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Abstract

The block cipher 1024 has a key schedule that somehow resembles
that of IDEA. The user key is cyclicly shifted by a fixed amount to
form the round keys. In the key schedule of IDEA this has lead to weak
keys. The primitive key schedule from 1024 may lead also to attacks
with related keys. Although to the knowlegde of the author weak
keys or attacks with related keys have not been published, there is a
need to put things right. The new one-way key schedule of 1024XKS
(eXtended Key Schedule) has pseudo-random round keys, which are
obtained by using the cipher as randomizer. Apart from that, the user
key has now two sizes, 2048 bit and 4096 bit. Also the order of the
s-boxes have been changed to thwart attacks based on symmetry.

1 Introduction

When Claude Shannon, once a U.S. government cryptanalyst, [49]
passed World War II in review, he noted that cryptographic machines
like the ENIGMA enciphered only one letter of the plaintext to be-
come ciphertext. He also showed, that when the key had the same
size like the plaintext or exceeded it, an attacker even with unlim-
ited computing power could not decipher the ciphertext. This was
good news for government agencies in charge of information security.
They quickly build apparatuses, mainly based on radioactive decay,
to produce the lengthy bit sequences.

But back to Shannons other observation. He demanded, that a
letter of the ciphertext should be dependent on as much plaintext
as possible. He called it ”diffusion”. Shannon demanded also, that a
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letter of the ciphertext be dependent on the plaintext in a complicated
manner. He called this ”confusion”. I can see no reason that also the
key is subject to ”confusion” with regard to the ciphertext.

The rest of the article is organized as follows: Section 2 lists other
block cipher algorithms and their key schedule. Section 3 looks into
the block cipher 1024 and its original key schedule and s-box order. It
is in fact a partial reprint of [45]. Section 4 shows the differencies of
1024 and 1024XKS, especially the new key schedule, the different key
sizes and the different order of the s-boxes. Section 5 gives a report
on intellectual property of 1024 and 1024XKS.

2 Block Ciphers and Key Schedules

2.1 Lucifer

But while government agencies were keen to use his first remark, the
totally failed on his last remark, at least to my knowlegde. But along
came Horst Feistel in 1973, an employee of IBM. He saw that the
ever increasing traffic of computer data would be an easy target for
espionage. He designed Lucifer [18, 64], a block cipher with 128 bits
block size and 128 bits key length and 16 rounds. Lucifer is a product
cipher [66], the data is substituted by a 32 4 bit * 4 bit s-boxes. The
output of the s-box is permuted or transposed to form the next input
for a s-box. The permutation is not used after the last s-box. The
key is used to select one of the two s-boxes. Lucifer is a Substitution-
Permutation-Network (SPN) [67]. It should be noted, that the s-box
of Lucifer must be bijective, i.e. a permutation. The permutation
of a SPN could be called a transposition. The F-function in Feistel
ciphers [59], where substitution and permutation take place, must not
be bijective, but can be a function, see for example [1, 46, 43].

2.2 DES

But not only the employees of a computer firmm had woken up. In the
early seventiehs the U.S. National Bureau of Standards (NBS, now
National Institute of Standards and Technologie, NIST) had come
to the same conclusion as the cryptographers from IBM. In two so-
licitations the NBS asked in the Federal Register from 15th of May
1973 and the Federal Register from 27th of August 1974 for a crypto-
graphic algorithm. Finally, the cryptographers from IBM came with
a tender. Although IBM had a patent pending on the algorithm, IBM
was ready to share the patent with others. In two solicitations from
17th of March 1975 and on 1st August 1975 NBS asked for comments.



In 1976 NBS held two workshops on the cryptographic algorithm and
despite the criticism NBS declared Data Encryption Standard (DES)
on 23th November 1976 a federal standard and fit for the encryption
of sensitive, but not classified, data. The criticism of the DES had
largely two points:

1. A key length of 56 bits, compared with Lucifer’s 128 bits.

2. The design criteria of a crucial part of the DES, the s-boxes, the
only non-linear part of the algorithm, remained secret.

For the whole story about DES the reader is referred to literature,
especially the role of the National Security Agency (NSA), see [2, 47].

DES has a block size of 64 bits and a keylength of 56 bits and
is a balanced Feistel Network. At the beginning, all the data will go
through an initial permutation, which has no cryptographic relevance,
but is merely there to thwart a software implementation. At the end
of the encryption process, all the data must pass through the reverse
initial permutation. For the encryption process, take the two halves
of the data block. The lefthand block (32 bits) is copied as the input
for the F-function. The data of the F-function is then expanded to 48
bits and added modulo 2 (XOR) to the round key. After that the data
is digested through eight 6 bit * 4 bit s-boxes. A 32 bit permutation
(transposition) is performed. The F-function is now completed and its
output is added modulo 2 (XOR) to the right half of the data block.
Now the encryption process takes the right half of the data block and
makes it the input of the F-function. The output of the F-function
is addded modulo 2 (XOR) to the left half of the data block. The
F-function (round) is repeated 16 times, eight times by using the left
half of data block as input and eight times by using the right half of
data bock as input. After the last round, the left and right halves
of the data block are interchanged. The output of the F-function is
added modulo 2 (XOR) to the half block that was not the input. The
whole algorithm in detail is here [38, 47, 57].

The key space of DES is 64 bits. However, only 56 bits are the
effective key space, since 8 bits of the 64 bits are parity bits. The
effective key space undergoes a permutation or transposition. The
key is then split in halves, i.e. two keys with 28 bits. These keys are
shifted cyclicly every round by 1 bit or 2 bits. From each of the two
keys 24 bits are extracted und together they form the round key. The
round key is added modulo 2 (XOR) to the expanded data bits of the
F-function.

The operations in DES are linear, except the s-boxes. They key
schedule of DES due to its linearity has some interesting properties:



four keys are weak keys. Encrypting with these four keys is an involu-
tion. When Ey; is encryption with key k¢ and P is the plaintext,then

Eyi(Eri(P)) = P (1)

Six of the keys are semi-weak. Let Dj; decryption with key k1.
Encryption with one pair of semi-weak keys k2, operates idencitally
to decryption with another k1.

Ey1 (Eye(P)) =P (2)
Eypy = Dy (3)

And finally: Let C the be ciphertext. Let C the bitwise comple-
ment of C. Then:

E(P)=C 4
Ey(P)=C (5)

This is the complementation property of DES. As a consequence,
a chosen-plaintext-attack needs only half of the keys to check, i.e. 253
instead of 256 computational complexity.

As T mentioned earlier, the 56 bits of the DES user key are split
into halves of 28 bits. The 28 bits are rotated by 1 bit or 2 bits.
For all the 16 rounds of the DES, the shift in total is 28 bits. For
encryption, the shifts are to the left, for decryption, the shifts are
to the right. Obviously this makes computation of decryption und
encryption easier, since gates in 1977 were scarce and expensive. Of
each 28 bits, 24 bits are selected, 48 bits in total, to form the key
of the F-function or the round key. The shifts in dependance of the
rounds are as follows:

Round ‘

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
11 2 2 2 2 2 21

Shifts | 2 2 2 2 2 2

I can see no obvious pattern of the shifts depending on the rounds.
[6] clames, that DES is not susceptible to attacks with related keys.
Also [22] makes no mention of the DES. However [4] makes use that
the key schedule of DES is not one-way, i.e. whole or partial knowlegde
of one round key gives partial knowledge of another round key.

However, it is easy to find symmetries of shifts vs. rounds distri-
bution, for example:



Round | 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16

Shifts ‘ 22212 2212 2 2 1 2 2 2 1
or

Round ‘ 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16

Shifts ‘ 2221122 22 2 2 1 1 2 2 2

These examples of the shifts vs. rounds distribution have a sym-
metry and should be susceptible to related key attacks. It seems to
me, that the cryptographers at IBM or the cryptographers at the NSA
or both had some knowledge about related keys in 1975, but they kept
silent. Open research had to wait for 18 years for [5]. It is intereseting
that Don Coppersmith of IBM, when Eli Biham and Adi Shamir rein-
vented differential cryptanalysis in [4] at the beginning of the 1990ties,
broke the silence and said, they were aware of differential cryptanaly-
sis in 1975, but remained silent for national security reasons. See the
last paragraph of the preface in [4].

2.3 FEAL

The first block cipher with a one-way key schedule, at least to my
knowledge, is the FEAL cipher [50, 58]. The FEAL Cipher is a bal-
anced Feistel cipher. It uses addition modulo 2 (XOR), a rotation by
2 bits to left and addition modulo 256. The only non-linear operation
in FEAL is the addition modulo 256. The key schedule uses a modi-
fied F-function of FEAL to create pseudo-random round keys and is
one-way.

As the only non-linear operation is addition modulo 256 or one byte
addition, FEAL became an easy prey for Eli Biham and Adi Shamir,
who were at that time developing differential cryptanalysis [3]. The
FEAL inventors tried to make the algorithm immune from differential
cryptanalysis [35, 36] and introduced a 128 bit user key and a new key
schedule. However, differential cryptanalysis delivers the round keys,
and the attempted strengthening against differential cryptanalysis of
FEAL was in vain. Another interesting book on FEAL is [47].

2.4 Khufu

Khufu is a block cipher with 64 bit block length and 512 bit key
[34, 62]. Khufu uses whitening at the beginning and the end of the
cipher, but the main target of the user key is a s-box with 8 bit input
and 32 bit output. Khufu is the first algorithm (according to my
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knowledge), that has key-dependent s-boxes. Khufu is defined for 8,
16, 24, 32, 40, 48, 56, 64 rounds. Every eight rounds (a so called octet)
a new s-box is used. Khufu is a Feistel-Cipher with whitening.

Khufu encrypts the user key of 512 bit/64 bytes with an initial s-
box in Cipher Block Chaining Mode to create the whitening keys and
the s-box entries. In order to have a bijective s-box, Khufu constructs
the 8 bit to 32 bit s-box out of four 8 bit to 8 bit s-boxes. This
could be omitted, since the 256 entries in the 8 bit to 32 bit s-box
are well below 26, the square root from 232. The probability to make
a collision is low, according to the birthday paradox [56]. The key
schedule is one-way.

The encryption of the data proceeds as follows. At first the data
passes through the beginning whitening, i.e. the whole block of 64
bits data is added modulo 2 (XOR) with an auxiliary key. The data
block is split into halves of 32 bit. The most significant byte of the
left half is used as the input of the s-box. The output of the s-box
is added modulo 2 (XOR) to the right half. The left half is rotated
by eight bit and the left half and right half are interchanged. Then
the same procedure is done with the new left half. After eight rounds,
all the eight bytes in the data block have been used as input into
the s-box. That is why the number of rounds must be a multiple of
8. Khufu with 16 rounds was successfully attacked using differential
cryptanalysis [19].

2.5 IDEA

The block cipher IDEA (International Data Encryption Algorithm,
IDEA is a registered trademark) was originally known as PES (Pro-
posed Encryption Standard) and published by Xuejia Lai and James
Massey [26, 60]. But differential cryptanalysis, which were at that
time emerging, prompted the authors to make some changes to the
algorithm [27, 28]. IDEA has a 64 bit block size and a key length
of 128 bits and 8.5 rounds. The design concept of IDEA is "mixing
operations from different algebraic groups.” Buildings blocks of IDEA
are addition modulo 2 (XOR), addition modulo 2! and multiplication
by 2'¢ + 1. Note that 2'% + 1 is a prime. The whole architecture from
IDEA is especially useful for 16-bit microprocessors.

The key schedule of IDEA is quite simple: The user key is the first
subkey. The other subkeys are derived as follows: The actual subkey
is generated by its predecessor shifted to the left by 25 bits.

Criticism on IDEA’s key schedule came prompt, see for example
[12, 13, 33, 22, 8], but attacks, that could seriously threaten the se-
curity of IDEA did not take place. But as time went by, new attacks



have been published, especially in the new millenium. Papers like
[7, 6] show, that attacks on 6-Round IDEA are faster then exhaustive
search. After all the block length and the key size of IDEA are yes-
terdays business. Today a block cipher should have a block size of at
least 128 bit and a key length of at least 256 bit. In most countries
the patents of IDEA will expire 2010 or 2011.

2.6 Blowfish and Kaweichel

Blowfish has a 64 bit block length and a key size with up 448 bits
and 16 rounds [46, 55]. It is a Feistel cipher, however the subkeys
are not injected into the F-function. The subkeys are applied to the
left half before the left half is used as the input to the F-function.
The subkeys are added modulo 2 (XOR) to the left half of the data
block. In addition, the s-boxes are pseudo-random. The four s-boxes
have an input of 8 bit and an output of 32 bit. Four s-boxes form the
F-function. The outputs of the s-boxes are added modulo 2 (XOR)
or added modulo 232 to form the output of the F-function. Finally
there two subkeys added modulo 2 (XOR), when the last of the Feistel
rounds are over. Blowfish needs a minimum 4 Kbyte L1-Cache to be
real fast in software. Blowfish F-function is indeed a function and not
a permutation, i.e. it is non-surjective.

The key schedule of Blowfish is quite complicated: At first assign
all the subkeys and the s-boxes a pseudo-random values. In Blowfish,
the hexadecimal values of 7 less the initial 3 are used. The user key
with maximal 448 bits is added modulo 2 (XOR) to the subkeys. If the
user key is to short, repeat it until all the subkeys are added modulo
2 (XOR) to the user key.

Let the 64 bit 0-String be encrypted. The output of the cipher is
encrypted again, but before that it is assigned the first two subkeys.
Continue the Output FeedBack mode of cipher (OFB) until all the
subkeys and all the s-boxes have received new values. Obviously this
key schedule is one-way.

There is not much literature on Blowfish. Serge Vaudenay [52]
published a report on weak keys of Blowfish. The same did Orhun
Kara and Cevat Manap [21] with the reflection attack. Vincent Rij-
men [41] published an attack on 4-round Blowfish with second-order
differential.

Kaweichel [42, 43, 44] is the natural extension of Blowfish for 64 bit
microprocessor. Its block length is 128 bits and key space is up to 1920
bit, depending on the number of rounds. Kaweichel is a Feistel cipher
and comes with 16, 24 and 32 rounds. To be real fast in software,
Kaweichel needs a L1-Cache of at least 16 kBytes. The subkeys are in



the same place as with Blowfish. However, there is some difference:
The subkeys are added modulo 2%*. The s-boxes have an input of 8
bit and output of 64 bit. Eight s-boxes form the round function or
F-function. The way, in which the outputs of the s-boxes are treated
is not the same as in Blowfish, because I want to thwart the attack by
Vincent Rijmen [41]. The attacks by Serge Vaudenay [52] and Orhun
Kara and Cevat Manap [21] are impossible, since addition modulo 2%4
and addition modulo 2 (XOR) do not commutate. Kaweichel has like
Blowfish,a F-function and not a permutation as a round function, i.e.
it is non surjective. After the output from the F-function is added
modulo 2 (XOR) to the right half, the right half is rotated by 11 bits
to the left. The key schedule is the same as in Blowfish, only even
subkeys are assigned at first. The second difference to the Blowfish
key schedule is that shorter keys are not appended by itself. As in
Blowfish, the key schedule is one-way.

2.7 MISTY and KASUMI

Misuru Matsui, the doyen of linear cryptanalysis, invented MISTY1
and MISTY2. The description of both block ciphers is rather com-
plicated, so I refer the reader to the literature [32] or Wikipedia [65].
The block ciphers have a 64 bit block length and a key size of 128
bit. MISTY1 and MISTY2 are Feistel ciphers and the recommended
number of rounds are 8, although the number of rounds could be
4-4,9=1,2,3,.... Despite being 13 years old, open cryptanalysis has
not found an attack faster then exhaustive search. The best attack is
by Dunkelman and Keller [16], which analysis 6 round of MISTY1 in
a time complexity with more than 2'23.

MISTY was paid a lot of attention, when is successor KASUMI
[61], also known as A5/3, became the block cipher of the GSM As-
sociation for the third generation of mobile phones (UMTS). How-
ever, recent research showes [17] that MISTY offers more security
than KASUMI. In KASUMI, the key schedule has been changed, the
subkeys off all rounds are linear functions of the user key. A related
key boomerang attack by the Israeli researchers has complexity 236
data, 230 memory and 23? time with 4 related keys. The whole attack
lasts on a modern PC two hours.

The GSM Association stated before the attack, that ”removing all
the FI functions in key scheduling part makes the hardware smaller
and/or reduces key set-up time. We expect that related key attacks
do not work for this structure”. Usually, the subkeys are stored in
memory be it hardware or software, so they can be accessed at once.
The key scheduling is not time-critical, but encryption/decryption is.



This is good example that the key schedule should support the
block cipher. This is also good example that changing the key schedule
of an existing block cipher can do much harm to the security of the
block cipher.

2.8 Other block ciphers

The LOKI variants (LOKI89 & LOKI91), which were contrived by
Australian cryptographers [9, 10 , were also susceptible to related key
analysis [ , , . The round keys are linear functions (rotation of
the left half and the right of half of the user key) of the user key. or
more on LOKI, try [
uare, which is the predecessor of ijndael (now the Advanced
Encryption tandard AE ) was recently shown to be also susceptible
to related key analysis [ . The attackers used the fact, that the
derivation of the round keys is affine function of the user key. The full
uare block cipher can be broken with time complexity 23, while
the key length is 128,

3 The Algorithm of 1024
3.1 The S-Boxes

10 isa ubstitution-Permutation-Network ( PN). It uses as building
blocks multiplication modulo 32 —1 as s-box and a modified diffusion
layer from A E .Keys are applied before and after the s-boxes. 10
has  s-boxes (multiplication modulo 32 — 1). Let us denote in this
subsection addition, subtraction and multiplication modulo ™ —1 by
respectively +,- and X, ordinary multiplication by *, integer division
by |+] ,XO by &, rotation by a bits to the left by <<a, rotation by
a bits to the right by >»a and addition modulo 2°¢ by H. .

Multiplication modulo ™ — 1 as s-box was first used by Daemen
et. al. [11,1 ,1 . The studied function is:

fi(z) = )

axz if z< "-1
"1 if z= "-1

The calculation is easy:

axb

Dha+ltn @

The first righthand term is obtained by taking the least significant
bits of the product, the second term by taking the remaining bits and

axb mod(™—1)=(axb mod( ™)+ |




shifting them to the right by n bits and add that to the first term.
If a carry (i.e. bit 32 is set) results from that addition the result is
incremented by 1. Note that [11] gives a wrong formula. It has been
corrected in chapter 11 of Joan Daemens Ph.D. thesis [14]. Note that
the last factor of the righthandside of the equation is not distributive.

Multiplication modulo 2" — 1 has interesting properties. A multi-
plication by 2 modulo 2™ — 1 is equivalent by a rotation to left by one.
Similarly 2¥ x @ = @ < k. Further material can be found in [12].

In [12] multiplication factors modulo 232—1 are given. In the cipher
MMB a encryption (in hex. 0x025F1CDB) and decryption (in hex.
0x0DADA4694) factors are introduced. The encryption factor by MMB
is in 1024 rotated left from 0 to 31. The left most block is assigned
the encryption factor without rotation. The next block is assigned
the encryption factors <€ 1 and so on. The last block (right most)
is assigned the encryption factors <& 31. That is why the number of
blocks with 32 bits is 32 (see reference implementation WIDTH).

The decryption factor from MMB is treated almost the same way.
The decryption factor from MMB is the decryption factor from 1024
in left most block. The decryption factor is rotated to the right from
0 to 31 and assigned from left most block to right most block. The
left most block is assigned the decryption_factor 3> 0, the right most
block is assigned the decryption_factors > 31.

The critical probability of the s-boxes with regard to differential
cryptanalysis is 279,

3.2 Diffusion Layer

The diffusion layer has as parent the diffusion layer from SAFER [29,
30]. However, there are four modifications:

1. 32 blocks instead of eight.

2. Four bytes instead of one byte as primitive unit. See [48].
3. Before the addition primitive units are beeing rotated.
4

. One additional layer

Point two is clear. In a modern PC the CPU has a register size
of four bytes, sometimes eight bytes. Obviously this will increase the
speed.

The Pseudo-Hadamard-Transform is defined as:

b1 = 2a1 + a2 (8)
bo = a1 + as (9)
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It can be rewritten:

bo = a1 + as (10)
by =a1 +bo (11)

The Pseudo-Hadamard-Transform has one disadvantage. The least
significant bit of b; is not dependent on a;. Schneier et. al. [48] were
aware that b; is not dependent on the most significant bit of a;. But
there is no word on the least significant bit of a; (or at least I did
not see it). Because by = 2a; + a9 the least significant bit of by is a
function of a2 and not of a;. Thus the least significant bit of b; is
incomplete.

In [40] a branch number for invertible linear mappings was intro-
duced. It is defined as

B(6) = min(un(a) +wn(0(a))) (12)

where wy, denotes the Hamming weight of a, i.e. the number of nonzero
compenents of a. For example a = 020F has the Hamming weight of 4.
0 is the linear mapping. The branch number of the linear mapping 8 is
at least B. A linear mapping with optimal branch number B =n+1
can be constructed by a maximum distance separable code. I can
see no reason why this can not be done on a non linear transform.
Bearing that in mind, the branch number of Twofish [48] is two, 23!
in left most block and the other blocks 0 as input. The output is 23!
on the right most block, 0 else. The same holds for my diffusion layer
(a branch number of 2). An input of 23! on the left most block, 0
else, gets an output of the right most block of 23!, the other blocks 0.
Obviously this is a poor performance.

That is why the rotation was introduced. To the b a rotated value
of a1 is added. Similarly to the b; a rotated value of by is added. The
rotation values are pseudo-random and it is the assumption that the
branch number is higher. For more details, see the function pht in the
reference implementation. The function ipht does the opposite of the
function pht, i.e. the rotation is invertible.

On the original diffusion layer of SAFER rotations were intro-
duced. The result is that an odd rotation from the ”left” to the
"right” and even rotation from the "right” to ”left” is a multipermu-
tation [51, 53, 54]. Note the the natural unit of the diffusion layer of
SAFER is a byte. My vintage computer of 1997 was able to calculate
this, but not 16 bit or 32 bit. A modern computer could calculate 16
bit, but not 32 bit. However, it is conjectured that the multipermu-
tation through rotation and addition is valid for 32 bit.
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Figure 1: The left quarter of a primary round

3.3 Addition modulo 22°6

Addition modulo 225 was introduced to give an upper bound for linear
cryptanalysis. If we take [37], we can have an upper bound for linear
cryptanalysis without being forced to examine the diffusion layer or
the s-boxes. See subsection Key Schedule and section Linear Crypt-
analysis for further details.

1024 has a bit length of 1024 bits. This means addition modulo
2256 jg applied four times, from left to right, sometimes after the s-
boxes, sometimes before the s-boxes. Since there are 32 s-boxes of 32
bits the input or output of one addition modulo 2259 is eight s-boxes.

One can argue that all the keys should be applied by addition
modulo 22°%, so one can use less rounds. But the XOR of some keys
is there to make the cryptanalysis more difficult by using different
groups or to avoid symmetry attacks.

3.4 Primary Round

1024 consists of eight primary rounds, a middle transform and eight
secondary rounds. The number of primary rounds und secondary
rounds must be equal. A secondary round is the inversion of a pri-
mary round, except for the key and the encryption/decryption factors.
Figure 1 shows the left quarter of a primary round.

A primary round starts with XORing the first half of the round
key. Since 1024 consists of 32 blocks of 32 bits, a 32 bit CPU will do
that in 32 steps.

The s-boxes (multiplication modulo 232 — 1) follow. Note that each

12
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Figure 2: A left quarter of the middle transform

of the s-boxes has its own multiplication factor. (see subsection s-box).
As 1024 consists of 32 blocks of 32 bits, one has 32 multiplications and
32 encryption factors, since the s-boxes should have no symmetry.

Addition modulo 22%¢ of the second half of the round key follows.
As 1024 has 1024 bits, there are four additions. The left most addition
consists of the output of left most eight s-boxes and so on.

Finally the Pseudo-Hadamard-Transform (see function pht in the
reference implementation) is done. Note that the least significant four
bytes of the addition modulo 22%¢ are least significant unit of the
Pseudo-Hadamard-Transform.

3.5 The Middle Transform

The middle transform is the only part of 1024 that comes with no
Pseudo-Hadamard-Transform. Instead the data output from the eighth
primary round comes as input for the middle transform. First there
is addition modulo 225 of the first half of the round key. Again the
least significant four byte output by the eighth primary round is the
least significant input to the left most addition modulo 22%¢. Figure 2
shows one quarter of the middle transform.

After addition modulo 22%% is completed, the data (1024 bit) is
partitioned in 32 blocks of 32 bits. This data is now input to the
s-boxes (multiplication modulo 232 — 1). The s-boxes are the same as
in the primary rounds.

The output by the s-boxes are now input to second addition mod-
ulo 2256 of the second half the round key. This is the same as in
subsection primary round.
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Figure 3: The left quarter of a secondary round

3.6 The Secondary Rounds

The input to the first secondary round is the output from the middle
transform. At first there is an inverse diffusion layer (see function ipht
in the reference implementation). Second there is addition modulo
2256 with the first half of the round key. Third there are the s-boxes.
The s-boxes have the same factors as the s-boxes in the primary round
and in the middle transform. Finally there is XOR with the second
half of the round key. Figure 3 shows the left quarter of one secondary
round.

3.7 Key Schedule

The first round key is the user key (see function key_schedule in the
reference implementation). The next round key is the predecessor
rotated by 455 bits to the left and so on. Note that a round key and
the key to middle transform are applied before and after the s-boxes.
For the eight primary rounds one half of the key is applied before the
s-boxes (XOR, low bits), the other half of the key is applied after the
s-boxes (addition modulo 22°, high bits). For the middle transform
one half of the key is applied before the s-boxes (addition modulo 22°¢,
low bits), and one half of the key is applied after the s-boxes (addition
modulo 2255 high bits). For the eight secondary rounds one half of
the key is applied before the s-boxes (addition modulo 22°¢, low bits),
the other half of the key is applied after the s-boxes (XOR, high bits).

Why is the rotation 455 bits to the left? This is linear cryptanalysis
and the so called bias or the so called effectiveness [31, 37]. When we
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take into account that addition modulo 2256 of the keys in the rounds

and the middle transform we have nine additions of round keys and
middle transform. If we take into account [31, 37] we have as average
bias € = 279128 — 2-1152 (4iling up lemma not considered). The
rotation of the round keys was so determined that the maximum bias
was as low as possible. This can be done via exhausive search and
takes on a modern PC a few secounds. The result is that a rotation to
the left of 455 bits is desired one. It has a maximum bias of ¢ = 271018
(raw data 1024, piling up lemma 7, bit position 1591). It should be
noted that a rotation to the left of 1593 bits has the same bias and
same data except the bit position. Note that 4554+1593=2048 is the
key length. However, a rotation by 1593 bit can not be used by the
reference implementation (maximum rotation is 1023).

For the decryption process the XOR-keys simply swap their posi-
tion on the primary and secondary rounds. If we want an algorithm
to be the same for encryption and decryption we need to have the
inverse of addition modulo 225, The inverse of an integer value, be it
signed or unsigned, is to invert the bits of that integer and to add 1.
When this is done, the key values swap their position on the primary
and secondary rounds and on the middle transform. For details, see
the function invert_keys of the reference implementation.

3.8 Decryption

For encryption and decryption the same algorithm is used. For the
s-boxes the decryption factors are used. The are the inverse of the
encryption keys modulo 232 — 1. [12] gives one of them. The rest
is calculated by rotating this one key to the right from 1...31. See
the function decryption factors of the reference implementation for
details.

Also the keys have to be inverted. While XOR is self-inverse you
will need only to mirror them at the s-boxes of the middle transform.
Addition modulo 2% is slightly more difficult: you will need the bit
complement and add 1. Having that done you will have to mirror at
the s-boxes of the middle transform.

The functions key_schedule and invert_keys of the reference imple-
mentation will give you further insight.
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4 1024XKS vs. 1024

4.1 Different Key Schedule

The key schedule of 1024 resembles that of IDEA. The round key of
the first round is the user key. Note that 1024 has a 2048 bit round
key, one half is applied before the s-boxes, one half after the s-boxes.
The next round key is the previous round key rotated by 455 bits to
the left. Obviously this is a linear function. The key schedule does
prohibit linear cryptanalysis (see [45]). However, if a part of the key
bits are known, then a part of all round keys are known. The key
schedule of 1024 is not one-way, but the key schedule of 1024XKS is
one-way.

The round key generation of 1024XKS is as follows: First calculate
the round keys in the 1024 manner, i.e. do the rotation by 455 bit to
left. Then take a 1024 bit all zero string and let it pass through the
algorithm. The resulting bit string is the first half of the first round
key. Let the algorithm work in Output Feedback Mode (OFB). Each
time the bit string has passed through the algorithm, a round key
is assigned that bit string in ascending order. Given the number of
primary rounds, secondary rounds and the middle transformation, the
Output Feedback Mode (OFB) is applied 34 times. This key schedule
was inspired by Blowfish [46].

However, that "forward mode” has a disadvantage: The first half
of the first round key is assigned the bit string of the first OFB round.
When encryption is applied, the first half of the first round key and
the bit string have the same value. When they are added modulo
2 (XOR), the result is the all zero string. As the s-boxes left the
zeroes unchanged, the first non-zero input is the second half of the
first round key, or the second half of the user key. However, this is the
only "error” that occurs in the ”forward mode”.

To avoid the "error”, 1024XKS has a mode of key scheduling which
I describe as the ” backword mode”. This means that Qutput Feedback
Mode is still employed, but the round keys are assigned the value in
descending order, i.e the last round key of the last secondary round
is assigned the value first. This ”"backward mode” has not the same
error as the "forward mode”.

To distinguish the modes in the reference implementation, there
is variable for the preprocessor named #define FORWARD. When
the #define statement is true, then the key scheduling is in ”forward
mode”. If the #define statement is not true, then the key scheduling is
in ”"backward mode”. To accomplish that, you could erase the #define
statement or leave it as a commentary, i.e. to the beginning of the
#define statement insert /* und the end of the statement insert */.
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The code of the reference implementation, which are influenced by the
#define statement, are the functions encrypt and decrypt quite at the
end of the reference implementation.

4.2 Different Key Size

1024XKS comes with two user key sizes, 2048 bit and 4096 bit. The
round keys are obtained as follows: The first round keys are the user
key. Then the first round keys are rotated by 455 bit to the left
to form the next round keys. The process is iterated until all the
round keys from the primary rounds, the middle transformation and
the secondary rounds have their assigned values. The next part of the
round key generation is described in the previous subsection (Different
Keys Schedule). The first key schedule for the key size of 2048 of 1024
is described in the previous section, subsection Key Schedule. A look
at the function key_schedule will give further insight.

To distinguish the key sizes in the reference implementation, there
is variable for the preprocessor named #define BIG_.KEY. When the
#define statement is true, the key size is 4096 bit. If the #define
statement is not true, then the key size is 2048 bit. To accomplish that,
you could erase the #define statement or leave it as a commentary, i.e.
to the beginning of the #define statement insert /* und the end of the
statement insert */. The code of the reference implementation, which
are influenced by the #define statement, is the function key_schedule
quite at the beginning of the reference implementation.

4.3 Different Order of the S-Boxes

The order of the s-boxes in 1024 is as follows: The left most s-box is
assigned a value found in [12, 14]. It is the encryption factor, which
can by expressed in C 0x0251F1CDB. The next s-box is assigned that
value rotated to the left by 1. The third s-box is assigned that value
from the left most s-box rotated to the left by 2. and so on. Since
rotation to the left by one can be expressed by multiplication by 2
mod 2"—1 there is a symmimetry, which can be used by a cryptanalyst.
The same is true for the decryption factors. The left most s-box is
assigned the value 0x0DAD4694. The rest of the decryption factors is
assigned the value the predecessor had rotated by one to the right.

In 1024XKS the s-boxes, which contain the even rotation numbers,
are same as in 1024. There is an increase by two for the rotational
values for each step ranging from 0 (left most s-box) to 30 (second
right most s-box). The rotational values for the s-boxes with even
rotational values is shown by the table:
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position|0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

rotation‘O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

For the s-boxes, which have odd rotational values the table is shown
here:

position | 1 3

5 7 9 11 13 15 17 19 21 23 25 27 29 31
3 1

rotation‘7 5 31 29 27 25 23 21 19 17 15 13 11 9

For further insight study the functions encryption factors and de-
cryption_factors at the beginning of the reference implementation.

5 Intellectual Property

As far as I know, the predecessors of 1024 (MMB and SAFER) and
1024XKS (MMB, SAFER, Blowfish) have no legal protection like
patents or a registered trademarks. I did not file for legal protec-
tion (patents, registered trademark or alike) for 1024 and 1024XKS
and will never do. Thus, the block ciphers 1024 and 1024XKS can
freely be used by anyone.
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A Reference Implementation

#include<stdio.h>

#define NUM_ROUNDS 8

#define INT_LENGTH 32

#define ROL(x,a) (((x)<<(a))|((x)>>(INT_LENGTH-(a))))
#define ROR(x,a) (((x)<<(INT_LENGTH-(a))|((x)>>(a))))
#define WIDTH 32

#define ROTROUND 455

#define FORWARD
#define BIG_KEY

void encryption_factors(unsigned long e_factors[WIDTH]){
unsigned long ij;

e_factors[0]=0x025F1CDB;

for(i=0;i<(WIDTH/2) ;i++){
if(i!'=0) e_factors[2*i]=ROL(e_factors[0],2*i);
e_factors[2*i+1]=R0OL(e_factors[0] , (WIDTH+7-2%i)%WIDTH) ;
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void decryption_factors(unsigned long d_factors[WIDTH]){
unsigned long ij;

d_factors[0]1=229459604;
for(i=0;i<(WIDTH/2) ;i++){
if(i!=0) d_factors[2*i]=ROR(d_factors[0],2%i);
d_factors[2*i+1]=ROR(d_factors[0] , (WIDTH+7-2%1i)%WIDTH) ;
}
}

unsigned long modmult{(unsigned long factorl,unsigned long factor2){
unsigned long long f1,f2,ergebnis,k;

f1=(unsigned long long) factorl;
f2=(unsigned long long) factor2;
ergebnis=f1*f2;
k=(ergebnis>>INT_LENGTH) ;
ergebnis&=0xFFFFFFFF;
ergebnis+=k;
ergebnis+=(ergebnis>>INT_LENGTH) & 1;
return(ergebnis & OxFFFFFFFF);

}

void invert_keys(unsigned long keys[4*NUM_ROUNDS+2] [WIDTH]){
unsigned long i,j,help;
unsigned long long hl,h2,carryl,carry2;

for(i=0;i<NUM_RQUNDS;i++){
for(j=0; j<WIDTH; j++){
help=keys[2*i] [j];
keys[2*i] [j1=keys [4*NUM_ROUNDS-2%i+1][j];
keys [4*NUM_ROUNDS-2*i+1] [j]=help;
}
}
for (i=0;i<(NUM_ROUNDS+1) ;i++){
carryl=1;
carry2=1;
for(j=0; j<WIDTH; j++){
h2=(unsigned long long) keys[4*NUM_ROUNDS-2*i] [j];
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hil=(unsigned long long) keys[2*i+1]1[j];
h1~=0xFFFFFFFF;
h2"=0xFFFFFFFF;
hl+=carryl;
h2+=carry2;
carry2=(h2>>INT_LENGTH) & 1;
carryl=(h1>>INT_LENGTH) & 1;
if((j & 7)==7){
carryl=1;
carry2=1;
}
keys [4*NUM_ROUNDS-2#i] [j1=h1 & OxFFFFFFFF;
keys[2*i+1]1[j1=h2 & OxFFFFFFFF;

#if defined(BIG_KEY)

void key_schedule(unsigned long user_key[4] [WIDTH],\
unsigned long key[4*NUM_ROUNDS+2] [WIDTH]){
unsigned long i,j;

for(i=0;i<4;i++){
for(j=0; j<WIDTH; j++){
key[i] [jl1=user_key[il [j];
}
}
for(i=1;i<NUM_RQUNDS;i++){
for(j=0; j<WIDTH;j++) {
key[4*i+3] [j1=(key[4*(i-1)+((j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH) ) /WIDTH)*3]\
[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\
%WIDTH] << (ROTROUND%INT_LENGTH)) |\
(key [4*(i-1)+((j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1) /WIDTH)*3]\
[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUNDY%INT_LENGTH)) ;

key[4*i+2] [j1=(key [4*(i-1)+3-(j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH))/WIDTH]\

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\

%WIDTH] << (ROTROUNDYINT_LENGTH))\

| (key [4*(i-1)+3-(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1) /WIDTH]\
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[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUNDYINT_LENGTH)) ;

key[4*i+1] [j1=(key[4*(i-1)+2-(j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH) ) /WIDTH] \

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\
%WIDTH] << (ROTROUND%INT_LENGTH))\

| (key [4*(i-1)+2-(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1) /WIDTH]\
[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUND?INT_LENGTH)) ;

key[4*i] [j1=(key[4*(i-1)+1-(j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH)) /WIDTH]\

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\
%WIDTH] << (ROTROUND%INT_LENGTH))\

| (key [4*(i-1)+1-(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1) /WIDTH]\
[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUND?INT_LENGTH)) ;

}
}

for(j=0; j<WIDTH; j++){

key[33] [j1=(key[30-(j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH)) /WIDTH]\

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\
%WIDTH] << (ROTROUND%INT_LENGTH))\

| (key [30-(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)/WIDTH]\

[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUNDYINT_LENGTH)) ;

key[32] [j1=(key[29- (j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH)) /WIDTH]\

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\
%WIDTH] << (ROTROUND%INT_LENGTH))\

| (key [29- (j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1) /WIDTH]\
[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUNDY%INT_LENGTH)) ;

#else
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void key_schedule(unsigned long user_key[2] [WIDTH],\
unsigned long key[4*NUM_ROUNDS+2] [WIDTH]){
unsigned long i,j;

for(i=0;i<2;i++){
for(j=0; j<WIDTH; j++){

}
}

key[i] [j1=user_key[il[j];

for(i=0;i<(2*NUM_ROUNDS) ;i++){
for(j=0; j<WIDTH;j++) {

}
}
}

#endif

key[2#i+3] [j1=(key[2*i+(j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH) ) /WIDTH] \
[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\

%WIDTH] << (ROTROUND%INT_LENGTH)) |\

(key [2*i+(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1) /WIDTH] \
[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUNDY%INT_LENGTH)) ;

key[2#i+2] [j1=(key[2*i+1-(j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH) ) /WIDTH] \
[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\

%WIDTH] << (ROTROUND%INT_LENGTH))\

| (key [2*i+1-(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)/WIDTH]\
[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUNDY%INT_LENGTH)) ;

void pht(unsigned long a[WIDTH]){
unsigned long i,b[WIDTH];

al[1]+=ROL(a[0],1);
al[0]+=ROL(a[1],2);
a[3]+=ROL(a[2],7);
a[2]+=ROL(a[3],16);
a[5]+=R0OL(a[4],13),
a[4]+=ROL(a[5],30);
a[7]1+=ROL(al6],19);
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a[6]+=ROL(al7],12);
a[9]+=ROL(a[8],25);
a[8]+=ROL(al9],26);
a[11]+=R0OL(a[10],31);
al[10]+=R0OL(a[11],8);
a[13]+=R0OL(a[12],5);
a[12]+=R0OL(a[13],22);
a[15]+=R0OL(a[14],11);
al[14]+=R0OL(a[15],4);
a[17]+=R0OL(a[16],17);
a[16]+=ROL(a[17],18),
a[19]+=R0OL(a[18],23);
a[18]+=a[19];
a[21]+=R0OL(a[20],29);
a[20]+=R0OL(a[21],14);
a[23]+=R0OL(a[22],3);
a[22]+=R0OL(a[23],28);
a[25]+=R0OL(a[24],9);
a[24]+=R0OL(a[25],10);
a[27]+=R0OL(a[26],15);
a[26]+=R0OL(a[27],24);
a[29]+=R0OL(a[28],21);
a[28]+=R0OL(a[29],6);
a[31]1+=R0OL(a[30],27);
a[30]+=R0OL(a[31],20);
for(i=0;i<(WIDTH/2) ;i++){

blil=a[2*i];

b[i+(WIDTH/2)]=a[2*i+1];
}

b[1]1+=ROL(b[0],1);
b[0]+=ROL(b[1],2);
b[3]1+=ROL(b[2],11);
b[2]+=ROL(b[3],20);
b[6]1+=ROL(b[4],21);
b[4]1+=ROL(b[5],6);
b[7]1+=ROL(b[6],31);
b[6]1+=ROL(b[7],24);
b[9]1+=ROL(b[8],9);
b[8]+=ROL(b[9],10);
b[11]1+=ROL(b[10],19);
b[10]+=ROL(b[11],28);
b[13]1+=ROL(b[12],29);
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b[12]+=ROL(b[13],14);
b[15]1+=ROL(b[14],7);
b[14]+=b[15];
b[17]+=ROL(b[16],17);
b[16]+=ROL(b[17],18);
b[19]+=ROL(b[18],27);
b[18]1+=ROL(b[19],4);
b[21]1+=ROL(b[20],5);
b[20]+=ROL(b[21],22);
b[23]+=ROL(b[22],15);
b[22]+=ROL(b[23],8);
b[25]+=ROL(b[24],25);
b[24]+=ROL(b[25],26);
b[27]1+=ROL(b[26],3);
b[26]+=ROL(b[27],12);
b[29]+=ROL(b[28],13);
b[28]+=ROL(b[29],30);
b[31]+=ROL(b[30],23);
b[30]+=ROL(b[31],16);
for(i=0;i<(WIDTH/2) ;i++){
a[i]l=b[2%*i];
a[i+(WIDTH/2)]=b[2*i+1];
}
al[1]+=ROL(a[0],1);
al[0]+=ROL(a[1],2);
a[3]+=R0OL(al[2],15);
a[2]+=ROL(a[3],24);
a[5]+=R0OL(al4],29);
a[4]+=R0OL(a[5],14);
a[7]+=ROL(a[6],11);
al[6]+=ROL(al[7]1,4);
a[9]+=ROL(a[8],25);
a[8]+=ROL(al9],26);
a[11]1+=ROL(a[10]1,7);
a[10]+=R0OL(a[11],186);
a[13]+=R0OL(al12],21);
a[12]1+=R0OL(a[13]1,6);
al[15]+=R0OL(a[14],3);
a[14]+=R0OL(a[15],28);
a[17]+=R0OL(a[16],17);
a[16]+=R0OL(a[17],18);
a[19]+=R0OL(a[18],31);
al[18]+=R0OL(a[19],8);
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a[21]1+=R0OL(a[20],13);
a[20]+=R0OL(a[21],30);
a[23]+=R0OL(a[22],27);
a[22]+=R0OL(a[23],20);
a[25]+=R0OL(a[24],9);
a[24]+=R0OL(a[25],10),
a[27]+=R0OL(a[26],23);
al[26]+=a[27];
a[29]+=ROL(a[28],5);
a[28]+=R0OL(a[29],22);
a[31]1+=R0OL(a[30],19);
a[30]+=R0OL(a[31],12);
for(i=0;i<(WIDTH/2) ;i++){
blil=a[2*i];
b[i+(WIDTH/2)]=a[2*i+1];
}
b[1]1+=ROL(b[0],1);
b[0]+=ROL(b[1]1,2);
b[3]1+=ROL(b[2],19);
b[2]+=ROL(b[3],12);
b[5]1+=ROL(b[4],5);
b[4]+=ROL(b[5],22);
b[7]+=ROL(b[6],23);
b[6]1+=b[7];
b[9]+=ROL(b[8],9);
b[8]+=ROL(b[9],10);
b[11]+=ROL(b[10],27);
b[10]+=ROL(b[11],20);
b[13]+=ROL(b[12],13);
b[12]+=ROL(b[13],30);
b[15]+=ROL(b[14],31);
b[14]1+=ROL(b[15],8);
b[17]+=ROL(b[16],17);
b[16]+=ROL(b[17],18);
b[19]1+=ROL(b[18],3);
b[18]+=ROL(b[19],28);
b[21]+=ROL(b[20],21);
b[20]+=ROL(b[21],6);
b[23]1+=ROL(b[22],7);
b[22]+=ROL(b[23],16);
b[25]+=ROL(b[24],25);
b[24]+=ROL(b[25],26);
b[27]+=ROL(b[26],11);
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b[26]1+=ROL(b[27],4);
b[29]+=ROL(b[28],29);
b[28]+=ROL(b[29],14);
b[31]+=ROL(b[30],15);
b[30]+=ROL(b[31],24);
for(i=0;i<(WIDTH/2) ;i++){
ali]l=b[2*i];
a[i+(WIDTH/2)]=b[2*i+1];
}
al[1]+=ROL(a[0],1);
al[0]+=ROL(a[1],2);
a[3]+=R0OL(al[2],23);
a[2]+=ROL(a[3],28);
a[5]+=R0OL(al4],13);
a[4]+=R0OL(a[5],22);
a[7]1+=ROL(a[6],3);
a[6]+=ROL(al7],16);
a[9]+=ROL(a[8],25);
a[8]+=ROL(al9],10);
a[11]1+=R0OL(a[10],15);
a[10]+=R0OL(a[11],4);
a[13]+=R0OL(a[12],5);
a[12]+=R0OL(a[13],30);
a[15]+=R0OL(a[14],27);
a[14]+=R0OL(a[15],24);
a[17]+=R0OL(a[16],17);
a[16]+=R0OL(a[17],18);
al[19]1+=R0OL(a[18],7);
a[18]+=R0OL(a[19],12);
a[21]+=R0OL(a[20],29);
a[20]+=R0OL(a[21],6);
a[23]+=R0OL(a[22],19);
al[22]+=a[23];
a[25]+=R0OL(a[24],9);
a[24]+=R0OL(a[25],26),
a[27]+=R0OL(a[26],31);
a[26]+=R0OL(a[27],20);
a[29]+=R0OL(a[28],21);
a[28]+=R0OL(a[29],14);
a[31]1+=R0OL(a[30],11);
a[30]+=R0OL(a[31],8);
for(i=0;i<(WIDTH/2) ;i++){
blil=a[2*i];

31



b[i+(WIDTH/2)]=a[2*i+1];
}
b[1]1+=ROL(b[0],1);
b[0]+=ROL(b[1]1,2);
b[3]1+=ROL(b[2],27);
b[2]+=ROL(b[3],8);
b[5]+=ROL(b[4],21);
b[4]+=ROL(b[5],14);
b[7]+=ROL(b[6],15);
b[6]+=ROL(b[7],20);
b[9]1+=ROL(b[8]1,9);
b[8]+=ROL(b[9],26);
b[11]1+=ROL(b[10],3);
b[10]1+=b[11];
b[13]+=ROL(b[12],29);
b[12]+=ROL(b[13],6) ;
b[15]+=ROL(b[14],23);
b[14]+=ROL(b[15],12);
b[17]+=ROL(b[16],17);
b[16]+=ROL(b[17],18);
b[19]+=ROL(b[18],11);
b[18]+=ROL(b[19],24);
b[21]1+=ROL(b[20],5);
b[20]+=ROL(b[21],30);
b[23]+=ROL(b[22],31);
b[22]+=ROL(b[23],4);
b[25]+=ROL(b[24],25);
b[24]+=ROL(b[25],10);
b[27]+=ROL(b[26],19);
b[26]+=ROL(b[27],16);
b[29]+=ROL(b[28],13);
b[28]+=ROL(b[29],22);
b[31]1+=ROL(b[30]1,7);
b[30]+=ROL(b[31],28);
for(i=0;i<WIDTH;i++) al[il=bl[il;
}

void ipht(unsigned long a[WIDTH]){
unsigned long i,b[WIDTH];

a[0]-=ROL(a[1],2);

a[1]-=ROL(a[0],1);
a[2]-=ROL(a[3],8);
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a[3]-=ROL(al2],27);
a[4]-=ROL(a[5],14);
a[6]-=ROL(al4],21);
a[6]-=ROL(al7],20);
a[7]1-=ROL(a[6],15);
a[8]-=ROL(a[9],26),
a[9]1-=ROL(a[8]1,9);
al[10]-=a[11];
a[11]-=R0OL(a[10],3);
a[12]-=R0OL(a[13],6);
a[13]-=ROL(a[12],29);
a[14]-=ROL(a[15],12);
a[15]-=ROL(a[14],23);
a[16]-=ROL(a[17],18);
a[17]1-=ROL(a[16]1,17);
a[18]-=ROL(a[19],24);
a[19]-=ROL(a[18],11);
a[20]-=ROL(a[21],30);
a[21]1-=R0OL(a[20],5);
a[22]-=R0OL(a[23],4);
a[23]-=R0OL(a[22],31);
a[24]1-=ROL(a[25],10);
a[25]-=ROL(a[24],25);
a[26]-=ROL(a[27],16);
a[27]1-=ROL(a[26],19);
a[28]-=ROL(a[29],22);
a[29]-=ROL(a[28],13);
a[30]-=ROL(a[31],28);
a[31]1-=R0OL(a[30]1,7);
for(i=0;i<(WIDTH/2) ;i++){
b[2*i]=alil;
b[2*i+1]=ali+(WIDTH/2)];
}
b[0]-=ROL(b[1],2);
b[1]1-=ROL(b[0],1);
b[2]-=ROL(b[3],28);
b[3]1-=ROL(b[2],23);
b[4]-=ROL(b[5],22);
b[5]-=ROL(b[4],13);
b[6]1-=ROL(b[7],16);
b[7]1-=ROL(b[6],3);
b[8]-=ROL(b[9],10);
b[9]1-=ROL(b[8],25);
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b[10]-=ROL(b[11],4);
b[11]-=ROL(b[10],15);
b[12]-=ROL(b[13],30);
b[13]-=ROL(b[12],5);
b[14]-=ROL(b[15],24);
b[15]-=ROL(b[14],27);
b[16]-=ROL(b[17],18);
b[17]-=ROL(b[16],17);
b[18]-=ROL(b[19],12);
b[19]-=ROL(b[18],7);
b[20]-=ROL(b[21],6);
b[21]-=ROL(b[20],29);
b[22]-=b[23];
b[23]-=ROL(b[22],19);
b[24]-=ROL(b[25],26);
b[25]-=ROL(b[24],9);
b[26]-=ROL(b[27],20);
b[27]-=ROL(b[26],31);
b[28]-=ROL(b[29],14);
b[29]-=ROL(b[28],21);
b[30]-=ROL(b[31],8);
b[31]-=ROL(b[30],11);
for(i=0;i<(WIDTH/2) ;i++){
al[2*i]=b[i];
a[2*i+1]=b[i+(WIDTH/2)];
}
a[0]-=ROL(a[1],2);
a[1]-=ROL(a[0],1);
a[2]-=R0OL(a[3],12);
a[3]-=ROL(a[2],19);
a[4]-=R0OL(a[5],22);
a[5]-=R0OL(a[4],5);
al[6]-=al7];
a[7]-=ROL(a[6],23);
a[8]-=ROL(a[9],10),
a[9]-=ROL(a[8]1,9);
a[10]-=R0OL(a[11],20);
a[11]-=R0OL(a[10],27);
a[12]-=R0OL(a[13],30);
a[13]-=R0OL(a[12],13);
a[14]-=R0OL(a[15],8);
a[15]-=R0OL(a[14],31);
a[16]-=R0OL(a[17],18);
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al[17]-=R0OL(a[16],17);
al[18]-=R0OL(a[19],28);
a[19]-=R0OL(a[18],3);
a[20]-=R0OL(a[21],6);
al[21]-=R0OL(a[20],21);
a[22]-=R0OL(a[23],16);
a[23]-=R0OL(a[22]1,7);
a[24]-=R0OL(a[25],26);
a[25]-=R0OL(a[24],25);
a[26]-=R0OL(a[27],4);
al[27]-=R0OL(a[26],11);
a[28]-=R0OL(a[29],14);
a[29]-=R0OL(a[28],29);
a[30]-=R0OL(a[31],24);
a[31]1-=R0OL(a[30],15);
for(i=0;i<(WIDTH/2) ;i++){
b[2*i]=alil;
b[2*i+1]=ali+(WIDTH/2)];
}
b[0]1-=ROL(b[1],2);
b[1]1-=ROL(b[0],1);
b[2]-=ROL(b[3],24);
b[3]-=ROL(b[2],15);
b[4]-=ROL(b[5],14);
b[5]-=ROL(b[4],29);
b[6]1-=ROL(b[7],4);
b[7]1-=ROL(b[6],11);
b[8]1-=ROL(b[9],26);
b[9]1-=ROL(b[8],25);
b[10]1-=ROL(b[11],16);
b[11]-=ROL(b[10],7);
b[12]-=ROL(b[13],6);
b[13]1-=ROL(b[12],21);
b[14]-=ROL(b[15],28);
b[15]1-=ROL(b[14],3);
b[16]1-=ROL(b[17],18);
b[17]1-=ROL(b[16],17);
b[18]-=ROL(b[19],8);
b[19]1-=ROL(b[18],31);
b[20]-=ROL(b[21],30);
b[21]1-=ROL(b[20],13);
b[22]-=ROL(b[23],20);
b[23]1-=ROL(b[22],27);
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b[24]-=ROL(b[25],10);
b[25]-=ROL(b[24],9);
b[26]-=b[27];
b[27]-=ROL(b[26],23);
b[28]-=ROL(b[29],22);
b[29]-=ROL(b[28],5);
b[30]-=ROL(b[31],12);
b[31]-=ROL(b[30],19);
for(i=0;i<(WIDTH/2) ;i++){
al[2*i]=b[i];
a[2*i+1]=b[i+(WIDTH/2)];
}
a[0]-=ROL(a[1],2);
a[1]-=ROL(al[0],1);
a[2]-=ROL(a[3],20);
a[3]-=ROL(a[2],11);
a[4]-=ROL(a[5],6);
a[5]-=R0OL(al4],21);
a[6]-=ROL(a[7],24);
a[7]-=ROL(a[6],31);
a[8]-=ROL(a[9],10),
a[9]-=ROL(a[8],9);
a[10]-=R0OL(a[11],28);
a[11]1-=R0OL(a[10],19);
a[12]-=R0OL(a[13],14);
a[13]-=R0OL(a[12],29);
a[14]-=a[15];
a[15]-=R0OL(a[14],7);
a[16]-=R0OL(a[17],18);
a[17]-=ROL(a[16],17);
a[18]-=R0OL(a[19],4);
a[19]-=R0OL(a[18],27);
a[20]-=R0OL(a[21],22);
a[21]-=R0OL(a[20],5);
a[22]-=R0OL(a[23],8);
a[23]-=R0OL(a[22],15);
a[24]-=R0OL(a[25],26);
a[25]-=R0OL(a[24],25);
a[26]-=R0OL(a[27],12);
a[27]-=R0OL(a[26],3);
a[28]-=R0OL(a[29],30);
a[29]-=R0OL(a[28],13);
a[30]-=R0OL(a[31],16);
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a[31]-=R0OL(a[30],23);
for(i=0;i<(WIDTH/2) ;i++){
b[2*i]=alil;
b[2*i+1]=al[i+(WIDTH/2)];
}
b[0]1-=ROL(b[1],2);
b[1]1-=ROL(b[0],1);
b[2]-=ROL(b[3],186);
b[3]1-=ROL(b[2],7);
b[4]-=ROL(b[5],30);
b[5]-=ROL(b[4],13);
b[6]1-=ROL(b[7],12);
b[7]1-=ROL(b[6],19);
b[8]1-=ROL(b[9],26);
b[9]1-=ROL(b[8],25);
b[10]-=ROL(b[11],8),
b[11]1-=ROL(b[10],31);
b[12]-=ROL(b[13],22);
b[13]-=ROL(b[12],5);
b[14]-=ROL(b[15],4);
b[15]1-=ROL(b[14],11);
b[16]1-=ROL(b[17],18);
b[17]1-=ROL(b[16],17);
b[18]1-=b[19];
b[19]1-=ROL(b[18],23);
b[20]-=ROL(b[21],14);
b[21]1-=ROL(b[20],29);
b[22]-=ROL(b[23],28);
b[23]-=ROL(b[22],3);
b[24]-=ROL(b[25],10);
b[25]1-=ROL(b[24],9);
b[26]1-=ROL(b[27],24);
b[27]1-=ROL(b[26],15);
b[28]-=ROL(b[29],6);
b[29]1-=ROL(b[28],21);
b[30]-=ROL(b[31],20);
b[31]-=ROL(b[30],27);
for(i=0;i<WIDTH;i++) al[il=bl[il;
}

void crypt(unsigned long key[4*NUM_ROUNDS+2] [WIDTH],\

unsigned long factors[WIDTH],\
unsigned long datal] [WIDTH] ,unsigned long long size){
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unsigned long i,j;
unsigned long long m,n,o0,carryl,carry2;

for (m=0;m<size;m++){
for(i=0;i<NUM_ROUNDS;i++){
carryl=0;
for(j=0; j<WIDTH; j++){
data[m] [j] =key[2*i] [j];
data[m] [j]1=modmult(data[m] [j1,factors[j1);
n=(unsigned long long) key[2*i+1]1[j];
o=(unsigned long long) datalm][j];
n+=0;
n+=carryl;
carryl=(n>>INT_LENGTH) & 1;
data[m] [j1=n & OxFFFFFFFF;
if((j & 7)==7) carryl=0;
}
pht (&data[m] [0]);
}
carryl=0;
carry2=0;
for(j=0; j<WIDTH; j++){
n=(unsigned long long)datalm] [j];
o=(unsigned long long)key[2*NUM_ROUNDS] [j];
n+=0;
n+=carryl;
carryl=(n>>INT_LENGTH) & 1;
data[m] [j1=n & OxFFFFFFFF;
data[m] [j]1=modmult(data[m] [j],factors[j1);
n=(unsigned long long) datalm][j];
o=(unsigned long long) key[2+#NUM_ROUNDS+1][j];
n+=0;
nt+=carry2;
carry2=(n>>INT_LENGTH) & 1;
data[m] [j1=n & OxFFFFFFFF;
if((G & 7)==7){
carryl=0;
carry2=0;
}
}
for(i=0;i<NUM_ROUNDS;i++){
carryl=0;
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ipht (&data[m] [0]) ;

for(j=0; j<WIDTH; j++){
n=(unsigned long long) datalm][j];
o=(unsigned long long) key[2*NUM_ROUNDS+2+2%i] [j];
n+=o0;
n+=carryl;
carryl=(n>>INT_LENGTH) & 1;
data[m] [j1=n & OxFFFFFFFF;
data[m] [j]1=modmult(data[m] [j1,factors[j1);
data[m] [j] "=key[2*NUM_ROUNDS+3+2%i] [j];
if((j & 7)==7) carryl=0;

void encrypt(unsigned long userkey[] [WIDTH] ,unsigned long long size,\
unsigned long datal[] [WIDTH]){

unsigned long key[4 *NUM_ROUNDS+2] [WIDTH];
unsigned long factors[WIDTH];
unsigned long i,j,intermediate[1] [WIDTH];

key_schedule (userkey,key) ;
encryption_factors(factors);
for(i=0;i<WIDTH;i++){
intermediate[0] [i]1=0;
}
#if defined(FORWARD)
for (i=0;i< (4*NUM_ROUNDS+2) ;i++){
crypt (key,factors,intermediate,1ULL) ;
for(j=0; j<WIDTH; j++){
key[i] [j]1=intermediate[0] [j];
}
}
#else
for (i=(4*NUM_RQOUNDS+2) ;i>0;i--){
crypt (key,factors,intermediate,1ULL) ;
for(j=0; j<WIDTH; j++){
key[i-1] [jl=intermediate[0] [j];
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}
}
#endif

crypt (key,factors,data,size) ;

}

void decrypt(unsigned long userkey[] [WIDTH] ,unsigned long long size,\
unsigned long datal[] [WIDTH]){

unsigned long key[4*NUM_ROUNDS+2] [WIDTH] ;
unsigned long factors[WIDTH];
unsigned long i,j,intermediate[1] [WIDTH];

key_schedule (userkey,key) ;

encryption_factors(factors);

for(i=0;i<WIDTH;i++){
intermediate[0] [i]1=0;

}

#if defined(FORWARD)

for (i=0;i< (4*NUM_ROUNDS+2) ;i++){
crypt (key,factors,intermediate,1ULL) ;
for(j=0; j<WIDTH; j++){

key[i]l [j1=intermediate[0] [j];

}

}

#else

for (i=(4*NUM_RQOUNDS+2) ;i>0;i--){
crypt (key,factors,intermediate,1ULL) ;
for(j=0; j<WIDTH; j++){

key[i-1][jl=intermediate[0] [j];

}

}

#endif

invert_keys (key) ;

decryption_factors(factors);

crypt (key,factors,data,size) ;

}
int main(){
unsigned long i,j;

unsigned long data[1] [WIDTH] ;

#if defined(BIG_KEY)
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unsigned long userkey[4] [WIDTH];
#else

unsigned long userkey[2] [WIDTH];
#endif

for(i=0;i<WIDTH;i++) datal0][il=i;
#if defined(BIG_KEY)
for(i=0;i<WIDTH;i++){
for(j=0;j<4;j++) userkey[jl[i]=32#%j+i;
}
#else
for(i=0;i<WIDTH;i++){
for(j=0;j<2;j++) userkey[jl[i]=32%j+1;
}
#endif

encrypt (userkey,1ULL,data) ;
for (i=0;i<WIDTH;i++) printf("%1x\n",datal0][i]);
scanf ("%1d4",&j);
#if defined(BIG_KEY)
for(i=0;i<WIDTH;i++){
for(j=0;j<4;j++) userkey[jl[i]=32#%j+i;
}
#else
for(i=0;i<WIDTH;i++){
for(j=0;j<2;j++) userkey[jl[i]=32%j+1;
}
#endif
decrypt (userkey, 1ULL,data) ;
for (i=0;i<WIDTH;i++) printf("%1x\n",datal0][i]);
scanf ("%1d4",&j);
return(0) ;

}
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