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Abstract. In this paper, we study the meet-in-the-middle attack against
block cipher ARIA. We find some new 3-round and 4-round distinguish-
ing properties of ARIA. Based on the 3-round distinguishing property,
we can apply the meet-in-the-middle attack with up to 6 rounds for
all versions of ARIA. Based on the 4-round distinguishing property, we
can mount a successful attack on 8-round ARIA-256. Furthermore, the
4-round distinguishing property could be improved which leads to a 7-
round attack on ARIA-192. The data and time complexities of 7-round
attack are 2120 and 2185.3, respectively. The data and time complexities
of 8-round attack are 256 and 2251.6, respectively. Compared with the ex-
isting cryptanalytic results on ARIA, our 5-round attack has the lowest
data and time complexities and the 6-round attack has the lowest data
complexity. Moreover, it is shown that 8-round ARIA-256 is not immune
to the meet-in-the-middle attack.

Key words: block cipher, ARIA, meet-in-the-middle, time-memory
trade-off

1 Introduction

ARIA[1] is a 128-bit block cipher designed by a group of Korean experts in 2003.
Its design adopts the same idea(wide trail strategy) of the Advanced Encryption
Standard(AES)[2]. It was later established as a Korean Standard by the Ministry
of Commerce, Industry and Energy in 2004. ARIA supports key length of 128,
192 and 256 bits, these versions of ARIA are denoted as ARIA-128, ARIA-192
and ARIA-256. The number of rounds for these three versions are 12, 14 and 16,
respectively.

The security of ARIA was analyzed by many cryptographists. In [1], the de-
signers of ARIA presented some cryptoanalysis including both differential crypt-
analysis, linear cryptanalysis, and some other known attacks . Later Biryukov
et al. performed an evaluation of ARIA [3], however, they especially focused
on truncated differential cryptanalysis and dedicated linear cryptanalysis. In
ref. [4], Wu et al. firstly found some non-trivial 4-round impossible differentials
which led to a 6-round attack on ARIA. Li et al. presented an algorithm to find
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many new 4-round impossible differentials which can improve the 6-round im-
possible differential attack [5]. The security of ARIA against boomerang attack
was presented by Fleischmann et al. in [6]. And recently, Li et al. firstly found
some 3-round integral distinguishers by counting methods, which also led up to
a 6-round integral attack on ARIA-192 [7].

The meet-in-the-middle attack on AES was firstly introduced by Demirci et
al. in [8]. Inspired by their work, we construct some new 3/4-round distinguish-
ing properties of ARIA and use them to apply the meet-in-the-middle attack
against ARIA. Based on the 3-round distinguishing property, we can attack all
versions of ARIA with up to 6 rounds. Based on the 4-round distinguishing
property, we can mount a successful attack on 8-round ARIA-256. Furthermore,
we improve the 4-round distinguishing property and use it to attack 7-round
ARIA-192. Our results show that the 5-round attack has the lowest data and
time complexities and the 6-round attack has the lowest data complexity com-
pared with the existing attacks on ARIA. Although this kind of attack has a
huge precomputation and memory complexity, the precomputation only needs
to compute once. To validate the correctness of the meet-in-the-middle attack,
we also do some experiments on 3-round ARIA.

The rest of this paper is organized as follows: We describe the meet-in-the-
middle attack in Section 2 and give a brief description of ARIA in Section 3.
In Section 4, we construct some 3/4-round distinguishing properties of ARIA
and present the meet-in-the-middle attacks on the round-reduced ARIA. We do
some experimental results of the meet-in-the-middle attack on 3-round ARIA in
Section 5. Finally, Section 6 summarizes this paper.

2 The Meet-in-the-Middle Attack

The idea of meet-in-the-middle attack was firstly introduced by Diffie and Hell-
man in cryptanalysis of Two-DES [9], the main idea is using the technique of
time-memory tradeoff. Demirci et al. extended the meet in the middle attack in
a more generalized case and applied it to attack 8-round AES-256 [8, 10] based
on some 5-round distinguishing property, which originates from an early 4-round
distinguishing property [11] constructed by Gilbert and Minier.

In this section, we describe in detail the generalized meet-in-the-middle at-
tack against iterative block ciphers.

Let an N -round block cipher be

C = E(P, K), (1)

where C, P and K denote ciphertext, plaintext and the user key, respectively.
The encryption procedure is treated as a concatenation of two consecutive en-
cryptions, namely E1 and E2, i.e. E = E2 ◦E1, where E1 is the first N1 rounds
encryption and E2 the last N2 = N −N1 rounds encryption, thus

C = E2(E1(P, K1),K2), (2)
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where K1 and K2 are the subkeys of the first N1 and the last N2 rounds, respec-
tively.

If we consider m different plaintexts with the feature that they are different at
some fixed bits(denoted as x) only and the rest bits are constant values. Denote
the m plaintexts as x1, x2, . . . , xm, encrypt the m palintexts with the first N1

rounds, we can compute the ciphertexts C∗i = E(xi,K1), where 1 ≤ i ≤ m.
Usually, we consider a partial bits of C∗i , denoted as ci. Note that the constant
values in the plaintexts and K1 are fixed for each ciphertext ci, then ci can be
expressed as the function with the variable xi:

ci = f(xi) (3)

where f is determined by some parameters and the subkey K1 is included in the
parameters. If the number of parameters in f(x) is small enough, we can search
exhaustively all the parameters and the right subkey K1 must be included. In
other words, for each possible parameter, we can obtain a mapping f(xi) : xi →
ci, thus we can obtain many mappings and only one mapping is correct.
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Fig. 1. The Meet-in-the-Middle Attack

The attack procedures are described in Fig.1:
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Firstly, choose a set of m suitable plaintexts which are different at some fixed
bits (denoted as x1, x2, . . . , xm), compute and store f(xi) for each possible f .
This step is called the precomputation phase. Assume that there are n possible
parameters for the function f , thus there are n possible functions f , denoted as
f1, f2, . . . , fn.

Secondly, Encrypt the m plaintexts with N rounds and the ciphertexts are
denoted as C1, C2, . . . , Cm, then search certain subkey gk, do a partial N2 rounds
decryption and obtain Di = E−1

2 (Ci, gk), note that the position of Di in the data
state is the same as ci, so they have the same length.

Thirdly, check whether Di = fj(xi)(1 ≤ i ≤ m) hold for some fj(1 ≤ j ≤ n),
once an fj is found so that Di = fj(xi)(1 ≤ i ≤ m), we call a match is found and
the guessed subkey gk is mostly likely correct since the probability of having a
match for a wrong key is approximately n× 2−k×m, where k is the length of Di,
i.e. Di is k-bit length. Then if m is big enough, all wrong keys can be excluded.

Note that in the precomputation phase, the number of the parameters in
f can’t be too large since the precomputation complexity would exceed the
exhaustive search attack if n is too large. On the other hand, in the attack phases,
sometimes we filtrate the wrong subkeys according to checking whether fj(xi)⊕
fj(xi′) = Di⊕Di′ holds, because in this way we can reduce the precomputation
complexity or guess less subkeys in the partial decryption phase. For the first
case, we give an example: Assume that the function f(x) = g(x) ⊕ c, where c
is a parameter, then f(xi) ⊕ f(xi′) = g(xi) ⊕ g(xi′) and the parameter c can
be ignored in the precomputation phase. For the second case, one will see it be
used in our attacks on ARIA in Sec.4.

3 Description of ARIA

ARIA adopts a substitution-permutation network(SPN) and employs an involu-
tional binary 16× 16 matrix over GF (28) in its diffusion layer. The substitution
layer consists of sixteen 8 × 8-bit S-boxes based on the inversion in GF (28).
The 128-bit plaintext/ciphertext, as well as the input and output of the round
function, are treated as 4 × 4 matrices with elements in GF (28), depicted as
follows:

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

The round function of ARIA firstly applies a Round Key Addition, then a
Substitution Layer and at last a Diffusion Layer subsequently. An N -round ARIA
iterates the round function N − 1 times; and in the last round, the diffusion
layer is replaced by the Round Key Addition. The three operations are defined
as follows:
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Round Key Addition(RKA). The 128-bit round key is simply XORed to
the state. The round keys are derived from the cipher key by means of the key
schedule. We refer to ref.[1] for details.

Substitution Layer(SL). A non-linear byte substitution operates on each
byte of the state independently which is implemented by two S-boxes S1 and S2.
ARIA has two types of S-Box layers for odd and even rounds as shown in Fig.2.
Type 1 is used in the odd rounds and type 2 is used in the even rounds.
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Fig. 2. The two types of S-Box layers

Diffusion Layer(DL). An involutional linear transformation P : GF (28)16 →
GF (28)16 with branch number 8 is selected to improve the diffusion effect and
increase efficiency in both hardware and software implementations [12]. The
transformation P is given by

(x0, x1, . . . , x15) 7→ (y0, y1, . . . , y15),

where

y0 = x3 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x13 ⊕ x14, y8 = x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x15,

y1 = x2 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x12 ⊕ x15, y9 = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x11 ⊕ x12 ⊕ x14,

y2 = x1 ⊕ x4 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15, y10 = x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x15,

y3 = x0 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x14, y11 = x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x14,

y4 = x0 ⊕ x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15, y12 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12,

y5 = x1 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15, y13 = x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x10 ⊕ x13,

y6 = x0 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x13, y14 = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ x14,

y7 = x1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13, y15 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15.

The Key Schedule of ARIA is omitted and we refer to ref. [1] for more details.

4 The Meet-in-the-Middle Attacks on ARIA

In this section, we first construct some 3/4-round distinguishing properties for
the meet-in-the-middle attack on ARIA. Then we present some meet-in-the-
middle attacks on the round-reduced ARIA based on the distinguishing proper-
ties.
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4.1 3-Round Distinguishing Property of ARIA

In this subsection, we construct a 3-round distinguishing property of ARIA.

Definition 1. A set {ai|ai ∈ F2n , 0 ≤ i ≤ 2n − 1} is active, if for any 0 ≤ i <
j ≤ 2n − 1, ai 6= aj.

Definition 2. A set {ai|ai ∈ F2n , 0 ≤ i ≤ 2n − 1} is passive, if for any 0 < i ≤
2n − 1, ai = a0.

In the following paper, C always denote some constant value but not neces-
sarily equal to each other at different positions.

Let the input of ARIA be B = (B0, B1, . . . , B15), the i-th round key be
ki = (ki,0, ki,1, . . . , ki,15), and the outputs of S-Box layer and P layer of the i-th
round be Zi = (Zi,0, Zi,1, . . . , Zi,15) and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively.

Consider the evolution of the plaintext over 3 inner rounds of ARIA, take
a set of 256 plaintexts so that B0 is an active byte and all the other bytes are
passive, thus B0 takes all values of F28 and Bis are constants where 1 ≤ i ≤ 15.
Let the input be

B =




x C C C
C C C C
C C C C
C C C C


 ,

and

y = S1(x⊕ k1,0), (4)

then according to the definition of ARIA, the output of the first round is

Y1 =




C y ⊕ a4 y ⊕ a8 C
C C y ⊕ a9 y ⊕ a13

C y ⊕ a6 C y ⊕ a14

y ⊕ a3 C C C


 ,

where ais (i = 3, 4, 6, 8, 9, 13, 14) are some fixed values that depend on the passive
bytes and subkey values.

Let bi = ai ⊕ k2,i, then

Z2 =




C S−1
1 (y ⊕ b4) S−1

1 (y ⊕ b8) C
C C S−1

2 (y ⊕ b9) S−1
2 (y ⊕ b13)

C S1(y ⊕ b6) C S1(y ⊕ b14)
S2(y ⊕ b3) C C C


 , (5)

we denote Z2 as

Z2 ,




C z4 z8 C
C C z9 z13

C z6 C z14

z3 C C C


 , (6)



A Meet-in-the-Middle Attack on ARIA 7

and define

z(i, j, k, . . .) = zi ⊕ zj ⊕ zk ⊕ · · · , (7)

thus

Y2 =




z(3, 4, 6, 8, 9, 13, 14) z(8, 14)⊕ c4 z(4, 13)⊕ c8 z(6, 9)⊕ c12

z(8, 9)⊕ c1 z(3, 4, 9, 14)⊕ c5 z(6, 14)⊕ c9 z(3, 6, 8, 13)⊕ c13

z(4, 6)⊕ c2 z(9, 13)⊕ c6 z(3, 6, 8, 13)⊕ c10 z(3, 4, 9, 14)⊕ c14

z(13, 14)⊕ c3 z(3, 6, 8, 13)⊕ c7 z(3, 4, 9, 14)⊕ c11 z(4, 8)⊕ c15


 ,

where cis for 1 ≤ i ≤ 15 are some fixed values.
Let di = ci ⊕ k3,i, then Z3 =




S1(z(3, 4, 6, 8, 9, 13, 14) ⊕ k3,0) S1(z(8, 14) ⊕ d4) S1(z(4, 13) ⊕ d8) S1(z(6, 9) ⊕ d12)
S2(z(8, 9) ⊕ d1) S2(z(3, 4, 9, 14) ⊕ d5) S2(z(6, 14) ⊕ d9) S2(z(3, 6, 8, 13) ⊕ d13)

S
−1
1 (z(4, 6) ⊕ d2) S

−1
1 (z(9, 13) ⊕ d6) S

−1
1 (z(3, 6, 8, 13) ⊕ d10) S

−1
1 (z(3, 4, 9, 14) ⊕ d14)

S
−1
2 (z(13, 14) ⊕ d3) S

−1
2 (z(3, 6, 8, 13) ⊕ d7) S

−1
2 (z(3, 4, 9, 14) ⊕ d11) S

−1
2 (z(4, 8) ⊕ d15)


 .

We can summarize the above observations with the following theorem:

Theorem 1. (3-Round Distinguishing Property of ARIA) Let the input of ARIA
be B = (B0, B1, . . . , B15), the i-th round key be ki = (ki,0, ki,1, . . . , ki,15), and the
outputs of S-Box layer and P layer of the i-th round be Zi = (Zi,0, Zi,1, . . . , Zi,15)
and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively. If B0 takes all values of F28 and Bis
are constants where 1 ≤ i ≤ 15. Then, the function which maps B0 to Y3,0 is
entirely determined by 15 fixed 1-byte parameters.

Proof. From the above observations, we have

Y3,0 = S−1
2 (z(13, 14)⊕ d3)⊕ S1(z(8, 14)⊕ d4)⊕ S−1

1 (z(9, 13)⊕ d6)⊕ S1(z(4, 13)⊕ d8)

⊕S2(z(6, 14)⊕ d9)⊕ S2(z(3, 6, 8, 13)⊕ d13)⊕ S−1
1 (z(3, 4, 9, 14)⊕ d14), (8)

and z(i, j, k, . . .) is the function of the variable x with the fixed 1-byte parameters
(k1,0, bi, bj , bk, . . .). Therefore, the 15 fixed values

(k1,0, b3, b4, b6, b8, b9, b13, b14, d3, d4, d6, d8, d9, d13, d14) (9)

completely specify the mapping B0 to Y3,0. ut
15 bytes is less to search exhaustively in an attack on all visions of ARIA,

so this distinguishing property can be used to attack ARIA-128/192/256. More-
over, according to the encryption algorithm of ARIA, the distinguishing property
shown in Theorem 1 can be generalized: The functions which map B0 to Y3,i

for 1 ≤ i ≤ 15 all are entirely determined by 15 fixed 1-byte parameters, re-
spectively. Similarly, any other Bi can be taken as the active byte instead of
B0.

4.2 4-Round Distinguishing property of ARIA

In this subsection, we extend the above 3-round distinguishing property of ARIA
to 4-round one.
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Theorem 2. (4-Round Distinguishing property of ARIA) Let the input of ARIA
be B = (B0, B1, . . . , B15), the i-th round key be ki = (ki,0, ki,1, . . . , ki,15), and
the outputs of S layer and P layer of the i-th round be Zi = (Zi,0, Zi,1, . . . , Zi,15)
and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively. If B0 takes all values of F28 and Bis
are constants where 1 ≤ i ≤ 15. Then, the function which maps B0 to Y4,1 is
entirely determined by 31 fixed 1-byte parameters.

Proof. According to the expression of Z3 in Sec.4.1, we have




Y3,2 = S2(z(8, 9)⊕ d1)⊕ S1(z(8, 14)⊕ d4)⊕ S−1
1 (z(9, 13)⊕ d6)⊕ S−1

1 (z(3, 6, 8, 13)⊕ d10)

⊕S−1
2 (z(3, 4, 9, 14)⊕ d11)⊕ S1(z(6, 9)⊕ d12)⊕ S−1

2 (z(4, 8)⊕ d15),

Y3,5 = S2(z(8, 9)⊕ d1)⊕ S−1
2 (z(13, 14)⊕ d3)⊕ S1(z(8, 14)⊕ d4)⊕ S2(z(6, 14)⊕ d9)

⊕S−1
1 (z(3, 6, 8, 13)⊕ d10)⊕ S−1

1 (z(3, 4, 9, 14)⊕ d14)⊕ S−1
2 (z(4, 8)⊕ d15),

Y3,7 = S2(z(8, 9)⊕ d1)⊕ S−1
2 (z(13, 14)⊕ d3)⊕ S−1

1 (z(9, 13)⊕ d6)⊕ S1(z(4, 13)⊕ d8)

⊕S−1
2 (z(3, 4, 9, 14)⊕ d11)⊕ S1(z(6, 9)⊕ d12)⊕ S2(z(3, 6, 8, 13)⊕ d13),

Y3,8 = S1(z(3, 4, 6, 8, 9, 13, 14)⊕ k3,0)⊕ S2(z(8, 9)⊕ d1)⊕ S1(z(8, 14)⊕ d4)⊕ S−1
2 (z(3, 6, 8,

13)⊕ d7)⊕ S−1
1 (z(3, 6, 8, 13)⊕ d10)⊕ S2(z(3, 6, 8, 13)⊕ d13)⊕ S−1

2 (z(4, 8)⊕ d15),

Y3,9 = S1(z(3, 4, 6, 8, 9, 13, 14)⊕ k3,0)⊕ S2(z(8, 9)⊕ d1)⊕ S2(z(3, 4, 9, 14)⊕ d5)⊕ S−1
1 (z(9,

13)⊕ d6)⊕ S−1
2 (z(3, 4, 9, 14)⊕ d11)⊕ S1(z(6, 9)⊕ d12)⊕ S−1

1 (z(3, 4, 9, 14)⊕ d14),

Y3,12 = S2(z(8, 9)⊕ d1)⊕ S−1
1 (z(4, 6)⊕ d2)⊕ S−1

1 (z(9, 13)⊕ d6)⊕ S−1
2 (z(3, 6, 8, 13)⊕ d7)

⊕S2(z(6, 14)⊕ d9)⊕ S−1
2 (z(3, 4, 9, 14)⊕ d11)⊕ S1(z(6, 9)⊕ d12),

Y3,15 = S2(z(8, 9)⊕ d1)⊕ S−1
1 (z(4, 6)⊕ d2)⊕ S1(z(8, 14)⊕ d4)⊕ S2(z(3, 4, 9, 14)⊕ d5)

⊕S1(z(4, 13)⊕ d8)⊕ S−1
1 (z(3, 6, 8, 13)⊕ d10)⊕ S−1

2 (z(4, 8)⊕ d15).

(10)

Thus

Y4,1 = S1(Y3,2 ⊕ k4,2)⊕ S−1
2 (Y3,5 ⊕ k4,5)⊕ S2(Y3,7 ⊕ k4,7)⊕ S−1

1 (Y3,8 ⊕ k4,8)⊕
S−1

2 (Y3,9 ⊕ k4,9)⊕ S−1
1 (Y3,12 ⊕ k4,12)⊕ S2(Y3,15 ⊕ k4,15). (11)

It’s clearly that the 31 fixed 1-byte values

(k1,0, b3, b4, b6, b8, b9, b13, b14, k3,0, d1, . . . , d15, k4,2, k4,5, k4,7, k4,8, k4,9, k4,12, k4,15)(12)

are sufficient to express the function B0 → Y4,1. ¤

31 bytes may be too much to search exhaustively in an attack on ARIA-
128/192, but the distinguishing property can be used to attack ARIA-256. Sim-
ilarly, the distinguishing property can be generalized: The functions which map
B0 to Y4,i for 0 ≤ i ≤ 15 all are entirely determined by 31 fixed 1-byte parame-
ters, respectively. Also, any other Bi can be taken as the active byte instead of
B0.

4.3 Attack on 5/6-Round ARIA

In this subsection, we describe the meet-in-the-middle attack on 6-round ARIA
based on the 3-round distinguishing property detailedly and only present the
analysis of the complexity for the 5-round attack.
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The main ideas in the meet-in-the-middle attack are: We first precompute
all possible B0 → Y3,0 mappings according to Theorem 1. Then we choose and
encrypt a suitable plaintext set and search certain key bytes, do a partial decryp-
tion on the ciphertext set, and compare the values obtained by this decryption
to the values in the precomputed set. When a match is found, the key value tried
is most likely the right key value.

Let the plaintext and ciphertext of ARIA be P = (P0, P1, . . . , P15) and C =
(C0, C1, . . . , C15), respectively; the round key, the outputs of S-Box layer and P
layer of the i-th round be ki = (ki,0, ki,1, . . . , ki,15), Zi = (Zi,0, Zi,1, . . . , Zi,15)
and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively.

In the following, we describe a meet-in-the-middle attack on 6-round ARIA.The
attack is based on the 3-round distinguishing property in Theorem 1 with addi-
tional one round at the beginning and two rounds at the end as shown in Fig.3.
Here we denote the mapping B0 → Y3,0 as x → f(x).

f(x)x

3 rounds

3-round distinguisher

k7k6

S -1(layer 2)

P -1

k5

S -1(layer 1)

:  Active Bytes :  Attacked Bytes

k1

the 1st round

Fig. 3. Attack on 6-Round ARIA

The attack procedures are as follows:
Step 1 For each of the 215×8 possible values of the parameters in (9), cal-

culate the function f : B0 → Y3,0, according to equations (4-8). For each f ,
compute and store

∆Y
(i)
3,0 = f(i)⊕ f(0)

for 1 ≤ i ≤ 31. In the following steps, we use Y1,0 instead of B0 and Y4,0 instead
of Y3,0, the property is also holds.

Step 2 Guess k1,3, k1,4, k1,6, k1,8, k1,9, k1,13, k1,14, choose a set plaintexts of
the form

P =




C S−1
1 (x)⊕ k1,4 S−1

1 (x)⊕ k1,8 C
C C S−1

2 (x)⊕ k1,9 S−1
2 (x)⊕ k1,13

C S1(x)⊕ k1,6 C S1(x)⊕ k1,14

S2(x)⊕ k1,3 C C C


 , (13)
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where 0 ≤ x ≤ 31 and all the other bytes are constants, denote the 32 plaintexts
as P (i) for x = i, encrypt all the 32 plaintexts with 6 rounds of ARIA, the
corresponding ciphertexts denoted as C(i).

Step 3 Guess k7,3, k7,4, k7,6, k7,8, k7,9, k7,13, k7,14, k
∗
6 , where k∗6 = k6,3⊕k6,4⊕

k6,6 ⊕ k6,8 ⊕ k6,9 ⊕ k6,13 ⊕ k6,14. For each ciphertext C(i), compute

Z
(i)′

5,0 = S−1
2 (C(i)

3 ⊕ k7,3)⊕ S1(C
(i)
4 ⊕ k7,4)⊕ S−1

1 (C(i)
6 ⊕ k7,6)⊕ S1(C

(i)
8 ⊕ k7,8)⊕

S2(C
(i)
9 ⊕ k7,9)⊕ S2(C

(i)
13 ⊕ k7,13)⊕ S−1

1 (C(i)
14 ⊕ k7,14)⊕ k∗6 ,

thus Y
(i)′

4,0 = S−1
1 (Z(i)′

5,0 )⊕ k5,0, then compute

∆Y
(i)′

4,0 = Y
(i)′

4,0 ⊕ Y
(0)′

4,0 = S−1
1 (Z(i)′

5,0 )⊕ S−1
1 (Z(0)′

5,0 ),

so we need not to guess k5,0.
Step 4 For each f , check whether

∆Y
(i)
4,0 = ∆Y

(i)′

4,0

holds for 1 ≤ i ≤ 32.
Now if k1,3, k1,4, k1,6, k1,8, k1,9, k1,13, k1,14 are guessed correctly, the 32 plain-

texts after the first round encryption must be the form of

Y1 =




x C C C
C C C C
C C C C
C C C C


 ,

where 0 ≤ x ≤ 31 and all the other bytes are constants. Moreover, if k7,3, k7,4, k7,6,
k7,8, k7,9, k7,13, k7,14, k

∗
6 are guessed correctly also, the function Y1,0 → Y4,0 must

match one of the functions obtained in the precomputation phase, thus there
must be an f so that ∆Y

(i)
4,0 = ∆Y

(i)′

4,0 holds for 1 ≤ i ≤ 31. Once a match is
found, the corresponding k1,3, k1,4, k1,6, k1,8, k1,9, k1,13, k1,14, k7,3, k7,4, k7,6, k7,8,
k7,9, k7,13, k7,14, k

∗
6 are correct keys by an overwhelming probability, since the

probability of having a match for a wrong key is approximately 28×15×2−8×31 =
2−128 and the number of the total guessed subkeys is 2120.

Analysis of the attack complexity: According to the form of chosen plainlexts
(13), we know that the data complexity is 2(16−9)×8 = 256 since there are 9
bytes of constants; There is a precomputation step which calculates 2120 possible
values for 32 plaintexts, therefore the complexity of this step is 32× 2120 = 2125

evaluations of the function and one evaluation of the function is equivalent to one
round encryption of ARIA, so the precomputation complexity is about 2125/6 ≈
2122.5; In the key search phase, one partial decryption is equivalent to 1/2 round
encryption of ARIA, we need to guess total 15 bytes of subkeys, so the time
complexity is 32× 28×15/(2× 6) ≈ 2121.5.

For attacking on 5-round ARIA, it is based on the above 3-round distin-
guishing property with additional two rounds at the end. The attack procedures
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are similar to the 6-round attack. In the chosen plaintext phase, we need only
to choose 25 plaintexts, since in the key search phase, we need only guess 8
bytes, then the probability of having a match for a wrong key is approximately
28×15×2−8×(25−1) = 2−72, thus all wrong keys can be excluded. From the above
analysis, we know the data complexity is 25; The precomputation complexity is
also 2122.5; In the key search phase, we need only to guess 8 bytes, so the time
complexity is 25× 28×8/(2× 5) ≈ 265.4.

4.4 Attack on 8-Round ARIA-256

In this subsection, we describe a meet-in-the-middle attack on 8-round ARIA-
256. The attack is based on the 4-round distinguishing property in Theorem 2
with additional one round at the beginning and three rounds at the end as shown
in Fig.4.

f(x)

x

4 rounds

4-round distinguisher

k7

S -1(layer 1)

k6

:  Active Bytes :  Attacked Bytes

k1

the 1st round

S -1(layer 2)

P
-1

k8

S
-1

(layer 2)

k9
P

-1

Fig. 4. Attack on 8-Round ARIA-256

The attack procedures are as follows:
Step 1 For each of the 231×8 possible values of the parameters in (12),

calculate the function f : B0 → Y4,1, according to equations (4-7) and (10-11).
For each f , compute and store

∆Y
(i)
4,1 = f(i)⊕ f(0)

for 1 ≤ i ≤ 64. In the following steps, we use Y1,0 instead of B0 and Y5,1 instead
of Y4,1, the property is also holds.

Step 2 Guess k1,3, k1,4, k1,6, k1,8, k1,9, k1,13, k1,14, choose a set plaintexts of
the form

P =




C S−1
1 (x)⊕ k1,4 S−1

1 (x)⊕ k1,8 C
C C S−1

2 (x)⊕ k1,9 S−1
2 (x)⊕ k1,13

C S1(x)⊕ k1,6 C S1(x)⊕ k1,14

S2(x)⊕ k1,3 C C C


 ,
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where 0 ≤ x ≤ 64 and all the other bytes are constants. Denote the 65 plaintexts
as P (i) for x = i, the corresponding ciphertexts denoted as C(i). Encrypt all the
65 plaintexts with 8 rounds of ARIA.

Step 3 Guess all bytes of k9 and k∗8,2, k
∗
8,5, k

∗
8,7, k

∗
8,8, k

∗
8,9, k

∗
8,12, k

∗
8,15, k

∗
7 , where

k∗8 = P−1(k8), k∗8,i is the i-th byte of k∗8 and k∗7 = k7,2⊕k7,5⊕k7,7⊕k7,8⊕k7,9⊕
k7,12 ⊕ k7,15.

For each ciphertext C(i), let D(i) = S−1(C(i) ⊕ k9), then compute




Z
(i)′
7,2 = D

(i)
1 ⊕D

(i)
4 ⊕D

(i)
6 ⊕D

(i)
10 ⊕D

(i)
11 ⊕D

(i)
12 ⊕D

(i)
15 ⊕ k∗8,2,

Z
(i)′
7,5 = D

(i)
1 ⊕D

(i)
3 ⊕D

(i)
4 ⊕D

(i)
9 ⊕D

(i)
10 ⊕D

(i)
14 ⊕D

(i)
15 ⊕ k∗8,5,

Z
(i)′
7,7 = D

(i)
1 ⊕D

(i)
3 ⊕D

(i)
6 ⊕D

(i)
8 ⊕D

(i)
11 ⊕D

(i)
12 ⊕D

(i)
13 ⊕ k∗8,7,

Z
(i)′
7,8 = D

(i)
0 ⊕D

(i)
1 ⊕D

(i)
4 ⊕D

(i)
7 ⊕D

(i)
10 ⊕D

(i)
13 ⊕D

(i)
15 ⊕ k∗8,8,

Z
(i)′
7,9 = D

(i)
0 ⊕D

(i)
1 ⊕D

(i)
5 ⊕D

(i)
6 ⊕D

(i)
11 ⊕D

(i)
12 ⊕D

(i)
14 ⊕ k∗8,9,

Z
(i)′
7,12 = D

(i)
1 ⊕D

(i)
2 ⊕D

(i)
6 ⊕D

(i)
7 ⊕D

(i)
9 ⊕D

(i)
11 ⊕D

(i)
12 ⊕ k∗8,12,

Z
(i)′
7,15 = D

(i)
1 ⊕D

(i)
2 ⊕D

(i)
4 ⊕D

(i)
5 ⊕D

(i)
8 ⊕D

(i)
10 ⊕D

(i)
15 .⊕ k∗8,15

thus

Z
(i)′

6,1 = S1(Z
(i)′

7,2 )⊕ S−1
2 (Z(i)′

7,5 )⊕ S2(Z
(i)′

7,7 )⊕ S−1
1 (Z(i)′

7,8 )⊕
S−1

2 (Z(i)′

7,9 )⊕ S−1
1 (Z(i)′

7,12)⊕ S2(Z
(i)′

7,15)⊕ k∗7 ,

and Y
(i)′

5,1 = S2(Z
(i)′

6,1 )⊕ k6,1, then compute

∆Y
(i)′

5,1 = Y
(i)′

5,1 ⊕ Y
(0)′

5,1 = S2(Z
(i)′

6,1 )⊕ S2(Z
(0)′

6,1 ),

so we need not to guess k6,1.
The rest steps are the same as the attack on 6-round ARIA. Note that in the

attack on 8-round ARIA-256, there are 31 bytes of parameters in the 4-round
distinguishing property and we need guess total 31 bytes of subkeys, so we let
0 ≤ i ≤ 64 in the plaintexts to make sure the wrong subkeys all be discarded.

Analysis of the attack complexity: The data complexity is also 256; The
precomputation complexity is 65 × 28×31 ≈ 2254 evaluations of the function
and one 8 rounds encryption of ARIA is equivalent to four evaluations of the
function, so the precomputation complexity is about 2254/4 ≈ 2252; In the key
search phase, one partial decryption is equivalent to 3/2 round encryption of
ARIA, so the time complexity is 65× 28×31 × (3/2)/8 ≈ 2251.6.

4.5 Attack on 7-Round ARIA-192

Based on the above 3/4-round distinguishing properties, we can’t attack 7 rounds
of ARIA-192. However, referring to the meet-in-the-middle attacks on AES in
[10], we can improve the 4-round distinguishing property in Theorem 2 to get
a new 4-round distinguishing property which can be used to attack 7 rounds of
ARIA-192. In fact, it’s a method that reduce the precomputation complexity at
the cost of increasing the data and time complexities.
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Theorem 3. (Improved 4-Round Distinguishing property of ARIA) Let the in-
put of ARIA be B = (B0, B1, . . . , B15), the i-th round key be ki = (ki,0, ki,1, . . . , ki,15),
and the outputs of S layer and P layer of the i-th round be Zi = (Zi,0, Zi,1, . . . , Zi,15)
and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively. If B0 takes all values of F28 and Bis
are constants where 1 ≤ i ≤ 15. Then, the function which maps B0 to Y4,1 is
entirely determined by 23 fixed 1-byte parameters with probability 2−64.

Proof. The parameters (b3, b4, b6, b8, b9, b13, b14, d1, . . . , d15) in the 4-round dis-
tinguishing property in Theorem 2 are entirely determined by the passive bytes
when the key is fixed, and

Pr(b3 = b4 = b6 = b8 = b9 = b13 = b14, d1 = d2 = d3) = 2−8×8 = 2−64. (14)

If we take b = b3 = b4 = b6 = b8 = b9 = b13 = b14 and d = d1 = d2 = d3, then
the function which maps B0 to Y4,1 is entirely determined by 23 fixed 1-byte
parameters

(k1,0, b, d, d4, . . . , d15, k4,2, k4,5, k4,7, k4,8, k4,9, k4,12, k4,15) (15)

with probability 2−64. ¤

Note that the chosen relations about parameters do not have any specific mean-
ing. The number of equalities in (14) is chosen so that the complexity of the
attack on 7-round ARIA-192 does not exceed the search exhaustively attack.

Based on the above 4-round distinguishing property, we can mount a success-
ful attack on 7-round ARIA-192. The attack is based on the improved 4-round
distinguishing property with additional one round at the beginning and two
rounds at the end. The attack procedures are just similar to the attack on 6-
round ARIA in Sec.4.3, here we omit the attack details and only analyze the
attack complexity.

Since the improved 4-round distinguishing property holds with probability
2−64, then in Step 2 of the attack in Sec.4.3, we choose 264 sets of plaintexts of
the form

P =




C S−1
1 (x)⊕ k1,4 S−1

1 (x)⊕ k1,8 C
C C S−1

2 (x)⊕ k1,9 S−1
2 (x)⊕ k1,13

C S1(x)⊕ k1,6 C S1(x)⊕ k1,14

S2(x)⊕ k1,3 C C C


 ,

and we expect that the event

b3 = b4 = b6 = b8 = b9 = b13 = b14, d1 = d2 = d3

occurs. Then the data complexity is 264 × 256 = 2120; The precomputation
complexity is 32 × 223×8 evaluations of the function and one evaluations of the
function is equivalent to 3/2 round encryption of ARIA, so the precomputation
complexity is 32 × 223×8 × (3/2)/7 ≈ 2187; In the key search phase, we need
to guess 15 bytes also, and one partial decryption is equivalent to 1/2 round
encryption of ARIA, so the time complexity is 32× 264× 28×15/(2× 7) ≈ 2185.3.
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5 Experiments of Meet-in-the-Middle Attack on 3-round
ARIA

For validating the correctness of the above meet-in-the-middle attacks on ARIA,
we do some experiments on 3-round ARIA.

From Section 4.1, we know that

Y2,1 = z(8, 9)⊕ c1 = z8 ⊕ z9 ⊕ c1

= S−1
1 (S1(x⊕ k1,0)⊕ b8)⊕ S−1

2 (S1(x⊕ k1,0)⊕ b9)⊕ c1,

where k1,0, b8, b9 and c1 are 4 fixed 1-byte values. This is a 2-round distinguishing
property of ARIA. The meet-in-the-middle attack on 3-round ARIA is based on
the 2-round distinguishing property with additional one round at the end. In the
precomputation phase, we compute and store f(xi)⊕ f(xi′), then the constant
c1 can be ignored.

Table 1. Experimental Results of Meet-in-the-Middle Attack on 3-round ARIA

Number of Chosen Plaintexts Times of Success Successful probability

5 493 49.3%
6 996 99.6%
7 1000 100%

The attack procedures are just similar to the above attacks, we only give
the complexity analysis: The data complexity is only 6, the precomputation
complexity is about 224 since f(xi) ⊕ f(xi′) is determined by only 3 fixed 1-
byte values. In the key search phase, only one byte should be guessed, so the
time complexity is about 6 × 28. Assume that the number of chosen plaintexts
is n, then the probability of having a match for a wrong key is approximately
28×3 × 2−8×(n−1) and the number of the total guessed subkeys is 28, so the
probability of the correct subkey can be determined uniquely is 1/(1+b28 ×
28×3 × 2−8×(n−1)c) in theory. The successful probabilities are 50%, 100%, 100%
in theory for n = 5, 6, 7, respectively. We have done 1000 times Experiments for
choosing 5,6 and 7 plaintexts, respectively. Table 1 lists our experimental results.
From which one can find that the successful probabilities are very closed to the
theoretic analysis.

6 Conclusion

In this paper, we firstly construct some distinguishing properties of reduced
round ARIA. These properties are based on the following observation: If one
chooses a set of plaintexts, where one byte is active and all the other bytes are
constants, after encrypting these plaintexts with 3 or 4 rounds of ARIA, all
bytes of the output of 3rd or 4th round are determined by the initial active byte



A Meet-in-the-Middle Attack on ARIA 15

and 15 or 31 fixed 1-byte constants. We then use these distinguishing proper-
ties to apply the meet-in-the-middle attack on 5/6/7/8 rounds of ARIA. All of
these attacks have a huge precomputation and memory complexity, however, the
precomputation only needs to compute one time.

Table 2 lists our works together with some known cryptanalytic results on
ARIA, where Pre denotes the precomputation complexity. From table 2, one
can find that the 5-round attack presented in this paper has the lowest data
complexity and time complexity and the 6-round attack has the lowest data
complexity comparing to the known results.

Table 2. Comparison of Attacks on ARIA

Attack Rounds Data Time Pre Source

Impossible Differential 5 271.3 271.6 - [5]
Boomerang Attack 5 257 2115.5 - [6]
Integral Attack 5 227.5 276.7 - [7]
Meet-in-the-Middle Attack 5 25 265.4 2122.5 Sec.4.3

Impossible Differential 6 2121 2112 - [4]
Impossible Differential 6 2120.5 2104.5 - [5]
Impossible Differential 6 2113 2121.6 - [5]
Boomerang Attack 6 257 2171.2 - [6]
Integral Attack 6 2124.4 2172.4 - [7]
Meet-in-the-Middle Attack 6 256 2121.5 2122.5 Sec.4.3

Truncated Differential 7 281 281 - [3]
Meet-in-the-Middle Attack 7 2120 2185.3 2187 Sec.4.5

Meet-in-the-Middle Attack 8 256 2251.6 2252 Sec.4.4
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