 and dg = 32. Then it holds that
Pr[K # K'] < 3.1 x 1078,

4.3 Security

For a HDA, we need to consider if the key, K, is secure under both passive attacks and active
attacks. In passive attacks, an adversary tries to learn K without changing the helper data; in
active attacks, an adversary tries to learn K by manipulating the helper data.

Active attacks against previous HDAs We note that the majority-voting-dark-bit (MVDB)
algorithm [2] is insecure against active attacks when it is used to generate keys. In MVDB, bit
generators are marked as dark or non-dark. In the key reproducing process, key bits produced by
non-dark bit generators are appended to the key string. An active attack is described as follows.
Suppose that the key generated by MVDB is used on a cipher, and the adversary has access to
the helper data and can use the cipher as an oracle, but the adversary does not has access to the
key. Let (51, Bo,... be the non-dark bits in the helper data and let ki, ko, ... be the key bits. The
adversary changes b; in the helper data to dark and encrypts a message. In this case, the key
used for encryption is koks.... Then the adversary changes by to dark but keep b; non-dark, and
encrypt the same message again. This time, the key used for encryption is ki1ks.... By checking
if the two cipher texts are the same, the adversary knows if k; = ks. Repeating this process, the
adversary can groups all key bits in two sets where each set contains the key bits with the same
value. The adversary can find which set is 1 using at most two trials and fully recover the key. We
do not find other HDAs such as [7] and [2] that are all based on error-correcting codes susceptible
to the same active attacks.

Security of MVBB Regarding the security of MVBB, we have the following result.

Theorem 4.2 The key bits in K produced by bright generators are secure under both passive attacks
and active attacks.

Proof. Helper data itself does not leak any information about a bright or grey key bit, i.e., Pr[k; =
1] = Pr[k; = 1|5i], because by knowing that a generator is grey or bright does not leak if the
generator outputs 1 or 0; therefore, the grey bits and bright bits are secure under passive attacks.
In active attacks, there are three cases: 1) a non-dark bit 3; of a bright generator is changed to
dark in 5. In this case, the MVBB will stop, and the adversary knows that the corresponding bit
generator is bright, but he obtains no information about if the key bit is 1 or 0; 2) a non-dark bit
of a grey generator is changed to dark in . In this case, the MVBB will regard corresponding
bit generator as dark and set its key bit to 0. This may leak the true value of the key bit of this

11

grey generator as in the active attack against MVDB above. However, since all bit generators are
independent, the adversary does not obtain any information about the key bits of any bright bit
generator; 3) a dark bit f; is changed to non-dark in S. In this case, the MVBB will proceed
to generate an incorrect key, but the adversary still obtains no information about the key bit of
a bright or grey bit generator. In summary, the key bits of the bright bit generators are always
secure.]

As an example, Suppose that K has a length of 100 bits. For A = 0.05, n = 127, d, = 8, and
dg = 32, it holds that Prn, < 80] < 1.1 x 1077, i.e., the probability that less than 80 keys bits is
secure is less than 1.1 x 1077,

4.4 Overhead

The MVBB does not use error-correcting codes; this makes it much simpler and more efficient
than other error-correcting code based HDAs. For example, the soft decision HDA [19] is the
most efficient HDA among previous error-correcting code based HDAs; its algorithm is executed
using a arithmetic logic unit (ALU) controlled by an finite state machine (FSM) that applies the
consecutive algorithm steps stored as microcode. As a comparison, the MVBB has a structural
hardware and is more efficient in both hardware and computation.

4.5 PURF

Using a uniformly random key string of length m2¢ generated above, we can build an (£, m)-PURF.
The bits are arranged as a 2¢ x m matrix. For an ¢ bit input, one of the 2¢ rows is chosen. The m
bits of the chosen row is the output of the PURF.

5 PUPRF Construction

5.1 PUPREF Design Approaches

Initially, in PUF design, a PUF is supposed to contain a large number random elements; the input
to the PUF interacts with the elements in a complex process so that the output is unpredictable
(e.g. the optical PUF [27]). In this case, the physical objects contains sufficient entropy, or the
complex physical interaction between the input and the PUF provides confusion and diffusion.
Lemma 3.3 shows that a silicon object cannot provide sufficient entropy for large input PUFs in
practice; therefore, confusion and diffusion must be used. However, no existing silicon PUFs relying
solely (or mainly) on physical processes such as the arbiter-PUF [16] and the LW-PUF [22] provide
sufficient confusion to be secure [28]. How to design secure PUPRF based on physical diffusion and
confusion mechanisms is still an open problem.

Some other PUF's use cryptographic primitives to provide confusion and diffusion. For example,
CPUF uses hash functions. Another example of PUF is a block cipher using a key generated by
PURFs. For these PUFs, confusion and diffusion are implemented by conventional hash or cipher
algorithms.

Armknecht et. al [2] proposed a PUPRP construction using an integrated approach that in-
tegrate PUFs with the confusion/diffusion mechanism of a block cipher. The tight integration
improves the tamper-resilience of the overall design. Armknecht et. al’s construction is theoretical
because its overhead increases exponentially as the input size of the PUPRP increases.

12

In this section, we propose a practical PUPRP construction using the integrated approach. As
the input size of the PUPRP increases, its overhead increase linearly; as a result, the PUPRP has
an efficient hardware implementation.

5.2 Feistel PUPRP

We use (4,4)-PURFs and a Feistel-network to construct a (64,64)-PUPRP as shown in Figure 3.
The PUPRP uses 12 rounds of iterations. Each iteration uses a Feistel function (F function). The
F function is a substitution-permutation network (SPN) as shown in Figure 4. The SPN consists
of a layer of eight (4,4)-PURFSs serving as substitute functions (S-Box) and a permutation layer 7()
as defined in Table 1. The permutation layer is the same as the permutation network in DES [1].
In additional to the input z and output y, the PUPRP also receives helper data, a, and output
helper data, (8, as defined in the MVBB algorithm for each PURF it contains.

X063 wrx32 R B pssisey 200 B

F functionF——

F functionf———

z63,.., z32 z31,..,z0 o

Figure 3: Feistel network PUPRF.

{ o123 4|5 |6 | 7|89 |1011|12 13|14 15
w(i) | 8 [1622|3012 27| 1 |17 |23 |15|29| 5 [25[19| 9 | O
1
(

16 | 17|18 |19 | 20 | 21 |22 |23 |24 |25 |26 |27 28|29 30|31
i) 7113|124 2 |3 [28[10(18 |31 11|21 |6 | 4 [26]|14]20

Table 1: Permutation network

Compared with a standard Feistel cipher using a SPN as the F function, e.g., the Feistel cipher
model used in [14], the Feistel-PUPRF unrolls each round of the Feistel cipher, removes the key
schedule model and key combining units, and replaces each S-box with a PURF. In principle, we
can use any Feistel cipher and change it into a PUPRF with this approach.

Remark We note that a SPN block cipher (e.g., AES) cannot be turned into a PUPRP by directly

replacing the S-boxes with PURFs. Suppose that we remove key schedule and key combining, and
replace the S-Boxes of a SPN cipher with PURFs. Since a PURF is not a permutation, different

13

x31x30x29x28 .. x3 x2 x1 x0 P

‘ Il M
(4,4) -PURF| -~ (4,4)-PUR

e

‘ Permutation network ‘

yv31ly30y29y28 .. v3 v2 vyl yvO «

Figure 4: F function.

inputs may produce the same output. Therefore, with a probability 2% (n is the input length of
the S-Box), flipping one bit in the input of the cipher does not change its output. In Feistel cipher,
this problem is avoided because of the XOR operations in each round.

We consider two version of Feistel-PUPRP. One is the full version described above. The other
is a reduced version, where only one F function is repeatedly used in all rounds. The full version
uses 96 (4,4)-PURFs and the reduced version uses eight (4,4)-PURFs.

5.3 Security Analysis

Confusion and diffusion First we consider whether the Feistel-PUPRP achieves sufficient con-
fusion. For each (4,4)-PURF, assuming that its input is known, then each output bit of the
(4,4)-PURF can be described as a linear Boolean function of 64 unknown variables. In the full
version, each of the 32 left output bits of the PUPRP involves 12 rounds of F functions. In the
last round, one PURF is involved. In all other 11 rounds, at least four PURF's are involved in each
round. Therefore, the bit can be expressed as a Boolean function of at least (11 + 1) x 64 = 2880
variables of degree 12. Similarly, each of the 32 left output bits can be expressed as a Boolean
function of at least (10 + 1) x 64 = 2624 variables of degree 11. In the reduced version, the PURF's
used in each round are the same; each bit on the left is a Boolean function of 512 variables of degree
11, and each bit on the right is a Boolean function of 512 variables of degree 10. To reveal the
unknown variables, one needs to solve a system of such equations. If the computation is infeasi-
ble in practice, then confusion is achieved. In fact, the difficulty of solving a system of nonlinear
equations of a large number of variables are the basis of all block ciphers.

Next we consider diffusion. In each round, one output bit is affected by four inputs. We consider
four consecutive rounds as a block. Approximately, for one block, every output bit is affected by
all 64 inputs, and hence every input bit affects all 64 output bits. Three blocks (twelve rounds)
appear to provide sufficient diffusion.

Linear and differential cryptanalysis Linear cryptanalysis [23] and differential cryptanalysis
[4] are powerful attacking tools for block ciphers including Feistel ciphers. They exploit the relations

14

Table 2: NIST RNG testing for reduced version Feistel-PUPRP.

P-VALUE | Proportion | Statistical test P-VALUE | Proportion | Statistical test
0.24 1.00 Frequency 0.19 0.99 OverlappingTemplate
0.26 0.97 BlockFrequency 0.81 0.97 Universal
0.80 0.99 CumulativeSums 0.32 0.96 ApproximateEntropy
0.83 0.99 Runs 0.60 1.00 RandomExcursions
0.72 1.00 LongestRun 0.77 1.00 RandomExcursionsVariant
0.83 0.99 Rank 0.85 0.98 Serial
0.04 1.00 NonOverlapping 0.40 1.00 LinearComplexity
Template

between the input and output of each S-box, and then use the knowledge to further analyze the
whole cipher. Security evaluation for differential and linear cryptanalyses for Feistel ciphers with
SPN round function are available [14]. However, in the Feistel-PUPRP, each PURF is a random
function, where the input-output relation is not defined as the S-boxes in conventional block ciphers.
It appears that linear cryptanalysis or differential cryptanalysis is not applicable to the Feistel-
PUPRP.

Random test We use the NIST RNG test suite [24] to test the randomness of bit strings gener-
ated by a software simulated Feistel-PUPRP in counter mode. For both the reduced version and
the full version Feistel-PUPRP, 1000 of 1Mbits strings are generated and tested. The results for
both versions indicate no deviation from random behaviour. A test result for the reduced version
is shown in Table 2.

The above analysis shows no weakness of the Feistel- PUPRP. However, as a new cryptographic
primitive, the Feistel-PUPRP needs more analysis and public scrutiny. The proposed PUPRF is
more of a proof-of-concept than an off-the-shelf product.

6 Conclusion and Discussion

We have systematically studied theoretical foundations and practical constructions for silicon PUF's.
We have proposed a simple model that captures the core concept of PUF and enables us to study
the security of PUFs in a strict mathematical model. We then presented an information capacity
bound for silicon PUFs. Based on the model and the bound, we proved that silicon PUFs cannot
be random functions with large input length, and confusion and diffusion are necessary to construct
PUFs as pseudorandom functions. These results may provide some guidelines for PUF design and
security analysis.

We proposed a new bit generator and a novel helper data algorithm to construct robust and
secure physical unclonable random functions (PURFs). Compared with previous constructions, our
algorithm significantly reduced hardware cost to achieve required robustness and secrecy. Then,
using the PURF's and a Feistel network, we constructed a physical unclonable pseudorandom per-
mutation (PUPRP). To the best of our knowledge, this is the first secure and practical silicon
PUPRP construction without using a block cipher or a hash function as a building block. It also
demonstrated a general approach to convert a Feistel cipher to a PUPRP.

15

Acknowledgement

The authors are grateful to Roger Woods for valuable comments and advices.

References

1]
2]

[10]

[11]

[12]

Fips 46-3: The official document describing the DES standard. 1999.

Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and Pim Tuyls. Memory
leakage-resilient encryption based on physically unclonable functions. In Mitsuru Matsui,
editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 685—702.
Springer, 2009.

Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci., 61(3):362-399, 2000.

Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. In CRYPTO
’90: Proceedings of the 10th Annual International Cryptology Conference on Advances in Cryp-
tology, pages 2—21, London, UK, 1991. Springer-Verlag.

A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, and Y. Seurin. Hash
functions and RFID tags: Mind the gap. In Oswald and Rohatgi [25], pages 283-299.

Leonid Bolotnyy and Gabriel Robins. Physically unclonable function-based security and pri-
vacy in rfid systems. In PERCOM °07: Proceedings of the Fifth IEEE International Conference
on Pervasive Computing and Communications, pages 211-220, Washington, DC, USA, 2007.
IEEE Computer Society.

Christoph Bosch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid Shokrollahi, and Pim Tuyls.
Efficient helper data key extractor on FPGAs. In Oswald and Rohatgi [25], pages 181-197.

Blaise Gassend, Dwaine E. Clarke, Marten van Dijk, and Srinivas Devadas. Silicon physi-
cal random functions. In Vijayalakshmi Atluri, editor, ACM Conference on Computer and
Communications Security, pages 148-160. ACM, 2002.

Blaise Gassend, Marten Van Dijk, Dwaine Clarke, Emina Torlak, Srinivas Devadas, and Pim
Tuyls. Controlled physical random functions and applications. ACM Trans. Inf. Syst. Secur.,
10(4):1-22, 2008.

Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. FPGA intrinsic PUF's
and their use for IP protection. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES,
volume 4727 of Lecture Notes in Computer Science, pages 63-80. Springer, 2007.

Jorge Guajardo, Boris Skoric, Pim Tuyls, Sandeep S. Kumar, Thijs Bel, Antoon H. M. Blom,
and Geert Jan Schrijen. Anti-counterfeiting, key distribution, and key storage in an ambient
world via physical unclonable functions. Information Systems Frontiers, 11(1):19-41, 2009.

L. P. Hyvarinen. Information Theory for System Engineers. Springer-Verlag, 1970.

16

[13]

[14]

[21]

[22]

[23]

Keith A. Jenkins, Anup P. Jose, and David F. Heidel. An on-chip jitter measurement circuit
with sub-picosecond resolution. In Proceedings of ESSCIRC, 2005.

Masayuki Kanda. Practical security evaluation against differential and linear cryptanalyses
for feistel ciphers with SPN round function. In SAC ’00: Proceedings of the Tth Annual
International Workshop on Selected Areas in Cryptography, pages 324-338, London, UK, 2001.
Springer-Verlag.

Sandeep S. Kumar, Jorge Guajardo, Roel Maes, Geert Jan Schrijen, and Pim Tuyls. The But-
terfly PUF: Protecting IP on every FPGA. In Mohammad Tehranipoor and Jim Plusquellic,
editors, HOST, pages 67-70. IEEE Computer Society, 2008.

Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh, Marten van Dijk, and Srinivas De-
vadas. Extracting secret keys from integrated circuits. IEEE Trans. VLSI Syst., 13(10):1200—
1205, 2005.

Ping Liu and Yong-Bin Kim. An accurate timing model for nano CMOS circuit considering
statistical process variation. In IEEE International SoC Design Conference(ISOCC), pages
269-272, 2007.

Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Intrinsic PUFs from flip-flops on reconfig-
urable devices. In 3rd Beneluz Workshop on Information and System Security (WISSec 2008),
2008.

Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Low-overhead implementation of a soft
decision helper data algorithm for SRAM PUFs. In Christophe Clavier and Kris Gaj, editors,
CHES, volume 5747 of Lecture Notes in Computer Science, pages 332-347. Springer, 2009.

Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. A soft decision helper data algorithm for
SRAM PUFs. In IEEFE International Symposium on Information Theory (ISIT 2009), 2009.

Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Lightweight secure PUFs.
In Sani R. Nassif and Jaijeet S. Roychowdhury, editors, ICCAD, pages 670-673. IEEE, 2008.

Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Techniques for design and
implementation of secure reconfigurable PUFs. TRETS, 2(1), 20009.

Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In FUROCRYPT ’93: Workshop
on the theory and application of cryptographic techniques on Advances in cryptology, pages
386-397, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

NIST. NIST random number generation and testing, 2006. http://csrc.nist.gov/groups/
ST/toolkit/rng/index.html.

Elisabeth Oswald and Pankaj Rohatgi, editors. Cryptographic Hardware and Embedded Sys-
tems - CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13,
2008. Proceedings, volume 5154 of Lecture Notes in Computer Science. Springer, 2008.

Erding Oztiirk, Ghaith Hammouri, and Berk Sunar. Physical unclonable function with tristate
buffers. In ISCAS, pages 3194-3197. IEEE, 2008.

17

[27]

[28]

[29]

[30]

31]

[32]

Pappu Srinivasa Ravikanth. Physical one-way functions. PhD thesis, 2001. Chair-Benton,
Stephen A.

Ulrich Rithrmair, Jan Sélter, and Frank Sehnke. On the foundations of physical unclonable
functions. Cryptology ePrint Archive, Report 2009/277, 2009. http://eprint.iacr.org/.

Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal,
28:656-715, 1949.

G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authentication
and secret key generation. In DAC, pages 9-14. IEEE, 2007.

G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas. Design and
implementation of the aegis single-chip secure processor using physical random functions.
SIGARCH Comput. Archit. News, 33(2):25-36, 2005.

Pim Tuyls, Geert Jan Schrijen, Boris Skoric, Jan van Geloven, Nynke Verhaegh, and Rob
Wolters. Read-proof hardware from protective coatings. In Louis Goubin and Mitsuru Matsui,
editors, CHES, volume 4249 of Lecture Notes in Computer Science, pages 369-383. Springer,
2006.

18

