
Partial Signatures and their Applications

Mihir Bellare∗ Shanshan Duan†

July 2009

Abstract

We introduce Partial Signatures, where a signer, given a message, can compute a “stub” which
preserves her anonymity, yet later she, but nobody else, can complete the stub to a full and verifiable
signature under her public key. We provide a formal definition requiring three properties, namely
anonymity, unambiguity and unforgeability. We provide schemes meeting our definition both with
and without random oracles. Our schemes are surprisingly cheap in both bandwidth and computa-
tion. We describe applications including anonymous bidding and betting.

Keywords: Signatures, anonymity, hash functions

∗ Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,

California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in part

by NSF grants CCF-0915675, CNS 1116800 and CNS 0904380.
† Work done while at the Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman

Drive, La Jolla, California 92093, USA. E-Mail: shduan@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/shduan.

Supported in part by NSF grant CCF-0915675.

1

Contents

1 Introduction 3

2 Related work 6

3 Definitions 8

4 Constructions 9

5 A Reverse Connection 13

A Security Definitions of Signatures and Commitments 15

B Proof of Theorem 4.1 16

C Proof of Theorem 4.2 18

D Proof of Theorem 4.3 20

E Proof of Theorem 5.2 24

F Proof of Theorem 5.3 26

2

1 Introduction

Alice wishes to place a bid with value bidA. She wants to be able to claim the bid as hers in case it wins,
but otherwise wishes to remain anonymous. Partial signatures allow her to do this as follows. Alice
accompanies her bid bidA with a “stub” σ. The stub cannot be verified given Alice’s public verification
key, and her anonymity is protected. When Alice’s bid is pointed to as the winning one, she and only

she can provide a de-anonymizer κ such that (σ, κ) is a full and normal signature which can be verified
under the (certified) public verification key that she also now provides.

Partial signatures, unlike group [11, 4] and ring [19, 9] signatures, offer Alice a practical way to
get anonymity in settings where she has no a priori knowledge of the “crowd” of people within which
she wants to stay anonymous; they are suitable for anonymity in which the crowd, such as the set
of all bidders in an auction, is dynamic and unknown to any individual bidder. Below we expand on
the primitive and its formalization, and discuss solutions, both theoretical and practical. In Section 2
we explain in more depth how partial signatures differ from group [11, 4], ring [19, 9] and anonymous
signatures [22, 14].

Partial Signatures. Signer Alice in a Partial Signature (PS) scheme generates for herself a secret
signing key sk and a matching public verification key vk, and gets the latter certified in the usual way.
Her verification key and certificate are then available to any potential verifier. So far, there is nothing
different from a regular signature scheme.

The difference is that a signature of a message M under signing key sk is a pair (σ, κ). The stub
σ is a “partial” signature, not by itself verifiable, provided in a first phase as a placeholder. Later the
signer provides the de-anonymizer κ together with vk, and it is now possible to verify that (σ, κ) is a
valid signature of M under vk. We now discuss the three security requirements, namely anonymity,
unambiguity and unforgeability.

Anonymity. Briefly, the stub-creator’s identity cannot be determined from the stub and message. To
elaborate, with identities bound to verification keys, we imagine that the adversary has some a priori
information about the potential verification key of the signer, for example that it belongs to some set S
of keys. In the worst case, this set contains just two verification keys. Knowing both these keys, given
a stub created under one of them, and given the message, the adversary has negligible advantage over
guessing in determining under which of the two keys the stub was created.

An implication is that stubs, unlike full signatures, cannot be verified. Otherwise the adversary
could test versus the two candidate verification keys to see which matched the stub.

Unambiguity. Anonymity by itself is easy to achieve: just let the stub be the empty string σ = ε
and let the de-anonymizer be the entire signature. But suppose Alice provides this trivial stub with
her bid. Bob is watching, sees Alice’s stub and bid, and sees that she wins. He now decides to claim
the winning bid as his own by sending in his own public verification key vk

′ together with the de-
anonymizer κ′ consisting of Bob’s signature of M under vk

′ which he can compute since he has the
signing key sk

′ corresponding to vk
′. Verification succeeds (recall in our example the de-anonymizer is

the whole signature and the stub is empty) and Bob has now claimed the winning bid. Unambiguity
prevents this by requiring that an adversary, given a stub σ under sk of a message M of her choice, is
unable to create κ′, vk ′ such that (σ, κ′) verifies as a signature of m under vk′.

In the above attack, it sufficed for Bob to create vk
′ honestly, but in fact he is under no compulsion

to do so. This is why we let the key vk
′ above be entirely under adversary control, leading to a strong

security requirement. In fact our formal definition is stronger still, not even requiring that vk be honestly
generated. The adversary simply provides verification keys vk0, vk1, messages M0,M1, de-anonymizers
κ0, κ1 and a (single!) stub σ, and wins if (σ, κb) is a valid signature of Mb under vkb for both b = 0, 1
as long as the verification keys vk0, vk1 are distinct. The adversary can generate vk0, vk1 any way it
wants as long as they are different, and in particular might know both underlying secret keys.

Weaker requirements would in fact suffice for applications, but ours has the advantage of being

3

very simply stated and turns out to be achievable without significant additional overhead, so we have
adopted it. Unambiguity can be viewed as a signature analog of the robustness property of anonymous
encryption defined in [2]. As there, it ensures that anonymity is not at the cost of authenticity.

Unforgeability. Strong as it is, our formulation of unambiguity does not imply standard unforge-
ability because the keys vk0, vk1 in the winning condition must be different. Unambiguity, thus, can be
viewed as preventing “forgery” under an adversarially-modified verification key, something not part of
the normal definition of a signature [15], and we will separately formulate an unforgeability requirement
preventing forgery on the target verification key itself. However, here, too, something novel emerges,
for we want to say that the adversary cannot forge a full signature on a message even if it already

knows a stub for this message. That is, even if it has a piece of the signature, it should not be able to
compute the rest. Furthermore we would like this to be true when the adversary has more capabilities
than represented by the traditional signing oracle. We give it a partial signing oracle that returns stubs
of messages of the adversary’s choice. It can obtain corresponding de-anonymizers adaptively from
an opening oracle and then wins if it forges on a stub for which it did not obtain the de-anonymizer.
The ability to adaptively obtain de-anonymizers after seeing stubs is reminiscent of a selective-opening
attack [12, 3] but we will be able in this context to provide solutions without heavy tools or additional
overhead.

Applications. Partial signatures are applicable in any setting where one wants anonymity in a first
stage while reserving the capability, in a second stage, of identifying oneself and linking oneself to the
first stage transaction. One such application is Alice placing a bid anonymously and then being able to
claim it, if she so desires, at a later stage. Another is Alice betting anonymously and identifying herself
only if she wins in order to claim the winnings. Author Alice could submit a paper to a conference
anonymously, identifying herself only if the paper is accepted. Unambiguity prevents an adversary
from, respectively, claiming the bid as its own; taking Alice’s winnings; and claiming to be the author
of Alice’s paper.

Achieving security. Having sketched the security requirements of a Partial Signature scheme we see
that it asks for rather a lot more than a normal signature scheme. It requires a structured signature
having two parts, one, the stub, not verifiable on its own but capable of being completed only by the
stub creator. Unambiguity, a requirement on adversarially-chosen verification keys, is quite different
from, and not in any way implied by, standard unforgeability, which pertains to honestly generated
keys. This raises two questions. The first, a theoretical one, is whether security is achievable at all,
and particularly without random oracles; the second a practical one, is whether one can find efficient
solutions, now, if necessary, allowing random oracles. Let us address these questions in turn.

Theoretical construction. We provide a simple, general transform of any standard signature
scheme into a (secure, meaning meeting all three of our requirements) partial signature scheme. The
transform uses as a tool any commitment scheme. This immediately yields constructions without
random oracles, because standard signature schemes, as well as commitment schemes, without random
oracles, are well known.

Proving unforgeability of our commitment-based partial signature scheme runs into the selective de-
commitment problem [12, 3]. The problem is, can an adversary who, given a number of commitments
can choose to open some of them, obtain information about the unopened ones? Intuitively not, but
nobody has been able to prove this, and results in [12, 3] indicate that it is hard. In our particular
setting, we are able to resolve the problem and prove security of our scheme by exploiting the fact that
the privacy required for un-opened commitments is of a limited nature.

Practical constructions. The theoretical existence question thus settled, we turn to finding prac-
tical schemes. Here we should start by setting the stage. With regard to efficiency, we wish to minimize
both computation and bandwidth. The motivation for the first is that public key cryptography is al-
ready considered expensive in many settings, and we do not wish to add a further computational burden.

4

Class Scheme Sign Ver |σ| |κ| Assumption

RH RH-BLS 1 exp 1 pr 160 320 CDH

DH DH-Sch 1 exp 2 exp 160 240 DL

DH DH-GQ 1 exp 2 exp 160 2048 Factoring

SP SP-Sch 1 exp 2 exp 80 160 DL

Figure 1: Costs of our partial signature schemes. For each scheme, we show the computational cost Sign
of signing (this means generation of the full signature (σ, κ)); the computational cost Ver of verification; the
bitlength |σ| of a stub σ; the bitlength |κ| of the de-anonymizer κ; and the Assumption used to prove security.
By “RH” we mean randomized hash. By “DH” we mean deterministic hash. By “SP”, we mean splitting. By
“exp” we mean an exponentiation. By “pr” we mean a pairing.

The motivation for the second is that for wireless devices such as PDAs, cell phones, RFID chips and
sensors, battery life is the main limitation. Here, communicating even one bit of data uses significantly
more power than executing one 32-bit instruction. Reducing the number of bits to communicate saves
power and is important to increase battery life. Also, in many settings, communication is not reliable,
and so the fewer the number of bits one has to communicate, the better. For such reasons, we want
schemes in which both the stub and the de-anonymizer are as short as possible.

How well can we hope to do? Any partial signature scheme is, of course, a standard signature
scheme. (The stub and the de-anonymizer together constitute a full signature.) So we cannot hope for
computation or bandwidth costs lower than those of standard signature schemes. The issue is to reduce
the overhead as much as possible. As we now explain, we do very well.

All our constructions start with a base, standard signature scheme and transform it into a partial
one. We measure overhead with respect to the base scheme, with the bandwidth overhead being defined
as the difference between the length of a full signature in the partial scheme and a signature in the base
scheme. The computational overhead of our schemes is at most one hash. The bandwidth overhead
ranges from 320 bits to (surprisingly) zero bits. In particular, our Schnorr [21] based scheme, SP-ScH,
has an 80 bit partial signature and a 160 bit de-anonymizer and has zero overhead, in both computation
and bandwidth. Refer to Figure 1 for a summary of the characteristics of our schemes. We now discuss
the schemes in more detail.

RH construction. We can obtain fairly efficient schemes by instantiating the commitment scheme
in our above-mentioned general transform by a random-oracle based randomized hash. The stub is
the hash of a 160 bit random string together with the base signature, and the de-anonymizer is the
base signature together with the random string. We call this the RH construction. The computational
overhead is one hash, and the bandwidth overhead is 320 bits. Bandwidth is minimized by choosing
BLS [10] as the base signature scheme, and Figure 1 displays the characteristics of the resulting RH-BLS
scheme.

DH construction. We then consider a class of signature schemes that we call high-entropy schemes.
These are schemes where the base signatures are already randomized. In this case, we drop the random-
izer introduced above, and set the stub to merely the hash of the base signature. (The de-anonymizer
is simply the base signature.) We provide a direct analysis to prove security. (It doesn’t follow from the
above-mentioned results). The computational overhead of this DH (deterministic hash) construction
is one hash, while the bandwidth overhead has been reduced to 160 bits. What can we use as base
schemes? Schemes such as Schnorr [21], GQ [16] and Fiat-Shamir [13] have the desired high entropy.
More generally, high entropy is a property of base signature schemes derived from identification pro-
tocols via the Fiat Shamir transform [13, 1], so there are numerous other choices as well, all quite
efficient. (Note that the BLS scheme [10] does not have high entropy and so is unsuitable for use as a

5

base scheme under DH. And, indeed, DH-BLS is insecure.) Figure 1 summarizes the characteristics of
the DH-Sch and DH-GQ schemes.

Splitting construction. However, we can do even better. In identification-based signature schemes
such as that of Schnorr [21], the signature is a pair (σ, κ) where σ is the hash of the commitment (the
name given to the first message from the prover) and the message, while κ is the response of the prover
when the verifier challenge is σ. We observe that such signature schemes lend themselves very directly
to partial signatures: we simply use σ as the stub, and κ as the de-anonymizer. We call this the splitting
construction (SP). The result is a scheme that has zero overhead, in both computation and bandwidth.
Of course, we need to show that this works. We are able to do this by direct proof based on the general
forking lemma of [5]. Observing that the verifier challenge need be only 80 bits long (there are no
birthday attacks on the challenge) we obtain the SP-Sch scheme whose characteristics are summarized
in Figure 1.

Reverse connection. As indicated above, we have shown that one can build a partial signature
scheme from a commitment scheme. It is natural to ask whether the use of a commitment scheme is
necessary. We show that it is. Namely, we show in Section 5 that any partial signature scheme can be
converted into a commitment scheme. (At the theoretical level there is nothing interesting here since all
of these primitives are equivalent to one-way functions [17, 18]. However, our transformation is direct
and efficient.)

2 Related work

Anonymity means being lost in the crowd. Partial, group [11, 4] and ring [19, 9] signatures differ in
how, when and by whom this crowd is defined. In group signatures the crowd is a pre-created group
with corresponding management overhead and lack of flexibility; in ring signatures, the signer must
explicitly pick the crowd at signing time and compute her signature as a function of it; but in a partial
signature, the signer functions autonomously and obliviously of the crowd, which she does not need to
know in order to compute a signature. Partial signatures are for settings where the crowd is ephemeral
and dynamic and when the signer is potentially part of multiple crowds. Group and ring signatures
are not applicable to anonymous bidding, where the crowd is ephemeral and not known in advance to
any individual bidder. Anonymous signatures [22, 14] have the same intent as partial signatures but
their definition does not lend itself well to the claimed applications and they lack security properties
including unambiguity. Let us now look at these items in more detail.

Group signatures. In a group signature scheme [11, 4], all members of the group share a public
verification key. A group manager provides each group member with a signing key, so that any group
member can sign on behalf of the group. Anonymity means that, from the signature, one cannot tell
which member of the group was the signer. In a partial signature, a signer generates her keys on her
own and gets the verification key certified in the ordinary way. There is no explicit group. No manager
or additional infrastructure is required.

There is no clear way to identify, in advance, the set of individuals who will bid in an open electronic
auction, meaning form the crowd within which anonymity is sought. Even if one could, it is rather
unlikely that this crowd is either able or willing to cooperate to form a group-signature group, which
would involve finding a manager, getting a common public key, and setting up secure channels to the
manager over which signing keys could be issued. Bidding crowds will be ephemeral, differing from bid
to bid, making the overhead of group formation even more onerous. Partial signatures allow signers to
sign in ignorance of the crowd and as members of ephemeral crowds not even defined at signing time.

Ring signatures. In a ring signature [19, 9], like in a partial signature, Alice generates her own keys
and gets the verification key certified in the ordinary way. However, at signing time, she picks a set S
of verification keys (her own key included in the set) that will form the crowd, and then computes her

6

signature as a function of S. Anonymity means that, from the signature, one cannot tell which member
of S was the signer. In a partial signature, in contrast the signing process does not have as input the
crowd S. This reflects the needs of applications like anonymous bidding where the crowd will not be
known in advance to an individual bidder.

Anonymous signatures. Introduced by Yang, Wong, Deng and Wang (YWDW) [22], anonymous
signatures aim to address the same types of applications as partial signatures. We will argue however
that they fall short in that the formulation does not lend itself well to applications and the security
requirements are weak.

In an anonymous signature scheme, the recipient is provided with a full signature. The problem
is that this is verifiable, and there are often only a few candidate verification keys, for example all
bidders who eventually bid in the auction. By trial verification under the candidate verification keys,
the signer can be determined. So how is one to get anonymity? The solution of YWDW [22] was, while
giving the recipient the signature, to deny it the message. For this to prevent trial verification and
provide anonymity, however, they require the message to be randomly chosen from a large space. Thus,
they envisage providing the signature in a first phase and, in the second, providing the message and
verification key.

The problem from the application perspective is that here messages are certainly not random, and
may need to be known in advance to potential verifiers. For example, under the anonymous signatures
approach, when Alice wishes to place a bid with value bidA, she provides, at bidding time, her anonymous
signature of bidA, but not the message bidA itself. However, the auctioneer needs to know the bid in
order to determine the winner.

This problem is to some extent recognized in [22, 14]. To solve it, they suggest that the message
to be signed be obtained by padding the bid with a random string. Only the random string would
be withheld in the first phase. The difficulty is that while this may “work”, it moves us outside the
YWDW definitional framework, which does not cover such usage and does not give us any guarantees
about it. (The explanation for this is somewhat technical. The YWDW definition requires the message
to be drawn at random from a message space that is large and fixed beforehand. It is unclear, in this
context, how to define this message space, given that the bid may have many possible values, and bids
are simply objects chosen by users, rather than ones on which there is some probability distribution.)
These difficulties may potentially be resolved by using classes of distributions as per [14], but things are
getting more complicated than seems desirable. The same issues arise with other applications mentioned
in [22]. In summary, the whole “anonymity by message withholding” approach of YWDW just does
not seem to map well to applications.

Partial signatures, in contrast, are a “anonymity by partial signature withholding” approach where
the recipient is provided the message in full and no assumptions are made on its distribution. They
better fit the applications for which anonymous signatures were intended.

The second weakness of the YWDW definition of anonymous signatures is that it fails to require
unambiguity. Namely, given Alice’s signature, Bob may be able to produce a public key, different from
Alice’s, under which the signature verifies, thereby effectively claiming the signature as his own. This
means that when Alice’s bid wins the auction, Bob can open it, and claim that he won the auction. (This
does not contradict unforgeability, because the public key Bob provides is different from Alice’s.) In fact,
we can give specific examples of schemes that meet the YWDW definition but are not unambiguous,
meaning are subject to the above attack. Partial signatures, in contrast, explicitly demand unambiguity,
and all our schemes provide it.

With regard to schemes, YDWD [22] had no non-random oracle model solutions. The gap was filled
by Fischlin [14], who provided some elegant constructions of anonymous signature schemes meeting
the YWDW-definition, without random oracles. His constructions are based on extractors and use
sophisticated techniques. In our case (partial signatures) we are able to get reasonably efficient solutions
without random oracles and very efficient solutions with random oracles in relatively natural ways, an
indication of a more usable definition.

7

Zhang and Imai [23] consider the case of anonymous signatures where messages have lower entropy.
In work independent of ours, Saraswat and Yun [20] mount critiques on anonymous signatures similar
to ours and suggest, instead of introducing hidden randomness to the message, to introduce hidden
randomness to the signature. Instead of withholding part of the message, they too withhold part of the
signature.

Schemes. Our partial signature schemes are simple and efficient and have minimal, even zero, overhead
compared to standard signature schemes, which is appealing from the deployment perspective and is
not true for any known group or ring signature schemes.

3 Definitions

Notation and conventions. We denote by a = a1‖ · · · ‖an an encoding of strings a1, . . . , an from
which the constituents are easily recoverable via a1‖ · · · ‖an ← a. We denote the empty string by ε.
Unless otherwise indicated, an algorithm may be randomized. If A is a randomized algorithm then
y←$ A(x1, . . .) denotes the operation of running A with fresh coins on inputs x1, . . . and letting y
denote the output. If S is a (finite) set then s←$ S denotes the operation of picking s uniformly at
random from S. If X = (x1, x2, . . . , xn) is an n-tuple, then (x1, x2, . . . , xn)← X denotes the operation
of parsing X into its elements.

Code-based games. We will use code-based games [8] in definitions and proofs and we recall some
background here. A game has an Initialize procedure, procedures to respond to adversary oracle
queries, and a Finalize procedure. A game G is executed with an adversary A as follows. First,
Initialize executes and its outputs are the inputs to A. Then, A executes, its oracle queries being
answered by the corresponding procedures of G. When A terminates, its output becomes the input to
the Finalize procedure. The output of the latter is called the output of the game, and we let GA denote
the event that this game output takes value true. Variables not explicitly initialized or assigned are
assumed to have value ⊥, except for booleans which are assumed initialized to false. Games Gi, Gj

are identical until bad if their code differs only in statements that follow the setting of the boolean flag
bad to true. The following is the Fundamental Lemmas of game-playing:

Lemma 3.1 [8] Let Gi, Gj be identical until bad games, and A an adversary. Let BDi (resp. BDj)
denote the event that the execution of Gi (resp. Gj) with A sets bad. Then

Pr
[

GA
i ∧ BDi

]

= Pr
[

GA
j ∧ BDj

]

and Pr
[

GA
i

]

− Pr
[

GA
j

]

≤ Pr [BDj] .

When we refer to the running time of an adversary A we mean the total time for the execution of G
with A where G is the game defining the adversary’s advantage. This convention simplifies running
time analyses.

Digital signatures. A digital signature scheme DS consists of three algorithms with the following
functionality. The key generation algorithm SKG returns a pair (vk, sk) of keys consisting of the public
key and matching secret key, respectively. The signing algorithm SIG takes the secret key sk and a
message M to return a signature s. The deterministic verification algorithm SVF takes a public key vk,
a candidate signature s and a message M to return either 1 or 0. We require that all public keys have
the same length, as do all signatures output by SIG. The consistency requirement is that for all M we
have SVF(vk, s,M) = 1 with probability 1 in the experiment (vk, sk)←$ SKG() ; s←$ SIG(sk,M). The
standard unforgeability notion [15] is captured by the game EUF-CMA of Figure 8 in Appendix A.

Partial Signatures. A partial signature scheme PS = (PKG,PSIG,PVF) is simply a digital signature
scheme in which any signature output by the signing algorithm is a pair (σ, κ). We refer to the first
component of the pair as the stub and the second as the de-anonymizer. We propose three security
properties: anonymity, unambiguity and unforgeability. The formal definitions are underlain by the
games AN, UNAMB and UF shown in Figure 2. The corresponding adversary advantages are defined

8

Initialize

(vk, sk)←$ PKG()

i← 0 ; E ← ∅

Return vk

Open(j)

If (j ≤ 0 ∨ j > i) Return ⊥

E ← E ∪ {Mj}

Return κj

PSign(M)

i← i+ 1 ; Mi ←M

(σi, κi)←$ PSIG(sk,Mi)

Return σi

Finalize(M, (σ, κ))

Return (M 6∈ E ∧ PVF(vk,M, (σ, κ)) = 1)

Initialize

b←$ {0, 1}

(vk0, sk0)←$ PKG()

(vk1, sk1)←$ PKG()

Return ((vk0, sk0), (vk1, sk1))

CH(M)

(σ, κ)←$ PSIG(skb,M)

Return σ

Finalize(d)

Return (b = d)

Initialize

Finalize(vk0, vk1,M0,M1, σ, κ0, κ1)

d0 ← PVF(vk0,M0, (σ, κ0))

d1 ← PVF(vk1,M1, (σ, κ1))

Return (d0 = 1 ∧ d1 = 1 ∧ vk1 6= vk0)

Figure 2: Games UF, AN and UNAMB used to define, respectively, unforgeability, anonymity and unambiguity
of partial signature scheme PS = (PKG,PSIG,PVF).

by Advuf
PS(A) = Pr

[

UFA
PS

]

, Advan
PS(A) = 2 · Pr

[

ANA
PS

]

− 1 and Advunamb
PS (A) = Pr

[

UNAMBA
PS

]

respectively.

In game UF, an adversary F can query the oracle PSign to get a stub on any message of its choice.
It can then, selectively, “open” whichever of these it pleases, meaning obtain the de-anonymizer, via
its Open oracle. To win F must output a message M and a valid full signature (σ, κ) of M such that
either M was not queried to PSign or M was queried to PSign but the signature returned was not
opened.

The formalization of anonymity follows [4]. The adversary not only gets target public keys vk0 and
vk1 but also knows the corresponding secret keys sk0 and sk1. Via the CH oracle, it can obtain a stub,
under skb, of a message M of its choice, and it wins if it guesses the challenge bit b. It is allowed only
one query to the CH oracle. Security against multiple queries follows by a hybrid argument.

Suppose Alice has produced a stub σ of some message M0 under her public key vk0. Unambiguity
ensures that only Alice can open σ, by requiring that an adversary be unable to produce a public key
vk1, message M1 and de-anonymizer κ1 such that PVF(vk1,M1, (σ, κ1)) = 1 but vk0 6= vk1. Actually
the requirement is stronger, preventing even Alice herself from a priori creating σ which she can later
open in two ways. This addresses the concern that Alice may create for herself two identities and, after
sending a stub, “change” the message or identity from which it “originated”.

4 Constructions

The StC Construction. We describe a general transform of any signature scheme into a partial
one based on the following simple idea: the stub is a commitment to the base signature, and the de-
anonymizer is the decommital key together with the base signature. We consider this a good starting
point because this simple construction will later be the basis for numerous refinement leading to more
efficient schemes. It is also of direct interest because it shows how to achieve partial signatures without
random oracles and because the proof of unforgeability shows a special case in which we can solve the
selective de-commitment problem.

We begin by recalling that a commitment scheme CMT = (CMT,CVF) consists of two algorithms.

9

Alg PKG()
(vk, sk)←$ SKG()
Return (vk, sk)

Alg PSIG(sk,M)
s←$ SIG(sk,M)
(σ, ω)←$ CMT(s||vk)
κ← (s, ω)
Return σ

Alg PVF(vk,M, (σ, κ))
(s, ω)← κ
If (CVF(σ, s||vk, ω) = 1) then

If (SVF(vk, s,M) = 1)
then Return 1

Return 0

Figure 3: Algorithms defining partial signature scheme PS = (PKG,PSIG,PVF) derived via the StC transform
from base signature scheme DS = (SKG, SIG, SVF) and commitment scheme CMT = (CMT,CVF).

Alg PKG()
(vk, sk)←$ SKG()
Return (vk, sk)

Alg PSIG
H(sk,M)

s←$ SIG(sk,M) ; ω←$ {0, 1}k

σ←$ H(ω||s||vk)
κ← (ω, s)
Return (σ, κ)

Alg PVF
H(vk,M, (σ, κ))

(ω, s)← κ
If (H(ω||s||vk) = σ ∧ |ω| = k) then

If (SVF(vk, s,M) = 1) then return 1
Return 0

Figure 4: Algorithms defining partial signature scheme PS = (PKG,PSIG,PVF) derived via the RH transform
from base signature scheme DS = (SKG, SIG, SVF).

The commitment algorithm CMT takes the message M to be committed and returns a pair of (σ, ω)
consisting of a commitment σ and decommital key ω. The deterministic verification algorithm CVF

takes as input candidate values σ,M,ω of a commital, message and decommital, respectively, and
returns either 1 or 0. The consistency requirement is that for all M we have CVF(σ,M,ω) = 1 with
probability 1 in the experiemnt (σ, ω)←$ CMT(M). The definitions of hiding and binding are formalized
by the games of Figure 8 in Appendix A.

Our Sign-then-Commit (StC) transform associates to base digital signature scheme DS = (SKG,SIG,
SVF) and base commitment scheme CMT = (CMT,CVF) the partial signature scheme PS = (PKG,
PSIG,PVF) whose constituent algorithms are defined in Figure 3. The following theorem says that (1)
if DS is unforgeable and CMT is hiding then PS is unforgeable (2) If CMT is hiding then PS is
anonymous, and (3) if CMT is binding then PS is unambiguous. The proof is in Appendix B.

Theorem 4.1 Let DS = (SKG,SIG,SVF) be a digital signature scheme and CMT = (CMT,CVF) a
commitment scheme. Let PS = (PKG,PSIG,PVF) be the partial signature scheme constructed from
DS and CMT as in Figure 3. Then we have:

1. Unforgeability: Let F be an adversary against the unforgeability of PS making q ≥ 1 queries
to oracle PSign. Then there exist adversaries A,B such that Advuf

PS(F) ≤ 2q · Advuf
DS(A) + q ·

Advhd
CMT (B). Furthermore, the running times of A,B are the same as the running time of F , and

A makes q queries to its Sign oracle.

2. Anonymity: Let A be an adversary against the unambiguity of PS . Then there exists an adversary
B such that Advunamb

PS (A) ≤ Advbnd
CMT (B). Furthermore, the running time of B is that of A.

3. Unambiguity: Let A be an adversary against the anonymity of PS that makes one query to oracle
CH. Then there exists adversary B such thatAdvan

PS(A) ≤ Advhd
CMT (B). Furthermore, the running

time of B is that of A.

The RH Construction. The Randomized Hash (RH) construction is the result of instantiating
the commitment scheme of the StC construction with the RO-model commitment scheme CMT =
(CMT,CVF) defined as follows. Algorithm CMT

H(M) picks ω←$ {0, 1}k and returns H(ω||M) as the
commitment, where H is the RO. Algorithm CVF

H(σ,M,ω) lets σ′ ← H(ω||M). If |ω| 6= k then it
returns 0. Else if σ = σ′ then it returns 1 else it returns 0. Figure 4 depicts the algorithms of partial

10

signature scheme PS = (PKG,PSIG,PVF) obtained from the StC construction of Section 4 applied to a
base signature scheme DS = (SKG,SIG,SVF) and the commitment scheme we just defined.

We can set the output length k of the RO to 160 bits. (80 bits is not enough because binding
reduces to finding collisions and is subject to the birthday attack.) The results of Section 4 imply that
the PS scheme of Figure 4 is secure in the RO model. In this way, we can transform any standard
signature scheme into an anonymous one with the following characteristics. The computational overhead
is just one hash, meaning signing and verifying are effectively just as efficient as before. The bandwidth
overhead is 320 bits: the stub is 160 bits and the de-anonymizer is 160 bits longer than the base
signature. This is pretty good, yet, in what follows, we will provide alternative constructions that
reduce the bandwidth overhead even further.

A word of warning. If the base signature scheme already uses a RO then the RO H of Figure 4 must
be different and independent. This can be ensured by domain seperation as discussed in [6]. This issue
arises also below and should be addressed in the same way.

The DH Construction. Base signature schemes such as Schnorr [21], GQ [16] and Fiat-Shamir [13]
are randomized, and their signatures have quite a bit of entropy. We will now show that in such cases,
the randomizer ω of Figure 4 can be dropped. This saves 160 bits in bandwidth. But the scheme is no
longer an instance of the StC transform, and a tailored analysis is needed. We now proceed to detail
the construction and provide the analysis.

The DH (Deterministic Hash) construction transforms a base standard signature schemeDS = (SKG,
SIG,SVF) into a partial one PS = (PKG,PSIG,PVF) using a RO H: {0, 1}∗ → {0, 1}k, as shown in
Figure 5. For the analysis, we make the following definition. Let DS = (SKG,SIG,SVF) be a digital
signature scheme. The min-entropy H∞(DS) of DS is defined by the equation

2−H∞(DS) = max
(vk,sk),s,M

Pr [s = s : s←$ SIG(M, sk)]

where the maximum is over all (vk, sk) that might be output by SKG, all strings s, and all messages
M . For example, the Schnorr (Sch) scheme [21] over a group of order p has min-entropy lg(p). A
deterministic scheme such as FDH [7] or BLS [10], however, has min-entropy 0. The DH-Sch scheme
has bandwidth overhead 160 bits as compared to 320 bits for RH-Sch.

The following theorem says that the partial signature scheme of Figure 5 is secure in the RO model
assuming a secure, high entropy base signature scheme. The proof is in Appendix C.

Theorem 4.2 Let DS = (SKG,SIG,SVF) be a digital signature scheme. Let PS = (PKG,PSIG,PVF)
be the partial signature scheme constructed as in Figure 5. Let k be the output length of the RO H in
the scheme. Then we have:

1. Unforgeability: Let F be an adversary against the unforgeability of PS, making qs queries to
oracle PSign, qH queries to random oracle H and qo queries to oracle Open. Then there exists an
adversary A such that Advuf

PS(F) ≤ Advuf
DS(A) + qs(qs + 4(qH + qo)) · 2

−1−H∞(DS). Furthermore,
the running time of A is that of F and A makes qo queries to its Sign oracle.

2. Anonymity: Let A be an adversary against the anonymity of PS making qH queries to random
oracle H and one query to oracle CH. Then Advan

PS(A) ≤ 2qH · 2
−H∞(DS).

3. Unambiguity: Let A be an adversary against the unambiguity of PS making qH queries to random
oracle H. Then we have Advunamb

PS (A) ≤ q2H · 2
−k−1.

We remark that the proof shows that for unambiguity it suffices for the hash function to be collision
resistant rather than a random oracle.

The Splitting Construction. The splitting construction of a partial signature is based on the
Schnorr protocol [21], recalled in Figure 6, and a hash function. We call it splitting because in our
construction, the transcript of the Schnorr protocol is separated into two parts. The message in the
first move is viewed as the stub while the message in the third move is viewed as a de-anonymizer.

11

Alg PKG()
(vk, sk)←$ SKG()
Return (vk, sk)

Alg PSIG
H(sk,M)

s←$ SIG(sk,M) ; σ←$ H(s||vk)
κ← s
Return (σ, κ)

Alg PVF
H(vk,M, (σ, κ))

s← κ
If (H(s||vk) = σ) ∧ (SVF(vk, s,M) = 1) then

Return 1
Return 0

Figure 5: Algorithms defining partial signature scheme PS = (PKG,PSIG,PVF) derived via the DH transform
applied to high-entropy base signature scheme DS = (SKG, SIG, SVF).

Algorithm KG

x←$ Zp

X ← gx

vk ← X
sk ← x
Return (vk, sk)

Prover
Input: sk = x
y←$ Zp

Y ← gy

κ← y + σx mod p

Y
-

σ
�

κ
-

Verifier
Input: vk = X

If gκ = Y Xσ then Dec← 1 else Dec← 0
Return Dec

Alg PKG()
x←$ Zp ; X ← gx

Return (X,x)

Alg PSIG(sk,M)
y←$ Zp ; Y ← gy

x← sk

σ ← H(X||Y ||M)
κ← y + σx mod p
Return (σ, κ)

Alg PVF(vk,M, (σ, κ))
If X /∈ G ∨ |σ| 6= k ∨ κ /∈ Zp then return 0
Y ← gκ ·X−σ

If σ = H(X||Y ||M) then return 1
Else return 0

Figure 6: At the top is the Schnorr identification protocol. Below are the algorithms defining partial
signature scheme PS = (PKG,PSIG,PVF) derived from this protocol via the splitting construction.
Here G is a group of prime order p and g is a generator of G.

The associated partial signature scheme PS = (PKG,PSIG,PVF) is defined in Figure 6. Here, and
throughout this section, we have fixed a group G of prime order p and a generator g of G. Note
that this SP-Sch partial signature scheme has zero overhead relative to the base scheme since the full
signature is exactly a Schnorr signature. Since the challenge in the Schnorr protocol need be only 80 bits
long (not 160) we get a partial signature scheme with an 80-bit stub and a 160 bit de-anonymizer for a
240-bit full signature. Our proof will exploit the general forking lemma of [5], recalled in Appendix D.

To discuss security we first recall the Discrete Logarithm Assumption. Let G∗ = G−{1} be the set
of generators of G, where 1 is the identity element of G. We let DLogg(h) denote the discrete logarithm
of h ∈ G to base a generator g ∈ G∗. Let

Advdl
G,g(A) = Pr

[

x←$ Zp ; x
′←$ A(g, gx) : gx

′

= gx
]

denote the advantage of an adversary A in attacking the discrete logarithm (dl) problem. The proof of
the following theorem is in Appendix D.

Theorem 4.3 Let G be a group of prime order p and let g be a generator of G. Let PS = (PKG,PSIG,
PVF) be the splitting-based partial signature scheme constructed in Figure 6. Let the range of the RO
H in the scheme be {0, 1}k ⊆ Zp. Then we have:

12

Alg CMT(M)
(vk0, sk0)←$ PKG()
(vk1, sk1)←$ PKG()
If (vk0 = vk1) then bad← true

n← |M |
For i = 1 to n

(σi, κi)←$ PSIG(skM [i], i)

σ ← (0, σ1|| . . . ||σn||vk0||vk1)
ω ← κ1|| . . . ||κn
If bad = true then σ ← (1,M) ; ω ←M
Return (σ, ω)

Alg CVF(σ,M,ω)
(b, σ′)← σ
If (b = 1) then

If (σ′ = M ∧ ω = M) then return 1
Else return 0

Else
κ1|| . . . ||κn ← ω
σ1|| . . . ||σn||vk0||vk1 ← σ′

If (vk0 = vk1) then return 0
For i = 1 to n di ← PVF(vkM [i], i, (σi, κi))

Return d1 ∧ . . . ∧ dn

Figure 7: CMT construction from PS.

1. Unforgeability: Let F be an adversary against the unforgeability of PS, making qs queries to
oracle PSign, qH queries to random oracle H and having running time tF . Then there exists an
algorithm B against the discrete logarithm problem such that

Advuf
PS(F) ≤

q2s + 4qsqH + 2qsqo
2p

+
qH
p

+
√

qH ·Advdl
G,g(B) .

Furthermore, the running time of B is 2tF .

2. Anonymity: Let A be an adversary against the anonymity of PS making qH queries to random
oracle H and one query to oracle LR. Then Advan

PS(A) ≤ 2qH/p.

3. Unambiguity: Let A be an adversary against the unambiguity of PS making qH queries to random
oracle H. Then Advunamb

PS (A) ≤ q2H/2k+1.

5 A Reverse Connection

From the primitive definitions, we can see that partial signatures (PS) and commitment schemes (CMT)
share something in common. Firstly, PS hide the identity of the signer while CMT hide the committed
message. Secondly, in the PS setting the signature can not be opened under a different public key while
in the CMT setting the committed message can not be opened in a different way. Do these imply that
when we have a scheme of one primitive we can transform it to that of the other primitive? We have
showed one direction in our CMT construction in Section 4. To complete the whole picture, we are
going to propose a generic transformation, to convert any partial signature scheme into a commitment
scheme. However the similarities between these two primitives don’t imply that it is trivial to find such
a transformation, especially an efficient one. Our transformation, which provides a direct and efficient
conversion from PS to CMT, is depicted in Figure 7.

Security of our construction. We prove that if the given partial signature scheme can achieve
unforgeability, anonymity and unambiguity, then the commitment scheme obtained using our construc-
tion has the property of hiding and binding. For the analysis, we use the following game to capture the
situation that two independently generated public keys are the same. And we use Lemma 5.1 to bound
the probability that such public key collision happens.

13

procedure Initialize // PKCollPS
(vk0, sk0)←$ PKG()

(vk1, sk1)←$ PKG()

Return (vk0 = vk1)

Lemma 5.1 Let PS = (PKG,PSIG,PVF) be a partial signature scheme. Then there is an adversary
F against the unforgeability of PS such that Pr [PKCollPS] ≤ Advuf

PS(F). The running time of F is
that of PKG and F makes no oracle queries.

Proof: On input vk F let vk0 ← vk and (vk1, sk1)←$ PKG. It let M be any message, for example
M = 0. It lets (σ, κ)←$ PSIG(sk,M) and returns (M, (σ, κ)). If vk1 = vk0, then it wins the game
UFPS , so we have Pr [PKCollPS] ≤ Advuf

PS(F).

Theorem 5.2 Let PS = (PKG,PSIG,PVF) be a partial signature scheme and CMT = (CMT,CVF)
the commitment scheme constructed from PS as in Figure 7. Let A be an adversary against the hiding
property of CMT , making one query to oracle LR, this always consisting of a pair of n-bit messages,
and having running time at most tA. Then there exists adversary B making n queries to oracle CH
and adversary F making no queries such that

Advhd
CMT (A) ≤ n ·Advan

PS(B) + 2 ·Advuf
PS(F) .

Furthermore, the running times of B and F are the same as that of A. B makes one query to its CH
oracle and F makes no queries.

The proof is in Appendix E.

Theorem 5.3 Let PS = (PKG,PSIG,PVF) be a partial signature scheme and CMT = (CMT,CVF) the
commitment scheme constructed from PS as in Figure 7. Let A be an adversary against the binding
property of CMT . Then there exists an adversary B such that

Advbnd
CMT (A) ≤ Advunamb

PS (B) .

Furthermore, the running time of B is that of A.

Due to space limit, the whole proof is deferred to Appendix F.

References

[1] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures via the Fiat-
Shamir transform: Minimizing assumptions for security and forward-security. In L. R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer, Apr. / May 2002. 5

[2] M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In D. Micciancio, editor, TCC 2010, volume
5978 of LNCS, pages 480–497. Springer, Feb. 2010. 4

[3] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment
secure under selective opening. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35.
Springer, Apr. 2009. 4

[4] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions, simplified
requirements, and a construction based on general assumptions. In E. Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 614–629. Springer, May 2003. 3, 6, 9

[5] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In
A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 390–399. ACM Press, Oct. / Nov.
2006. 6, 12, 20

14

[6] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. 11

[7] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA and Rabin. In
U. M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416. Springer, May 1996. 11

[8] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
May / June 2006. 8

[9] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and constructions without random
oracles. In S. Halevi and T. Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 60–79. Springer, Mar.
2006. 3, 6

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of Cryptology,
17(4):297–319, Sept. 2004. 5, 11

[11] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, EUROCRYPT’91, volume 547 of
LNCS, pages 257–265. Springer, Apr. 1991. 3, 6

[12] C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer. Magic functions. In 40th FOCS, pages 523–534.
IEEE Computer Society Press, Oct. 1999. 4

[13] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Aug. 1987. 5, 11

[14] M. Fischlin. Anonymous signatures made easy. In T. Okamoto and X. Wang, editors, PKC 2007, volume
4450 of LNCS, pages 31–42. Springer, Apr. 2007. 3, 6, 7

[15] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988. 4, 8

[16] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security microprocessor
minimizing both trasmission and memory. In C. G. Günther, editor, EUROCRYPT’88, volume 330 of LNCS,
pages 123–128. Springer, May 1988. 5, 11

[17] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function.
SIAM Journal on Computing, 28(4):1364–1396, 1999. 6

[18] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–158, 1991. 6

[19] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 552–565. Springer, Dec. 2001. 3, 6

[20] V. Saraswat and A. Yun. Anonymous signatures revisited. Cryptology ePrint Archive, Report 2009/307,
2009. http://eprint.iacr.org/. 8

[21] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991. 5,
6, 11

[22] G. Yang, D. S. Wong, X. Deng, and H. Wang. Anonymous signature schemes. In M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 347–363. Springer, Apr. 2006.
3, 6, 7

[23] R. Zhang and H. Imai. Strong anonymous signatures. In M. Yung, P. Liu, and D. Lin, editors, INSCRYPT08,
volume 5487 of LNCS, pages 60–71. Springer, Dec. 2008. 8

A Security Definitions of Signatures and Commitments

The advantage of an adversary F in attacking the unforgeability is

Advuf
DS(F) = Pr

[

EUF-CMAF
DS

]

,

where game EUF-CMA is shown in Figure 8.

15

http://eprint.iacr.org/

Initialize

b←$ {0, 1}

LR(M0,M1)

If (|M0| 6= |M1|) then return ⊥

(σ, ω)←$ CMT(Mb)

Return σ

Finalize(d)

Return (b = d)

Initialize

Finalize(σ, (M0, ω0), (M1, ω1))

d0 ← (CVF(σ,M0, ω0) = 1)

d1 ← (CVF(σ,M1, ω1) = 1)

Return (d0 ∧ d1 ∧M0 6= M1)

Initialize

(vk, sk)←$ SKG() ; i← 0 ; S ← ∅

Return vk

Sign(M)

i← i+ 1 ; Mi ←M

S ← S ∪ {Mi} ; si←$ SIG(sk,M)

Return σi

Finalize(M, s)

Return (M /∈ S ∧ SVF(vk, s,M) = 1)

Figure 8: Game HD in the left used to define hiding and game BND in the center used to define binding of
commitment scheme CMT = (CMT,CVF). Game EUF-CMA in the right used to define existential unforgeability
of signature scheme DS = (SKG, SIG, SVF).

Initialize // G0, G1,G2, G3, G4

(vk, sk)←$ SKG()

S ← ∅ ; E ← ∅ ; i← 0 ; j ← 0

g←$ {1, . . . , q}

Return vk

Open(j) // G0, G1,G2, G3 , G4

If (j ≤ 0 ∨ j > i) Return ⊥

E ← E ∪ {Mj}

If (j = g) then bad← true; κj ←⊥

Return κj

PSign(M) // G0,G1,G2,G3

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi}

si←$ SIG(sk,M)

(σi, ωi)←$ CMT(si||vk) ; κi ← (si, ωi)

Return σi

PSign(M) // G4

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi}

If (i = g) then si←$ {0, 1}l

else si←$ SIG(sk,Mi)

(σi, ωi)←$ CMT(si||vk)

κi ← (si, ωi)

Return σi

Finalize(M, (σ, κ)) // G0

Return (M /∈ S ∧M /∈ E ∧ PVF(vk,M, (σ, κ)) = 1)

Finalize(M, (σ, κ)) // G1

Return (M ∈ S ∧M /∈ E ∧ PVF(vk,M, (σ, κ)) = 1)

Finalize(M, (σ, κ)) // G2, G3, G4

Return (M = Mg ∧M /∈ E ∧ PVF(vk,M, (σ, κ)) = 1)

Figure 9: Game sequence used in proof of Theorem 4.1. Game G3, G4 include the boxed code while G0, G1, G2

do not.

The advantage of an adversary A in attacking the hiding property is

Advhd
CMT (A) = 2 · Pr

[

HDA
CMT

]

− 1 .

where game HD is in Figure 8. In the game, A is allowed only one query to its LR oracle. The
advantage of an adversary A in attacking the binding property is

Advbnd
CMT (A) = Pr

[

BNDA
CMT

]

where game BND is in Figure 8.

B Proof of Theorem 4.1

Proof of Part 1.: We use games G0, G1, G2, G3, G4 of Figure 9, where l denotes the length of a
signature in DS. We assume wlog that F always makes exactly q queries to PSign rather than at most

16

q. Note that G0 and G1 are different only in procedure Finalize. For G0, any execution with F in
which the outcome is true satisfies M /∈ S. For G1, any execution with F in which the outcome is true
satisfies M ∈ S. So we have

Advuf
PS(F) ≤ Pr

[

GF
0

]

+ Pr
[

GF
1

]

. (1)

Games G1 and G2 are identical except for the first condition in the procedure Finalize. Any execution
of G2 with F in which the outcome is true must have not only M ∈ S but also M = Mg. On the
other hand G1 does not use g anywhere and thus the events GF

1 and M = Mg are independent and the
probability of the latter is 1/q. Hence, we have

Pr
[

GF
1

]

≤ q · Pr
[

GF
2

]

. (2)

The difference between G3 and G2 is that the former includes the boxed code in Open. But any
execution of G3 with F in which the outcome is true must have M = Mg and M 6∈ E, so the boxed
code would not have been executed. Recall that BDi denotes the event that bad is set to true in game
Gi. Then based on Lemma 3.1, we have

Pr
[

GF
2

]

= Pr
[

GF
2 ∧ BD2

]

= Pr
[

GF
3 ∧ BD3

]

. (3)

Combining (1), (2) and (3), we get

Advuf
PS,F (k) ≤ Pr

[

GF
0

]

+ q · Pr
[

GF
3 ∧ BD3

]

. (4)

We will build A0, A1, B so that

Pr
[

GF
0

]

≤ Advuf
DS(A0) (5)

Pr
[

GF
3 ∧ BD3

]

− Pr
[

GF
4 ∧ BD4

]

≤ Advhd
CMT (B) (6)

Pr
[

GF
4 ∧ BD4

]

≤ Advuf
DS(A1) (7)

A0, A1 will make q oracle queries and A0, A1, B will have the same running time as F . Now let A on
input vk pick c←$ {0, 1} and run Ac(vk). Then

Advuf
DS(A) =

1

2
Advuf

DS(A0) +
1

2
Advuf

DS(A1) . (8)

Part 1. of Theorem 4.1 follows from (4), (5) (6), (7) and (8). We proceed to describe A0, A1, B.

Adversary A0 gets input vk and then does the following initializations:

S ← ∅ ; E ← ∅ ; i← 0 ; j ← 0 ; g←$ {1, . . . , q} . (9)

It then runs F (vk). It answers F ’s queries to PSign using the following procedure:

procedure PSign(M)

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi} ; si←$ Sign(M)

(σi, ωi)←$ CMT(si||vk) ; κi ← (si, ωi)

Return σi

A0 answers F ’s queris to Open exactly as G0 does. Finally, F outputs (M, (σ, κ)). Adversary A0 parses
κ to (s, ω) and then outputs (M,s).

Adversary B against the hiding property of CMT begins by executing the code of the Initialize
procedure of G3, thereby defining for itself the parameters vk, sk, S,E, i, j, g. It then starts running F
on vk. It answers F ’s queries to PSign using the following procedure:

procedure PSign(M)

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi} ; si←$ SIG(sk,M)

If (i = g) then s0←$ {0, 1}l ; σi ← LR(s0||vk, si||vk)

17

Else (σi, ωi)←$ CMT(si||vk) ; κi ← (si, ωi)

Return σi

It answers F ’s queries to Open exactly as G3 does. Finally, F outputs (M, (σ, κ)). Adversary B outputs
1 if M = Mg ∧M 6∈ E ∧PVF(vk,M, (σ, κ)) = 1, and 0 otherwise. Letting d denote the output of B, we
have

Pr [d = 1 | b = 1] = Pr
[

GF
3 ∧ BD3

]

and Pr [d = 1 | b = 0] Pr
[

GF
4 ∧ BD4

]

.

Subtracting, we get

Pr
[

GF
3 ∧ BD3

]

− Pr
[

GF
4 ∧ BD4

]

= Advhd
CMT (B) .

Adversary A1 gets input vk and then does the initializations (9). It then runs F (vk). It answers F ’s
queries to PSign using the following procedure:

procedure PSign(M)

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi}

If (i = g) then si←$ {0, 1}l else si←$ Sign(M)

(σi, ωi)←$ CMT(si||vk) ; κi ← (si, ωi)

Return σi

It answers F ’s queris to Open exactly as G4 does. Finally, F outputs (M, (σ, κ)). A1 parses κ to (s, ω)
and outputs (M,s).

Proof of Part 2.: Adversary B begins with (vki, ski)←$ PKG() for i = 0, 1. It then runs A((vk0, sk0),
(vk1, sk1)) and answers A’s queries to CH using the following procedure:

procedure CH(M)

s0←$ SIG(sk0,M) ; s1←$ SIG(sk1,M) ; σ ← LR(s0||vk0, s1||vk1)

Return σ

After A outputs its guess d, adversary B outputs the same d. We have

Pr
[

HDB
CMT | b = 1

]

= Pr
[

ANA
PS | b = 1

]

and Pr
[

HDB
CMT | b = 0

]

= Pr
[

ANA
PS | b = 0

]

from which Part 2. of Theorem 4.1 follows.

Proof of Part 3.: Adversary B runs A to get (vk0, vk1,M0,M1, σ, κ0, κ1). It lets (s0, ω0)← κ0 and
(s1, ω1)← κ1. Adversary B then outputs σ, (s0||vk0, ω0), (s1||vk1, ω1).

C Proof of Theorem 4.2

Proof of Part 1.: We refer to the games of Figure 10. Game G0 is equivalent to UFPS , so

Advuf
PS(F) = Pr

[

GF
0

]

.

Game G1 omits the boxed code in PSign, meaning H[si||vk] is not assigned σi at this point. Instead
the assignment is delayed, being done by H(x) or Open as necessary . So

Pr
[

GF
0

]

= Pr
[

GF
1

]

.

But G1, G2 are equivalent and G2 and G3 are identical until bad, so by Lemma 3.1

Pr
[

GF
1

]

= Pr
[

GF
2

]

= Pr
[

GF
3

]

+ Pr
[

GF
2

]

− Pr
[

GF
3

]

≤ Pr
[

GF
3

]

+ Pr [BD3] .

18

Initialize // G0 −G6

(vk, sk)←$ SKG()

E ← ∅ ; U ← ∅ ; i← 0

Return vk

PSign(M) // G0 ,G1

i← i+ 1 ; Mi ←M

si←$ SIG(sk,Mi) ; σi←$ {0, 1}k

S ← {j : 1 ≤ j < i ∧ sj = si}

If S 6= ∅ then j←$ S ; σi ← σj

Else if H[si||vk] then σi ← H[si||vk]

H[si||vk]← σi

Return σi

PSign(M) // G2 ,G3

i← i+ 1 ; Mi ←M

si←$ SIG(sk,Mi) ; σi←$ {0, 1}k

S ← {j : 1 ≤ j < i ∧ sj = si}

If S 6= ∅ then bad← true; j←$ S ; σi ← σj

Else if H[si||vk] then bad← true; σi ← H[si||vk]

Return σi

PSign(M) // G4, G5

i← i+ 1 ; Mi ←M ; si←$ SIG(sk,Mi) ; σi←$ {0, 1}k

Return σi

PSign(M) // G6

i← i+ 1 ; Mi ←M ; σi←$ {0, 1}k

Return σi

Finalize(M, (σ, κ)) // G0 −G6

Return (M /∈ E ∧H[s||vk] = σ ∧ SVF(vk, s,M) = 1)

Open(j) // G0, G1 , G2 , G3 , G4 , G5

If (j ≤ 0 ∨ j > i) Return ⊥

E ← E ∪ {Mj} ; U ← U ∪ {j}

H[sj ||vk]← σj

Return sj

Open(j) // G6

If (j ≤ 0 ∨ j > i) Return ⊥

sj ←$ SIG(sk,Mj) ; E ← E ∪ {Mj} ; U ← U ∪ {j}

H[sj ||vk]← σj

Return sj

H(x) // G1, G2, G3

If (H[x]) Return H[x]

s||vk ← x ; H[x]←$ {0, 1}k

T ← {j : 1 ≤ j ≤ i ∧ s = sj ∧ j /∈ U}

If (T 6= ∅) then j←$ T ; H[x]← σj

Return H[x]

H(x) // G4 , G5

If (H[x]) Return H[x]

s||vk ← x ; H[x]←$ {0, 1}k

T ← {j : 1 ≤ j ≤ i ∧ s = sj ∧ j /∈ U}

If (T 6= ∅) then bad← true; j←$ T ; H[x]← σj

Return H[x]

H(x) // G0, G6

If (H[x]) Return H[x]

H[x]←$ {0, 1}k

Return H[x]

Figure 10: Game sequence used in proof of Theorem 4.2.

G3 and G4 are equivalent and G4 and G5 are identical until bad, so by Lemma 3.1

Pr
[

GF
3

]

= Pr
[

GF
4

]

= Pr
[

GF
5

]

+ Pr
[

GF
4

]

− Pr
[

GF
5

]

≤ Pr
[

GF
5

]

+ Pr [BD5] .

In G5, the signature si for i /∈ U is unused beyond for setting bad, so in G6 we don’t compute it. We
have

Pr
[

GF
5

]

= Pr
[

GF
6

]

.

Putting the above together we have

Advuf
PS(F) ≤ Pr

[

GF
6

]

+ Pr [BD3] + Pr [BD5] . (10)

Adversary A sets input vk and perform the initialization E ← ∅ ; U ← ∅ ; i ← 0. It then runs F (vk).
It responds to H and PSign queries as does G6, and to Open queries via the Open procedure of G6

except that the computation SIG(sk,Mi) is substituted by a call Sign(Mi) to A’s sign oracle. A outputs
the same thing as F . We have

Pr
[

GF
6

]

≤ Advuf
DS(A) (11)

Now

Pr [BD3] ≤

qs
∑

i=1

(
i− 1

2H∞(DS)
+

qH + qo

2H∞(DS)
) =

qs(qs − 1) + 2qs(qH + qo)

21+H∞(DS)
. (12)

19

Initialize // G0, G1,G2

b←$ {0, 1}

(vk0, sk0)←$ SKG()

(vk1, sk1)←$ SKG()

Return ((vk0, sk0), (vk1, sk1))

CH(M) // G0

s←$ SIG(skb,M) ; σ ← H(s||vkb)

Return σ

Finalize(d) // G0, G1, G2

Return (b = d)

CH(M) // G1 ,G2

s←$ SIG(skb,M) ; σ←$ {0, 1}k

If (H [s||vkb]) then bad← true ; σ ← H [s||vkb]

H [s||vkb]← σ

Return σ

H(x) // G0, G1,G2

If (H [x]) Return H [x]

H [x]←$ {0, 1}k

Return H [x]

Figure 11: Game sequence used in proof of Theorem 4.2.

Finally the maximum size of T in procedure H of G5 is qs and hence

Pr [BD5] ≤
qsqH

2H∞(DS)
. (13)

Putting together (10), (11), (12) and (13) completes the proof.

Proof of Part 2.: We use games G0, G1, G2 of Figure 11. So we have

Advan
PS(A) = 2 · Pr

[

GA
0

]

− 1 . (14)

Games G0 and G1 are equivalent, and G1 and G2 are identical until bad so by Lemma 3.1 we have

Pr
[

GA
0

]

= Pr
[

GA
1

]

= Pr
[

GA
1

]

− Pr
[

GA
2

]

+ Pr
[

GA
2

]

≤ Pr [BD2] + Pr
[

GA
2

]

. (15)

Combining (14) and (15), we get

Advan
PS(A) ≤ 2 · (Pr

[

GA
2

]

+ Pr [BD2])− 1 .

In game G2, the challenge signature H[s||vkb] is set to be a random string with length k, so we have
Pr

[

GA
2

]

= 1/2 and thus

Advan
PS(A) ≤ 2 · Pr [BD2] . (16)

In game G2, bad is set true when the signature generated in LR is equal to some x which A queried
to H, so we have

Pr [BD2] ≤ qH · 2
−H∞(DS) . (17)

Part 2. of Theorem 4.2 follows from (16) and (17).

Proof of Part 3.: Let (vk0, vk1,M0,M1, σ, κ0, κ1) denote the output of A. Let s0 ← κ0 and s1 ← κ1.
If A wins the game UNAMBPS , then we have H(s0||vk0) = H(s1||vk1) = σ but vk0 6= vk1, meaning
that we have a collision for H. Since A makes qH queries to H we have Part 3. of Theorem 4.2.

D Proof of Theorem 4.3

Before giving the security proof, we first recall the general forking lemma [5], which will be used later.

Lemma D.1 [General Forking Lemma] Fix an integer q ≥ 1 and a set H of size h ≥ 2. Let A
be a randomized algorithm that on input X,h1, . . . , hq returns a pair, the first element of which is an
integer in the range 0, . . . , q and the second element of which we refer to as a side output. Let IG be a
randomized algorithm that we call the input generator. The accepting probability of A, denoted acc, is

20

Initialize // G0 −G6

x←$ Zp ; X ← gx ; E ← ∅ ; U ← ∅ ; i← 0

Return X

PSign(M) // G0 ,G1

i← i+ 1 ; Mi ←M

κi←$ Zp ; σi←$ {0, 1}k ; Yi ← gκiX−σi

S ← {j : 1 ≤ j < i ∧ Yj ||Mj = Yi||Mi}

If S 6= ∅ then j←$ S ; σi ← σj ; κi ← κj

Else if H[X||Yi||Mi] then

σi ← H[X||Yi||Mi] ; κi ← DLogg(Yi) + xσi mod p

H[X||Yi||Mi]← σi

Return σi

PSign(M) // G2 ,G3

i← i+ 1 ; Mi ←M

κi←$ Zp ; σi←$ {0, 1}k ; Yi ← gκiX−σi

S ← {j : 1 ≤ j < i ∧ Yj ||Mj = Yi||Mi}

If S 6= ∅ then bad← true; j←$ S ; σi ← σj ; κi ← κj

Else if H[X||Yi||Mi] then bad← true

σi ← H[X||Yi||Mi] ; κi ← DLogg(Yi) + xσi mod p

H[X||Yi||Mi]← σi

Return σi

PSign(M) // G4, G5

i← i+ 1 ; Mi ←M

κi←$ Zp ; σi←$ {0, 1}k ; Yi ← gκiX−σi

Return σi

PSign(M) // G6

i← i+ 1 ; Mi ←M ; σi←$ {0, 1}k

Return σi

PSign(M) // G7

i← i+ 1 ; Mi ←M

Return σi

Finalize(M, (σ, κ)) // G0 −G6

Y ← gκX−σ ; σ′ ← H(X||Y ||M)

Return (M /∈ E ∧H[X||Y ||M] = σ)

Finalize(M, (σ, κ)) // G7

Y ← gκX−σ ; σ′ ← H(X||Y ||M) ; I ← Ind(X||Y ||M)

Return (M /∈ E ∧ σ = σ′)

Initialize // G7

x←$ Zp ; X ← gx ; E ← ∅ ; c← 0 ; i← 0

h1, . . . , hqH , σ1, . . . , σqs ←$ {0, 1}k

κ1, . . . , κqs ←$ Zp

Return X

Open(j) // G0, G1 , G2 , G3 , G4 , G5

If (j ≤ 0 ∨ j > i) then return ⊥

E ← E ∪ {Mj} ; U ← U ∪ {j}

H[X||Yj ||Mj]← σj

Return κj

Open(j) // G6

If (j ≤ 0 ∨ j > i) then return ⊥

κj ←$ Zp ; Yj ← gκjX−σj

E ← E ∪ {Mj}

H[X||Yj||Mj]← σj

Return κj

Open(j) // G7

If (j ≤ 0 ∨ j > i) then return ⊥

Yj ← gκjX−σj ; E ← E ∪ {Mj}

H[X||Yj||Mj]← σj

Return κj

H(x) // G1, G2, G3

If (H[x]) then return H[x]

X||Y ||M ← x ; H[x]←$ {0, 1}k

T ← {j : 1 ≤ j ≤ i ∧ Yj ||Mj = Y ||M ∧ j /∈ U}

If (T 6= ∅) then j←$ T ; H[x]← σj

Return H[x]

H(x) // G4 , G5

If (H[x]) then return H[x]

X||Y ||M ← x ; H[x]←$ {0, 1}k

T ← {j : 1 ≤ j ≤ i ∧ Yj ||Mj = Y ||M ∧ j /∈ U}

If (T 6= ∅) then bad← true; j←$ T ; H[x]← σj

Return H[x]

H(x) // G0, G6

If (H[x]) then return H[x]

H[x]←$ {0, 1}k

Return H[x]

H(x) // G7

If (H[x]) then return H[x]

c← c+ 1 ; H[x]← hc ; Ind(x)← c

Return H[x]

Figure 12: Game sequence used in proof of Theorem 4.2.

defined as the probability that J ≥ 1 in the experiment

X ←$ IG ; h1, . . . , hq ←$ H ; (J, s)←$ A(X,h1, . . . , hq) .

The forking algorithm FA associated to A is the randomized algorithm that on input x proceeds as
follows:

Algorithm FA(x)

21

Pick coins ρ for A at random
h1, . . . , hq ←$ H ; (I, s)← A(x, h1, . . . , hq; ρ)

If I = 0 then return (0, ε, ε)
h′I , . . . , h

′
q ←$ H ; (I ′, s′)← A(x, h1, . . . , hI−1, h

′
I , . . . , h

′
q; ρ)

If (I = I ′ and hI 6= h′I) then return (1, s, s′)
Else return (0, ε, ε).

Let

frk = Pr
[

b = 1 : X←$ IG ; (b, s, s′)←$ FA(X)
]

.

Then

frk ≥ acc ·

(

acc

q
−

1

h

)

and acc ≤
q

h
+

√

q · frk . (18)

Proof of Part 1.: Let q = qs + qH and consider games G0 −G7 of Figure 12. We have

Advuf
PS(F) = Pr

[

GF
0

]

= Pr
[

GF
1

]

= Pr
[

GF
2

]

= Pr
[

GF
3

]

+ Pr
[

GF
2

]

− Pr
[

GF
3

]

≤ Pr
[

GF
3

]

+ Pr [BD3]

Pr
[

GF
3

]

= Pr
[

GF
4

]

= Pr
[

GF
5

]

+ Pr
[

GF
4

]

− Pr
[

GF
5

]

≤ Pr
[

GF
5

]

+ Pr [BD5] ≤ Pr
[

GF
6

]

+Pr [BD6] .

Pr [BD3] ≤
i−1
∑

i=1

(

i− 1

p
+

qH + qo
p

)

≤
q2s + 2qs(qH + qo)

2p
.

Pr [BD5] ≤
qsqH
p

.

So

Advuf
PS(F) ≤ Pr

[

GF
6

]

+
q2s + 4qsqH + 2qsqo

2p
.

Let A be the algorithm that on input X ∈ G, h1, . . . , hqH ∈ {0, 1}
k and coins ρ = ρF ‖σ1‖ . . . ‖σqs

‖κ1‖ . . . ‖κqs where σ1, . . . , σqs ∈ {0, 1}
k and κ1, . . . , κqs ∈ Zp, runs F on input X and coins ρF . It

lets σ1, . . . , σqs and κ1, . . . , κqs play the role of the quantities of the same name in Initialize of G7. It
answers F ’s queries to PSign, H, Open in the same way as G7. When F outputs (M, (σ, κ)), algorithm
A lets

Y ← gκ ·X−σ ; σ′ ← H(X‖Y ‖M) ; I ← Ind(X‖Y ‖M) .

where the call to H is answered as in G7. If M ∈ E or σ 6= σ′ then A returns (0, q), else it returns
(I, (M,σ, κ, Y)). Now consider the experiment where ρ = ρF ‖σ1‖ . . . ‖σqs‖κ1‖ . . . ‖κqs is chosen at
random and then

x←$ Zp ; h1, . . . , hqH ←$ {0, 1}k ; (I, s)←$ A(gx, h1, . . . , hqH ; ρ).

Let acc be the probability that I 6= 0 in this experiment. Notice that if M /∈ E then H[X‖Y ‖M]
was defined by an H-query X‖Y ‖M rather than by Open, so Ind(X‖Y ‖M) ∈ {1, . . . , qH}. So acc =
Pr

[

GF
7

]

. Let IG be the algorithm that let x←$ Zp and returns gx. Let FA be the algorithm of
Lemma D.1 and let frk be defined as there. Now consider the experiment x←$ Zp ; (b, s, s

′)← FA(g
x)

and assume b = 1. Let (I, s) and (I ′, s′) be the output of A in the execution of FA. Since b = 1 we
have I 6= 0 and I ′ 6= 0, so we can parse (M,Y, σ, κ) ← s and (M ′, Y ′, σ′, κ′) ← s′. The definition of A
implies that Ind(X‖Y ‖M) = I and Ind(X‖Y ′‖M ′) = I ′. Now in the first execution of A it must be that

22

Initialize // G0, G1,G2

b←$ {0, 1}

x0←$ Zp ; x1←$ Zp ; X0 ← gx0 ; X1 ← gx1

Return ((x0, X0), (x1, X1))

CH(M) // G1 ,G2

σ←$ {0, 1}k

y←$ Zp ; Y ← gy

If (H [Xb‖Y ‖M]) then bad← true ;

σ ← H [Xb‖Y ‖M]

H [Xb‖Y ‖M]← σ

Return σ

CH(M) // G0

y←$ Zp ; Y ← gy ; σ ← H(Xb‖Y ‖M)

κ← y + σxb mod p

Return σ

H(x) // G0, G1,G2

If (H [x]) Return H [x]

H [x]←$ {0, 1}k

Return H [x]

Finalize(d) // G0, G1, G2

Return (b = d)

Figure 13: Game sequence used in proof of Theorem 4.3.

H[X‖Y ‖M] was defined by an H-query of F rather than by Open, and the response to the query was
σ = hI which remains the value of H[X‖Y ‖M] thenceforth. Similarly in the second execution of A it
must be that H[X‖Y ′‖M ′] was defined by an H-query of F rather than by Open, and the response to
the query was σ′ = h′I , which remains the value of H[X‖Y ′‖M ′] thenceforth. As a consequence Y ‖M
and Y ′‖M ′ were determined by x, h1, . . . , hI(hI−1) (recall I = I ′) and ρ and hence Y ‖M = Y ′‖M ′.
Now since I 6= 0 and I ′ 6= 0 we have

Y = gκ ·X−σ = gκ
′

·X−σ
′

= Y ′

and σ 6= σ′, so x = g(κ−κ
′)a where a = (σ−σ′)−1 mod p. So FA can easily be extended to an adversary

B that on input X computes DLog(X) with probability frk. Now by Lemma D.1 and the above

Advuf
PS(F) ≤

q2s + 4qsqH + 2qsqo
2p

+ acc ≤
q2s + 4qsqH + 2qsqo

2p
+

qH
p

+
√

qH · frk

Part 1. of the theorem follows.

Proof of Part 2.: We use games G0, G1, G2 of Figure 13. We have

Advan
PS(A) = 2 · Pr

[

GA
0

]

− 1 . (19)

Since games G0 and G1 are equivalent, we have

Pr
[

GA
0

]

= Pr
[

GA
1

]

. (20)

Games G1 and G2 are identical until bad. Then based on Lemma 3.1, we have

Pr
[

GA
1

]

= Pr
[

GA
1

]

− Pr
[

GA
2

]

+ Pr
[

GA
2

]

≤ Pr [BD2] + Pr
[

GA
2

]

. (21)

Combining (19), (20) and (21), we get

Advan
PS(A) ≤ 2 · (Pr

[

GA
2

]

+ Pr [BD2])− 1 . (22)

Note that in G2, the challenge anonymous signature H[Xb‖Y ‖M] is set to be a random string with
length k, so we have Pr

[

GA
2

]

= 1
2 and thus

Advan
PS(A) ≤ 2 · Pr [BD2]. (23)

23

Initialize // H0, H1

b←$ {0, 1}

(vk0, sk0)←$ PKG()

(vk1, sk1)←$ PKG()

LR(M0,M1) // H0 , H1

For i = 1 to n

(σi, κi)← PSIG(skMb[i], i)

σ ← (0, σ1‖ . . . ‖σn‖vk0‖vk1)

If vk0 = vk1 then bad← true; σ ← (1,Mb)

Return σ

Finalize(d) // H0,H1

Return d = b

Initialize // Gj , Lj(0 ≤ j ≤ n)

(vk0, sk0)←$ PKG()

(vk1, sk1)←$ PKG()

LR(M0,M1) // Gj ,Lj(0 ≤ j ≤ n)

If (M0[j] = 1 ∧M1[j] = 0) then

(vk, sk)← (vk0, sk0)

(vk0, sk0)← (vk1, sk1)

(vk1, sk1)← (vk, sk)

For i = 1, . . . , j do (σi, κi)←$ PSIG(skM1[i], i)

For i = j + 1, . . . , n do (σi, κi)←$ PSIG(skM0[i], i)

σ ← (0, σ1‖ . . . ‖σn‖vk0‖vk1)

Return σ

Finalize(d) // Gj , Lj(0 ≤ j ≤ n)

Return d = 1

Figure 14: Game sequence used in proof of Theorem 5.2.

In addition, bad is set true when H[Xb‖Y ‖M] is already defined. Since Y is chosen randomly from
group G of size p, we have

Pr [BD2] ≤
qH
p

. (24)

Part 2. of Theorem 4.3 follows from (23) and (24).

Proof of Part 3.: Let (X0,X1,M0,M1, σ, κ0, κ1) denote the output of A. If adversary A wins the
game UNAMBPS , then it must be that X0,X1 ∈ G and |σ| = k and κ0, κ1 ∈ Zp and H(vk0‖Y0‖M0) =
H(vk1‖Y1‖M1) = σ where Y0 = gκ0X−σ0 and Y1 = gκ1X−σ1 . But the probability that A can find a
collision in RO H in qH queries is at most q2H/2k+1.

E Proof of Theorem 5.2

Proof: Consider games H0,H1 in Figure 14. We have

Advhd
CMT (A) = 2Pr

[

HA
0

]

− 1 .

H1 and H0 are identical until bad. By Lemma 3.1, we have

Advhd
CMT (A) = 2Pr

[

HA
0

]

− 1

= 2Pr
[

HA
1

]

+ 2Pr
[

HA
0

]

− 2Pr
[

HA
1

]

− 1

= (2Pr
[

HA
1

]

− 1) + 2Pr [BD1]

Lemma 5.1 gives us F such that

Pr [BD1] ≤ Advuf
PS(F) .

24

It remains to design B so that

2(Pr
[

HA
1

]

− 1) ≤ n ·Advuf
PS(B) . (25)

Towards this end consider games Gj , Lj(0 ≤ j ≤ n) of Figure 14. It is easy to see

2Pr
[

HA
1

]

− 1 = Pr
[

LA
n

]

− Pr
[

LA
0

]

. (26)

The boxed code included in Gj is the key-swap that swaps the roles of (vk0, sk0), (vk1, sk1) under certain
conditions. However since (vk0, sk0), (vk1, sk1) are independently chosen and only seen by A through
the response to the LR query, swapping them has no effect visible to A, meaning

Pr
[

GA
j

]

= Pr
[

LA
j

]

(1 ≤ j ≤ n) . (27)

We will design B so that

Advan
PS(B) =

1

n
(Pr

[

GA
n

]

− Pr
[

GA
0

]

) . (28)

Putiing together (26), (27) and (28) yields (25)and completes the proof.

Adversary B gets input (vk0, sk0), (vk1, sk1). It picks g←$ {1, . . . , n} and then starts running A, re-
sponding to A’s LR query via the following procedure

LR(M0,M1)

If (M0[g] = 1 ∧M1[g] = 0) then

(vk, sk)← (vk0, sk0) ; (vk0, sk0)← (vk1, sk1)

(vk1, sk1)← (vk, sk)

For i = 1, . . . , g − 1 do (σi, κi)←$ PSIG(skM1[i], i)

If (M0[g] = M1[g]) then (σg, κg)←$ PSIG(skM1[g], g)

Else (σg, κg)←$ CH(g)

For i = g + 1, . . . , n do (σi, κi)←$ PSIG(skM0[i], i)

σ ← (0, σ1‖ . . . ‖σn‖vk0‖vk1)

Return σ

Letting d denote the output of A adversary B returns d. Then letting b denote the challenge bit of
ANPS . We claim that

Pr [d = 1 | g = j ∧ b = 1] = Pr
[

GA
j

]

(1 ≤ j ≤ n) . (29)

To justify this consider two cases. First, if M0[j] = M1[j] then the code in B’s simulated LR oracle is
the same as in Gj . Second, if M0[j] 6= M1[j], let c = M0[g]. Then (σj, κj) is produced by CH(j) under
vk1⊕c. (we use here that the key swap occurs if c = 1.) But vk1⊕c = vkM1[j], since c = M0[j] = 1⊕M1[j],
so again this corresponds to Gj . On the other hand,

Pr [d = 1 | g = j ∧ b = 0] = Pr
[

GA
j−1

]

(1 ≤ j ≤ n) . (30)

To justify this consider two cases. First, if M0[j] = M1[j] then the code in B’s simulated LR oracle is
equivalent to the one in Gj−1 in this same case. Second, if M0[j] 6= M1[j], let c = M0[j]. Then (σj, κj)
is produced by CH(j) under vkc. (we use here that the key swap occurs if c = 1.) But vkc = vkM0[j],
since c = M0[j], so this corresponds to Gj−1. Now from (29) and (30) we have

Advan
PS(B) =

n
∑

j=1

Pr
[

GA
j

]

n
−

Pr
[

GA
j−1

]

n

=
1

n
(Pr

[

GA
n

]

− Pr
[

GA
0

]

)

25

which yields (28) as desired.

F Proof of Theorem 5.3

Proof: B runsA to obtain its output (σ, (M0, ω0), (M1, ω1)). Assume CVF(σ, (M0, ω0)) = CVF(σ, (M1, ω1))
= 1. B sets (b, σ′) ← σ. If b = 1 then by definition of CVF it must be that σ′ = M0 = ω0 = M1 = ω1,
meaning M0 = M1, so A does not win and B returns ⊥. If b = 0 then B parses σ′ as σ1‖ . . . ‖σn‖vk0‖vk1

where |σi| = l, the latter being the length of a signature in PS. Since keys also have a fixed length (as
assumption we made in our signature syntax), the parsing process uniquely defines n from σ′. But then
CVF(σ, (M0, ω0)) = CVF(σ, (M1, ω1)) = 1 implies that n = |M0| = |M1| and vk0 6= vk1. Now if A wins
then it must be that M0 6= M1, so let j be such that M0[j] 6= M1[j]. B further lets κc,1‖ . . . ‖κc,n ← ωc

for c = 0, 1. B returns (vk0, vk1, j, j, σj , κ0,j , κ1,j).

26

	Introduction
	Related work
	Definitions
	Constructions
	A Reverse Connection
	Security Definitions of Signatures and Commitments
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 5.2
	Proof of Theorem 5.3

