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Abstract. In this paper we investigate the security of the encryption mode of the HAS-160 hash
function. HAS-160 is a Korean hash standard which is widely used in Korea’s industry. The structure
of HAS-160 is similar to SHA-1 but includes some improvements. The encryption mode of HAS-160 is
defined similarly as the encryption mode of SHA-1 that is called SHACAL-1. In 2006, Dunkelman et.
al. [10] successfully broke the full 80-round SHACAL-1. In this paper, we present the first cryptographic
attack that breaks the encryption mode of the full 80-round HAS-160. SHACAL-1 and the encryption
mode of HAS-160 are both blockciphers with key size 512 bits and plain-/ciphertext size of 160 bits.
We will apply a key recovery attack that needs about 2155 chosen plaintexts and 2375.98 80-round
HAS-160 encryptions. The attack does not aim for a collision, preimage or 2nd-preimage attack, but
it shows that HAS-160 used as a block cipher can be differentiated from an ideal cipher faster than
exhaustive search.
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1 Introduction

HAS-160 is a hash function that is widely used by the Korean industry. It is a hash function
standardized by the Korean government (TTAS.KO-12.0011/R1) [1]. Based on the Merkle-

Damg̊ard structure [17, 9], it uses a compression function with input size 512 bits and a
chaining and output value of 160 bits. HAS-160 consists of a round function which will be
applied 80 times for each input message block. The overall design of the compression function
is similar to the design of SHA-1 [18] and the MD family [19, 20], except some modifications
in the rotation constants and in the key schedule.

Up to now there are only a few cryptographic results on HAS-160. Yun et al. [25] found
a collision on 45-round HAS-160 with complexity 212 by using the techniques introduced by
Wang et al. [24]. Cho et al. [7] extended the previous result to break 53-round HAS-160 in
time 255. At ICISC 2007 Mendel and Rijmen [15] improved the attack complexity of the
attack in [7] to 235 hash computations and they were able to present a colliding message
pair for the 53-round version of HAS-160. They also show how the attack can be extended
to 59-round HAS-160 with a complexity of 255.

HAS-160 in encryption mode is resistant to many attacks that can be applied on SHACAL-
1, since it offers different rotation constants in each round and its key schedule does not offer
any sliding properties. Nevertheless it has a high degree of linearity which makes it vulnerable
to related-key attacks.

In this paper we analyze the internal block cipher of HAS-160 and present the first
cryptographic result on the full version of HAS-160 used in encryption mode. Using a related-
key rectangle attack with four related keys we can break the full 80-rounds, i.e. recovering



some key bits faster than exhaustive search. Our attack uses about 2155 chosen plaintexts
and runs in time of about 2375.98 80-round HAS-160 encryptions, while an exhaustive key
search would require about 2512 80-round HAS-160 encryptions.

The paper is organized as follows: In Section 2 we give a brief description of the HAS-160
encryption mode. Section 3 discusses some crucial properties of HAS-160. In Section 4 we
describe the related-key rectangle attack. Section 5 presents our related-key rectangle attack
on the full HAS-160 encryption mode. Section 6 concludes the paper.

2 Description of the HAS-160 Encryption Mode

The following notations are used in this paper:

⊕ : bitwise XOR operation
∧ : bitwise AND operation
∨ : bitwise OR operation
X≪k : bit-rotation of X by k positions to the left.
⊞ : addition modulo 232 operation
¬ : bitwise complement operation
ei : a 32-bit word with zeros in all positions except for bit i, (0 ≤ i ≤ 31)
ei1,...,il : ei1 ⊕ · · · ⊕ eil

The inner block cipher operates on a 160-bit message block and a 512-bit master key. A
160-bit plaintext P0 = A0||B0||C0||D0||E0 is divided into five 32-bit words A0, B0, C0, D0, E0.
HAS-160 consists of 4 passes of 20 rounds each, where the round function is applied 80 times
in total. The corresponding ciphertext P80 is denoted by A80||B80||C80||D80||E80. The bit
positions of a 32-bit word are labeled as 31, 30, . . . , 1, 0, where bit 31 is the most significant
bit and bit 0 is the least significant bit. The round function at round i (i = 1, . . . , 80) can
be described as follows:

Ai← A
≪s1,i

i−1 ⊞ fi(Bi−1, Ci−1, Di−1) ⊞ Ei−1 ⊞ ki + ci,

Bi← Ai−1,

Ci← B
≪s2,i

i−1 ,

Di← Ci−1,

Ei←Di−1,

where ci and ki represents the i-th round constant and the i-th round key respectively, while
fi(·) represents a boolean function. The function fi(·) and the constant ci of round i are as
in Table 1.
The rotation constant s1,i used in round i are given as in Table 2.
The rotation constant s2,i depends on the pass, i.e., it changes the value if the pass is changed
but it is constant in each pass. The pass dependent values of s2,i are:

• Pass 1: s2,i = 10
• Pass 2: s2,i = 17
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Table 1. Boolean functions and constants

Pass Round (i) Boolean function (fi) Constant (ci)

1 1 – 20 (x ∧ y) ∨ (¬x ∧ z) 0

2 21 – 40 x ⊕ y ⊕ z 0x5a827999

3 41 – 60 (x ∨ ¬z) ⊕ y 0x6ed9eba1

4 61 – 80 x ⊕ y ⊕ z 0x8f1bbcdc

Table 2. The bit rotation s1

Round (i mod 20) + 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s1,i 13 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5

• Pass 3: s2,i = 25

• Pass 4: s2,i = 30

The 80 round keys ki, i ∈ {1, 2, . . . , 80} are derived from the master key K, which consists
of sixteen 32-bit words K = x0, x1, . . . , x15. The round keys ki are obtained from the key
schedule in Table 3.

Figure 1 shows the round function of HAS-160.

Ai−1 Bi−1 Ci−1 Di−1 Ei−1

Ai Bi Ci Di Ei

≪ s1,i

≪ s2,i
f

ci

ki

Fig. 1. The round function of HAS-160

3 Properties in HAS-160

Property 1. (from [21]) Let Z = X ⊞ Y and Z∗ = X∗ ⊞ Y ∗ with X, Y, X∗, Y ∗ being 32-bit
words. Then, the following properties hold:
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Table 3. The key schedule

Round (i mod 20) + 1 Pass 1 Pass 2 Pass 3 Pass 4

1 x8 ⊕ x9 x11 ⊕ x14 x4 ⊕ x13 x15 ⊕ x10

⊕x10 ⊕ x11 ⊕x1 ⊕ x4 ⊕x6 ⊕ x15 ⊕x5 ⊕ x0

2 x0 x3 x12 x4

3 x1 x6 x5 x2

4 x2 x9 x14 x13

5 x3 x12 x7 x8

6 x12 ⊕ x13 x7 ⊕ x10 x8 ⊕ x1 x11 ⊕ x6

⊕x14 ⊕ x15 ⊕x13 ⊕ x0 ⊕x10 ⊕ x3 ⊕x1 ⊕ x12

7 x4 x15 x0 x3

8 x5 x2 x9 x14

9 x6 x5 x2 x9

10 x7 x8 x11 x4

11 x0 ⊕ x1 x3 ⊕ x6 x12 ⊕ x5 x7 ⊕ x2

⊕x2 ⊕ x3 ⊕x9 ⊕ x12 ⊕x14 ⊕ x7 ⊕x13 ⊕ x8

12 x8 x11 x4 x15

13 x9 x14 x13 x10

14 x10 x14 x6 x5

15 x11 x4 x15 x0

16 x4 ⊕ x5 x15 ⊕ x2 x0 ⊕ x9 x3 ⊕ x14

⊕x6 ⊕ x7 ⊕x5 ⊕ x8 ⊕x2 ⊕ x11 ⊕x9 ⊕ x4

17 x12 x7 x8 x11

18 x13 x10 x1 x6

19 x14 x13 x10 x1

20 x15 x0 x3 x12
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1. If X ⊕ X∗ = ej and Y = Y ∗, then Z ⊕ Z∗ = ej,j+1,··· ,j+k−1 holds with probability 2−k

(j < 31, k ≥ 1 and j + k − 1 ≤ 30). In addition, in case j = 31, Z ⊕ Z∗ = e31 holds with
probability 1.

2. If X ⊕ X∗ = ej and Y ⊕ Y ∗ = ej , then Z ⊕ Z∗ = ej,j+1,··· ,j+k−1 holds with probability
2−k (j < 31, k ≥ 1 and j + k − 1 ≤ 30). In addition, in case j = 31 Z = Z∗ holds with
probability 1.

A more general description of these properties can be derived from the following theorem.

Theorem 1. (from [14]) Given three 32-bit XOR differences ∆X, ∆Y and ∆Z. If the prob-

ability Pr[(∆X, ∆Y )
⊞
→ ∆Z] > 0, then

Pr[(∆X, ∆Y )
⊞
→ ∆Z] = 2−k,

where the integer k is given by k = #{i|0 ≤ i ≤ 30, not ((∆X)i = (∆Y )i = (∆Z)i)}.

Property 2. Consider the difference ∆Pi = (∆Ai, ∆Bi, ∆Ci, ∆Di, ∆Ei) of a message pair in
round i. Then we know some 32-bit word differences of round i + 1, i + 2, i + 3 and i + 4.
The known word differences are as follows:

(∆Bi+1, ∆Ci+1, ∆Di+1, ∆Ei+1) = (∆Ai, ∆Bi ≪ s2,i+1, ∆Ci, ∆Di),

(∆Ci+2, ∆Di+2, ∆Ei+2) = (∆Ai ≪ s2,i+2, ∆Bi ≪ s2,i+1, ∆Ci),

(∆Di+3, ∆Ei+3) = (∆Ai ≪ s2,i+2, ∆Bi ≪ s2,i+1),

(∆Ei+4) = (∆Ai ≪ s2,i+2)

4 The Related-Key Rectangle Attack

The boomerang attack [22] is an extension to differential cryptanalysis [5] using adaptive
chosen plaintexts and ciphertexts to attack block ciphers. The amplified boomerang attack
[12] transforms the ordinary boomerang attack into a chosen plaintext attack. This attack can
be improved by using all possible differentials instead of two. The resulting attack is called
the rectangle attack [3]. The related-key rectangle attack was e.g. published in [13, 4, 11]. It
is a combination of the related-key attack [2] and the rectangle attack. The attack can be
described as follows.

A block cipher E : {0, 1}n × {0, 1}k → {0, 1}n with EK(·) := E(K, ·) is treated as a
cascade of two sub-ciphers EKi(P i) = E1Ki(E0Ki(P i)), where P i is then plaintext encrypted
under the key Ki. It is assumed that there exists a related-key differential α → β which
holds with probability p for E0, i.e., Pr[E0Ka(P a

0 ) ⊕ E0Kb(P b
0 ) = β|P a

0 ⊕ P b
0 = α] = p,

where Ka and Kb = Ka ⊕ ∆K∗ are two related keys and ∆K∗ is a known key difference
(the same holds for Pr[E0Kc(P c

0 ) ⊕ E0Kd(P d
0 ) = β|P c

0 ⊕ P d
0 = α] = p, where Kc and Kd =

Kc ⊕ ∆K∗ are two related keys). Let P i
s = E0Ki(P i

0), i ∈ {a, b, c, d} be an intermediate
encryption value. We assume a related-key differential γ → δ which holds with probability
q for E1, i.e., Pr[E1Ka(P a

s ) ⊕ E1Kc(P c
s ) = δ|P a

s ⊕ P c
s = γ] = q, where the keys Ka and

5



Kc are related as Ka ⊕Kc = ∆K ′ and ∆K ′ is a known key difference (the same holds for
Pr[E1Kb(P b

s ) ⊕ E1Kd(P d
s ) = δ|P b

s ⊕ P d
s = γ] = q where the keys Kb and Kd are related as

Kb⊕Kd = ∆K ′). In our attack we use four different keys but one can also apply the attack
with more or less keys.

Let a plaintext quartet (P a
0,i, P

b
0,i, P

c
0,j, P

d
0,j) with P a

0,i ⊕ P b
0,i = α = P c

0,j ⊕ P d
0,j, where

P t
0 is encrypted under the key Kt, t ∈ {a, b, c, d}. Out of N pairs of plaintexts with the

related-key difference α about N · p pairs have an output difference β after E0. These pairs

can be combined into about (N ·p)2

2
quartets, such that each quartet satisfies E0Ka(P a

0,i) ⊕
E0Kb(P b

0,i) = β and E0Kc(P c
0,j) ⊕ E0Kd(P d

0,j) = β. We assume that the intermediate values
after E0 distribute uniformly over all possible values. Thus, E0Ka(P a

0,i) ⊕ E0Kc(P c
0,j) = γ

holds with probability 2−n. If this occurs, E0Kb(P b
0,i)⊕ E0Kd(P d

0,j) = γ holds as well, since
the following condition holds:

(E0Ka(P a
0,i)⊕ E0Kb(P b

0,i))⊕ (E0Kc(P c
0,j)⊕E0Kd(P d

0,j))⊕ (E0Ka(P a
0,i)⊕ E0Kc(P c

0,j)) =

(P a
s,i ⊕ P b

s,i)⊕ (P c
s,j ⊕ P d

s,j)⊕ (P a
s,i ⊕ P c

s,j) =

β ⊕ β ⊕ γ = γ

The expected number of quartets satisfying both E1Ka(P a
s,i)⊕E1Kc(P c

s,j) = δ and E1Kb(P b
s,i)⊕

E1Kd(P d
s,j) = δ is

∑

β,γ

(N · p)2

2
· 2−n · q2 = N2 · 2−n−1 · (p̂ · q̂)2,

where p̂ =
√

∑

β′(Pr[α→ β ′])2 and q̂ =
√

∑

γ′(Pr[γ′ → δ])2. For a random cipher, the

expected number of correct quartets is about N2

2
· 2−2n = N2 · 2−2n−1. Therefore, if p̂ ·

q̂ > 2−n/2 and N is sufficiently large, the related-key rectangle distinguisher can distinguish
between E and a random cipher. Figure 2 displays the structure of the related-key rectangle
distinguisher.

5 Related-Key Rectangle Attack on the full HAS-160 Encryption

Mode

In this section, we give a 71-round related-key rectangle distinguisher, which can be used to
mount a related-key rectangle attack on the full 80-round HAS-160 encryption mode. We
can use Property 2 to partially determine whether a candidate quartet is a correct one or if
it is not. A false quartet can be discarded during the stepwise computation, which reduces
the complexity of the subsequent steps and also the overall complexity of the attack. Thus,
our technique is in some way similar to the early abort technique presented by Lu et al. [14].

5.1 A 71-Round Related-Key Rectangle Distinguisher

Let K be a master key which can be written as K = x0, x1, . . . , x15, where xi is a 32-bit word.
We use four different – but related – master keys Ka, Kb, Kc and Kd to mount our related-
key rectangle attack on the full HAS-160 encryption mode. The master key differences are
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αα

ββ
γ

γ

δ

δ

E0Ka

E1Ka

E0Kb

E1Kb

E0Kc

E1Kc

E0Kd

E1Kd

P a
0,i

P a
z,i

P b
0,i

P b
z,i

P c
0,j

P c
z,j

P d
0,j

P d
z,j

P a
s,i

P b
s,i

P c
s,j

P d
s,j

Fig. 2. The related-key rectangle distinguisher

as follows:

∆K∗ = Ka ⊕Kb = Kc ⊕Kd = (e31, 0, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0), (1)

∆K ′ = Ka ⊕Kc = Kb ⊕Kd = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, e31, 0).

Since the key schedule of HAS-160 offers a high degree of linearity we can easily determine all
the 80 round key differences derived from the master key differences ∆K∗ and ∆K ′ respec-
tively. We observe that if we choose ∆x0 = ∆x10 and the remaining word differences as zero,
i.e., ∆xi = 0, i = 1, 2, . . . , 8, 9, 11, 12, . . . , 15, then a zero difference can be obtained starting
from round 14 up to round 37. We use this observation for the related-key differential for
E0. Moreover, we can observe that if ∆x12 = ∆x14 holds and the remaining word differences
in ∆K ′ are all zero, then a zero difference can be obtained from round 44 to round 65. This
observation is used in our related-key differential for E1.

Considering Property 1 and Theorem 1 we have found a 39-round related-key differential
from round 0 to 39 for E0 (α → β) using the master key difference ∆K∗. The related-key
differential is:

(e7, e1, 0, e5,19,31, e12,26,31)→ (e4,31, e31, 0, 0, 0).

The related-key differential E0 is shown in Table 4.1

We exploit a 32-round related-key differential for E1 (γ → δ) that covers rounds 39 to 71
using the master key difference ∆K ′. The related-key differential is:

(e6, 0, 0, 0, e19)→ (e5,6,7,14,17,18,19,28,29,30, e5,8,9,19,21,29, e5,26,27, e19, e5)

1 Note that Pr[(∆ci, ∆ki)
⊞
→ ∆ki] = 1 always holds due to Property 1. This is true since ∆ci is equal to zero for all

i and ∆ki is either zero or e31.
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Table 4. The Related-Key Differential E0

i ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆ki Prob.

0 e7 e1 0 e5,19,31 e12,26,31 – 2−7

1 e26 e7 e11 0 e5,19,31 e31 2−5

2 e19 e26 e17 e11 0 e31 2−6

3 0 e19 e4 e17 e11 0 2−5

4 e11 0 e29 e4 e17 0 2−3

5 e23 e11 0 e29 e4 0 2−4

6 e21 e23 e21 0 e29 0 2−4

7 0 e21 e1 e21 0 0 2−3

8 0 0 e31 e1 e21 0 2−3

9 e21 0 0 e31 e1 0 2−3

10 0 e21 0 0 e31 0 2−2

11 0 0 e31 0 0 e31 2−1

12 0 0 0 e31 0 0 2−1

13 0 0 0 0 e31 0 1

14 0 0 0 0 0 e31 1

15 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...

37 0 0 0 0 0 0 1

38 e31 0 0 0 0 e31 2−1

39 e4,31 e31 0 0 0 0

The 160-bit difference δ can be written as a concatenation of five 32-bit word differences

δ = (δA, δB, δC , δD, δE) = (∆A71, ∆B71, ∆C71, ∆D71, ∆E71). (2)

The related-key differential E1 is shown in Table 5. The probability for the differential
E0 is 2−48 due to Table 4, while the probability for E1 is 2−24 from Table 5. We compute
a huge amount of possible differentials to increase both differential probabilities. We can
compute a lower bound for the probability of the differential E0. Similarly, we can compute
a lower bound for the probability of the related-key differential for E1.

The probability of our related-key rectangle distinguisher for round 1–71 is:

(

2−48 · 2−24
)2
· 2−160 = 2−304

However, the correct difference δ occurs in two ciphertext pairs of a ciphertext quartet for a
random cipher with probability (2−160)2 = 2−320.

5.2 The Attack on the full HAS-160 Encryption Mode

Our attack uses four related keys Ka, Kb, Kc and Kd where each two of the four master
keys are related as stated in (2). It is assumed that an attacker knows the two master key
differences ∆K∗ and ∆K ′, but not the maser keys themselves. In the first step we apply our
71-round related-key rectangle distinguisher to obtain a small amount of subkey candidates

8



Table 5. The Related-Key Differential E1

i ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆ki Prob.

39 e6 0 0 0 e19 – 2−1

40 0 e6 0 0 0 0 2−1

41 0 0 e31 0 0 0 1

42 0 0 0 e31 0 e31 2−1

43 0 0 0 0 e31 0 1

44 0 0 0 0 0 e31 1

45 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...

65 0 0 0 0 0 0 1

66 e31 0 0 0 0 e31 2−1

67 e7 e31 0 0 0 0 2−1

68 e21 e7 e29 0 0 e31 2−3

69 e7,28,29 e21 e5 e29 0 0 2−6

70 e5,8,9,19,21,29 e7,28,29 e19 e5 e29 0 2−10

71 e5,6,7,14,17,18,19,28,29,30 e5,8,9,19,21,29 e5,26,27 e19 e5 0

in rounds 72, 73, 74, 76, 77, 78, 80. In the second step we find the remaining subkey candidates
by an exhaustive search for the obtained subkey candidates and the remaining subkeys to
recover the four 512-bit master keys Ka, Kb, Kc and Kd.
The attack works as follows:

1. Chose 2153.3 plaintexts P a
0,i = (A0,i, B0,i, C0,i, D0,i, E0,i), i = 1, 2, . . . , 2153.5. Compute 2153.5

plaintexts P b
i , i.e., P b

0,i = P a
0,i ⊕ α, where α is a fixed 160-bit word as stated above. Set

P c
0,i = P a

0,i and P d
0,i = P b

0,i. With a chosen plaintext attack scenario, encrypt the plain-

texts P a
0,i, P

b
0,i, P

c
0,i, P

d
0,i under Ka, Kb, Kc and Kd respectively and obtain the ciphertexts

P a
80,i, P

b
80,i, P

c
80,i and P d

80,i.

2. Guess seven 32-bit round keys ka
80, k

a
79, k

a
78, k

a
77, k

a
76, k

a
75, k

a
74 and compute

kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, l ∈ {b, c, d} using the known round key differences.

2.1. Decrypt the ciphertexts P a
80,i, P

b
80,i, P

c
80,j, P

d
80,j under kl

80, k
l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, l ∈

{a, b, c, d} respectively and obtain the intermediate values P a
73,i, P

b
73,i, P

c
73,j , P

d
73,j. From

Property 2 we know the value of the 96-bit difference δA≪30 , δB≪30 and δC , see (2).
2.2. Check whether the following conditions are fulfilled:

Ca
73,i ⊕ Cc

73,j = δA≪30 = Cb
73,i ⊕ Cd

73,j,

Da
73,i ⊕Dc

73,j = δB≪30 = Db
73,i ⊕Dd

73,j,

Ea
73,i ⊕ Ec

73,j = δC = Eb
73,i ⊕Ed

73,j

Record kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, l ∈ {a, b, c, d} and all the quartets that satisfy the

above conditions.

3. Guess one 32-bit round keys ka
73 and compute kl

73, l ∈ {b, c, d} using the known round key

differences.
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3.1. Decrypt the ciphertexts P a
73,i, P

b
73,i, P

c
73,j, P

d
73,j under kl

73, l ∈ {a, b, c, d} respectively and

obtain the intermediate values P a
72,i, P

b
72,i, P

c
72,j, P

d
72,j. From Property 2 we know the value

of the 32-bit difference δD.

3.2. Check whether Ea
72,i ⊕ Ec

72,j = δD = Eb
72,i ⊕Ed

72,j holds. Record

kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, k

l
73, l ∈ {a, b, c, d} and all the quartets that satisfy the above

condition.

4. Guess one 32-bit round keys ka
72 and compute kl

72, l ∈ {b, c, d} using the known round key

differences.

4.1. Decrypt the ciphertexts P a
72,i, P

b
72,i, P

c
72,j, P

d
72,j under kl

72, l ∈ {a, b, c, d} respectively and

obtain the intermediate values P a
71,i, P

b
71,i, P

c
71,j, P

d
71,j. From Property 2 we know the value

of the 32-bit difference δE .

4.2. Check whether Ea
71,i ⊕ Ec

71,j = δE = Eb
71,i ⊕ Ed

71,j holds. If there exist at least 2 quartets

passing the above condition, record kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, k

l
73, k

l
72, l ∈ {a, b, c, d}

and go to Step 5. Otherwise go to Step 4 with another guessed round key. If all the possible

round keys for ka
72 are tested, then repeat Step 3 with another guessed round key ka

73. If

all the possible round keys for ka
73 are tested, then go to Step 2 with another guess for the

round keys ka
80, k

a
79, k

a
78, k

a
77, k

a
76, k

a
75, k

a
74.

5. For a suggested (kl
80, k

l
79, k

l
78, k

l
77, k

l
76, k

l
75, k

l
74, k

l
73, k

l
72), do an exhaustive search for the re-

maining 512− 9 · 32 = 224 key bits by trial encryption. If a 512-bit key is suggested, output

it as the master key of the full HAS-160 encryption mode. Otherwise restart the algorithm.

5.3 Analysis of the Attack

We have 2153.5 pairs (P a
i , P b

i ) and 2153.5 pairs (P c
i , P d

i ) of plaintexts, thus we have (2153.5)2

2
=

2306 quartets. The data complexity of Step 1 is 22 · 2153.5 = 2155.5 chosen plaintexts. The time
complexity of Step 1 is about 22 · 2153.5 = 2155.5 encryptions. Step 2.1 requires time about
2224 · 22 · 2153.5 · (7/80) ≈ 2375.98 eighty round encryptions. The number of remaining quartets
after Step 2.2 is 2306 · (2−96)2 = 2114, since we have a 96-bit filtering condition on both
pairs of a quartet. The time complexity of Step 3.1 is about 2256 · 22 · 2114 · (1/80) ≈ 2365.68

encryptions. After Step 3.2 about 2114 · (2−32)2 = 250 quartets remain, since we have a
32-bit filtering condition on both pairs of a quartet. The time complexity of Step 4.1 is
2288 · 22 · 250 · (1/80) ≈ 2333.68 encryptions. After Step 4.2 the number of remaining quartets
is about 250 · (2−32)2 = 2−14, since we have a 32-bit filtering condition on both pairs of a
quartet. Thus, we do not expect false quartets after the distinguisher step remaining either
for the correct or the false round keys. The expected number of correct quartets that remain
for the correct round keys are about 2306 · 2−304 = 4.

Using the Poisson distribution we can compute the success rate of our attack. The proba-
bility that the number of remaining quartets for each false key bit combination is larger then
1 is Y ∼ Poisson(µ = 2−14), Pr(Y ≥ 2) ≈ 0. The probability that the number of quartets
counted for the correct key bits is at least 2 is Z ∼ Poisson(µ = 4), Pr(Z ≥ 2) ≈ 0.9.
The data complexity of our attack is 2153.5 · 22 = 2155.5 chosen plaintexts, while the time
complexity is about 2375.98 full eighty round HAS-160 encryptions. Our attack has a success
rate of 0.9.
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6 Conclusion

In this paper we present the first cryptanalytic result on the inner block cipher of the Korean
hash algorithm standard HAS-160. Our related-key rectangle attack can break the full 80-
round HAS-160 encryption mode. A more complex and non-linear key schedule would have
defended our attack. Moreover, to strengthen the cipher against differential attacks, we
propose to use the f -function more often in each round and so the f -function may influence
more than one word in each round. Note that this analysis does not seem to say anything
about the collision, preimage or 2nd-preimage resistance of HAS-160, but it shows some
interesting properties that occur if HAS-160 is used as a block cipher. It shows that HAS-160
as a block cipher can be differentiated efficiently from a random cipher and the key bits can
be found much faster than exhaustive search.
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