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Abstract. Let n = pq > q3 be an rsa modulus. This note describes a lll-based
method allowing to factor n given 2 log2 q contiguous bits of p, irrespective to their po-
sition. A second method is presented, which needs fewer bits but whose length depends
on the position of the known bit pattern. Finally, we introduce a somewhat surprising
ad hoc method where two different known bit chunks, totalling 3

2
log2 q bits suffice to

factor n.

1 Introduction

The problem of factoring using partial information was introduced by Rivest and Shamir
[9] in 1986. Factoring using partial information relates both to the (very theoretical) ora-
cle complexity of factoring and to the (very practical) side channel analysis of public-key
implementations.

In most past works [9, 3–5, 10] the attacker knows some of the bits of one of the factors,
usually the most significant bits (msbs) or chunks of bits spread over one of the factors [6]. In
other settings (e.g. [7]), the opponent is given access to an oracles answering yes/no questions.
Recently, May and Ritzenhofen considered the factoring of integers whose factors feature a
common, yet unknown, bit-pattern [8]. Finally, [1] tackles the factorization of numbers of the
form prq.

In this note we show that when n = pq > q3 (figure 1), one can factor n given 2 log2 q
contiguous bits of p. The technique is interesting because it does not appear to relate directly
to other lll-based results. Furthermore, the amount of bits to be known does not depend on
the size of n but rather of the size of its smaller factor q.

Conventions: Throughout this paper, capital letters will denote the bit-size of lowercase
variables. In addition, we will illustrate the different factoring techniques using black rectan-
gles for known (given) bit blocs and white rectangles for unknown bit blocks.
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Fig. 1. The factoring problem: Hard.



2 An Initial Observation

Factoring given p′ = p mod 2Q, the Q least significant bits (lsbs) of p, is trivial:
n

p′
mod 2Q = q mod 2Q = q

×

Fig. 2. Factoring knowing the Q lsbs of p: Easy.

It is easy to observe that factoring unbalanced moduli is also easy when p presents a
pattern of Q zeros at positions [2Q, Q].

If p is of the form p = u22Q + y where Y ≤ Q then:

gcd
(
n, n mod 22Q

)
= gcd

(
pq, yq mod 22Q

)
= gcd (pq, yq) = q

×0 … 00 0

Fig. 3. Factoring knowing that bits [2Q, Q] of p are zeros: Easy.

p = u22Q + y is a particular case of the general form p = u2W+L + v2W + y where v is a
known L-bit pattern.

Given v and setting a = v2W , b = n mod 2W+L and q = x, factoring n boils-down to
solving the equation:

b = x(a + y) mod 2W+L (1)

for {x, y}, with x of size Q and y of size W .
The two following sections focus on solving this equation.

3 Applying Lattice Reduction

The most straightforward approach to solve equation (1) is to set z = xy. The new variable
z being of size Q + W . The equation becomes:

b = ax + z mod 2W+L

which is a bivariate linear modular equation. In [4], Coppersmith gives an lll-based heuristic
algorithm, to solve such equations when the sum of the sizes of variables is less than the
modulus divided by the equation’s degree. In our case, this means that:

Q + (Q + W ) < W + L

The solution is thus found as soon as L > 2Q. This means that n can be factored as soon as
2Q contiguous bits of p are known, no matter where their position is (figure 4).
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Fig. 4. Factoring given any 2Q-bit block of p: Easy.

4 Using Fewer Bits

We also notice that this equation is very similar to Boneh and Durfee’s Small Inverse Problem
(section 4 of [2]). This problem amounts to solving the equation:

1 = x(a + y) mod e.

Replacing 1 by an arbitrary integer b does not change anything in the algorithm’s analysis,
since the diagonal of the triangular basis of the lattice used to solve the equation is independent
of b.

The main difference is that [2] handles only the case 2Y = E, which is not necessarily the
case in our setting.

We will focus on solving b = x(a + y) mod e for {x, y} with X = eδ and Y = eα. The
lattice is built as in section 4 of [2] but the choice of the optimizing parameter t will differ.

For convenience, we set t := τm. In the inequality det(L) < emw, we consider only
dominant terms, i.e. terms in m3, we get the inequality:

3ατ2 + 3(α + δ − 1)τ + α + 2δ − 1 < 0.

Solutions to this inequality exist if and only if the discriminant of the quadric equation in
τ is positive. The condition on α and δ is:

3δ2 − α2 − 2αδ − 6δ − 2α + 3 > 0.

This result is of an independent interest, generalizing [2].
To harness this to our initial problem, one needs to set

e = 2W+L, δ =
Q

W + L
, and α =

W

W + L
.

Then, the length L of the known bit pattern must satisfy

3L2 + (4W − 6Q)L + 3Q2 − 8QW > 0.

This quadric admits two solutions, the smaller of which corresponds to parameters δ > 1,
which makes no sense. Taking the larger solution into account, the final result is:

L > Q +
2
3
(
√

W 2 + 3QW −W ).

In other words, as the position of the known bit block slides from the lsbs to the msbs
(i.e. when W increases from 0 to ∞), the amount of known bits increases from Q to 2Q (figure
7). This method is always better than the one presented in section 3.
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Fig. 5. Factoring given progressively bigger chunks of p: Easy.

5 Ad Hoc Configurations

In addition to the previously presented techniques, it appears possible to obtain better results
in a number of specific cases. We illustrate two such instances in this section.

5.1 Disjoint lsb Blocks

We first turn our attention to the case, very similar to the observation in the introduction,
where we know a pattern of Q bits in the prime factor p starting from the Q-th bit. As per
the previous section’s results, this is not enough since we would need 5Q/3 bits to factor.
Thus, we suppose that we also know the L lsbs of p. Evidently, we can now get the L lsbs
of q as well by division modulo 2L. In other words, we have the following representation of
the factors:

p = u2Q+L + v2Q + y2L + w
q = x2L + w′,

where v, w and w′ are known and ww′ = n mod 2L.
Expand the equation pq = n and reduce it modulo 22Q. Obviously, one can factor 2L

since we properly selected w′. We get a quadratic bivariate equation in the variables x and y.
The variables are of size 2Q−L and the equation must be satisfied modulo 22Q−L. Note that
the only quadratic term is xy2L, hence the equation becomes linear modulo 2L (and easy to
solve). We use lattice reduction techniques to present the general solution under the form:

x = x0 + rx1 + sx2

y = y0 + ry1 + sy2,

where r and s are unknown integers. The linear equation is to be understood modulo 2L and
thus the numbers xi and yi can be chosen of approximate size 2L/2. Since x and y are of size
2Q−L, we infer that r and s are of size 2Q−3L/2. We now plug the parameterizations of x
and y into our original equation and get a quadratic equation in the variables r and s. It is
clear that we can factor 2L and get an equation modulo 22Q−2L. Again, we use Coppersmith’s
heuristic for bivariate equations to compute r and s. For this to be possible, the product of
the size of the variables must be less than half the modulus’ size:

2(Q− 3L

2
) ≤ Q− L,

which is easily transformed into Q ≥ 2L. From the values of r and s, we get back to the
values of x and y and subsequently find q.

All in all, if we know a pattern of Q bits of p in the range [Q, 2Q] and the Q/2 lsbs of p
(or q), we can factor n in heuristic polynomial time (figure 6). Note that the number of bits
needed in this section is less than the number claimed by the previous section. This stems
from the fact that p’s lsbs of p leak direct knowledge on q’s lsbs.
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Fig. 6. Factoring given bits [2Q, Q] and [Q/2, 0] of p: Easy.

5.2 Particular n Formats

We now adapt to our purpose the finer analysis of [2], section 5 (instead of section 4). Consider
again:

b = x(a + y) mod e

with |x| ≤ X = eδ and |y| ≤ Y = eα, where α and δ are such that α + δ < 1.
Unfortunately, in general, the resulting matrix My of y-shifts is not geometrically progres-

sive in Boneh-Durfee’s sense.
However, My does become geometrically progressive if we further assume that |b| ≤ er for

some constant r ∈ R satisfying:

0 < r < α + δ and r < 2− 1− δ

α

The implications of this assumption will be examined at the end of this section.
We can readily verify that My is geometrically progressive with parameters (4m, e,m, α+

δ − r, α− 1, r − 1, 1, (1− r)/(α + δ − r)).
Setting the parameter t to (1− α− δ)m/α, we find that det(L1)e−mw = eu(m) with

u(m) =
[
2 + α + 2δ +

1
α

(1− α− δ)(2 + α + δ)
]

m3

6
− 1− δ

2α
m3 + o(m3)

=
(
α− (1− δ)2

)m3

6α
+ o(m3)

It follows that lattice reduction can be applied for large enough m as soon as:

(1− δ)2 > α

This result may, yet again, be of independent interest.
Returning to our particular setting in which

e = 2W+L, δ =
Q

W + L
, and α =

W

W + L

we see that the length L must satisfy (L + W −Q)2 > W (L + W ), which gives the following
bound:

L > Q +
1
2
(
√

W 2 + 4QW −W )

Although this bound also increases from Q to 2Q as W grows, it is always (slightly)
tighter than the bound obtained it section 4. To assess the best possible improvement we
denote W = λQ and seek to maximize:

f(λ) =
2
3
(
√

λ2 + 3λ− λ)− 1
2
(
√

λ2 + 4λ− λ)

We have f ′(λ0) = 0 for λ0 ≈ 0.716, the positive root of the polynomial λ4 +7λ3 +12λ2−9
corresponding to a maximal gain of f(λ0) ≈ 0.049.3

3 e.g. for Q = 400 bits the attack requires ≈ 20 fewer bits.
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However, this 5% improvement is only obtained under a very costly assumption: the
condition on b implies that n has pattern of Q + L/W zero bits before position W + L. Note
that:
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Fig. 7. A plot of f(λ). Note that limλ→∞ f(λ) = 0

The technique will therefore only apply to n values having this special form.

6 Conclusion

This paper showed that the knowledge of a pattern of contiguous bits in the larger factor of
an unbalanced modulus is sufficient to factor as soon as the length of this pattern is twice
the size of the smaller factor.

A deeper analysis showed that fewer bits are required, depending on the known bit-chunk’s
position.

The existence of a variety of ad hoc configurations, of which we gave two examples seems
to indicate that a systematic exploration of topic is an interesting further research direction.
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