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Abstract. In this paper,we present new constructions for M2 -QAM
and 2M Q-PAM Golay complementary sequences of length 2n for inte-
ger n, where M = 2m for integer m. New decision conditions are pro-
posed to judge whether the sequences with offset pairs proposed by Ying
Li are Golay complementary, and with the new decision conditions, we
prove the conjecture 1 and point out some drawbacks in conjecture 2
proposed by Ying Li. We describe a new offset pairs and construct new
64-QAM Golay sequences based on this new offset pairs. We also study
the 128-QAM Golay complementary sequences, and propose a new de-
cision condition to judge whether the sequences are 128-QAM Golay
complementary.

Index Terms: Golay Complementary Sequences, Quadrature Ampli-
tude Modulation(QAM), Orthogonal Frequency Division Multiplexing
(OFDM), Quadrature Pulse Amplitude Modulation (Q-PAM).

1 Introduction

Complementary binary sequences were first introduced by Marcel Golay [1] to
study problems in infrared multislit spectrometry. Nowadays,Golay sequences
have many applications in communications, including peak power control for
orthogonal frequency division multiplexing(OFDM) signals, channel estimation,
and complementary code-code division multiple access(CC-CDMA).

Multicarrier communications including orthogonal frequency division multi-
plexing (OFDM) has been receiving increasing attention [3]. However, a major
drawback to OFDM applications is the large peak to mean envelope power ratio
(PMEPR). A large peak to mean power ratio (PMEPR) brings disadvantages
such as an increased complexity of the analog-to-digital and digital-to-analog
converters , a reduced efficiency of the RF power amplifier, and sometimes for
certain applications, like ultra-wide-band communications, the peak transmit
power is limited by regulations.

Coding techniques is one of the main techniques to reduce PMEPR. In 1999,



J.A.Davis and J.Jedwab[2] discovered an important relation between Golay se-
quences and Reed-Muller codes, their method of generating binary and nonbi-
nary Golay sequences is known as the GDJ construction. Davis and Jedwab
made major progress in attacking the PMEPR problem by coding techniques;
they proposed the coding scheme for OFDM transmission for 2h-ary PSK mod-
ulation to reduce the PMEPR. In 2000, V.Tarokh and H.Jafarkhani[6] intro-
duced a geometric approach to the offset selection problem for PSK modulation.
In 2000, K.G.Paterson and V.Tarokh[5] found the lower bound on the achiev-
able rate of a code of a given length, the minimum Euclidean distance and the
maximum peak-to-average power ratio (PAPR). 1n 2001, Cornelai Robing and
V.Tarokh[7] made significant progress on the construction of complementary se-
quences for both amplitude and phase modulation. 1n 2003, Chan Vee Chong,R.
Venkataramani, and V.Tarokh[8] explicitly constructed 16-QAM complemen-
tary sequences using cosets of second order Reed-Muller codes by setting up the
two coordinates. 1n 2003,B. Tarokh and H.R.Sadjadpour[9] derived the upper
bound for the PEP for square M -QAM Golay sequences under the assump-
tion that all the symbols are equiprobable. 1n 2006, Heekwan Lee and Solomon
W.Golomb extended the constructions of 16-QAM Golay sequences to 64-QAM
constellation using the offsets discovered in [10]. 1n 2008, M. Anand and P. Vijay
Kumar[11] studied the low correlation sequences over the QAM constellation.
In 2008, Ying Li [15, 16] gave some corrections for the sequence pairing descrip-
tions of 16-QAM and 64-QAM , he proposed two conjectures to describe the
new offset pairs and enumerate all known first order offset pairs.

In this paper, we extend the constructions of 16-QAM Golay sequences and
64-QAM Golay sequences to M2-QAM constellations and 2M Q-PAM con-
stellations using the offsets discovered in [7, 10]. We study the 64-QAM Golay
sequences using the offsets discovered in [16], propose two sufficient conditions
to judge whether the sequences are Golay complementary sequences,and as a
result, we prove the conjectures in [16]. A new Golay complementary sequence
constructed by new offset pairs is described in this paper. We also give a suffi-
cient condition to judge whether a sequence over 128-QAM using the offsets in
[16] is Golay complementary.

2 The Golay Complementary Sequences over M2-QAM
constellation

The M2-QAM constellation is the set

{a + bj| −M + 1 ≤ a, b ≤ M − 1, a, b odd}.

Where M = 2m,this constellation can alternately be described as

{
√

2j(
m−1∑

k=0

2kjak)|ak ∈ Z4}.



Where by
√

2j we mean the element 1+j . We now present new constructions of
M2-QAM Golay sequences that is similar to that of 16-QAM Golay sequences
and 64-QAM Golay sequences as derived in [7, 10].

Theorem 1. Let A(x) = 2
∑n−1

k=1 xπ(k)xπ(k+1) +
∑n

k=1 ckxk + c,

a(k)(x) = A(x) + s(k)(x),

b(k)(x) = A(x) + s(k)(x) + µ(x).

Where ck ∈ Z4 , k = 0, 1, · · · ,m−1 ,c ∈ Z4,π is a permutation from {1, 2, · · · , n}
to {1, 2, · · · , n} , s(k)(x) and µ(x) satify the following cases.

Case 1: s(k) = d
(k)
0 + d

(k)
1 xπ(1),

µ(x) = 2xπ(n).

Case 2: s(k)(x) = d
(k)
0 + d

(k)
1 xπ(n),

µ(x) = 2xπ(1).

Case 3: s(k) = d
(k)
0 + d

(k)
1 xπ(ω) + d

(k)
2 xπ(ω+1),1 ≤ ω ≤ n− 1,

2d
(k)
0 + d

(k)
1 + d

(k)
2 = 0,

µ(x) = 2xπ(1) or 2xπ(n).

Where d
(k)
0 , d

(k)
1 , d

(k)
2 ∈ Z4 , k = 0, 1, · · · ,m− 1.

Then the M2-QAMsequences

c(x) =
√

2j(
∑m−1

k=0 2kja(k)(x)) , d(x) =
√

2j(
∑m−1

k=0 2kjb(k)(x)) , M = 2m

are Golay complementary sequences.

Proof:
Case 1: The aperiodic autocorrelation function of sequences c(x) , where x =
0, 1, · · · , 2n − 1,at delay shift τ is

Cc(τ) =
∑2n−1−τ

i=0 cic
∗
i+τ

= 2
∑2n−1−τ

i=0 [
∑m−1

k=0 2k(j)a(k)(i)][
∑m−1

k=0 2k(j)−a(k)(i+τ)]

= 2{∑m−1
k=0 22kCa(k)(τ) +

∑
k,f,k 6=f 2k+fCa(k),a(f)(τ)}

Similarly,



Cd(τ) =
∑2n−1−τ

i=0 did
∗
i+τ

= 2{∑m−1
k=0 22kCb(k)(τ) +

∑
k,f,k 6=f 2k+fCb(k),b(f)(τ)}

For τ > 0,

Cc(τ) + Cd(τ) = 2{∑m−1
k=0 22k[Ca(k)(τ) + Cb(k)(τ)]

+
∑

k,f,k 6=f 2k+f [Ca(k),a(f)(τ) + Cb(k),b(f)(τ)]}

= 2
∑

k,f,k 6=f 2k+f [Ca(k),a(f)(τ) + Cb(k),b(f)(τ)]

Ca(k),a(f)(τ) + Ca(f),a(k)(τ) + Cb(k),b(f)(τ) + Cb(f),b(k)(τ)

=
∑2n−1−τ

i=0 (j)A(i)+d
(k)
0 +d

(k)
1 (i)π(1)−A(i+τ)−d

(f)
0 −d

(f)
1 (i+τ)π(1)

+
∑2n−1−τ

i=0 (j)A(i)+d
(f)
0 +d

(f)
1 (i)π(1)−A(i+τ)−d

(k)
0 −d

(k)
1 (i+τ)π(1)

+
∑2n−1−τ

i=0 (j)A(i)+d
(k)
0 +d

(k)
1 (i)π(1)+2(i)π(n)−A(i+τ)−d

(f)
0 −d

(f)
1 (i+τ)π(1)−2(i+τ)π(n)

+
∑2n−1−τ

i=0 (j)A(i)+d
(f)
0 +d

(f)
1 (i)π(1)+2(i)π(n)−A(i+τ)−d

(k)
0 −d

(k)
1 (i+τ)π(1)−2(i+τ)π(n)

=
∑2n−1−τ

i=0 (j)A(i)−A(i+τ)[(j)d
(k)
0 +d

(k)
1 (i)π(1)−d

(f)
0 −d

(f)
1 (i+τ)π(1)

+(j)d
(f)
0 +d

(f)
1 (i)π(1)−d

(k)
0 −d

(k)
1 (i+τ)π(1) ]×[1 + (−1)(i)π(n)+(i+τ)π(n) ]

If (i)π(n) 6= (i + τ)π(n),then 1 + (−1)(i)π(n)+(i+τ)π(n) = 0.

If (i)π(n) = (i + τ)π(n),Let ν denote the largest index for which (i)π(ν) 6= (i+

τ)π(ν),then (i)π(k) = (i + τ)π(k),ν < k ≤ n. Let i′ and j′ denote indexes whose

binary representations differ from those of i and j only at position π(ν + 1)
.
Similar to the Proof in [1], we obtain jA(i)−A(i+τ) = −jA(i′)−A(i′+τ).

Obviously,ν + 1 6= 1 , then

(j)d
(k)
0 +d

(k)
1 (i)π(1)−d

(f)
0 −d

(f)
1 (i+τ)π(1) + (j)d

(f)
0 +d

(f)
1 (i)π(1)−d

(k)
0 −d

(k)
1 (i+τ)π(1)

= (j)d
(k)
0 +d

(k)
1 (i′)π(1)−d

(f)
0 −d

(f)
1 (i′+τ)π(1) + (j)d

(f)
0 +d

(f)
1 (i′)π(1)−d

(k)
0 −d

(k)
1 (i′+τ)π(1)

Thus,



∑2n−1−τ
i=0 (j)A(i)−A(i+τ)[(j)d

(k)
0 +d

(k)
1 (i)π(1)−d

(f)
0 −d

(f)
1 (i+τ)π(1)

+(j)d
(f)
0 +d

(f)
1 (i)π(1)−d

(k)
0 −d

(k)
1 (i+τ)π(1) ] ×[1 + (−1)(i)π(n)+(i+τ)π(n) ]

= 0.

We obtain,

Cc(τ) + Cd(τ) = 0

Case 2:The proof is similar to the proof in the case 1.

Case 3:In the Case 3, we have π(i)ν + π(i + τ)π(ν+1) = 1,

(i)π(ν+1) = (i + τ)π(ν+1) = 1− (i′)π(ν+1) = 1− (i′ + τ)π(ν+1)

(j)d
(k)
0 +d

(k)
1 (i)π(ν)+d

(k)
2 (i)π(ν+1)−d

(f)
0 −d

(f)
1 (i+τ)π(ν)−d

(f)
2 (i+τ)π(ν+1)

+(j)d
(f)
0 +d

(f)
1 (i)π(ν)+d

(f)
2 (i)π(ν+1)−d

(k)
0 −d

(k)
1 (i+τ)π(ν)−d

(k)
2 (i+τ)π(ν+1)

= (j)d
(f)
0 +d

(f)
1 (i′)π(ν)+d

(f)
2 (i′)π(ν+1)−d

(k)
0 −d

(k)
1 (i′+τ)π(ν)−d

(k)
2 (i′+τ)π(ν+1)

+(j)d
(k)
0 +d

(k)
1 (i′)π(ν)+d

(k)
2 (i′)π(ν+1)−d

(f)
0 −d

(f)
1 (i′+τ)π(ν)−d

(f)
2 (i′+τ)π(ν+1)

Then,

∑2n−1−τ
i=0 (j)A(i)−A(i+τ)[1 + (−1)(i)π(n)+(i+τ)π(n) ]

×[(j)d
(k)
0 +d

(k)
1 (i)π(ν)+d

(k)
2 (i)π(ν+1)−d

(f)
0 −d

(f)
1 (i+τ)π(ν)−d

(f)
2 (i+τ)π(ν+1)

+(j)d
(f)
0 +d

(f)
1 (i)π(ν)+d

(f)
2 (i)π(ν+1)−d

(k)
0 −d

(k)
1 (i+τ)π(ν)−d

(k)
2 (i+τ)π(ν+1) ]

= 0

thus, they are also complementary sequences.

3 The Golay Complementary Sequences over Q-PAM
constellation

The class of Q-PAM constellation considered in this paper is the subset of the
M2-QAM constellation of size 2M = 2m+1 having representation

{√2j(ja0 +
∑m−1

k=1 2k(j)a0+2ak)|a0 ∈ Z4, ak ∈ Z2, k ≥ 1}



These representations suggest that quaternary sequences be used in the con-
struction of Golay complementary sequences over these constellations.

Theorem 2. Let A(x) = 2
∑n−1

k=1 xπ(k)xπ(k+1) +
∑n

k=1 ckxk + c,

a(0)(x) = A(x) + s(0)(x),

b(0)(x) = A(x) + s(0)(x) + µ(x),

Where ck ∈ Z4 , k = 0, 1, · · · ,m−1 ,c ∈ Z4,π is a permutation from {1, 2, · · · , n}
to {1, 2, · · · , n} , s(k)(x) and µ(x) satify the following cases.

Case 1: s(k) = d
(k)
0 + d

(k)
1 xπ(1),

µ(x) = 2xπ(n).

Case 2: s(k)(x) = d
(k)
0 + d

(k)
1 xπ(n),

µ(x) = 2xπ(1).

Case 3: s(k) = d
(k)
0 + d

(k)
1 xπ(ω) + d

(k)
2 xπ(ω+1),1 ≤ ω ≤ n− 1,

2d
(0)
0 + d

(0)
1 + d

(0)
2 = 0, d

(k)
1 = d

(k)
2 ,

µ(x) = 2xπ(1) or 2xπ(n).

Where d
(0)
0 , d

(0)
1 , d

(0)
2 ∈ Z4 ,d(k)

0 , d
(k)
1 , d

(k)
2 ∈ Z2 ,k = 1, · · · ,m− 1.

Then the 2M -QPAM sequences

c(x) =
√

2j(ja0(x) +
∑m−1

k=1 2k(j)a0(x)+2s(k)(x)) ,

d(x) =
√

2j(jb0(x) +
∑m−1

k=1 2k(j)b0(x)+2s(k)(x))

are Golay complementary sequences.

The proof is similar to the proof in the theorem 1, we omit it.

Example 1: The 8-ary Q-PAM constellation is a subset of the 16-QAM con-
stellation given by

{√2j(ja0 + 2ja0+2a1)|a0 ∈ Z4, a1 ∈ Z2}

Then as discussed above, let a0 = f(x1, x2, x3) = x1x2 + x2x3 , a1 = 1 + x3

, then the following sequences are Golay complementary sequences of length 8
over the 8-ary Q-PAM constellation.



−√2j,−√2j,−√2j,
√

2j, 3
√

2j, 3
√

2j,−3
√

2j, 3
√

2j,

−√2j,
√

2j,−√2j,−√2j, 3
√

2j,−3
√

2j,−3
√

2j,−3
√

2j.

4 Golay Complementary Sequences over 64-QAM Using
Offset Pairs Proposed By Ying Li

Based on offset pairs proposed by Ying Li[16], he proposed two constructions
called modified case 4 and modified case 5 respectively, based on the construc-
tions, he also proposed two conjectures. Now we study the constructions and
prove the conjectures. We rewrite original modified case 4 and modified case 5
in[16] as case 4 and case 5 in this paper.

Case 4:Let A(x) = 2
∑n−1

k=1 xπ(k)xπ(k+1) +
∑n

k=1 ckxk + c,

a1(x) = A(x) + s(1)(x),

a2(x) = A(x) + s(2)(x),

B(x) = A(x) + µ(x),

b1(x) = a1(x) + µ(x),

b2(x) = a2(x) + µ(x),

(s(1)(x), s(2)(x)) = (d0 + d1xπ(ω), d
′
0 + d′1xπ(ω)), with 2 ≤ ω ≤ n− 1.

µ(x) = 2xπ(1) or 2xπ(n),

c(x) = 4jA(x) + 2ja1(x) + ja2(x) , d(x) = 4jB(x) + 2jb1(x) + jb2(x),

Then,
Cc(τ) =

∑2n−1−τ
i=0 cic

∗
i+τ

=
∑2n−1−τ

i=0 (8jA(i)−A(i+τ) + 4ja1(i)−a1(i)−a1(i+τ) + ja2(i)−a2(i+τ))

+
∑2n−1−τ

i=0 2[4(jA(i)−a1(i+τ) + ja1(i)−A(i+τ))

+2(jA(i)−a2(i+τ) + ja2(i)−A(i+τ)) + (ja1(i)−a2(i+τ) + ja2(i)−a1(i+τ))]

Cd(τ) =
∑2n−1−τ

i=0 did
∗
i+τ



=
∑2n−1−τ

i=0 (8jB(i)−B(i+τ) + 4jb1(i)−b1(i+τ) + jb2(i)−b2(i+τ))

+
∑2n−1−τ

i=0 2[4(jB(i)−b1(i+τ)+jb1(i)−B(i+τ))+2(jB(i)−b2(i+τ)+jb2(i)−B(i+τ))+

(jb2(i)−b1(i+τ) + jb1(i)−b2(i+τ))]

The following three equations can be verified easily.

∑2n−1−τ
i=0 (jA(i)−a1(i+τ) + ja1(i)−A(i+τ) + jB(i)−b1(i+τ) + jb1(i)−B(i+τ)) (1)

=
∑2n−1−τ

i=0 [jA(i)−A(i+τ)−d0−d1(i+τ)π(ω)+jA(i)−A(i+τ)−d0−d1(i+τ)π(ω)+2(i)π(1)−2(i+τ)π(1) ]

+
∑2n−1−τ

i=0 [j−A(i+τ)+A(i)+d0+d1(i)π(ω)+j−A(i+τ)+A(i)+d0+d1(i)π(ω)+2(i)π(1)−2(i+τ)π(1) ]

=
∑2n−1−τ

i=0 jA(i+τ)+A(i)[jd0+d1(i)π(ω) + j−d0−d1(i+τ)π(ω) ][1 + (−1)iπ(1)+(i+τ)π(1) ]

∑2n−1−τ
i=0 (jA(i)−a2(i+τ) + ja2(i)−A(i+τ) + jB(i)−b2(i+τ) + jb2(i)−B(i+τ)) (2)

=
∑2n−1−τ

i=0 [jA(i)−A(i+τ)−d′0−d′1(i+τ)π(ω)+jA(i)−A(i+τ)−d′0−d′1(i+τ)π(ω)+2(i)π(1)−2(i+τ)π(1) ]

+
∑2n−1−τ

i=0 [j−A(i+τ)+A(i)+d′0+d′1(i)π(ω)+j−A(i+τ)+A(i)+d′0+d′1(i)π(ω)+2(i)π(1)−2(i+τ)π(1) ]

=
∑2n−1−τ

i=0 jA(i+τ)+A(i)[jd′0+d′1(i)π(ω) + j−d′0−d′1(i+τ)π(ω) ][1 + (−1)iπ(1)+(i+τ)π(1) ]

∑2n−1−τ
i=0 (ja1(i)−a2(i+τ) + ja2(i)−a1(i+τ) + jb2(i)−b1(i+τ) + jb1(i)−b2(i+τ)) (3)

=
∑2n−1−τ

i=0 [jA(i)+d0+d1(i)π(ω)−A(i+τ)−d′0+d′1(i+τ)π(ω)

+jA(i)+d0+d1(i)π(ω)−A(i+τ)−d′0−d′1(i+τ)π(ω)+2(i)π(1)−2(i+τ)π(1) ]

+
∑2n−1−τ

i=0 [j−A(i+τ)−d0−d1(i+τ)π(ω)+A(i)+d′0+d′1(i)π(ω)

+j−A(i+τ)−d0+d1(i)π(ω)+A(i)+d′0+d′1(i)π(ω)+2(i)π(1)−2(i+τ)π(1) ]

=
∑2n−1−τ

i=0 jA(i+τ)+A(i)[jd′0+d′1(i)π(ω)−d0−d1(i+τ)π(ω)+j−d′0−d′1(i+τ)π(ω)+d0+d1(i)π(ω) ]

×[1 + (−1)iπ(1)+(i+τ)π(1) ]

Thus we obtain the following equation

4× (1) + 2× (2) + (3)

=
∑2n−1−τ

i=0 [4(jA(i)−a1(i+τ) + ja1(i)−A(i+τ) + jB(i)−b1(i+τ) + jb1(i)−B(i+τ))



+2(jA(i)−a2(i+τ) + ja2(i)−A(i+τ) + jB(i)−b2(i+τ) + jb2(i)−B(i+τ))

+(ja1(i)−a2(i+τ) + ja2(i)−a1(i+τ) + jb2(i)−b1(i+τ) + jb1(i)−b2(i+τ))]

=
∑2n−1−τ

i=0 jA(i+τ)+A(i)Q(i)[1 + (−1)iπ(1)+(i+τ)π(1) ]

Where Q(i) = 4(jd0+d1(i)π(ω)+j−d0−d1(i+π)π(ω))+2(jd′0+d′1(i)π(ω)+j−d′0−d′1(i+π)π(ω))

+(jd′0+d′1(i)π(ω)−d0−d1(i+τ)π(ω) + j−d′0−d′1(i+τ)π(ω)+d0+d1(i)π(ω))

Similar to the proof of theorem 1, we set (i)π(ω) = (i + τ)π(ω) = 0 , then
the above equation is

4(jd0 + j−d0) + 2(jd′0 + j−d′0) + (jd′0−d0 + j−d′0+d0),

and set (i)π(ω) = (i + τ)π(ω) = 1 , then the above equation is

4(jd0+d1 + j−d0−d1) + 2(jd′0+d′1 + j−d′0−d′1) + (jd′0+d′1−d0−d1 + j−d′0−d′1+d0+d1),

then c(x) and d(x) are Golay complementary pair if

4(jd0 + j−d0) + 2(jd′0 + j−d′0) + (jd′0−d0 + j−d′0+d0),
(4)

= 4(jd0+d1 + j−d0−d1) + 2(jd′0+d′1 + j−d′0−d′1) + (jd′0+d′1−d0−d1 + j−d′0−d′1+d0+d1),

By exhaust search, there are 32 sets of (d0, d1, d
′
0, d

′
1) satisfying the above equation(4),

and the four sets {(0123), (0321), (1311), (3133)} proposed by Ying Li in [16] also
satisfy the equation.

Case 5:Let A(x) = 2
∑n−1

k=1 xπ(k)xπ(k+1) +
∑n

k=1 ckxk + c,

a1(x) = A(x) + s(1)(x),

a2(x) = A(x) + s(2)(x),

B(x) = A(x) + µ(x),

b1(x) = a1(x) + µ(x),

b2(x) = a2(x) + µ(x),

(s(1)(x), s(2)(x)) = (d0 + d1xπ(ω) + d2xπ(k), d
′
0 + d′1xπ(ω) + d′2xπ(k)),

with 2 ≤ ω ≤ n− 2 , ω + 2 ≤ k ≤ n.



µ(x) = 2xπ(1) or 2xπ(n),

c(x) = 4jA(x) + 2ja1(x) + ja2(x) , d(x) = 4jB(x) + 2jb1(x) + jb2(x).

It is easy to check the following three equations hold.

∑2n−1−τ
i=0 (jA(i)−a1(i+τ) + ja1(i)−A(i+τ) + jB(i)−b1(i+τ) + jb1(i)−B(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]
×[jd0+d1(i)π(ω)+d2(i)π(k) + j−d0−d1(i+τ)π(ω)−d2(i+τ)π(k) ]

∑2n−1−τ
i=0 (jA(i)−a2(i+τ) + ja2(i)−A(i+τ) + jB(i)−b2(i+τ) + jb2(i)−B(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]

×[jd′0+d′1(i)π(ω)+d′2(i)π(k) + j−d′0−d′1(i+τ)π(ω)−d′2(i+τ)π(k) ]

∑2n−1−τ
i=0 (ja1(i)−a2(i+τ) + ja2(i)−a1(i+τ) + jb2(i)−b1(i+τ) + jb1(i)−b2(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]×

[jd′0+d′1(i)π(ω)+d′2(i)π(k)−d0−d1(i+τ)π(ω)−d2(i+τ)π(k)

+jd0+d1(i)π(ω)+d2(i)π(k)−d′0−d′1(i+τ)π(ω)−d′2(i+τ)π(k) ]

then as in case 4, we obtain c(x) and d(x) are Golay complementary pair if
the following conditions hold.

4(jd0+d1+d2y + j−d0−d1−d2z) + 2(jd′0+d′1+d′2y + j−d′0−d′1−d′2z)

+(jd′0+d′1+d′2y−d0−d1−d2z + jd0+d1+d2y−d′0−d′1−d′2z)

= 4(jd0+d2y+j−d0−d2z)+2(jd′0+d′2y+j−d′0−d′2z)+(jd′0+d′2y−d0−d2z+jd0+d2y−d′0−d′2z) (5)

4(jd0+d1y + j−d0−d1z) + 2(jd′0+d′1y + j−d′0−d′1z)

+(jd′0+d′1y−d0−d1z + jd0+d1y−d′0−d′1z)

= 4(jd0+d1y+d2+j−d0−d1z−d2)+2(jd′0+d′1y+d′2+j−d′0−d′1z−d′2) (6)

+(jd′0+d′1y+d′2−d0−d1z−d2 + jd0+d1y+d2−d′0−d′1z−d′2)

Where y, z ∈ {0, 1}.



By exhaust search, there are 52 sets of (d0, d1, d2, d
′
0, d

′
1, d

′
2) satisfying the above

equation(5)and equation (6), and the four sets {(013231), (031213), (133111),
(311333)} proposed by Ying Li in[16] also satisfy the equations.

In the paper[16], the author asserted that there only exist four sets of coeffi-
cients for the case 4 and case 5 respectively, but, based on the proposed judgment
conditions above, we find there are 32 sets of coefficients for the case 4 and 52
sets of coefficients for the case 5 using exhaust search. We provide these detail
materials in the appendix 1 and appendix 2 respectively.

Due to the discussion above, we have proved the conjecture 1 proposed
in[16]by Ying Li. Because the conjecture 2 is based on conjecture 1 and there
are some drawbacks existing in counting the set elements, some drawbacks can
be found in conjecture 2.

Here, we extend the method proposed by Ying Li and introduce a new case
called case 6 as follows:

Case 6:Let A(x) = 2
∑n−1

k=1 xπ(k)xπ(k+1) +
∑n

k=1 ckxk + c,

a1(x) = A(x) + s(1)(x),

a2(x) = A(x) + s(2)(x),

B(x) = A(x) + µ(x),

b1(x) = a1(x) + µ(x),

b2(x) = a2(x) + µ(x),

(s(1)(x), s(2)(x)) =

(d0 + d1xπ(ω) + d2xπ(k) + d3xπ(l), d
′
0 + d′1xπ(ω) + d′2xπ(k) + d′3xπ(l)),

with 2 ≤ ω ≤ n− 4 , ω + 2 ≤ k ≤ n− 2 , k + 2 ≤ l ≤ n.

µ(x) = 2xπ(1) or 2xπ(n),

c(x) = 4jA(x) + 2ja1(x) + ja2(x) , d(x) = 4jB(x) + 2jb1(x) + jb2(x).

It is easy to check the following three equations hold.

∑2n−1−τ
i=0 (jA(i)−a1(i+τ) + ja1(i)−A(i+τ) + jB(i)−b1(i+τ) + jb1(i)−B(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]×

[jd0+d1(i)π(ω)+d2(i)π(k)+d3(i)π(l) + j−d0−d1(i+τ)π(ω)−d2(i+τ)π(k)−d3(i+τ)π(l) ]



∑2n−1−τ
i=0 (jA(i)−a2(i+τ) + ja2(i)−A(i+τ) + jB(i)−b2(i+τ) + jb2(i)−B(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]×

[jd′0+d′1(i)π(ω)+d′2(i)π(k)+d′3(i)π(l) + j−d′0−d′1(i+τ)π(ω)−d′2(i+τ)π(k)−d′3(i+τ)π(l) ]

∑2n−1−τ
i=0 (ja1(i)−a2(i+τ) + ja2(i)−a1(i+τ) + jb2(i)−b1(i+τ) + jb1(i)−b2(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]×

[jd′0+d′1(i)π(ω)+d′2(i)π(k)+d′3(i)π(l)−d0−d1(i+τ)π(ω)−d2(i+τ)π(k)−d3(i+τ)π(l)

+jd0+d1(i)π(ω)+d2(i)π(k)+d3(i)π(l)−d′0−d′1(i+τ)π(ω)−d′2(i+τ)π(k)−d′3(i+τ)π(l) ]

then as in case 4, we obtain c(x) and d(x) are Golay complementary pair if
the following conditions hold.

4(jd0+d2y1+d3y3 + j−d0−d2y2−d3y4) + 2(jd′0+d′2y1+d′3y3 + j−d′0−d′2y2−d′3y4)

+(jd′0+d′2y1+d′3y3−d0−d2y2−d3y4 + jd0+d2y1+d3y3−d′0−d′2y2−d′3y4)

= 4(jd0+d1+d2y1+d3y3+j−d0−d1−d2y2−d3y4)+2(jd′0+d′1+d′2y1+d′3y3+j−d′0−d′1−d′2y2−d′3y4) (7)

+(jd′0+d′1+d′2y1+d′3y3−d0−d1−d2y2−d3y4 + jd0+d1+d2y1+d3y3−d′0−d′1−d′2y2−d′3y4)

4(jd0+d1y1+d3y3 + j−d0−d1y2−d3y4) + 2(jd′0+d′1y1+d′3y3 + j−d′0−d′1y2−d′3y4)

+(jd′0+d′1y1+d′3y3−d0−d1y2−d3y4 + jd0+d1y1+d3y3−d′0−d′1y2−d′3y4)

= 4(jd0+d1y1+d2+d3y3+j−d0−d1y2−d2−d3y4)+2(jd′0+d′1y1+d′2+d′3y3+j−d′0−d′1y2−d′2−d′3y4) (8)

+(jd′0+d′1y1+d′2+d′3y3−d0−d1y2−d2−d3y4 + jd0+d1y1+d2+d3y3−d′0−d′1y2−d′2−d′3y4)

4(jd0+d1y1+d2y3 + j−d0−d1y2−d2y4) + 2(jd′0+d′1y1+d′2y3 + j−d′0−d′1y2−d′2y4)

+(jd′0+d′1y1+d′2y3−d0−d1y2−d2y4 + jd0+d1y1+d2y3−d′0−d′1y2−d′2y4)

= 4(jd0+d1y1+d2y3+d3+j−d0−d1y2−d2y4−d3)+2(jd′0+d′1y1+d′2y3+d′3+j−d′0−d′1y2−d′2y4−d′3) (9)

+(jd′0+d′1y1+d′2y3+d′3−d0−d1y2−d2y4−d3 + jd0+d1y1+d2y3+d3−d′0−d′1y2−d′2y4−d′3)



Where y1, y2, y3, y4 ∈ {0, 1}.

By exhaust search, there are 76 sets of (d0, d1, d2, d3, d
′
0, d

′
1, d

′
2, d

′
3) satisfying

the above equation(7),equation (8) and equation (9), please see appendix 3.
Note. We can choose

(s(1)(x), s(2)(x)) =

(d0+d1xπ(ω1)+d2xπ(ω2)+ · · ·+dlxπ(ωl), d
′
0+d′1xπ(ω1)+d′2xπ(ω2)+ · · ·+d′lxπ(ωl)),

there are somewhat difficult to obtain sufficient conditions for judging whether
the sequence using above offset pairs is Golay Complementary sequence.

5 Golay Complementary Sequences over 128-QAM
Constellation

It is easy to construct Golay complementary sequences over 128-QAM constel-
lation using the offset pairs in the Case 1, Case 2 and Case 3.We consider the
case 5 here.

Let A(x) = 2
∑n−1

k=1 xπ(k)xπ(k+1) +
∑n

k=1 ckxk + c,

a1(x) = A(x) + s(1)(x),

a2(x) = A(x) + s(2)(x),

a3(x) = A(x) + s(3)(x),

b1(x) = a1(x) + µ(x),

b2(x) = a2(x) + µ(x),

b3(x) = a3(x) + µ(x),

s(1)(x) = d0 + d1xπ(ω) + d2xπ(k),

s(2)(x) = d′0 + d′1xπ(ω) + d′2xπ(k),

s(3)(x) = d∗0 + d∗1xπ(ω) + d∗2xπ(k),

With 2 ≤ ω ≤ n− 2 , ω + 2 ≤ k ≤ n.

µ(x) = 2xπ(1) or 2xπ(n),



Then the 128-QAM sequences can be constructed as follows

c(x) = 8jA(x) + 4ja1(x) + 2ja2(x) + ja3(x),

d(x) = 8jB(x) + 4jb1(x) + 2jb2(x) + jb3(x).

It is easy to check the following five equations hold.

∑2n−1−τ
i=0 (jA(i)−a1(i+τ) + ja1(i)−A(i+τ) + jB(i)−b1(i+τ) + jb1(i)−B(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]

[jd0+d1(i)π(ω)+d2(i)π(k) + j−d0−d1(i+τ)π(ω)−d2(i+τ)π(k) ]

∑2n−1−τ
i=0 (jA(i)−a2(i+τ) + ja2(i)−A(i+τ) + jB(i)−b2(i+τ) + jb2(i)−B(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]

[jd′0+d′1(i)π(ω)+d′2(i)π(k) + j−d′0−d′1(i+τ)π(ω)−d′2(i+τ)π(k) ]

∑2n−1−τ
i=0 (ja1(i)−a2(i+τ) + ja2(i)−a1(i+τ) + jb2(i)−b1(i+τ) + jb1(i)−b2(i+τ))

+
∑2n−1−τ

i=0 (jA(i)−a3(i+τ) + ja3(i)−A(i+τ) + jB(i)−b3(i+τ) + jb3(i)−B(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]×

[jd′0+d′1(i)π(ω)+d′2(i)π(k)−d0−d1(i+τ)π(ω)−d2(i+τ)π(k)

+jd0+d1(i)π(ω)+d2(i)π(k)−d′0−d′1(i+τ)π(ω)−d′2(i+τ)π(k) ]

+
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]×

[jd∗0+d∗1(i)π(ω)+d∗2(i)π(k) + j−d∗0−d∗1(i+τ)π(ω)−d∗2(i+τ)π(k) ]

∑2n−1−τ
i=0 (ja1(i)−a3(i+τ) + ja3(i)−a1(i+τ) + jb1(i)−b3(i+τ) + jb3(i)−b1(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]×

[jd∗0+d∗1(i)π(ω)+d∗2(i)π(k)−d0−d1(i+τ)π(ω)−d2(i+τ)π(k)

+jd0+d1(i)π(ω)+d2(i)π(k)−d∗0−d∗1(i+τ)π(ω)−d∗2(i+τ)π(k) ]



∑2n−1−τ
i=0 (ja2(i)−a3(i+τ) + ja3(i)−a2(i+τ) + jb2(i)−b3(i+τ) + jb3(i)−b2(i+τ))

=
∑2n−1−τ

i=0 jA(i)−A(i+τ)[1 + (−1)iπ(1)−(i+τ)π(1) ]×

[jd∗0+d∗1(i)π(ω)+d∗2(i)π(k)−d′0−d′1(i+τ)π(ω)−d′2(i+τ)π(k)

+jd′0+d′1(i)π(ω)+d′2(i)π(k)−d∗0−d∗1(i+τ)π(ω)−d∗2(i+τ)π(k) ]

then similar to the case 4, c(x) and d(x) are Golay complementary pair if the
following conditions hold.

16(jd0+d2y + j−d0−d2z) + 8(jd′0+d′2y + j−d′0−d′2z)

+4(jd′0+d′2y−d0−d2z + jd0+d2y−d′0−d′2z) + 4(jd∗0+d∗2y + j−d∗0−d∗2z)

+2(jd∗0+d∗2y−d0−d2z + jd0+d2y−d∗0−d∗2z)

+(jd∗0+d∗2y−d′0−d′2z + jd′0+d′2y−d∗0−d∗2z)

= 16(jd0+d1+d2y+j−d0−d1−d2z)+8(jd′0+d′1+d′2y+j−d′0−d′1−d′2z) (10)

+4(jd′0+d′1+d′2y−d0−d1−d2z+jd0+d1+d2y−d′0−d′1−d′2z)+4(jd∗0+d∗1+d∗2y+j−d∗0−d∗1−d∗2z)

+2(jd∗0+d∗1+d∗2y−d0−d1−d2z + jd0+d1+d2y−d∗0−d∗1−d∗2z)

+(jd∗0+d∗1+d∗2y−d′0−d′1−d′2z + jd′0+d′1+d′2y−d∗0−d∗1−d∗2z)

16(jd0+d1y + j−d0−d2z) + 8(jd′0+d′1y + j−d′0−d′1z)

+4(jd′0+d′1y−d0−d1z + jd0+d1y−d′0−d′1z) + 4(jd∗0+d∗1y + j−d∗0−d∗1z)

+2(jd∗0+d∗1y−d0−d1z + jd0+d1y−d∗0−d∗1z)

+(jd∗0+d∗1y−d′0−d′1z + jd′0+d′1y−d∗0−d∗1z)

= 16(jd0+d1y+d2+j−d0−d1z−d2)+8(jd′0+d′1y+d′2+j−d′0−d′1z−d′2) (11)

+4(jd′0+d′1y+d′2−d0−d1z−d2+jd0+d1y+d2−d′0−d′1z−d′2)+4(jd∗0+d∗1y+d∗2+j−d∗0−d∗1z−d∗2 )

+2(jd∗0+d∗1y+d∗2−d0−d1z−d2 + jd0+d1y+d2−d∗0−d∗1z−d∗2 )

+(jd∗0+d∗1y+d∗2−d′0−d′1z−d′2 + jd′0+d′1y+d′2−d∗0−d∗1z−d∗2 )



Where y, z ∈ {0, 1}.

By exhaust search, there are 260 sets of (d0, d1, d2, d
′
0, d

′
1, d

′
2) satisfying the above

equation (10) and equation (11) , please see appendix 4.

6 Conlusion

We propose a new method to judge whether the sequences over the QAM con-
stellation constructed using new offset pairs are Golay complementary sequences.
Based on this method, we prove the conjectures[16] and find some new Golay
complementary sequences over 64-QAM constellation. We propose a new offset
pairs, based on the pairs, we construct new Golay complementary sequences over
64-QAM constellation. 260 new Golay complementary sequences over 128-QAM
constellation can also be found. One can find many Golay complementary se-
quences over QAM and Q−PAM constellation based on the method proposed
in this paper.
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