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Abstract

It is a routine task to convert a digital circuit to a system of polynomial equations over GF(2).
A very well-studied set of tools called “SAT-solvers”, which solve Conjunctive Normal Form logical-
satisfiability problems, can be used to determine if two circuits are equivalent, as is commonly done in
computer engineering. An interesting problem in intellectual property is to determine if two circuits
are identical but after some unknown permutation of the inputs and outputs. This could be of interest
if a manufacturer suspects his encryption circuit has been stolen. While this is easily shown to be a
sub-problem of the famously hard “isomorphism of polynomials” problem, we show that in fact it can be
easily solved via conversion to a polynomial system of equations over GF(2), and is only slightly harder
than if the permutations were in fact known.

1 Introduction

The application of verifying the equivalence of two digital circuits (i.e. that they output the same for all
inputs) has been very well studied, and is usually accomplished using boolean algebra in some way, though
there are many techniques. In this paper we will address a particular question in Intellectual Property,
which is a generalization of determining the equivalence of two circuits, but yet is a sub-problem of the very
difficult and less well-understood problem of “isomorphism of polynomials.” We show that this particular
question is much easier than previously suspected, as conjectured by Patarin, Goubin, and Courtois in [12].

1.1 Background: Circuit Equivalence

This problem is crucial in the “formal verification” of digital circuits. The relationship to polynomials over
GF(2), the field with two elements, arises from the fact that a combinatorial digital circuit is a collection of
logic gates, and each logic gate is a simple polynomial over GF(2). Thus, because the composition of two
polynomials is a polynomial, the entire circuit is a polynomial. For example, the following

Digital Gate Logical Operation Polynomial
x AND y Conjunction xy
x OR y Disjunction x+ y + xy
NOT x Negation 1 + x

x XOR y Distinction x+ y
x NAND y Incompatibility 1 + xy
x XNOR y Equivalence 1 + x+ y

IF x THEN y ELSE z Switching z + xy + xz
MAJ(x,y,z) Majority Vote xz + xy + yz

are some simple logic gates with their polynomials. Thus converting a digital circuit to its polynomial system
is often straightforward, and results in one equation for each output bit, and one variable for each input
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bit. Let m denote the number of equations (number of outputs) and n the number of variables (number of
inputs), as is standard.

The “circuit equivalence” problem consists of verifying if all outputs are equal for all inputs. For two
circuits f and g, this can be written

∃i ∈ {1, 2, . . . ,m} st fi(x1, . . . , xn) + gi(x1, . . . , xn) = 1

because if that system of polynomial equations has a solution, then the two circuits are not equivalent.
Likewise, if there is no solution, then the circuits are equivalent.

A simpler form is
(f1 + g1 + 1)(f2 + g2 + 1) · · · (fm + gm + 1) = 0

which has a solution if and only if the circuits are not equivalent. We will assume that an oracle exists
to solve this problem. For example, one can write polynomials and use a computer algebra system such
as SAGE [3] or MAGMA [1], or one can convert to circuit satisfiability and use a SAT-Solver [6], such
as MiniSAT [2]. A SAT-Solver is a software tool, which given a logical sentence written in the predicate
calculus, tries to find an assignment of true and false to each variable to make the entire sentence come
out true. While this is NP-hard, SAT-solvers tend to be very fast on problems arising from applications.
Converting a GF(2)-polynomial system of equations into a satisfiability problem for a SAT-solver is not too
difficult, as first shown in [6].

Regardless if solving via SAT-solvers or computer algebra systems, the principle measures of difficulty
of the problem are the number of equations m and the number of variables n, the maximum degree, the
maximum weight1 and the average weight. If an algorithm solves this problem in time upper-bounded by
some polynomial in m and n, and without any other restrictions, then P=NP.

1.2 Background: The IP Problems

Suppose manufacturer A believes that manufacturer B has stolen an important circuit, and they wish to
detect or confirm this belief. In reverse engineering circuit B, they might not know which output wires
correspond to their own output wires, and likewise, which inputs of circuit B correspond to which inputs
of circuit A. There are m! possible permutations of the outputs and n! possible permutations of the inputs,
and thus a total of n!m! possible permutations. Thus, one might näıvely believe that n!m! oracle executions
would be required. We will show that with some new variables and equations, this is not required.

If one views the m-equation, n-variable polynomial system as a map F : GF(2)n → GF(2)m, then
this question can be modeled as follows: Does there exist an n × n permutation matrix P and an m ×m
permutation matrix Q such that

G(~x) = QF (P~x) ∀~x ∈ GF(2)n

where F is the polynomial system for one circuit, and G is the polynomial system for the other.
If one drops the requirement that P and Q be permutation matrices, and require them instead to be

merely non-singular, then one has the known and difficult “Isomorphism of Polynomials Problem” [11]. If
one further drops the requirement of non-singularity then it is the “Morphism of Polynomials Problem”
which is proven NP-hard in [12]. We are not the first to consider P and Q to be permutation matrices, as
was done by Patarin, Goubin and Courtois in [12]. In that paper, they prove that the permutation-matrix
case is reducible to Graph Isomorphism, and conjecture that it is much easier than the non-singular-matrix
case. Appendix A contains a description of the connection between the Isomorphism of Polynomials Problem
and public-key cryptography.

While algorithms for solving the “Isomorphism of Polynomials Problem” have been published for certain
cases, and many of them are feasible, these algorithms are very complex and some forms of the problem have
no known feasible methods of solution [9], [12], [8]. The Intellectual Property Problem seems similar, so one
might imagine it too, is difficult. We will solve the problem in the next section.

1The weight is the number of terms per polynomial.
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2 The Solution

We will now solve the intellectual property problem, seeing if G is a copy of F merely with the inputs and
outputs permuted. Consider, for simplicity, n = m = 8. Then the polynomial function

µ(i2, i1, i0, s0, s1, s2, . . . , s7) = (1 + i2)(1 + i1)(1 + i0)s0 + (1 + i2)(1 + i1)(i0)s1 +
(1 + i2)(i1)(1 + i0)s2 + (1 + i2)(i1)(i0)s3 + (i2)(1 + i1)(1 + i0)s4 +
(i2)(1 + i1)(i0)s5 + (i2)(i1)(1 + i0)s6 + (i2)(i1)(i0)s7

has the useful property that
µ(i2, i1, i0, s0, s1, s2, . . . , s7) = s4i2+2i1+i0

and that, in turn, follows from the fact that this function will always have seven of its eight terms “zeroed-
out” by i2, i1, i0 regardless of the values that those three variables take. The remaining term is the correct
s. The circuit given by this polynomial is called an 8-way multiplexer by computer engineers.

We “attach” one of these to each input of G, in the following sense. Let

x′j = µ(ij,2, ij,1, ij,0, x0, x1, x2, . . . , x7) i ∈ {1, 2, 3, . . . , n}

where the xjs are the inputs to F , and µ is the polynomial defined above. The x′js are the inputs to G.
So long as the triple (ij,2, ij,1, ij,0) is distinct from the triple (ik,2, ik,1, ik,0) for all j 6= k, where j ∈

{1, 2, . . . , 8} and k also, then the mapping from the xjs to the x′js is a permutation. This further can be
caused to occur by adding the equation

(ij,2 + ik,2) + (ij,1 + ik,1) + (ij,0 + ik,0) + (ij,2 + ik,2)(ij,1 + ik,1)
+(ij,2 + ik,2)(ij,0 + ik,0) + (ij,1 + ik,1)(ij,0 + ik,0)

+(ij,2 + ik,2)(ij,1 + ik,1)(ij,0 + ik,0) = 1

for all k 6= j where j ∈ {1, 2, . . . , 8} and k likewise. This is because that equation will be satisfied in all cases
unless ij,` = ik,` for all ` ∈ {0, 1, 2}.

The same operation can be performed on the outputs, converting yjs into y′js and using oj,2, oj,1, oj,0 in
place of ij,2, ij,1, ij,0. The total cost of this is 3 × 8 × 2 = 48 new variables, plus 2 × 8 = 16 new equations
for the y′ and x′ definitions, and another 2

(
8
2

)
= 56 equations for the guaranteeing of the non-identicality of

the triples of is and of the triples of os. That is a total of 72 new equations, and 48 new variables.
One oracle call is sufficient to answer the question after these changes, which is significantly less work

than (8!)2 ≈ 1.63 × 109 oracle calls. Finally, note that this not only answers the decision question (are the
circuits equivalent or not), but also explicitly identifies the specific permutations used on the inputs and the
outputs, being the values of the i1,0, . . . , i8,2 and the o1,0, . . . , o8,2 variables, respectively.

2.1 The General Case

At the time of this writing, typical SAT-Solvers are able to handle 100s of variables, and 1000s of sparse
equations (for cryptographic problems2), and so while this is non-trivial, the system will remain feasible.
Also, the F4s Algorithm of Jean-Charles Faugère [7] implemented in MAGMA is a common tool for this
task. An overview of solving GF(2)-polynomial systems of equations appears in [4, Ch. 11, Ch. 12].

The m 6= 8 or n 6= 8 cases can be handled by allowing the second index of the is to be at most dlog2 ne
and of the os to be at most dlog2me. In this case there will be

n dlog2 ne+m dlog2me
2For easier problems, one may square these quantities, and the SAT-solver community has identified ensembles of very hard,

very small problems.
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new variables, and

m+ n+
(

n

dlog2 ne

)
+

(
m

dlog2me

)
new equations.

2.2 Very Large Cases

However, for the case m = n = 32, we would add 320 variables and 402,816 equations. This number of
equations is not feasible by current methods. The map from x to x′ will have five is because 32 = 25; we
call ij,4, ij,3, . . . , ij,0 a “quintuplet”.

Omitting the equations that guarantee the non-identicality of the quintuplets seems foolish at first, but
in reality, the following argument is likely to hold in any realistic scenario.

The equations that guarantee non-identicality of the quintuplets force P and Q as functions to be bijec-
tions. If two quintuplets are identical then two input variables of F map to the same input variables of G
or two output variables of G map to the same output variable of F .

In the former case, by the pigeonhole principle, this means that an input variable of F was neglected,
and not used by G at all. If a solution to the entire system is found, that means that one input wire in the
design of F was superfluous, (in other words, not needed or used at all). This is very unlikely, but the prover
knows about F and would be aware of that condition before beginning the problem. This case is therefore
irrelevant to the practical problem.

In the latter case, again by the pigeonhole principle, this means that an output of G was matched with
two distinct outputs of F , and in any solution of the system that means that these two outputs of F s are
always identical, otherwise how can they both equal a particular output of G simultaneously? This means an
output of F was superfluous, merely a copy of another output of F . This can happen because of “fan-out”
considerations in Electrical Engineering, but again, the designers of F would know about this in advance,
and one need not consider this case either.

Thus the equations for non-identicality can be dropped, and there will be only m+ n new equations. In
this case, we are searching not only for P and Q that are permutation matrices, but the broader class of
matrices with exactly one non-zero entry per row.

The only invertible members of this broader class of matrix are the permutation matrices themselves,
since any matrix with two identical rows is singular. Therefore, this broader class is not of interest to the
public-key system for which the Isomorphism of Polynomial problems was proposed.

Therefore, only 320 new variables and 64 new equations are required. While adding 320 variables is
extremely non-trivial, it should be noted that normally in circuit verification there is roughly one variable
per gate. A circuit with 32-bits of input and output would probably have very roughly 322 = 1024 gates (or
2048 for both f and g) and thus it is only a 15.63% increase. Moreover, it was shown in [5] that SAT-Solvers
perform extremely well when solving very underdetermined systems of equations.

Alternatively, the proof of Theorem 4.1 in [12] had an approach to this problem, except with a directed
graph instead of a circuit. They required n = m and (2n3−3n2−n+4)/2 equations and (n+1)(n2−2n+2)/2
variables, which is much more. But they do not assume the existence of an oracle that can solve the non-
permuted case, which is our model of a SAT-Solver or MAGMA. For example, with the above case 31,218
equations and 15,873 variables would be needed by [12].

3 Conclusions

While the “intellectual property” problem considered here is a sub-problem of the famously difficult “isomor-
phism of polynomials” problem, it is only slightly harder than the task of determining if two (non-permuted)
circuits are identical. Furthermore, one obtains the actual permutations used with no additional effort. Thus
the criminal activity can be easily detected.
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A Application to Communications Security

The Isomorphism of Polynomials problem was first proposed in connection with communications security.
Suppose one has c polynomial systems of equations each with n variables and n unknowns. Viewing these
as a map F : GF(2)cn → GF(2)cn is possible, but it is far easier to find pre-images under this map F than
some arbitrary G with the same domain and range. That is because the c polynomial systems could be each
solved separately.

Now fix two cn × cn dense invertible matrices over GF(2), call them S and T , and let G(~x) = SF (T~x).
We must also assume that given G alone, it is infeasible to find S and T , and furthermore that it is hard to
find other matrices that will likewise decompose G into a different, but still easy, system of equations. The
system G will be the public key, and collectively T, S, F are the private key. To encrypt a message ~x, one
simply computes G(~x) = ~y, which is easy, and transmits ~y. The recipient calculates ~z = S−1~y, splits z into c
vectors of length n, and then solves the c systems of n equations and n unknowns. The solutions would be c
vectors of dimension n. The solutions are concatenated into 1 vector of dimension cn, called ~w. Finally, one
multiplies T−1 ~w = ~x to obtain the original message. An adversary, being without T, S, or F would have to
solve a system of cn equations in cn unknowns, which for careful parameter choices, is not feasible.

Unfortunately, these schemes were broken in many cases [9], [12], [8].

B Criminal Motivations

A block cipher is a map f : K×{0, 1}` → {0, 1}`, where K is the set of possible keys, and {0, 1}` is the set of all
possible plaintext and ciphertext messages, namely the set of all `-bit strings. The usual model for the security
of a block-cipher is that encryption under a random key k ∈ K should “behave similarly” to a permutation
selected at random from the set of those with the domain and range {0, 1}`. Therefore, permuting the
inputs, the outputs, or both, cannot degrade the security properties of a block cipher, if the original meets this
imprecise standard. Extensions of this standard, involving computational indistinguishability by probabilistic
polynomial-time adversaries can make this standard precise [10]. In short, the reason a competitor might
steal and permute the circuit is that if σ is computationally indistinguishable from a random permutation,
and τ1 and τ2 are fixed permutations, then τ1 ◦ σ ◦ τ2 is computationally indistinguishable from a random
permutation. Thus, if the problem in this paper were hard, then permuting the inputs and outputs of the
cipher would provide an easy escape from patent-licensing fees on ciphers or their silicon implementations.
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