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Abstract. Adaptive oblivious transfer (adaptive OT) schemes have wide
applications such as oblivious database searches, secure multiparty com-
putation and etc. It is a two-party protocol which simulates an ideal
world such that the sender sends M1, · · · , Mn to the trusted third party
(TTP) first, and then the receiver receives Mσi from TTP adaptively
for i = 1, 2, · · · k. In the standard model, however, the fully simulat-
able schemes known so far had to rely on dynamic assumptions such
as q-strong DH assumption, q-PDDH assumption and q-hidden LRSW
assumption.
This paper shows two fully simulatable adaptive OT schemes which do
not rely on dynamic assumptions in the standard model. Our first scheme
holds under the DDH assumption and our second scheme holds under
the Paillier’s decisional Nth residuosity assumption, respectively.
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1 Introduction

The basic 1-out-of-2 oblivious transfer [6], OT 2
1 , is a two-party protocol which

realizes the ideal world such that the sender sends two strings M0 and M1 to the
trusted third party (TTP), and the receiver receives Mσ from TTP, where σ ∈
{0, 1}. Note that the sender learns nothing on σ, and the receiver learns nothing
on M1−σ. Non-adaptive k-out-of-n oblivious transfer, OTn

k , is defined similarly
[1, 15]. Efficient OT schemes are important because OT 4

1 is a key building block
for secure multi-party computation [21, 9, 12].

Adaptive k-out-of-n oblivious transfer, denoted by OTn
k×1, was introduced

by Naor and Pinkas [16]. In the ideal world of this model, the sender sends
M1, · · · ,Mn to TTP, and the receiver receives Mσi

adaptively from TTP, where
the choice index σi+1 can depend on Mσ1 , · · · ,Mσi

.
On the definition of security, only half simulatability (for both non-adaptive

and adaptive) was considered until recently [16, 17, 11, 19]. This definition re-
quires that for any receiver R in the real world, there exists a receiver R̂ in
the ideal world such that the outputs of R and R̂ are indistinguishable. For
the receiver’s privacy, it is only required that the view of the sender must be
indistinguishable for any input to the receiver. Note that the honest sender out-
puts nothing in OTn

k×1. However, Naor and Pinkas noticed that there can be a
practical attack on the receiver’s privacy in a half simulatable adaptive OT [16].



To solve this problem, Camenisch, Neven and shelat formalized a notion of
full simulatability [5]. In this definition, we consider the output of the sender as
well. For example, a malicious sender may output its view in the execution of the
protocol. Full simulatability now requires that, in addition to half simulatability,
for any sender S in the real world, there exists a sender Ŝ in the ideal world such
that (Ŝout, R̂out) is indistinguishable from (Sout, Rout), where Aout denotes the
output of A. Then they showed a fully simulatable adaptive OT in the random
oracle model, and one in the standard model, respectively.

We focus on the standard model in this paper. Then all the constructions of
fully simulatable adaptive OT known so far rely on dynamic assumptions (which
depend on n). The scheme of Camenisch et al. relies on q-strong DH assumption
and q-PDDH assumption. The scheme of Green and Hohenberger relies on q-
hidden LRSW assumption [8]. The scheme of Jarecki and Liu proposed relies on
the decisional q-DHI assumption [10]. 1

On the other hand, Lindell showed a fully simulatable OT 2
1 under DDH,

Paillier’s decisional Nth residuosity, and qudratic residuosity assumptions as
well as under the assmption that homomorphic encryption exists in the standard
model [14].

This paper shows two fully simulatable adaptive OT schemes in the stan-
dard model which do not rely on dynamic assumptions. Our first scheme holds
under the DDH assumption and our second scheme holds under the Paillier’s
decisional Nth residuosity assumption (DCNR assumption), respectively. They
are very simple and efficient. In each scheme, the initialization phase and each
transfer phase are constant round protocols. Hence the total round complexity
is proportional to k.

While the previous schemes use signature scheme as a building block, our first
scheme uses ElGamal encryption scheme, and our second scheme uses Paillier’s
encryption scheme, respectively. (Hence we do not need a bilinear map.) As a
special case, we obtain more efficient fully simulatable OT 2

1 s than Lindell [14].
Finally we show an extension of our schemes to constant round non-adaptive

OTn
k s, where the choice index σi+1 cannot depend on Mσ1 , · · · ,Mσi . Green and

Hohenberger showed a fully simulatable non-adaptive OTn
k under the decisional

BDH assumption in the standard model [7]. Note that, on the other hand, our
first OTn

k relies on the DDH assumption, and our second OTn
k relies on the

DCNR assumption.

2 Preliminaries

2.1 Notations

In this paper, we denote a security parameter by τ ∈ N. All the algorithms take
τ as the first input and run in (expected) polynomial-time in τ . We denote prob-
1 In the random oracle model, Ogata and Kurosawa showed an adaptive OT based on

Chaum’s blind signature scheme [19]. Camenisch, Neven and shelat [5] proved that
it is fully simulatable as well as they corrected a flaw of [19]. Green and Hohenberger
showed such a scheme under the decisional BDH assumption [7].



Table 1. Fully simulatable adaptive OT without RO

Camenisch et al. [5] q-strong DH assumption and q-PDDH assumption

Green and Hohenberger [8] q-hidden LRSW assumption

Jarecki and Liu [10] q-DHI assumption

Proposed (1) DDH assumption

Proposed (2) Paillier’s DCNR assumption

abilistic polynomial-time by ppt for short. We often do not write the security
parameter explicitly.

2.2 Proof Systems

To design our scheme, we use several proof systems. We follow the definitions
described in [3–5].

Let R = {(α, β)} ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation R such that |β| ≤
poly(α) for all (α, β) ∈ R, where poly is some polynomial. We only consider the
relation R such that (α, β) ∈ R can be decided in polynomial in |α| for all (α, β).
We define LR = {α | ∃β such that (α, β) ∈ R}.

Proof of Membership (PoM): A pair of interacting algorithms (P,V), called
a prover and a verifier, is a proof of membership (PoM) for a relation R if the
completeness and soundness are satisfied. Here, we say that (P,V) satisfies the
completeness if for all (α, β) ∈ R, the probability of V(α) accepting a conversa-
tion with P(α, β) is 1. Also we say that (P,V) satisfies the soundness if for all
α 6∈ LR and all P∗(α) (including cheating provers), the probability of V(α) ac-
cepting the conversation with P∗ is negligible in |α|. We say that this probability
as soundness error of the proof system.

Proof of Knowledge (PoK): We say a pair of interacting algorithms (P,V) is
PoK for a relation R with knowledge error κ ∈ [0, 1] if it satisfies completeness
described above and has an expected polynomial-time algorithm, called knowl-
edge extractor, E. The algorithm E is a knowledge extractor for a relation R if
possibly cheating P̂ has probability ε of convincing V to accept α, then E, when
given black-box access to P̂, outputs a witness β for α with probability ε− κ.

Witness Indistinguishability (WI): A proof system (P,V) is perfect WI if
for every (α, β1), (α, β2) ∈ R, and any ppt cheating verifier, the output of V̂(α)
(including cheating verifier) after interacting with P(β1) and that of V̂(α) after
interacting with P(β2) are identically distributed.

Zero Knowledge (ZK): We say that a proof system (P,V) is perfect ZK if there
exists an expected polynomial-time algorithm Sim, called a simulator, such that
for any ppt cheating verifier V̂ and any (α, β) ∈ R, the outputs of V̂(α) after
interacting with P(β) and that of SimV̂(α)(α) are identically distributed.



3 k-out-of-n Oblivious Transfer

We consider a weak model of UC framework as follows.

– At the beginning of the game, an adversary A can corrupt either a sender S
or a receiver R, but not both.

– A can send a message (which will be denoted by Aout) to an environment
Z after the end of the protocol. (A cannot communicate with Z during the
protocol execution.)

The ideal functionalities of OTn
k and OTn

k×1 will be shown below. For a protcol
π = (S,R), define Adv(Z) as

Adv(Z) = |Pr(Z = 1 in the real world)− Pr(Z = 1 in the ideal world)|

3.1 Non-Adaptive k-out-of-n Oblivious Transfer

In the ideal world of OTn
k , the ideal functionality Fnon, an ideal world adversary

A′ and an environment Z behave as follows.

The initialization phase:

1. An environment Z sends (M1, · · · ,Mn) to the dummy sender S′.
2. S′ sends (M∗

1 , · · · ,M∗
n) to Fnon, where (M∗

1 , · · · ,M∗
n) = (M1, · · · ,Mn) if S′

is not corrupted.

The transfer phase:

1. Z sends (σ1, · · · , σk) to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends (σ∗1 , · · · , σ∗k) to Fnon, where (σ∗1 , · · · , σ∗k) = (σ1, · · · , σk) if R′ is not

corrupted.
3. Fnon sends received to an ideal process adversary A′.
4. A′ sends b = 1 or 0 to Fnon, where b = 1 if S′ is not corrupted.
5. Fnon sends Y to R′, where

Y =
{

(M∗
σ1

, · · · ,M∗
σk

) if b = 1
⊥ if b = 0

6. R′ sends Y to Z.

After the end of the protocol, A′ sends a message A′
out to Z. Finally Z outputs

1 or 0.
In the real world, a protocol (S,R) is executed without Fnon, where the

environment Z and a real world adversary A behave in the same way as above.

Definition 1. We say that (S,R) is secure against the sender (receiver) corrup-
tion if for any real world adversary A who corrupts the sender S (the receiver
R), there exists an ideal world adversary A′ who corrupts the dummy sender S′

(the dummy receiver R′) such that for any environment Z, Adv(Z) is negligible.

Definition 2. We say that (S,R) is a fully simulatable OTn
k if it is secure

against the sender corruption and the receiver corruption.



3.2 Adaptive k-out-of-n Oblivious Transfer

In the ideal world of OTn
k×1, the ideal functionality Fadapt, an ideal world ad-

versary A′ and an environment Z behave as follows.

The initialization phase:

1. An environment Z sends (M1, · · · ,Mn) to the dummy sender S′.
2. S′ sends (M∗

1 , · · · ,M∗
n) to Fadapt, where (M∗

1 , · · · ,M∗
n) = (M1, · · · ,Mn) if

S′ is not corrupted.

The transfer phase: for i = 1, · · · , k,

1. Z sends σi to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends σ∗i to Fadapt, where σ∗i = σi if R′ is not corrupted.
3. Fadapt sends received to an ideal process adversary A′.
4. A′ sends b = 1 or 0 to Fadapt, where b = 1 if S′ is not corrupted.
5. Fadapt sends Yi to R′, where

Yi =
{

M∗
σi

if b = 1
⊥ if b = 0

6. R′ sends Yi to Z.

After the end of the protocol, A′ sends a message A′
out to Z. Finally Z outputs

1 or 0.
In the real world, a protocol (S,R) is executed without Fadapt, where the

environment Z and a real world adversary A behave in the same way as above.

Definition 3. We say that (S,R) is secure against the sender (receiver) corrup-
tion if for any real world adversary A who corrupts the sender S (the receiver
R), there exists an ideal world adversary A′ who corrupts the dummy sender S′

(the dummy receiver R′) such that for any environment Z, Adv(Z) is negligible.

Definition 4. We say that (S,R) is a fully simulatable OTn
k×1 if it is secure

against the sender corruption and the receiver corruption.

3.3 Remarks

The full simulation security of OTn
k has never been defined (even in [7]).

On the full simulation security of OTn
k×1, our definition is weaker than the

UC security because our adversaries A cannot communicate with Z during the
protocol execution.

On the other hand, it is stronger than that of [5] because Z chooses σi in
our definition. Hence σi can depend on (M1, · · · ,Mn). In the definition of [5],
σi can depend on (Mσ1 , · · · ,Mσi−1) only because the receiver chooses σi.



4 Our OTn
k×1 Based on ElGamal

In this section, we show an adaptive OTn
k×1 based on ElGamal encryption

scheme, and prove its full simulatability under the DDH assumption.
Let G be a multiplicative group of prime order q. Then the DDH assumption

states that, for every ppt distinguisher D,

εDDH(D) = |Pr(D(g, gα, gβ , gαβ) = 1)− Pr(D(g, gα, gβ , gγ) = 1)|

is negligible, where the probability is taken over the random bits of D, the random
choice of the generator g, and the random choice of α, β, γ ∈ Zq. We denote

εDDH = max{εDDH(D)},

where the maximum is taken over all ppt distinguishers D.
The initialization phase and each transfer phase are constant round protocols.

Hence the total round complexity is proportional to k.

Initialization Phase

1. The sender chooses G, g and (x1, · · · , xn, r) ∈ (Zq)n+1 randomly, and com-
putes h = gr.

2. For i = 1, · · · , n, the sender computes

Ci = (Ai, Bi) = (gxi ,Mi · hxi).

In loss of generality, we assume that M1, · · · ,Mn ∈ G.
3. The sender sends (G, h, C1, · · · , Cn).
4. The sender proves by ZK-PoK that he knows r.

The protocol stops if the receiver rejects.

The jth Transfer Phase

1. The receiver chooses a choice index 1 ≤ σj ≤ n based on Mσ1 , · · · ,Mσj−1 .
2. The receiver chooses u ∈ Zq randomly and computes U = (Aσj )

u.
He then sends U .

3. The receiver proves in WI-PoK that he knows u such that

U = Au
1 ∨ · · · ∨ U = Au

n.

The protocol stops if the sender rejects.
4. The sender computes V = Ur and sends V .
5. The sender proves that (g, h, U, V ) in ZK-PoM that it is a DDH-tuple.

The protocol stops if the reeiver rejects.
6. The receiver obtains Mσj by computing Bσj /V 1/u.



There are three proof systems employed in this scheme. The first proof system
can be obtained by transforming the Schnorr’s identification scheme [20] into
perfect ZK-PoK with [3]. The second proof system is implemented by the or-
composition [4] of [20]. The third one comes from the Chaum’s ZK-PoM for
the DDH-tuple [2]. Note that all of these proof systems run in the constant
round. More precisely, these systems are four-round, three-round, and four-round
protocols, respectively.

Theorem 1. The above protocol is a fully-simulatable adaptive OTn
k×1 under

the DDH assumption.

The proof is included in Section 7. We use a simple fact that given (g, h, gx1 , · · · , gxn),
it is hard to distinguish (hx1 , · · · , hxn) from (gz1 , · · · , gzn), where z1, · · · , zn are
random. Similar observation can be found in [18, 13]. In fact, we use [18] to prove
the security.

5 Our OTn
k×1 Based on Paillier

In this section, we show an adaptive OTn
k×1 based on Paillier encryption scheme,

and prove its full simulatability under the Decisional Composite Nth Residuosity
(DCNR) assumption. The DCNR assumption is stated as follows. Let N = pq
where p and q are large primes. Then given N , it is hard to distinguish between
Z∗

N2 and {y | y = xN mod N2, where x ∈ Z∗
N}.

The initialization phase and each transfer phase are constant round protocols.
Hence the total round complexity is proportional to k.

5.1 Scheme

Initialization Phase

1. The sender chooses two large primes p, q and computes N = pq.
2. For i = 1, · · · , n, the sender chooses ri ∈ Z∗

N randomly and computes

Ci = rN
i (1 + MiN) mod N2

where M1, · · · ,Mn ∈ Z∗
N .

3. The sender sends (N,C1, · · · , Cn).
4. The sender proves by ZK-PoM that fN (x) = xN mod N is bijective.

The protocol stops if the receiver rejects.
5. For each Ci, the sender proves by ZK-PoK that he knows ri such that

Ci = rN
i mod N.

The protocol stops if the receiver rejects.

The jth Transfer Phase



1. The receiver chooses a choice index 1 ≤ σj ≤ n based on Mσ1 , · · · ,Mσj−1 .
2. The receiver chooses u randomly and computes U = uN · Cσj

mod N .
3. The receiver sends U .
4. The receiver proves in WI-PoK that he knows u such that

(U = uNC1 mod N) ∨ · · · ∨ (U = uNCn mod N).

The protocol stops if the sender rejects.
It is easy to construct a 3-round WI-PoK protocol for this based on [4].

5. The sender computes V = U1/N mod N and, then computes T such that

V N = U + TN mod N2 (1)

6. The sender sends T , and proves that she knows V satisfying eq.(1) in ZK-
PoK. The protocol stops if the receiver rejects.
We can construct a 4-round ZK-PoK protocol for this based on [3]. Note
that it holds that

U + TN = V N mod N2

= (urσj
)N mod N2

= uNrN
σj

mod N2.

7. The receiver computes

rN
σj

= (U + TN)/uN mod N2.

He finally computes Mσj from Cσj and rN
σj

mod N2.

In the next subsections, we show a 4-round ZK-PoM and a 4-round ZK-PoK
which are used in the initialization phase.

Theorem 2. The above protocol is a fully-simulatable adaptive OTN
k×1 under

the DCNR assumption.

The proof is similar to that of Theorem 1.

5.2 4-round ZK-PoK for Ci = rN
i mod N

We show a Σ-protocol (P,V) for an NP relation Rt such that

Rt = {((y1, · · · , yt), (x1, · · · , xt)) | yi = xN
i mod N for all i}.

1. P chooses r1, · · · , rt ∈ Z∗
N randomly and computes

a1 = rN
1 mod N, · · · , at = rN

t mod N.

P sends a1, · · · , at to V.
2. V sends a random c ∈ Z∗

N to P.
3. P computes di = rix

c
i mod N for i = 1, · · · , t, and sends d1, · · · , dt to V.

4. V accepts iff dN
i = aiy

c
i mod N for i = 1, · · · , t.

It is easy to see that the above protocol satisfies special soundness and special
HVZK. Hence we can obtain an efficient 4-round ZK-PoK for Rt from [3].

At step 5 of the initialization phase, we use this 4-round ZK-PoK with t = n.



5.3 How to Prove that fN(x) = xN mod N is Bijective

Let d = gcd(N,φ(N)), where φ is Euler function. Then fN = xN mod N is
bijective over Z∗

N if and only if d = 1. In other words, fN is not bijective over
Z∗

N if and only if d ≥ 2. Also, each y such that y = xN mod N for some x has d
Nth roots.

Based on this observation, we show a 4-round ZK-PoM which proves that fN

is bijective over Z∗
N . The common input to (P,V) is N .

1. V chooses x1, · · · , xt ∈ Z∗
N randomly and computes

y1 = xN
1 mod N, · · · , yt = xN

t mod N.

V sends y1, · · · , yt to P.
2. V proves that he knows each xi by using the Σ-protocol of Sec.5.2.
3. P sends x′1, · · · , x′t to V.
4. V accepts iff x′i = xi for i = 1, · · · , t.

The completeness is clear. If fN is not bijective, then Pr(V accepts) ≤ 1/2t.
Finally it is easy to prove the zero-knowledgeness.

6 Extension to Constant Round Non-Adaptive OTn
k

It is easy to extend our OTn
k×1s to constant round non-adaptive OTn

k s. In this
section, we show a constant round non-adaptive OTn

k based on ElGamal.

6.1 How to Prove Many DDH-tuples

We show a 4-round ZK-PoM which proves that (g, h, U1, V1), · · · , (g, h, Uk, Vk)
are all DDH-tuples.

1. The receiver sends random (a1, · · · , ak).
2. The sender proves that (g, h,

∏k
i=1 Uai

i ,
∏k

i=1 V ai
i ) is a DDH-tuple by using

the confirmation protocol of [2].

The confirmation protocol of [2] is a 4-round ZK-PoM on a DDH-tuple. Hence
the above protocol runs in 4-round. (Step 1 and the 1st round of the confirmation
protocol are merged.)

Lemma 1. Suppose that some (g, h, Ui, Vi) is not a DDH-tuples. Then
(g, h,

∏k
i=1 Uai

i ,
∏k

i=1 V ai
i ) is a DDH-tuples with negligible probability.

Proof. Assume that Ui = gxi and Vi = hyi for i = 1, · · · , k. Then

k∏
i=1

Uai
i = g

∑k
i=1 aixi

k∏
i=1

V ai
i = h

∑k
i=1 aiyi



Suppose that (g, h, U1, V1) is not a DDH-tuples. That is, x1 6= y1. Then for any
values of a2, · · · , ak, there exists a unique a1 such that

k∑
i=1

ai(xi − yi) = 0 mod q. (2)

Hence the numbers of (a1, · · · , ak) which satisfies eq.(2) is equal to qk−1. There-
fore

Pr(eq.(2) holds) = qk−1/qk = 1/q.

This means that (g, h,
∏k

i=1 Uai
i ,

∏k
i=1 V ai

i ) is a DDH-tuples with negligible prob-
ability. ut

Theorem 3. The above protocol is a ZK-PoM on many DDH-tuples.

Proof. The completeness is clear. The zero-knowledgeness follows from that of
the confirmation protocol of [2]. The soundness follows from Lemma 1 and that
of the confirmation protocol of [2]. ut

6.2 Constant Round OTn
k

In this section, we modify our OTn
k×1 to obtain a constant round OTn

k as follows.

– At step 4 of the initialization phase, the sender sends (G, h, A1, · · · , An).
– At the end of the transfer phase, the sender sends (B1, · · · , Bn).
– In the transfer phase, run step 3 in parallel (still it is a WI protocol).

At step 5, the sender proves that (g, h, U1, V1), · · · , (g, h, Uk, Vk) are all DDH-
tuples by using the ZK-PoM of Sec.6.1.

Theorem 4. The proposed OTn
k is a constant round fully-simulatable OTn

k un-
der the DDH assumption.

The proof is similar to that of Theorem 1.

7 Proof of Theorem 1

We first prove that the proposed scheme is secure against sender corruption. We
next prove that it is secure against receiver corruption.

7.1 Security Against Sender Corruption

Lemma 2. The proposed scheme is secure against sender corruption.

Proof. For every real-world adversary A who corrupts the sender, we construct
an ideal-world adversary A′ such that Adv(Z) is negligible.

We will consider a sequence of games Game0, Game1, · · · , Game4, where Game0 is
the real world experiment of Sec.3, and and Game4 is the ideal world experiment,
respectively. Let



Pr(Gamei) = Pr(Z = 1 in Gamei).

Game0: This is the real world experiment such that the sender is controlled by
an adversary A. Hence

Pr(Game0) = Pr(Z = 1 in the real world).

Game1: This is the same as the previous game except for the following. In the
initialization phase, if the receiver accepts the ZK-PoK, then he extracts r from
A by running the knowledge extractor E1 which is allowed to rewind A. This
game outputs ⊥ if the extractor E1 fails in extracting r. Unless this happens,
these two games are identical. Therefore,

|Pr(Game0)− Pr(Game1)| ≤ κ1,

where κ1 be the knowledge error of the extractor.

Game2: This is the same as the previous game except for the following. In each
transfer phase, if the receiver accepts the ZK-PoM which proves that (g, h, U, V )
is a DDH-tuple, then he obtains Mσi

by computing Bσi
/Ar

σi
. These two games

are identical unless the above Mσi
is different from Bσj

/V 1/u. This happnes if
the receiver accepts the ZK-PoM even though (g, h, U, V ) is not a DDH-tuple.
Hence

|Pr(Game1)− Pr(Game2)| ≤ kκ3,

where κ3 is the soundness error probability of ZK-PoM.

Game3: This is the same as the previous game except for the following. In each
transfer phase, the receiver computs U as U = Au

1 . (The receiver can still obtain
Mσi as can be seen from Game2.) Since our WI-PoK is perfect,

Pr(Game2) = Pr(Game3).

Game4: This game is the ideal world experiment in which an ideal-world adversary
A′ plays the role of the receiver of Game3 and uses A as a blackbox. A′ can do
this because the receiver does not use σ1, · · · , σk in Game3.

Finally A′ outputs what A outputs. It is easy to see that Game3 and Game4

are identical from a view point of Z. Hence

Pr(Game3) = Pr(Game4).

Further
Pr(Game4) = Pr(Z = 1 in the ideal world).



Now, we can summarize this lemma as follows:

Adv(Z) = |Pr(Game4)− Pr(Game0)|

≤
3∑

i=0

|Pr(Gamei+1)− Pr(Gamei)|

≤ κ1 + kκ3.

ut

7.2 Security Against Receiver Corruption

Lemma 3. The proposed scheme is secure against receiver corruption under the
DDH assumption.

Proof. For every real-world adversary A who corrupts the receiver, we construct
an ideal-world adversary A′ such that Adv(Z) is negligible.

We will consider a sequence of games Game0, Game1, · · · , Game5, where Game0

is the real world experiment of Sec.3, and Game5 is the ideal world experiment.

Game0: This is the real world experiment such that the receiver is controlled by
an adversary A. Hence

Pr(Game0) = Pr(Z = 1 in the real world).

Game1: This is the same as the previous game except for the following. In each
transfer phase, instead of running the ZK-PoM which proves that (g, h, U, V )
is a DDH-tiple, the sender runs the zero-knowledge simulator of the ZK-PoM
which is allowed to rewind A. Since the ZK-PoM is perfect ZK, we have

Pr(Game1) = Pr(Game0).

Game2: This is the same as the previous game except for the following. In each
transfer phase, if the sender accepts the WI-PoK, then she extracts u from A
by running the knowledge extractor E2 which is allowed to rewind A. This game
outputs ⊥ if the extractor E2 fails in extracting u. Unless this happens, these
two games are identical. Therefore,

|Pr(Game2)− Pr(Game1)| ≤ kκ2,

where κ2 is the knowledge error of the extractor.

Game3: This is the same as the previous game except for that the sender computes
V as V = (Bσ/Mσ)u instead of V = Ur. It is clear that there is no essential
difference between two games. Therefore,

Pr(Game3) = Pr(Game2).



Game4: This is the same as the previous game except for that the sender uses
a random M ′

i to compute each Ci in the initialization phase. The difference
|Pr(Game4) − Pr(Game3)| is still negligible by the semantic security of the
ElGamal cryptosystem which is implied by the DDH assumption.

Claim. If the DDH problem is hard then |Pr(Game4)− Pr(Game3)| is negligi-
ble. More concretely,

|Pr(Game4)− Pr(Game3)| ≤ εDDH. (3)

The proof of this claim is given later.

Game5: This game is the ideal world experiment in which an ideal-world adversary
A′ plays the role of the sender of Game4, and uses A as a blackbox. A′ can do this
because the sender does not use M1, · · · ,Mn in Game4.

Finally A′ outputs what A outputs. It is easy to see that Game4 and Game5

are identical from a view point of Z. Hence

Pr(Game4) = Pr(Game5).

Further
Pr(Game5) = Pr(Z = 1 in the ideal world).

Now, we can summarize this lemma as follows:

Adv(Z) = |Pr(Game5)− Pr(Game0)|

≤
4∑

i=0

|Pr(Gamei+1)− Pr(Gamei)|

≤ kκ2 + εDDH.

ut

To complete the proof, we must provide the proof of the claim. To do so, we
need the following lemma 2 which can be thought of as an “extended” version
of the DDH assumption.

Lemma 4 (Lemma 4.2 in [18]). If there exists a probabilistic algorithm D
with running time t such that∣∣∣∣Pr (D(g, gr, gx1 , · · · , gxn , grx1 , · · · , grxn) = 1)

− Pr(D(g, gr, gx1 , · · · , gxn , gz1 , · · · , gzn) = 1)
∣∣∣∣≥ ε

where the probability is taken over the random bits of D, the random choice of
the generator g in G, and the random choice of x1, · · · , xn, r, z1, · · · , zn ∈ Zq,
then there exists a probabilistic algorithm with running time n · poly(τ) + t that
breaks the DDH assumption with probability ≥ ε with some polynomial poly.
2 Naor and Reingold proved it by using the random reducibility of the DDH-tuple.



We now show a proof of the claim.

Proof (of the claim). Let Game′3 (Game′4) be the same as Game3 (Game4) except
for the following. In the initialization phase, instead of running the ZK-PoK in
which the sender proves that he knows r, the sender runs the zero-knowledge
simulator of the ZK-PoK which is allowed to rewind A. Since the ZK-PoK is
perfect ZK, it holds that

Pr(Game′3) = Pr(Game3),
Pr(Game′4) = Pr(Game4)

We now construct a DDH distinguisher D in the sense of Lemma 4. The input
to D is (g, h, gx1 , · · · , gxn , y1, · · · , yn), where yi = grxi or gzi , Our D simulates Z,
A and the sender of Game′3 or Game′4 faithfully except for that in the initialization
phase, D simulates the sender by using (g, h, gx1 , · · · , gxn), and hi = yi for each
i. Finally D outputs 1 iff Z outputs 1.

It is easy to see that D simulates Game′3 if yi = grxi for each i, and Game′4
otherwise. Therefore ∣∣Pr(Game′4)− Pr(Game′3)

∣∣ ≤ εDDH. (4)

Hence eq.(3) holds.
ut

8 Fully Simulatable OT 2
1

We have shown two fully-simulatable adaptive OT schemes in the standard
model. The first scheme holds under the DDH assumption and the second scheme
holds under the decisional Nth residuosity (DCNR) assumption. It is clear that
we can obtain fully-simulatable 1-out-of-2 OTs (OT 2

1 s) as a special case.
On the other hand, Lindell showed a fully simulatable OT 2

1 under DDH,
DCNR, and qudratic residuosity assumptions as well as under the assmption
that homomorphic encryption exists in the standard model [14].

Let’s compare our first scheme with Lindell’s OT 2
1 which is based on the

DDH assumption. His scheme builds on the OT 2
1 of [17] and use cut-and-choose

techniques. The comutational cost and the communication cost are O(`) times
larger than those of our first scheme to achieve

Adv(Z) ≤ 2−`+2.

Hence our scheme is more efficient.
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