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ABSTRACT
The Atmel chip families SecureMemory, CryptoMemory, and
CryptoRF use a proprietary stream cipher to guarantee au-
thenticity, confidentiality, and integrity. This paper describes
the cipher in detail and points out several weaknesses. One
is the fact that the three components of the cipher oper-
ate largely independently; another is that the intermediate
output generated by two of those components is strongly
correlated with the generated keystream. For SecureMem-
ory, a single eavesdropped trace is enough to recover the
secret key with probability 0.57 in 239 cipher ticks. This is a
factor of 231.5 faster than a brute force attack. On a 2 GHz
laptop, this takes around 10 minutes. With more traces, the
secret key can be recovered with virtual certainty without
significant additional cost in time. For CryptoMemory and
CryptoRF, if one has 2640 traces it is possible to recover the
key in 252 cipher ticks, which is 219 times faster than brute
force. On a 50 machine cluster of 2 GHz quad-core machines
this would take less than 2 days.

Keywords: stream ciphers, practical cryptanalysis, smart-
card security, RFID

1. INTRODUCTION
This paper addresses the (in)security of the cryptographic
mechanisms used in the Atmel product families SecureMem-
ory, CryptoMemory, and CryptoRF.

These products are integrated circuits, consisting essentially
of a small piece of memory and have cryptographic capabil-
ities to authenticate and encrypt. They have two main ap-
plication areas: in smart cards (ID and access cards, health
care cards, loyalty cards, internet kiosk, energy meters, and
e-government); and embedded, to authenticate one piece of
hardware to another or for the secure storing of crypto-
graphic data (printers and print cartridges, removable stor-
age devices, set top boxes, access control systems, subassem-
bly authentication, counterfeit protection, networked sys-

tems) [BJ04, CGY08, ZJS+09]. A concrete example is the
widely sold NVIDIA graphics cards, which uses CryptoMem-
ory as secure storage to protect the HDCP license keys1,
required to play high-definition video2. It is also used in
media players such as Microsoft’s Zune Player [Dip09] and
SanDisk’s Sansa Connect3, for instance to securely store the
device id and device certificate.

The Atmel chips AT88SC153 and AT88SC1608, which we
call here the SecureMemory family, were introduced in 1999.
A newer version, the CryptoMemory family, which includes
the AT88SCxxxxC chips, with more advanced cryptographic
features, was introduced in early 2002. These two families
only have contact interfaces; in late 2003, the CryptoRF
family, which is a variant of the CryptoMemory family with
the AT88SCxxxxCRF chips, was introduced and also has a
RF interface [Jar04].

The technology used in the chips is covered by US Patent
7395435 B2 [BCM08]. Details on the communication proto-
col used between a card (or slave device) and a reader (or
master device) can be found in the documentation [Atm07];
although this does include details on how the cryptographic
algorithms are called and on the message flow between card
and reader, it does not provide detailed information on the
cipher itself. As experience has shown with other chips
from the same era, the secrecy of such a proprietary cipher
does not inspire confidence in its cryptographic strength.
Most notably, KeeLoq, which is mainly used in wireless
car keys and the Mifare Classic, which has widespread ap-
plication in public transport ticketing systems and in ac-
cess control cards, have been thoroughly broken in the last
few years [Bog07,CBW08, IKD+08,GvRVS09,GdKGM+08,
dKGHG08,NESP08,Cou09]. The cipher used in CryptoMem-
ory, however, boasts a security stronger than DES; a secu-
rity evaluation [Tec05] claims that the observed bias in the
output is “trivial enough to confirm that CryptoMemory
is impermeable to shortcut attacks”. Admittedly, sophis-
ticated attacks were not in the scope of this evaluation. We
should note at this point that a back door has been found
in the SecureMemory chips AT88SC153/1608 [Fly08]: using
ultra-violet light, an EEPROM fuse can be restored to its
original value and the contents of the memory can be read

1http://www.expreview.com/review/2007-10-17/
1192604816d5951_2.html
2http://download.nvidia.com/downloads/pvzone/
Checklist_for_Building_a_HDPC.pdf
3http://www.rockbox.org/wiki/SansaConnect



un-encrypted. A relay attack has been executed against the
newer chips [KCP07].

Our contribution

As part of our research we have reverse engineered the secu-
rity mechanisms of the SecureMemory and CryptoMemory
families (the CryptoRF family uses exactly the same cipher
as the CryptoMemory family, so we ignore that distinction
from now on). This includes the ciphers, the authentication
and encryption mechanisms, and the password mechanisms.
This was accomplished by disassembling various executable
applications from Atmel (e.g., ECEStudio), that implement
the ciphers in software. We wrote a prototype implementa-
tion and then we compared its output with the packages we
observed from the cards.

We have implemented the full functionality of these fami-
lies in software and released this under GPL licence4. Our
implementation can communicate with genuine Atmel prod-
ucts using commercial smartcards and readers.

In this paper, we focus exclusively on the ciphers and the au-
thentication mechanism; that is all that is needed to recover
the keys.

SecureMemory and CryptoMemory use a stream cipher. It
has an internal state of 109 bits (SecureMemory) or 117 bits
(CryptoMemory), organized in three shift registers with a
non-linear feedback function. Every clock tick, two of the
registers produce 4 bits of output; the output of the third
is used to select bits from one of the two other registers,
producing 4 bits of keystream. The difference between Se-
cureMemory and CryptoMemory, as far as the cipher is con-
cerned, is that in CryptoMemory the last 8 bits of the out-
put are remembered and are fed back into the shift registers
every tick. Details are described in Section 3.

During initialization, 64-bit nonces from reader and card
and a 64-bit shared key are used to set the initial state of
the cipher; reader and tag subsequently authenticate by ex-
changing part of the following keystream. See Section 3.1
for details.

Next, we describe passive attacks against SecureMemory
and CryptoMemory. We assume that an attacker has man-
aged to eavesdrop a number of authentication sessions. For
SecureMemory, we use a combination of a correlation at-
tack (see for example [Rue92]) and a meet-in-the-middle at-
tack to recover a significant part of the internal state of the
cipher. Meet-in-the-middle attacks were also proved suc-
cessful against other stream ciphers like A51 [BBK08] and
KeeLoq [IKD+08]. Once we have the internal state of the
cipher, we use a meet-in-the-middle attack to recover the
shared secret key. This attack costs 239 time, taking ticks of
the cipher as unit. On a 2 GHz laptop, the attack takes ap-
proximately 10 minutes. Even though this attack is rather
straightforward, it serves as an intermediate, didactic step
to the more involved attack on CryptoMemory.

4Sample code available at http://www.libnfc.org/
documentation/examples/nfc-cryptorf

For CryptoMemory, the principal idea behind the attack is
the same, but it is much more complicated because of the
presence of the feedback of the output into the cipher state.
We still use a correlation attack to recover a large part of
the internal state (two of the three registers). Unlike with
SecureMemory, we do not recover this with certainty, but
obtain a few hundred to a few thousand candidates. Be-
cause of the feedback, it is also not directly possible to roll
back these partial states, so we have to search for the cor-
rect remaining part of the internal state (the third register).
After this, we can again unroll and use a meet-in-the-middle
attack to recover the shared secret key. Using approximately
2640 traces, this attack has a time complexity of 252 cipher
ticks; it would take less than 2 days on a 50 machine cluster
of 2 GHz quad-core machines. Details on these attacks are
described in Section 4 (for SecureMemory) and Section 5
(for CryptoMemory).

We have discussed these vulnerabilities with Atmel in Octo-
ber 2009. To give the manufacturer ample time to take ap-
propriate measures, we have not disclosed them until March
2010.

2. BACKGROUND
SecureMemory and CryptoMemory are ISO/IEC 7816 smart-
cards that communicate through a contact interface. Cryp-
toRF is a ISO/IEC 14443-B smartcard that uses a contact-
less interface. CryptoMemory is also available in the form
of an embedded EEPROM IC with a serial interface. The
available memory ranges from 128 bytes to 32KB. The mem-
ory is split in multiple user zones and one system zone which
stores the configuration of the smartcard.

Figure 1: Logical memory structure

The system zone is divided into six sections: identification,
access control, cryptography, secret and password. Blank
cards operate with a user-defined identifier which is cus-
tomized by the system integrator. To achieve key diversifi-
cation, the documentation recommends that the authentica-
tion keys should be derived from this identifier. The access
control section is used to restrict read and write operations
per user zone and define the requirements of authentication
and encryption. To verify the legitimacy and prevent eaves-
dropping of data and passwords a mutual authentication
with encryption is available.

3. THE CIPHERS
This section describes the stream ciphers that are used in
SecureMemory and CryptoMemory. As mentioned in the in-
troduction, the internal state of the cipher consists of three
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Figure 2: The cipher

shift registers; for CryptoMemory, an additional register re-
members the last 8 bits of output.

Definition 3.1. A cipher state of SecureMemory s is an
element of F2

109 consisting of the following components:

1. the left-hand segment l = (l0, . . . , l6) ∈ (F2
5)7;

2. the middle segment m = (m0, . . . ,m6) ∈ (F2
7)7;

3. the right-hand segment r = (r0, . . . , r4) ∈ (F2
5)5.

The cipher state of CryptoMemory is an element of F2
117.

In addition to the three segments above, it also has the fol-
lowing component:

4. the feedback segment f = (f0, f1) ∈ (F2
4)2.

Every tick, a cipher state s together with an input a ∈ F2
8

evolves in a successor state s′. First, the input a (and in case
of CryptoMemory also the feedback segment f) are XORed
into s at several places, giving an intermediate state ŝ. Sec-
ond, the left, right and middle segments are shifted to the
right and new 0th entries are computed using a bitwise ro-
tate and a modular addition. Thirdly and finally, the output
segment is shifted to the left and a new 1st entry is computed
using a non-linear function of the other segments, giving the
successor state s′. The following sequence of definitions gives
the details of this construction; see also Figure 2.

Definition 3.2. Define the bitwise left rotate operator
L : F2

n → F2
n by

L(x0x1 . . . xn−1) = (x1 . . . xn−1x0).

Definition 3.3. Define the modified modular addition
operator � : F2

n × F2
n → F2

n (identifying elements of F2
n

with elements of {0, 1, . . . , 2n − 1}) by

x� y =

{

x+ y (mod 2n − 1) if x = y = 0 or x+ y 6= 0

2n − 1 otherwise,

where + (mod 2n−1) denotes integer addition modulo 2n−
1.

Note that this operation is not injective when fixing one of
the arguments: x� 0 and x� (2n − 1) both equal x (unless
x = 0, because 0 � 0 = 0 and 0 � (2n − 1) = 2n − 1). Also
observe that the result of � is never 0 unless both operands
are 0.

Definition 3.4. Let s = (l,m, r, f) ∈ F2
117 be a cipher

state (for CryptoMemory; for SecureMemory, ignore f) and
let a ∈ F2

8 be an input. We define the intermediate state
ŝ = (l̂, m̂, r̂, f̂) and the successor state s′ = (l′, m′, r′, f ′)
as follows. For CryptoMemory, define b := a ⊕ f0f1; for
SecureMemory, b := a. The intermediate state ŝ is given by

l̂2 := l2 ⊕ b3b4b5b6b7

m̂4 := m4 ⊕ b4b5b6b7b0b1b2 (1)

r̂1 := r1 ⊕ b0b1b2b3b4

and all other entries are copied from l, m, r, and f . The
successor state s′ is given by

l′i+1 := l̂i i ∈ {0, . . . , 5}

m′

i+1 := m̂i i ∈ {0, . . . , 5}

r′i+1 := r̂i i ∈ {0, . . . , 3}

l′0 := l̂3 � L(l̂6)

m′

0 := m̂5 � L(m̂6)

r′0 := r̂2 � r̂4.

We call the rightmost 4 bits of l′0⊕ l′4 the output of the left-
hand segment (i.e., l′0,1⊕l

′

4,1 l′0,2⊕l
′

4,2 . . . l′0,4⊕l
′

4,4, a bitwise
XOR) and denote it by outputl(l′). We call the rightmost
4 bits of r′0 ⊕ r′3 the output of the right-hand segment r′

(i.e., r′0,1 ⊕ r′3,1 r′0,2 ⊕ r′3,2 . . . r′0,4 ⊕ r′3,4) and denote it by
outputr(r′). The output of the cipher state s′, denoted by
output(s′) is defined by

output(s′)i =

{

outputl(l′)i, if m′

0,i+3 = 0;

outputr(r′)i, if m′

0,i+3 = 1 i ∈ {0, . . . , 3}.

Note how the rightmost 4 bits of the middle segment acts as
a selector; it selects either a bit from the left-hand segment
or a bit from the right-hand segment to be included in the
output. For CryptoMemory, we define

f ′

0 := f̂1(= f1)

f ′

1 := output(s′).
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Define the transition function suc that takes an input a and a
state s and outputs the successor state s′. We write sucn(a, s)
denoting suc(a, s) when n = 1 and sucn−1(a, suc(a, s)) when
n > 1.

Note that the whole feedback segment can be reconstructed
from the other three segments; f1 = output(s), but also f0
can be reconstructed: shift all segments in s one to the left
and take output. To be precise, we have

f0,i =

{

l1,i+1 ⊕ l5,i+1 if m1,i+3 = 0

r1,i+1 ⊕ r4,i+1 if m1,i+3 = 1.
(2)

(So the rightmost 4 bits of m1 act as a selector between the
rightmost 4 bits of l1 ⊕ l5 and r1 ⊕ r4.)

3.1 Initialization and authentication
The cipher is initialized during the authentication protocol.
At the beginning of this protocol, tag and reader exchange
nonces as depicted in Figure 3. The tag nonce is scrambled
together with the first half of the reader nonce and fed into
the cipher. Subsequently, the shared key scrambled together
with the second half of the reader nonce is fed in. Then, the
cipher produces keystream that will be used as authenticator
for both reader and tag. The precise definitions follow.

Let nt ∈ (F2
8)8 be a tag nonce, nr ∈ (F2

8)8 a reader nonce,
and k ∈ (F2

8)8 the shared key between the tag and the
reader. In the terminology from Section 2 and the Atmel
documentation, nt is the cryptogram Ci, k is the secret key
G, and at below is the cryptogram Ci+1. Section 2 does not
mention nr and ar below, but in Atmel’s documentation
they are Q and CH respectively. The initial cipher state

nt
−−−−−−−−−−−−−−−−−−−−−−→

Tag nr, ar
←−−−−−−−−−−−−−−−−−−−−−−

Reader

at
−−−−−−−−−−−−−−−−−−−−−−→

Figure 3: Authentication protocol

has all components l, m, r (for SecureMemory and Cryp-
toMemory) and f (for CryptoMemory) equal to zero. Then
the cipher is evolved through the states s0, s1, . . . defined as

s0 := 0

si+1 := suc(nri, suc
v(nt2i+1, suc

v(nt2i, si))) i ∈ {0, . . . , 3}

si+5 := suc(nri+4, suc
v(k2i+1, suc

v(k2i, si+4))) i ∈ {0, . . . , 3}

where v = 1 for SecureMemory and v = 3 for CryptoMem-
ory. The following is an overview of the input during the ini-
tialisation phase of SecureMemory (left) and CryptoMemory
(right).

(s0) nt0 nt1 nr0
(s1) nt2 nt3 nr1
(s2) nt4 nt5 nr2
(s3) nt6 nt7 nr3
(s4) k0 k1 nr4
(s5) k2 k3 nr5
(s6) k4 k5 nr6
(s7) k6 k7 nr7
(s8)

(s0) nt0 nt0 nt0 nt1 nt1 nt1 nr0
(s1) nt2 nt2 nt2 nt3 nt3 nt3 nr1
(s2) nt4 nt4 nt4 nt5 nt5 nt5 nr2
(s3) nt6 nt6 nt6 nt7 nt7 nt7 nr3
(s4) k0 k0 k0 k1 k1 k1 nr4
(s5) k2 k2 k2 k3 k3 k3 nr5
(s6) k4 k4 k4 k5 k5 k5 nr6
(s7) k6 k6 k6 k7 k7 k7 nr7
(s8)

Starting from the state called s0, we feed in nt0 (three times
for CryptoMemory), then nt1 (three times for CryptoMem-
ory), then nr0, and arrive at the state called s1, etc. Note
that these states are non-consecutive, e.g., s1 is not the suc-
cessor of s0; we have only named those states that are needed
for the description.

The authentication protocols for CryptoMemory and Se-
cureMemory are similar, although the keystream bits used
as authenticators are different in both cards. The precise
definitions follow.

3.1.1 SecureMemory Authentication
After initialization, the cipher produces keystream that will
be used for mutual authentication of tag and reader. In Se-
cureMemory, every second output nibble is discarded. The
keystream bits used as authenticators for the tag at ∈ (F2

4)16

and for the reader ar ∈ (F2
4)16 are interleaved. We define

the following relevant states:

si := suc2(0, si−1) i ∈ {9, . . . , 40}.

The authenticator nibbles for the tag are

ati := output(s2i+9)

ati+1 := output(s2i+10) i ∈ {0, 2, . . . , 14}

and the authenticator nibbles for the reader are

ari := output(s2i+11)

ari+1 := output(s2i+12) i ∈ {0, 2, . . . , 14}.

The overview of the output during the authentication phase
of SecureMemory is as follows.

(s8) − at0 − at1 − ar0 − ar1
(s12) − at2 − at3 − ar2 − ar3
(s16) − at4 − at5 − ar4 − ar5
(s20) − at6 − at7 − ar6 − ar7
(s24) − at8 − at9 − ar8 − ar9
(s28) − at10 − at11 − ar10 − ar11
(s32) − at12 − at13 − ar12 − ar13
(s36) − at14 − at15 − ar14 − ar15
(s40)

Staring from the state called s8, one output nibble is dis-
carded, the following is called at0, the next one is discarded,
etc., until ar1. The state then reached is called s12, etc.

3.1.2 CryptoMemory Authentication
After initialization, CryptoMemory generates the reader au-
thenticator first and then the tag authenticator. While gen-
erating the reader authenticator ar ∈ (F2

4)16, five keystream

4



nibbles are discarded and then two nibbles (one byte) are
used, with the exception of the first byte where only 4 nibbles
are discarded. The tag authenticator at ∈ (F2

4)16 consists
of the bitstring 0xff followed by the next 14 (consecutive)
keystream nibbles produced. To be precise, define the fol-
lowing sequence of states. Again, note that these states are
not consecutive.

s9 := suc5(0, s8)

s10 := suc(0, s9)

si := suc6(0, si−1) i ∈ {11, 13, . . . , 23}

si := suc(0, si−1) i ∈ {12, 14, . . . , 24}

si := suc(0, si−1) i ∈ {25, . . . , 38}.

Then the reader authenticator is defined as

ari := output(si+9) i ∈ {0, . . . , 15}

and the tag authenticator is defined as

at0 := 0xf

at1 := 0xf

ati := output(si+23) i ∈ {2, . . . , 15}.

The following shows a schematic overview of the output dur-
ing the authentication phase of CryptoMemory.

(s8) 4×− ar0 ar1 5×− ar2 ar3
(s12) 5×− ar4 ar5 5×− ar6 ar7
(s16) 5×− ar8 ar9 5×− ar10 ar11
(s20) 5×− ar12 ar13 5×− ar14 ar15
(s24) at2 at3 at4 at5 at6 at7 at8
(s31) at9 at10 at11 at12 at13 at14 at15
(s38)

Figure 4:

Starting from the state called s8, the first 4 output nibbles
generated are discarded, the next two are called ar0 and
ar1 respectively, the next 5 are discarded again, etc. For
future reference, note that an attacker who has observed an
authentication trace sees 16 consecutive keystream nibbles,
viz., ar14, ar15, at2, at3, . . . , at15.

Example 3.5. Figure 5 shows an authentication trace us-
ing the shared key k = 0x4f794a463ff81d81; the first two
bytes on every line are a command and the last two are a
CRC.

4. ATTACKING SECUREMEMORY
We now turn our attention to attacking the ciphers. We
start with an attack against SecureMemory. We assume
that an attacker has eavesdropped a single authentication
session; the attack we describe recovers the shared secret key
with probability at least 0.57. By using more authentication
sessions we can arbitrarily increase this probability.

The attack we describe takes place in two phases. First, we
use a correlation attack to recover (the left-hand and right-
hand segments of) the internal state of the cipher just after
feeding in the key and just before generating the authenti-
cators (called state s8 in Section 3.1.1). Since the attacker

knows nr and nt, he can also compute the state just before
feeding in the shared secret key (called state s4). Then, we
use a meet-in-the-middle attack to recover k.

The running time of the whole attack is 239 ticks of the
SecureMemory cipher, which on a single-core 2GHz laptop
takes about 10 minutes.

4.1 Recovering the internal state
There are two weaknesses in the SecureMemory cipher that
make it possible to recover the internal state of the cipher.
The first one is that there is a high correlation between
the output of the right-hand (or left-hand) segment and
the keystream itself. Consider a state s and its output
nibble output(s). For those bits for which the middle seg-
ment chooses the right (m0,i = 1), the output bit is equal
to the corresponding output bit of the right-hand segment
(output(s)i = outputr(r)i). Assuming a uniform proba-
bility, this happens with probability 1

2
. Where the mid-

dle segment chooses the left (m0,i = 0), the output bit is
equal to the corresponding output bit of the left-hand seg-
ment (output(s)i = outputl(l)i), but with probability 1

2
this

equals the output bit of the right-hand segment (output(r)i)
anyway. So, with probability 1

2
+ 1

2
· 1
2
= 3

4
, an output bit of

the right-hand segment equals the corresponding keystream
bit (and similarly for the left-hand segment). The second
weakness is that the three segments operate independently.
So, knowing (or guessing) the right-hand (or left-hand or
middle) segment of a state s, the attacker can compute the
right-hand (or left-hand or middle) segment of the successor
state s′.

Definition 4.1. Consider a guess r for the right-hand
segment of the internal state of the cipher at the start of the
authentication phase (state s8 in Section 3.1.1) and consider
the 16 output nibbles generated by the right-hand segment
that are used to compute at and ar. We define the score of
r to be the number of bits that these 16 output nibbles have
in common with the actual keystream (i.e., with at and ar).
A similar definition applies for a guess l of the left-hand
segment.

So, for a wrong guess of the right-hand segment, one would
expect the score to be 64 (half of 128 bits correct); for the
correct guess, one would expect the score to be 96 ( 3

4
of

the 128 bits correct). So, the attacker iterates over the 225

possible right-hand segments and computes their score. The
one with the highest score is most likely to be the correct
one. As an approximation, we can assume that the score
for the 225 − 1 wrong guesses is binomially distributed with
parameters p = 1

2
and n = 128 (128 bits, each of which has

a probability of 1

2
of being correct) and the score for the

correct guess is binomially distributed with parameters p =
3

4
and n = 128. Also assuming, again as an approximation,

that all these score are independent random variables, the
following proposition applies.

Proposition 4.2. Let X1, . . . , X225−1 ∼ Binom(128, 1

2
)

and Y ∼ Binom(128, 3

4
) be independent random variables.

Then

P[∀i.Xi < Y ] ≈ 0.57
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Message Interpretation
R 1600 5007 add3 Read nt
T 1600 ff81c91e11a6393e 00 1b66 nt = ff. . . 3e
R 1800 3d28a6ae3a767a25 d308e40bb3200ee0 a905 Auth nr = 3d. . . 25, ar = d3. . . e0
T 1800 00 9b85 Ok
R 1600 5007 add3 Read at
T 1600 ff4c1c06b43cbcc2 00 440b at = ff. . . c2

Figure 5: Authentication trace

and

P[∃i.[Y < Xi ∧ ∀j 6= i.Xj < Xi]] ≈ 0.24.

Proof. Since the Xi’s and Y are assumed to be indepen-
dent, we get

P[∀i.Xi < Y ] =
128
∑

k=0

P[∀i.Xi < k ∧ Y = k]

=

128
∑

k=0

P[X1 < k]2
25

−1 · P[Y = k] ≈ 0.57

and

P[∃i.[Y < Xi ∧ ∀j 6= i.Xj < Xi]]

=

128
∑

k=0

P[∃i.Xi = k ∧ ∀j 6= i.Xj < k ∧ Y < k]

=
128
∑

k=0

225−1
∑

i=1

P[Xi = k ∧ ∀j 6= i.Xj < k ∧ Y < k]

=

128
∑

k=0

(225 − 1) · P[X1 = k] · P[X2 < k]2
25

−2 · P[Y < k]

≈ 0.24

So, as an approximation, with probability 0.57, the correct
right-hand segment has a score that is higher than the score
of all the wrong ones. With probability of only 0.24, a wrong
right-hand segment has a score higher than all the others
(including the correct one). Therefore we get with probabil-
ity 0.81 one right-hand segment that scores higher than all
the others. So we need, on average 1/0.81 ≈ 1.23 traces to
obtain such a single candidate. The conditional probability
that this candidate is indeed the correct right-hand segment
is 0.57/0.81 ≈ 0.71. To obtain a trace in which the high-
est scoring right-hand segment is indeed the correct one, we
need on average 1/0.57 ≈ 1.75 traces.

From now on, assume that we have a trace for which exactly
one right-hand segment scores higher than all the others.
For the attack we assume that it is the correct right-hand
segment r.

Then we try to find possible candidates for the left-hand
segment. Note that for those bits of the known keystream
where the output of the right-hand segment does not pro-
duce the correct bit, the corresponding bit from the middle
segment (the selector) must choose the left-hand segment
and the corresponding bit from the output of the left-hand

segment must equal that keystream bit. For instance, when
r has a score of 96, this happens 128 − 96 = 32 times. So,
the attacker iterates over all 235 possibilities for the left-
hand segment, keeping only those that satisfy the above
constraint. Experiments show that this leaves only between,
approximately, 10 and 200 candidates.

At this point, one could also try to recover (candidates for)
the middle segment, but as we will show in the next two
sections, that is not even necessary. Later, when we are
attacking CryptoMemory in Section 5, we do recover the
middle part as well.

4.2 Unrolling the cipher
Whenever the input b is known, given a state s′ it is possible
run the cipher backwards and recover the previous state s.
We start by defining an inverse to �.

Definition 4.3. Define � : F2
n × F2

n → F2
n by

x � y = x− y (mod 2n − 1).

To reconstruct s, we first unshift the cipher, recovering the
intermediate state ŝ:

l̂i := l′i+1 i ∈ {0, . . . , 5}

m̂i := m′

i+1 i ∈ {0, . . . , 5}

r̂i := r′i+1 i ∈ {0, . . . , 3}

l̂6 := L−1(l′0 � l′4)

m̂6 := L−1(m′

0 �m′

6)

r̂4 := r′0 � r′3.

There is, however, an issue here that needs special care: the
modified modular addition operator � is not injective when
fixing one argument. When l′0 = l′4 6= 0 there are two pos-
sible previous left-hand segments, namely, L(l′6) could be
equal to either 0 or to 31. Therefore, in those cases we have
to consider both possible predecessors. Similarly, splitting
might happen in the middle and right-hand segments. This
issue does not significantly hamper the possibility of un-
rolling the cipher since it only splits with probability 1/31
for the left-hand and right-hand segments and with proba-
bility 1/127 for the middle segment. Also, because the result
of � is never 0 unless both operands are 0, there are some
states that do not have a predecessor. This happens when
l′0 = 0, but l′4 6= 0.
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Next, we simply XOR back the input to recover the previous
state:

l2 := l̂2 ⊕ b3b4b5b6b7

m4 := m̂4 ⊕ b4b5b6b7b0b1b2

r1 := r̂1 ⊕ b0b1b2b3b4.

Also note that when unrolling the cipher, the three segments
operate independently.

4.3 Recovering the key
In this section we use a meet-in-the-middle technique to re-
cover the secret key.

We recall from Section 3.1 that the cipher state s4, just be-
fore feeding in the key k, is known to an attacker. Observe
that the transition function for the right-hand segment only
uses five bits b0 . . . b4 of the input. Therefore, by guessing
20 bits of the key, it is possible to roll the cipher 6 times
(feeding in nr4 and nr5 accordingly) and compute 220 pos-
sibilities for the right-hand segment of s6. Similarly starting
at the end; we have just recovered the right-hand segment
for the state at the start of the generation of the authen-
ticators, i.e., just after feeding in the key. By guessing the
other 20 bits of the key, it is possible to unroll the cipher 6
times (feeding in nr7 and nr6 accordingly) and obtain an-
other set of 220 candidates for the right-hand segment of
s6. (Actually, rolling back there are more candidates be-
cause of the splitting; in practice this is at most a ten fold
increase.) Intersecting these sets of states, since the right-
hand segment has 25 bits of entropy and we have guessed
40 bits of the input, we get approximately 215 candidates.
In practice, because of the additional splitting when rolling
back, we get between 30000 and 66000 candidates for the
right-hand segment of s6. Note that we do not just get this
set of candidates, but for each candidate we also have the
leftmost five bits of every byte of the key. So, in fact, we get
between 30000 and 66000 candidates for the leftmost five
bits of every byte of the key.

Similarly for the left-hand segment, the transition function
uses only bits b3 . . . b7. Just as before, but for each candidate
segment l from Section 4.1, we guess two times 20 bits and
we meet-in-the-middle at (the left-hand segment of) s6. In
practice, we get between 1000 and 3000 candidates. Also
here, we do not just obtain this set of candidates, but for
each candidate we have the rightmost five bits of every byte
of the key. So we get between 1000 and 3000 candidates for
the right most five bits of every byte of the key.

We now combine the first set of left-hand candidates and the
second set of right-hand candidates. Of course, a left-hand
candidate (40 bits of the key) can only be combined with a
right-hand candidate (also 40 bits of the key) if the bits of
the key that they share are equal. These are bits b3 and b4
of every byte; 8 · 2 = 16 bits in total. So, we get between
216 · (30000/216) · (1000/216) ≈ 450 and 216 · (66000/216) ·
(3000/216) ≈ 3000 candidate keys. Simulating the whole
authentication session, which now also involves running the
middle segment, with each of these candidate keys reveals
what the actual key is.

4.4 Complexity and time
As a basic unit of time, we take one tick of the Secure-
Memory cipher. As a reference note that an authentication
attempt takes 88 ticks which means that a naive brute force
attack takes 264 · 88 = 270.5 cipher ticks.

The most time in this attack is spent in recovering the set
of 10 to 200 candidates for the left-hand segment. Here we
have to loop over 235 candidates; for each of those candi-
dates we have to compute a maximum of 64 ticks of the
cipher, two for each of the nibbles of ar and at since Secure-
Memory skips every second output during the generation
of the authenticators. (Note, we only have to compute the
left-hand segment, so we count this as 1

3
). So this gives a

complexity of 239 ticks, comparable to the time it takes to
simulate 232.5 authentications. Note that for the right-hand
segment we only have to loop over 225 candidates and for
the meet-in-the-middle key-recovery we only have to build
tables of size 220, so we can ignore that. Also note that
when our authentication session does not have the desired
property that a single right-hand segment has the highest
score, we only have wasted the 225 loop over the possible
right-hand segments. Since this happens only with proba-
bility 1 − 0.81 = 0.19 we can ignore this time. After on
average 1/0.81 ≈ 1.23 traces, we do have a single candidate
for the right-hand segment and with probability 0.71 we re-
cover the key in 239 ticks. This yields an average complexity
of 239/0.71 = 239.5 ticks, i.e., the complexity of simulating
233 authentications. On average, this needs 1/0.57 ≈ 1.75
authentication traces. In practice, running this attack on a
single-core 2 GHz laptop takes about 10 minutes.

5. ATTACKING CRYPTOMEMORY
We now turn our attention to CryptoMemory. We describe
an attack in three phases: recovering the internal state by
means of a correlation attack; unrolling the internal state;
and recovering the key by means of a meet-in-the-middle at-
tack. There is, however, a major complication. Because the
output of the cipher is fed back into the internal state, it is no
longer possible to run the three segments independently, at
least not under all circumstances. This seriously complicates
the recovery of the internal state and also makes unrolling
the cipher slightly harder. Finally, we propose a trade-off
between the number of authentication traces needed and
off-line computation time, similar to the one proposed by
Biryukov et al. in [BMS05].

5.1 Recovering the internal state
The starting point for this attack is the same as the one
described in Section 4. Although the three segments can-
not be run independently as for SecureMemory, because of
the feedback from the keystream, it is possible to do so
when the keystream is fully known. Now most of the time,
CryptoMemory discards several output nibbles when gener-
ating keystream. When it generates the tag authenticator
ar, however, CryptoMemory does produce 16 consecutive
keystream nibbles (namely the last 2 of at and the 14 of
ar that it actually generates). Note, by the way, that Se-
cureMemory never produces consecutive keystream nibbles,
but there that is not needed for the attack anyway. Let
ks ∈ (F2

4)16 be those 64 bits of keystream. Knowing that
the keystream bits are equal to the output of either the
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left-hand or the right-hand segment, we define the following
score, similar to the one for SecureMemory, but using only
the 64 bits of ks.

Definition 5.1. Consider a guess r for the right-hand
segment of the internal state of the cipher just before pro-
ducing the last byte of ar (the state s23 in Section 3.1.2)
and consider the 16 output nibbles generated by the right-
hand segment that are used to compute ar14, ar15, and at2
to at15. We define the score of r to be the number of bits
that these 16 output nibbles have in common with the actual
keystream ks. A similar definition applies for a guess l of
the left-hand segment.

A random segment has an expected score of 32. The correct
segment, instead, has an expected score of 48. Although not
nearly as pronounced as for SecureMemory, this correlation
can be exploited to narrow our search space to segments
with high score.

The attack proceeds as follows. An attacker first eavesdrops
a number Nt of authentication traces. For each trace it
will iterate over all 235 left-hand segments and keep only
those with score higher than a threshold Nl. Similarly for
the right-hand segment, it will iterate over all 225 right-
hand segments and keep only those with score higher that a
threshold Nr. We call this segments candidate segments, as
these are our guesses for the left-hand and right-hand seg-
ments of s23. Now, for each (l, r) pair of candidate segments,
an adversary could try all 249 middle segments, unroll the
cipher as described in Section 5.2 and check if it produces
the correct ar nibbles. It is, however, possible to do better
than that; we now describe a directed search through these
middle segments.

Let ksl0 = outputl(l) and ksr0 = outputr(r) be the first
nibble of output generated by l and r, respectively. Then,
since we know the keystream produced, for those bits where
ksl0 is different from ksr0, we know what the selector bits
are, i.e., some bits of m0. On average, we know two bits out
of four.

More precisely, for all j ∈ {0, 1, 2, 3}

if ksl0,j ⊕ ksr0,j = 1, then m0,j := ksl0,j ⊕ ks0,j . (3)

Next, we compute the successor state. We have only partial
information on the middle segment, viz., only a few bits of
m0. Hence, we only get partial information on the middle
segment of the successor state, viz., a few bits of m′

1. We
repeat this procedure six times, for ksl1 and ksr1 to ksl6 and
ksr6, each time obtaining more partial information about
the components of the middle segment. After that there is
no extra information gain as we know a number of bits of
each component and they start falling off on the right.

So far we have consumed seven out of sixteen keystream
nibbles. Next we start searching but keep only those states
that are consistent with the remaining keystream. Precisely,
we iterate over all 27 = 128 values for m5 and m6, but
consider only those that match, respectively, the known bits
of m5 and m6. Then we compute the successor state. At

this point m5 � L(m6) is assigned to m0, m6 falls out, and
m5 shifts to m6. We now check if the newly computed m0

satisfies the condition

if ksl7,j ⊕ ksr7,j = 1, then m0,j = ksl7,j ⊕ ks7,j

and otherwise discard it.

Now that all bits of m6 are set, we iterate only over all
128 values of m5. Again, we compute the successor state
and check the corresponding condition. At this point m0 is
shifted one position to the right and a new m0 is computed
from the sum m5 and m6, i.e., we have set all bits of m1,
m0 and m6. We repeat this procedure four more times,
until all seven words of the middle segment are set. This
gives us a number of candidates states that depend on the
overlap between ksl and ksr . These candidate states can be
unrolled as we describe in Section 5.2 and verified against
the ar nibbles.

5.2 Unrolling the cipher
Just as with SecureMemory, it is also possible to unroll the
CryptoMemory cipher. If we are at a state s′ and know the
keystream f0f1 output by the previous state s, the procedure
is merely as described in Section 4.2, taking care of setting
the input b to a ⊕ f0f1 accordingly. If we do not know the
keystream f0f1, we first have to reconstruct it. Of course,
reconstructing f1 is no problem, as f ′

0 = f1. Now, first of all,
we compute ŝ as in Section 4.2 (if splitting happens, consider
one possibility for ŝ). Write b = b0b1 . . . b7 = a ⊕ f0f1. By
Equations (2) and (1), we have

f0,i =

{

l1,i+1 ⊕ l5,i+1 if m1,i+3 = 0

r1,i+1 ⊕ r4,i+1 if m1,i+3 = 1

=

{

l̂1,i+1 ⊕ l̂5,i+1 if m̂1,i+3 = 0

r̂1,i+1 ⊕ bi+1 ⊕ r̂4,i+1 if m̂1,i+3 = 1.

Now note that b4 = a4 ⊕ f1,0 = a4 ⊕ f̂1,0, so we can use the
above equation to compute f0,3. Now b3 = a3 ⊕ f0,3, so we
can use the above equation again to compute f0,2. Doing
this twice more, we can also compute f0,1 and f0,0. Using
Equation (1), we can now compute s.

5.3 Recovering the key
As before, we use a meet-in-the-middle technique to recover
the secret key. This time the computational complexity of
the attack is higher due to the keystream feedback loop,
which makes it impossible to treat the left-hand and right-
hand segments separately.

Recall that the cipher state s4, just before feeding in the key
k, is known to an adversary and assume the adversary also
knows the state s8, e.g., by running the attack described in
Section 5.1.

Then, the adversary simply guesses the first 32 bits of k and
runs the cipher forward from s4, until half way the initial-
ization protocol, i.e., to state s6. This produces a set Sf of
232 candidate states for s6.

Similarly, it guesses the last 32 bits of k and runs the ci-
pher backwards (unrolls) from s8. This produces a set Sb

of candidate states (around 2 · 232; the additional factor is
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because of the states with multiple predecessors). Since we
are guessing only two times 32 bits and states consist of 117
bits, there is only one element in Sf ∩ Sb, namely s6. The
guessed bits that lead to it constitute the actual key k.

5.4 Complexity and time
As a baseline let us first establish the complexity of a naive
brute force attack, again taking cipher ticks as a basic unit
of time. For each of the 264 possible keys, we need 125
cipher ticks to simulate an authentication. This adds to a
complexity of 271 cipher ticks.

For the first phase of the attack, recovering the internal
state, we need to iterate over all 235 left-hand segments and
for each of them we need to compute the score, which takes
16/3 cipher ticks. This is of complexity 238 ticks and takes
about half an hour on a 2 GHz laptop. We also need to do
the same for all 225 right-hand segments, but this can be
ignored.

The number of left-right candidates produced depends on
the values of Nl and Nr (defined in Section 5.1) and there
is a trade-off between the number of traces required for the
attack and its computational complexity. As an example we
consider two reference configurations: C0 := (Nl = 55, Nr =
51) and C1 := (Nl = 56, Nr = 52). Take for example C0.
Our attack from Section 5.1 will only be able to recover the
internal state for those traces with left-hand segment score
higher than 55 and right-hand segment score higher than
51. The score of the left-hand and right-hand segments of
the correct state are binomially distributed as Binom(64, 3

4
).

Hence the probability that the score of the correct left-hand
segment is at least 55 is approximately 0.025 and the prob-
ability that the score of the correct right-hand segment is
at least 51 is approximately 0.239. Assuming these scores
are independent, the probability that both scores satisfy the
requirement is 0.025 · 0.239 ≈ 0.0060. Experiments show
that the distributions of these scores is indeed very close
to binomially distributed, but they are not totally indepen-
dent. The experimentally observed probability of having
both scores meet the requirement is approximately 0.00185.
So the expected number of authentication session needed is
1/0.0018 ≈ 166. The score of a random left-hand or right-
hand segment is also binomially distributed, but with distri-
bution Binom(64, 1

2
). The probability of a random segment

having a score of 55 or higher is 0.177 · 10−8 and the proba-
bility of a random segment having a score of 51 or higher is
0.95·10−6 . So, we expect around 0.177·10−8 ·235 ≈ 60.9 left-
hand segments to have a score of 55 or higher and around
0.95 ·10−6 ·225 ≈ 31.6 right-hand segments to have a score of
51 or higher. So this gives approximately 60.9 · 31.6 ≈ 1920
left-right candidates per trace. We established the number
of candidates for the middle segment per left-right candidate
empirically; we get on average 1.43 · 109 candidates for the
middle segment. For each middle segment we need to unroll
the cipher at most 64 times.

This gives us a total complexity of 255 cipher ticks, compara-
ble to simulating 248 authentications. Assuming we dispose
of a cluster of 50 2Ghz quad core computers, all this com-
putation would take about two weeks.

Considering C1, the expected number of traces needed to
find one in which the correct segment has a score of at
least 56 and the correct right-hand segment has a score of at
least 52 is 1/0.000378 ≈ 2640 traces. Here we expect only
9.5 · 7.7 ≈ 73 left-right candidates. Experiments show that
the number of middle segments per left-right candidate is
approximately 2.12 · 1010. This gives us a total complexity
of 252 cipher ticks, i.e., the computational complexity of 245

authentications. With the same computational power this
would take less than 2 days of computation.

Once we have recovered the internal state, we need to do
the meet-in-the-middle approach described in Section 5.3 to
recover the key. For each of the 232 guesses, we need to
compute 14 cipher shifts to build the set Sf . Compared
to the complexity above, this is negligible. It does require
a storage space of around 16 Gb though. Using a 2 GHz
computer with enough internal memory, it takes about half
an hour to construct and sort this table. Similarly, from
the other side we need another 236 cipher ticks to unroll
the cipher. Since we only need the intersection of Sf and
Sb, we do not actually store Sb, but only do a logarithmic
search for each element of Sb in the table for Sf . This whole
computation takes another half hour.

6. CONCLUSIONS
In this paper we have described the ciphers used in the prod-
uct families SecureMemory, CryptoMemory, and CryptoRF.
We have shown weaknesses of these ciphers, most notably
the fact that the three components of the cipher operate
independently (knowing the keystream, in the case of Cryp-
toMemory and CryptoRF) and that there is a strong cor-
relation between the intermediate output of two of those
components and the generated keystream. We have shown
that an attacker can use these weaknesses and eavesdropped
sessions to recover the secret key. For SecureMemory, the
attack has a time complexity of 239 cipher ticks; in practice
it takes around 10 minutes on a 2 GHz laptop. For Cryp-
toMemory and CryptoRF, the attack has a time complexity
of 252 cipher ticks; on a cluster of 50 2 GHz quad core ma-
chines, it takes about 5 days to execute the attack. We have
implemented the full functionality of the chips in software.
We have also implemented the full attacks and tested this
on genuine traces.

With this paper we hope to reinforce that proprietary cryp-
tography often leads to insecure products. Security obscu-
rity does not compensate for the lack of public scrutiny since
sooner or later the design of the cipher will become public.

We provide more evidence that this kind of LFSR-like ci-
phers often result in insecure constructions. In particular,
that the design techniques of this particular cipher are un-
satisfactory.
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