Certifying Assembly with Formal Cryptographic Proofs: the Case
of BBS

Reynald Affeldt, David Nowak and Kiyoshi Yamada
Research Center for Information Security, AIST, Japan

July 1, 2009

Abstract

With today’s dissemination of embedded systems manipulating sensitive data, it has become impor-
tant to equip low-level programs with strong security guarantees. Unfortunately, security proofs as done
by cryptographers are about algorithms, not about concrete implementations running on hardware. In
this paper, we show how to extend security proofs to guarantee the security of assembly implementa-
tions of cryptographic primitives. Our approach is based on a framework in the Coq proof-assistant
that integrates correctness proofs of assembly programs with game-playing proofs of provable security.
We demonstrate the usability of our approach using the Blum-Blum-Shub (BBS) pseudorandom number
generator, for which a MIPS implementation for smartcards is shown cryptographically secure.

1 Introduction

Embedded cryptographic software is now a crucial part of security in our modern digital societies. As a
consequence, public institutions as well as private manufacturers recognize, through international standards
for computer security such as the Common Criteria (ISO/TEC 15408), a pressing need for certification. Given
its central role, embedded cryptographic software deserves the most trustful level of certification: formal
verification using computer-checkable formal proofs, as performed by proof-assistants based on proof-theory.
However, as of today, despite the fact that most security claims implicitly assume correct implementation of
cryptography, this assumption is almost never formally enforced in practice. With more and more processing
of sensitive data delegated everyday to embedded systems such as smartcards, it becomes important to
provide practical solutions for certification of embedded cryptographic software.

The main problem of certification of embedded cryptographic software is that, in the current state of
research, certification remains a major undertaking:

(a) Most cryptographic primitives rely on number theory and their pervasive usage calls for efficient imple-
mentations. As a result, we face many advanced algorithms with low-level implementations in assembly.
This already makes formal proof technically difficult.

(b) Security guarantees about cryptographic primitives is the matter of cryptographic proofs, as practiced
by cryptographers. In essence, these proofs aim at showing the security of cryptographic primitives
by reduction to computational assumptions. Formal proofs of such reductions also involve probability
theory or group theory.

In addition, certification of embedded cryptographic software is even more challenging that it requires a
formal integration of (a) and (b). In fact, to the best of our knowledge, no such integration has ever been
attempted so far.

This paper addresses the issue of certifying assembly code with cryptographic proofs. As pointed above,
certification of assembly code and certification of cryptographic proofs are not the same matter, even though
both deals with cryptography. As an evidence of this mismatch, one can think of a cryptographic function



such as encryption: its security proof typically relies on a high-level mathematical description, but when
laid down in terms of assembly code such a function exhibits restrictions due to the choice of implementa-
tion. We are therefore essentially concerned about the integration of these two kinds of formal proofs. We
do not question here the theoretical feasibility of such an integration; rather, we investigate its practical
aspects. Indeed, various frameworks for formal verification of cryptography already exist ([AM06, MGO7]
for cryptographic assembly code, [ATMO07, Now07, BGZ09, BBUOS] for cryptographic proofs), but it is not
clear how to connect them in practice. Whatever connection is to be provided, it has to be developed in a
clear way, both understandable by cryptographers and implementers, and in a reusable fashion, so that new
certification efforts can build upon previous ones.

Contributions In this paper, our main contribution is to propose a concrete approach, supported by a
reusable formal framework, for certifying assembly code together with cryptographic proofs. As a concrete
evidence of usability, we certify a pseudorandom number generator written in assembly for smartcards with
a formal proof of unpredictability. This choice of application is not gratuitous: this is the natural first step
before certifying more cryptographic primitives, since many of them actually rely on pseudorandom number
generation.

To achieve our goal, we integrate two existing formal frameworks: one for formal verification of as-
sembly code, and another for formal verification of cryptographic primitives. More precisely, our technical
contributions consist in the following:

e We propose an integration in terms of game-playing [Sho04]. Game-playing is a popular setting to
represent cryptographic proofs: security definitions and computational assumptions are represented as
games between which one performs incremental game transformations. We introduce a new kind of
game transformation, that we call implementation step, to serve as a bridge between assembly code
and algorithms as dealt with by cryptographers. This allows for a clear integration, that paves the way
for a modular framework, understandable by both cryptographers and implementers.

e To support the above integration, we extend the formal framework for assembly code of [AMO6] to con-
nect with the formal framework for cryptographic proofs of [Now07] (both in the Coq proof-assistant).
Various technical extensions are called for, that range from the natural issue of encoding mathematical
objects such as arbitrarily-large integers into computer memory, to technical issues such as composition
of assembly snippets to achieve verification of large programs. All in all, it turns out that it is utterly
important to provide efficient ways to deal with low-level details induced by programs being written
in assembly. In this paper, we explain in particular how we deal with arbitrary jumps in assembly.
Concretely, we provide an original formalization of the proof-carrying code framework of [SU07], that
allows us to certify assembly with jumps through standard Hoare logics proofs.

e We provide the first snippet of assembly code for a pseudorandom number generator that is certified
with a cryptographic proof. The generator in question is the Blum-Blum-Shub pseudorandom number
generator [BBS86] that we implement in the SmartMIPS smartcard assembly.

Alternative Approaches and Related Work Our approach is oriented towards practical application,
and this goal includes certification of hand-written assembly. For this purpose, the extension of [AMO06] that
we propose in this paper is well-suited because it provides already enough material for reasonably short proof
scripts. Under less constraints about the target code, the alternative approach of proof-producing compilation
[MSGO09] could be considered. Of course, a compiler such as the one of [MSG09] needs to be extended with
custom support for cryptography to achieve reasonable performance. Still, an early application of ideas of
proof-producing compilation to cryptographic functions shows that short proof scripts and compact assembly
are difficult to reconcile [MGO7]. Overcoming these difficulties is still not enough for our overall goal, for
HOL (the proof assistant used in [MSGO09]) lacking a framework for formal cryptographic proofs.

The two previous work ([AMO06] and [Now07]) that we integrate in this paper turn out to be a good fit
for they favoring shallow encodings. On the one hand, shallow encoding is used in [AMO06] to encode Hoare
logic assertions, and on the other hand, it is used in [Now07] to represent games. Therefore, algorithms
written as Coq functions can simply appear in Hoare logic assertions, making for an easy integration. In



contrast, games in [BGZ09, BBUOS] are represented as deep-encoded code. In addition, our use-case directly
relies on properties of arithmetic (including an encoding of the quadratic residuosity problem) an originality
of [Now08].

Outline This paper is organized as follows. In Sect. 2, we introduce the BBS algorithm and provide an
assembly implementation. In Sect. 3, we explain how we integrate formal proofs of functional correctness for
assembly code with game-based formal cryptographic proofs. In Sect. 4, we explain our formalization of the
proof-carrying code framework of [SU07], that facilitates formal proof of functional correctness of assembly
code. In Sect. 5, we explain more specifically the formal proof of functional correctness of BBS and the
lemmas relevant to the integration with its cryptographic proof. In Sect. 6, we wrap up the complete formal
cryptographic proof of BBS in assembly by giving an overview of the Coq formalization. We conclude and
comment on future work in Sect. 7.

2 The BBS Pseudorandom Number Generator

2.1 The BBS Algorithm

The Blum-Blum-Shub pseudorandom number generator [BBS86] (hereafter, BBS) exploits the quadratic
residuosity problem. This problem is to decide whether integers have square roots in modular arithmetic.
This is believed to be intractable for multiplicative group of integers modulo m where m is the product of
two distinct odd primes [MOV96]. In fact, BBS exploits the quadratic residuosity problem in the particular
case of m being a Blum integer, i.e., the product of two distinct odd primes congruent to 3 modulo 4. The
BBS algorithm is written below as a Coq function. It performs iteratively squaring modulo and outputs the
result of parity tests. The input consists of the desired number of pseudorandom bits (len) and a random
seed (seed) for initialization. Z7, is the multiplicative group of integers modulo m and QR,, is the set of
quadratic residues modulo m.

bbs(len € N, seed € Z,) =4 bbs_rec(len, seed?)

bbs_rec(len € N,z € QR,, =

match len with 0 = []|len’ +1 = parity(z) :: bbs_rec(len’, z?) end

BBS is one of the rare pseudorandom number generators that is cryptographically secure [BBS86]. This
means that it passes all polynomial-time statistical tests, i.e., no polynomial-time algorithm can distin-
guish between an output sequence of the generator and a truly random sequence. This strong property is
not required of most applications of pseudorandom numbers, except cryptography. In more precise terms,
BBS can be proved left-unpredictable (hereafter, “unpredictable”) under the assumption that the quadratic
residuosity problem is intractable. (This is equivalent to prove that BBS passes all polynomial-time statis-
tical tests [Yao82].) A formal account of the proof of unpredictabiliy of the BBS algorithm can be found
in [Now08], where it is presented in the game-playing formalism [Sho04].!

2.2 Implementation of BBS in Assembly

The assembly code bbs_asm in Fig. 2.2 implements BBS. It is written with MIPS instructions (to be more
precise, we use SmartMIPS, a superset of MIPS32 with additional instructions for smartcards [Mips]).

In brief, it consists of a loop with a nested loop. Each iteration of the nested loop produces one word
of pseudorandom bits. More precisely, the nested loop performs a square modulo, extracts the parity bit
(of the least significant word), and stores this bit in a temporary word of storage in an appropriate position
using bitwise operations. These temporary words of storage are then stored in memory contiguously by the
outer loop so as to produce a pseudorandom number. The names of registers (in italic font) are parameters;

11t is shown in [VV84] that BBS is still cryptographically secure under the weaker assumption that m is hard to factorize.
The same authors also show that, for sufficiently large m, more than one bit can be extracted at each iteration of the algorithm.
However, in this paper, we stick to the original proof of [BBS86].



bbs_asm o

0 addiu ¢ gpr_zero 016 (* init counter for outer loop *)
1 addiu L ! 016 (* init pointer to result *)
2 beq i n 240 (* repeat n times *)
3: addiu j gpr_zero 016 (* init counter for inner loop *)
4: addiu w gpr_zero 016 (* init word of temporary storage *)
5 beq j thirtytwo 236 (* repeat 32 times *)
6 mulmod kxzm ... ‘ (* compute X2 (mod M) *)
230: 1w w_ 016 (* load least significant word *)
231: andi w_ w_ lie (* extract parity bit *)
232: sllv w_ w_j (* shift parity bit to jth position *)
233: cmd_or w w w- (* store parity bit in temporary storage *)
234: addiu j j lie (* increment inner loop counter *)
235: jmp 5 (* end of the inner loop *)
236: sw w06 L (* store the last 32 parity bits in memory *)
237: addiu L L 416 (* increment pointer to result *)
238: addiu ¢ % 16 (* increment outer loop counter *)
239: jmp 2 (* end of the outer loop *)

240:

Figure 1: The assembly code bbs_asm

only the null register gpr_zero is hardwired in the program. Magic numbers are indexed with their length
in bits (e.g., 016 stands for 0 represented as a half-word). mul_mod stands for an inlined snippet of assembly
code whose purpose is to compute the multi-precision square modulo (see Appendix E for details).

3 Game-based Proofs for Assembly

Cryptographic proofs usually apply to algorithms without any consideration for implementation aspects. In
this section, we propose a way to lift a standard definition of unpredictability (the security notion of interest
when dealing with pseudorandom number generation) so as to formally prove unpredictability directly on
assembly code.

We choose to work in the setting of game-playing [Sho04] because it lends itself easily to formalization
and extension. Game-playing is a methodology for writing cryptographic proofs that are easier to verify.
In game-playing, a security property is modeled as a program that implements a game to be solved by the
attacker, and the attacker is modeled as an external probabilistic procedure interfaced with the game. A
cryptographic proof consists in showing that any attacker has only little advantage over a random player.
This is achieved by applying the security definition to the cryptographic primitive to be verified, and then
by reducing it to a computational assumption through game transformations. Game-playing lends itself
easily to formalization in proof-assistants [BBU08, ATMO07, Now07, BGZ09] and it also lends itself easily to
extension, since reasoning steps are identified with game transformations. Indeed, the lifting we propose can
be simply thought of as a new kind of game transformation.

3.1 The Unpredictability Game

The unpredictability game is defined as follows: a seed is picked at random in the set of seeds G (Z} in the
case of BBS); a sequence of bits [bg, ..., ben] is computed by the function f; this sequence, deprived of its
first bit by, is passed to the probabilistic attacker A; the latter returns its guess bAO for the value of this bit.
The result of the game is whether the guess is right or not. Using the notations of [Now08], this game is



written:

seed & G :
boy - -, bien l 1, seed) ;
unpredictability (f) e [AO’ Bien] — f(len +1, seed)

by < A([(ih sy blen]) )
return b, = bo

3.2 The Unpredictability Game for Assembly

We propose to define the unpredictability game directly on the assembly code by lifting the above standard
definition. Lifting is needed because the standard definition applies to mathematical functions without any
consideration for their concrete implementation. This makes a difference because, contrary to mathematical
functions, assembly code does not work as intended for any input due to restrictions imposed by the choice
of implementation.

The basic idea for the lifting is to extract from the assembly code its semantics in terms of a mathematical
function and to inject it into the standard definition of the unpredictability game. For such a function to
exist, the assembly code ¢ has to be terminating and deterministic. More importantly, one also needs to
make clear under which restrictions the assembly code behaves as intended. Under above conditions, one
can define a total function [¢] on which we can apply the standard definition of unpredictability game. This
leads to the following definition of unpredictability game for assembly code:

seed < G ;
bos - -+, Dien I 1, seed) ;
unpredictability_assembly(c) = [AO’ bien] — [e](len +1, seed)

bo = A([l/)\l, ey blen]) 3
return by = by

3.3 Implementation Steps as Game Transformations

The advantage of the lifting explained above is that it makes it clear how to organize certification of assembly
code with cryptographic proofs: games for assembly connect to standard games through implementation
steps. An implementation step can be justified formally by proving that the assembly code does implement
the intended cryptographic primitive. And this cannot be achieved without making explicit the restrictions
imposed by the choice of implementation, as intended.

Since implementation steps come in addition to the other three types of game transformations identified
by Shoup [Sho04] (indistinguishability steps, failure event steps, and bridging steps), this makes it easier
to develop a formal framework for certification of assembly with cryptographic proofs: pick up a formal
framework for game-based proofs and a formal framework to verify assembly, and add the machinery to
perform implementation steps. The next section illustrates this approach in the case of BBS, the rest of this
paper explains how we integrate [AMO06] and [Now07] for this purpose.

3.4 Application to BBS

In this section, we show how to add an implementation step at the beginning of the cryptographic proof
of [BBS86] for the BBS algorithm so as to get a cryptographic proof for the BBS assembly code. At this
stage, we only give an overview; detailed explanations are given in the next sections of this paper.

Let us assume that we are given an operational semantics for assembly code as a predicate written
s > ¢ — s', meaning that from state s, the execution of the assembly code ¢ terminates in the state s’. A
state is of the form either Some (I,s) where [ is the program counter and s is a memory, or None for error
states (see Sect. 4.3 for details).

Let us assume that we are given two functions encode and decode such that: encode (n, k, seed, m) builds
a state from the requested number n of pseudoramdom 32-bits words, the number k of 32-bits words re-
served for the encoding of the seed and the modulus, the seed seed, and the modulus m; and decode (s) is
the list of pseudorandom bits stored in the state s (see Sect. 5.1 for details). We first prove that bbs_asm



is terminating and deterministic, i.e., for all n, k, seed and m, there exists a unique state s’ such that
Some (encode (n, k, seed,m)) > bbs.asm — s’ (for the sake of simplicity, we assume here that the en-
code/decode functions also take care of labels, see Sect. 5.2 for details). This gives a function execpps_asm that
maps any state s to the state s’ such that Some s > bbs_asm — s’. This allows us to define [bbs_asm] which
maps a length len + 1, a seed seed and a modulus m to the list of bits:

l 1
prefix;,,, 1 <decode (execbbsasm <encode ({ er;;— -‘ , [loggs2 (m)] , seed, m))))

Game 1 We start with the unpredictability game for bbs_asm:

seed & 1%,
[bo, - - -y bien] < [bbs_asm](len + 1, seed) ;

bo = A([l/)\l, cey blen]) )
return by = bo

Game 1’ The first step is to unfold [bbs_asm]:
seed & 7%,
[bo, ceay blen] —
- prefixge, (decode (exechps_asm (encode ([L2HEL]  [logyss (m)], seed, m)))) ;
by < A([l/)},, cey blen]) ;
return by = by

Game 2 Next comes the implementation step that connects the above game to the initial game of the
cryptographic proof of the BBS algorithm [Now08]. For this purpose, we first prove that bbs_asm is correct,
i.e., for all n, k, seed, m, s’, such that Some (encode (n, k, seed, m)) > bbs_asm — Some s’, then decode (s') =
bbs(32 x n, seed) where bbs is the BBS algorithm of Sect. 2.1 (see Sect. 5 for details). This gives rise to the
following game:

seed & 1%,

[bo, - - -, bien] < bbs(len + 1, seed) ;

by < A([l/)\l, Cey blen]) )

return by < bo

This is actually the first game of the cryptographic proof of unpredictability of the BBS algorithm as
formalized in [Now08]. That concludes the cryptographic proof of unpredictability of bbs_asm.

4 Verification of Functional Correctness of Assembly

In the previous section, we saw that, in order to perform cryptographic proofs of an implementation, we need
in particular to prove its functional correctness. This is in particular technically difficult for assembly. Indeed,
handling of jumps results in non-standard logics, less practical than standard Hoare logic (see [SU07] for
references). To overcome this difficulty, we propose to formalize the proof-carrying code framework of [SUO7].
This framework provides a compositional operational semantics and Hoare logic for assembly with jumps.
However, derivations in this operational semantics and this Hoare logic have the shortcoming of being verbose.
Fortunately, [SU07] also shows that these derivations can be obtained from standard operational semantics
and standard Hoare logic by compilation from assembly code with while-loops to assembly code with jumps.
In other words, compilation let us work with standard Hoare logic (with while-loops) while still being able
to recover formal proofs for assembly with jumps.

In this section, we comment on our formalization of [SU07] and its instantiation to Separation Logic and
MIPS.



4.1 Formalization of States

A state consists of a store and a heap. The store is a finite map from registers to integers of finite size. Let
int,, be the type of machine integers encoded with n bits. Most registers contain values of type intss (the
exception is the extended accumulator of type int,, with n > 8). We have the following notations: [r]s is the
value of register r in store s; s{v/r} is the store resulting from updating register r with value v in store s.
The heap is a finite map from locations to integers of type intss. The heap is tailored to word-accesses
for convenience because most memory accesses in our applications are word-aligned. We have the following
notation: h[l] is the contents of location [ of the heap h; it is None when the location is undefined.

We found it convenient in practice to separate general-purpose registers from the multiplier (the subset
of registers dedicated to arithmetic computations), hence the following definition of states:

state < store x multiplier x heap
Finally, states are extended with a label (that represents the value of the program counter of the instruction
being currently executed) and can be error states (because some instructions may trap). We distinguish
error states using an option type, hence the definition of labelled states:

Istate %< option (label x state)

4.2 One-step, Non-branching Instructions

The semantics of non-branching MIPS instructions is a predicate noted s — ¢ — s’ where 7 is a MIPS
instruction, s (resp. s’) is the state before (resp. after) its execution.

When formalizing the semantics of instructions, we need to express conditions such as word-alignment, ab-
sence of arithmetic overflow, etc. Formalizing these conditions require manipulations such as sign-extending
inti1g integers to intss integers, checking for divisibility by 4, etc. For this purpose, we introduce various
operators: (v)mmﬂmw sign-extends the value v from 16 to 32 bits, (v) interprets the value v as an
unsigned integer, etc.

We illustrate the semantics of MIPS instructions with the rules for the instruction 1w (“load word”). The
formal semantics of other instructions (29 in total) can be found in [Code], file mips.v. For 1w, there are
two rules depending on whether the memory access is word-aligned and the accessed location is undefined.
(The notation +, below is for the addition on finite-size integers.)

32—N

([[base]]s +n (oﬁ)mwﬂmgz) =4 xp h[p] = Some z

32—N

Some (s,m,h) — lw rt off base — Some (s{z/rt},m,h)

([[base]]S +n (oj‘”f)m‘lﬁﬁmm)32 ., #4Xxp V hl[p] = None
Some (s,m,h) — 1w rt off base — None

exec0_lw

exec_lw_error

4.3 Big-step Operational Semantics of Assembly with Jumps

Following [SU07], an assembly program is formalized as a set of labelled instructions. The latter are either
labelled MIPS instructions or jump instructions (unconditional jumps jmp ! or conditional jumps cjmp b 1).
Conditional jumps comprise MIPS instructions such as bne (“branch if not equal”), etc; these branching
MIPS instructions are parameterized by conditions noted b below. Given an assembly program ¢, dom(c) is
the set of the labels of the instructions of c¢. Labelled instructions are assembled using a composition opera-
tor @ (this notation stems from the fact that sets of labelled instructions exhibit a structure of commutative
monoid—see [SU07] for explanations and [Code] for formal proofs).

The operational semantics of assembly programs is a predicate noted s » ¢ — s’ where c is a set of
labelled instructions, s (resp. s’) is the state before (resp. after) its execution. It is defined inductively by
the rules below. These rules are a generalization of [SU07] with more instructions and with error states. The
originality of this semantics can be appreciated by looking at the two rules for sequences using ®; intuitively,
they can be thought as a mix of the rules for sequence and while-loops of traditional Hoare logic.



Some s — i — Some s’ Some s — ¢ — None

Some (1,5) » l:4 — Some (I +1,s") Some (I,5) » [ :i — None
147
Some (I,8) » | : jmpl" — Some (I, s)
[b]. 1#£0V —[b]s
Some (I,8) > 1 : cjmp b1’ — Some (', s) Some (I,s) > 1 : cjmp b1’ — Some (I + 1, 5)
l € dom(cy) l € dom(cz)
Some (I,s) > c1 — 8 s >c1®ea —» 5" Some (I,8) > co = s s >c1Dea —» 5’
Some (I,8) » c1 B ca — s” Some (I,8) > ¢1 ey — s”
I ¢ dom(c)
None > ¢ — Nomne Some (I,8) » ¢ — Some (I,s)

4.4 Compilation from Standard Semantics and Hoare Logic

The non-standard operational semantics of the previous section also gives rise to a non-standard Hoare
logic for assemblies with jumps. [SU07] shows that derivations for this non-standard operational semantics
and Hoare logic can actually be obtained from standard operational semantics and Hoare logic through
compilation. This is a result of interest because it allows to work with standard operational semantics and
Hoare logic (that are more practical to deal with formally) while still being able to recover formal proofs
for assembly with jumps (these are the formal proofs that we really want, for example for shipping in a
proof-carrying code scenario).

In this section, we give an overview of the Hoare logics (actually, extensions known as Separation
Logic [Rey02]) that we have formalized and the lemmas from [SU07] whose formal versions are involved
in our verification of BBS.

Assertions Properties of states are specified using a shallow-encoding of logical connectives. This means
that assertions in Separation Logic are functions from states to the type Prop of propositions in Coq
(hereafter, assertions are displayed in calligraphic style to ease reading):

. def ..
assertion = store — multiplier — heap — Prop
The satisfiability of an assertion can depend on the value of the current label:

assn < label - assertion
The encoding being shallow facilitates the encoding of connectives (this is illustrated in Appendix A.1).

Hoare Logics We formalized two Separation Logics:

e A Separation Logic based on the compositional Hoare logic of [SU07]. A triple in this logic is noted
[P] ¢[Q] where P and Q are labelled assertions (type assn) and c is an assembly program with jumps.
This logic is formally proved sound and complete w.r.t. the big-step operational semantics of Sect. 4.3.
(See Appendix B for the complete formalization of this Separation Logic.)

e The standard Separation Logic. A triple in this logic is noted {P} ¢{Q} where P and Q are assertions
and c is an assembly program with while-loops instead of jumps. This logic is formally proved sound
and complete w.r.t. standard big-step operational semantics (see Appendix A.2 and Appendix A.3) for
a reminder).



4.4.1 Compilation

[SUOT] provides a compilation procedure that turns if-then-else’s and while-loops into conditional and un-
conditional jumps. The compilation of program ¢ with while-loops to an assembly program ¢’ with jumps is
noted ¢ '\ ¢ where I (resp. I') is the start (resp. end) label of the compiled program (see Appendix C for
the complete predicate). Through compilation, derivations of operational semantics can be compiled from
the standard semantics (see Appendix A.2) to the non-standard semantics of Sect. 4.3:

Lemma preservation_of _evaluations :
forallesic s U, if ¢ '\ ¢ and Some s — ¢ — Some s’, then
Some (I,s) > ¢ — Some (I 4 card(dom(c)), s).

Through compilation, proofs in Separation Logic can be compiled from the standard logic to the non-standard
logic of [SU07]:

Lemma preservation_hoare :
for all P, Q, ¢ such that {P}c{Q} and for all I, ¢/, such that ¢ '\, ¢ then
[Apc.As. pc =1AP s|c [Apc.hs.pec=1 NQ s].

Using these results, one can carry out formal verification of a program with while-loops using standard Hoare
logic and afterwards compile to obtain a formal proof for the corresponding assembly program (with jumps).
In Appendix D.1, we comment on the complete formalization of [SU07] in the Coq proof-assistant.

5 The Functional Correctness of BBS in Assembly

In Sect. 3, we saw that we need to formally prove termination and correctness of our implementation of
Sect. 2.2 (w.r.t. to the operational semantics given in Sect. 4.3) to complete the cryptographic proof of
BBS in assembly. This is the goal of this section. We start by proving functional correctness in terms of
Separation Logic, from which we derive the necessary lemmas.

5.1 The Separation Logic Triple

First, we provide concrete instances for the functions encode and decode of Sect. 3. encode imposes a specific
memory layout for the input of the assembly program of Sect. 2.2, as depicted below:

n, k, seed, m erjode\\\\‘
memory before execution: ’ X 0| M |0 L | Y |032 g ‘
k+1 words  k+1 words n words k+1 words & words
> bbs_asm —
memory after execution: l X’ |032| M |032| L | Y'! |032| 5% ‘
[bo, - . , bazm_1] decode

Besides the encoding of the seed (in memory area X) and the modulus (in memory area M) as multi-
precision integers, and initialization of for the list of pseudorandom bits (memory area L) to an appropriate
length, encode also provides additional storage (Y, 3%¥, trailing words initialized to 032) that are specific to
our implementation (these requirements stem for our use of the Montgomery multiplication, that calls for
appropriate data structures and initialization, see Appendix E for details). Note that, as long as 4(4k +n +
2) < 232 n and k can be very large, k effectively covering lengths for which the quadratic residuosity problem



is indeed believed to be intractable. This is one desirable side-effects of our approach to precisely pinpoint
the range of k.  Using above encode and decode functions, the verification goal is stated as follows?:

44k +n+2) <232 —
[Apc.As. pc = 0 A encode (n, k, seed, m) = s]
bbs_asm
[Ape.As. pe = 240 A decode (s) = bbs_fun(32 xn, seed, m))

This triple states that starting from an initial state that is an appropriate encoding of the inputs, the
execution of bbs_asm leads to some final state from which one can extract the intended list of pseudorandom
bits. This is at this level that the restrictions imposed by the choice of implementation that we mentioned
in Sect. 3 appear, for the above triple cannot be proved for any value of n and k.

Note that we are here dealing with a generalized version of the BBS algorithm that is not restricted to
seeds in Z}, (bbs_fun, that explicitly takes the modulus m, in lieu of bbs—Sect. 2.1—that uses the types Z7,
and @R,,). This is a sound generalization at this level because the information that Z7, is a cyclic group is
only needed in the cryptographic proof, not in the proof of functional correctness.

bbs_fun(len € N, seed € Z,m € 7Z) = bbs_fun_rec(len, seed?® (mod m), m)

bbs_fun_rec(len € N,z € Z,m € Z) def

match len with 0 = []|len’ +1 = parity(z) :: bbs_fun_rec(len’, 22 (mod m), m) end

In practice, we conduct formal proof using standard Separation Logic and obtain the triple above by
applying the lemma preservation_hoare of Sect. 4.4.1. The effort therefore concentrates on the formal proof
of the following triple where the assembly program with jumps has been replaced by its “decompiled” version
(with if-then-else’s and while-loops):

4(4dk+n+2) < 2% —
{As. encode (n, k, seed,m) = s}
bbs_asm_decompile
{As. decode (s) = bbs_fun(32xn, seed, m)}

5.2 Deriving Correctness and Termination

We can now derive the lemmas of correctness and termination that are necessary to complete the game-based
proof of Sect. 3. From the Separation Logic triple of the previous section, we derive by soundness of the
Separation Logic:

Lemma correctness :
if Some (0, encode (n, k, seed, m)) > bbs_asm — Some (I’,s") and 4(4k +n + 2) < 232,
then I’ = 240 and decode (s') = bbs_fun(32xn, seed, m)

The proof of termination has two steps. First, we prove that there is a final state, without proving whether
it is an error state or not:

Lemma execution_bbs_asm :
if 4(4k +n +2) < 232,
then there exists s’ such that Some (0, encode (n, k, seed, m)) > bbs_.asm — s’

This is proved by induction on the variant of the outermost loop, and then on nested loops. Second, by the
triple (1), we derive the fact that this final state cannot be an error state.

2For the sake of clarity, we display a simplified statement; the formal, complete statement can be found in [Code]

10



Framework for Assembly [AMO6] Framework for Games [NowO08]

bbs_prg.v (Sect. 2.2)
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|
I
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bbs_triple.v (Sect. 5.1)  bbs_termination.v (Sect. 5.2)
|
I
I
I
I

2

bbs_encode_decode.v (Sect. 5.2)
\—> BBS_Asm_CryptoProof.v (Sect. 3)

Figure 2: Summary of the formalization

6 Put it All Together

We finally explain how we organize in the Coq proof-assistant the game-based proof of BBS in assem-
bly overviewed in Sect. 3. The formalization is summarized in Fig. 6. bbs_encode_decode.v essen-
tially contains the encode/decode functions and the formal proof of correctness and termination, derived
from the formal proof of the Separation Logic triple for bbs_asm (as explained in Sections 5.1 and 5.2).
BBS_Asm_CryptoProof.v contains the game-based proof of Sect. 3. It makes use of the correctness and ter-
mination lemmas provided by bbs_encode_decode.v and of the cryptographic proof of the BBS algorithm
provided by BBS.v, taken directly from [Now08]. See Appendix D for more insights about the technical
aspects of the formalization and [Code] for the complete formalization.

7 Conclusion

In this paper, we addressed the problem of certification of assembly code with cryptographic proofs. We pro-
posed an approach that extends game-based proofs so as to integrate formal proofs of functional correctness
with formal cryptographic proofs in a clear way, understandable by both cryptographers and implementers.
Our proposition is supported by a concrete framework developed in the Coq proof-assistant. As an illustra-
tion, we provided the first snippet of assembly code for a pseudorandom number generator that is certified
with a cryptographic proof.

Future Work The cryptographic proof of BBS on which we rely in this paper is asymptotic. It shows
that the probability that an attacker predicts the next bit can be made arbitrarily small, but it does not
give any concrete value for the security parameter. One possible extension of our approach would be to link
our assembly implementation of BBS to a cryptographic proof of the concrete security of BSS (as in [SS05]).

Our certified implementation of BBS could be used as the source of pseudorandomness in the imple-
mentation of further cryptographic primitives. Indeed, even though it is probabilistic, such a primitive is
still deterministic in the sense that for any two equal inputs it outputs the same distribution; one can thus
extract its semantics as a mathematical function and inject it into the appropriate standard definition of
security (such as semantic security in the case of the encryption primitive of ElGamal).
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A Formalization of Standard Separation Logic

A.1 Separation Logic Connectives

For illustration, let us consider the most important connective of Separation Logic: the separating conjunc-
tion. Intuitively, P x Q holds for a state (s, m, h) when the heap can be splitted into hy and hsy such that P
holds for (s, m, hy) and Q holds for (s, m, hy). Formally:

PxQ Y Asmh. 3y, hs. dom(hy) N dom(hg) = 0 A
h:h1Uh2 AN Psmhl A Qsmhg

Other important connectives in practice are the “mapsto” connectives. Let () by the empty heap and let
(I,v) be the singleton heap that maps location ! to value v. One defines connectives that stand respectively
for singleton heaps and heap-allocated arrays as follows (4. is a function symbol for addition in a language
of expressions made of registers and finite-size integers):

6%—>€/ d: Asmh Elp ([[6]]5)32_“:4 Xp A h: (p7 [[elﬂs)

el iflis hd :: tl then (e — hd) * (€ +o 432 = t1) else §

A.2 Standard Big-step Operational Semantics

Assembly code with while-loops is built out of MIPS instructions (Sect. 4.2), sequences (notation: ¢ ;ca),
structured branching (notation: if b then c¢; else c¢2), and while-loops (notation: while b ¢). Here follow
the rules of the standard big-step operational semantics:

s — ¢ — s s—c —»s §—¢ =
None — ¢ — Nome S — ¢ — 5 s —ciica —> 8
[o]s Some (s,m,h) — c1 — s —[b] s Some (s,m,h) — ca — s
Some (s,m,h) — if b then ¢; else co — s Some (s,m,h) — if b then ¢1 else co — s
bls S h) — !
[[ :HS ome (S7m7 ) c—3Ss “[[b}]s

/ . 1"
$ —whilebe = s Some (s,m,h) — while b ¢ — Some (s, m, h)

Some (s,m,h) — whilebc — s
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A.3 Standard Separation Logic

To simplify the presentation of standard Separation Logic, let us introduce a function that computes the
weakest precondition of one-step, non-branching MIPS instructions. Here is an excerpt of this function for
the “load store” instruction:

WP i @ match i with
| 1w rt off base = As.3p. ([baseﬂs +5 ([[oﬁﬂs)mmwmw)SQHN =4xpA

Jz.h[p] = Some z A Q s{z/rt}

end

Using the above function, the standard separation logic is defined by the following rules:

WP iQ}yi{Q}
{Prea{R} {R}e{Q} {As. P A[b]s}c{P}
{P}ecr;c2{Q} {P}while b c{As.P A —[b]s}
{Qs.PA[b]s}e1 {9} {AsPA[b]s}ea{Q} PP {Plc{Q} Q9 - Q
{P}if bthen ¢ else c; {O} {P}c{Q}

B Formalization of the Compositional Hoare Logic of [SU07]

As suggested in [SUQT7], we introduce predicate transformers that enforce assertions to be satisfiable for labels
inside (resp. outside) a particular domain:

Pla¥ NPinied PLYNPINI¢d

Using above predicate transformers and the weakest-precondition function of the previous section (Sect. A.3),
we formalize the rules for the compositional Hoare logic of [SU07] as follows:

[ ApcAs. pe=IAWPc(P(l+1))sV L:e[P]
pcEINPpcs '

[ ApcAs. pc=IA(PjsVji=I)V .

i pc#EINP pes L+ jmp 7 [P]

Apeds. pe=1IA(=[b]s \P({1+1)sV[b]s A (PjsVi=1)V
pc#INPpes

[P|dom(cl)] C1 [’P] [P|d0m(02)] C2 [P]
[Plei @ co {ﬂm}

VIPL - Pl [Pe]Q] Y.Q'L ~ QI
[P]nop [P] [[7’% c [[Q]]

}z:cjmpbm
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C Compilation for Assembly: From While-loops to Jumps

Here follows the formalization of the compilation predicate of Sect. 4.4. The purpose of compilation here is
to translate structured branching and while-loops into labelled conditional and unconditional jumps.

l / l /
17 Cl \ll c]_ CQ ! \‘lz C2
) ) 1 / /
E N e cricz  N\ip €10

c li+1 \l2 Cll o I+1 \l1 0/2
if bthen ¢y elsecy 'N\y, l:cjmpb (I + 1)@ ((ch @1 : jmp ) ® )

c b \ll C/
whilebe "Ny, 41 [:cjmp (—b) (b +1)@ (¢ @1y : jup i)

D Technical Aspects of the Coq Formalization

D.1 Formalization of Programs, Semantics, and Logics

The formalization of assembly programs, operational semantics, Separation Logic, as well as all supporting
lemmas is the result of a revision of our previous work [AMO06] and of our mechanized formalization of [SU07]
in the Coq proof-assistant.

We needed to substantially revise and extend our previous work [AMO6] to address scalability issues. In
our previous work, we were able to successfully verify assembly programs of up to 36 instructions but it was
unclear whether the approach would scale. Since our implementation of BBS would anyway be much larger,
we spent beforehand some time to rework most lemmas and tactics. We do not comment extensively about
this part of the formalization except to say that we used SSREFLECT [GMO07], a recently publicized Coq
extension, that favors a proof style that naturally led to shorter proof scripts (for example, proof scripts of
experiments carried out in [AMO06] shrank by 70% in terms of lines of code).

The new aspect of our framework regarding formalization of assembly programs is the formalization of
the proof-carrying code framework of [SU07]. As already explained in Sect. 4, we instantiate this framework
to Separation Logic and MIPS instructions and extend it to deal with error-states. The table below makes it
clear what is formalized w.r.t. [SUQ7]. In brief, what we do not do: we do not formalize Section 5 of [SU07]
and we formalize only the so-called “non-constructive proofs” of Theorems 17 and 18 (indeed, for these two
theorems, the proofs come in two flavors):
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l Reference in [SUO7] | Reference in [Code] and status | Proof script size

Section 2 file goto.v 460 lines
Figure 1, Lemma 1, 3 Done
Lemma 2 Particular cases only
Section 3 file sgoto.v 745 lines
Section 3.1: Figure 2, Lemmas 4-5,
Done
Theorems 68, Corollary 9
Section 3.2: Figure 3, Theorem 10,
Done

Lemma 11, Theorem 12
Section 4 file compile.v 1429 lines
Section 4.1: Figure 5,

Lemmas 13-14, Theorems 15-16 Done
Section 4.2: Theorems 17-18 Done
Section 4.3 Done, file sgoto_hoare.v 371 lines
Section 5 Not done
Appendix A Done (revision of [AMO06])
file state.v 615 lines
file mips.v 881 lines
file mips_hoare.v 1045 lines
Appendix B
Theorems 6-7, 15-18 Done (spread over above files)

D.2 Formal Proof of the BBS Triple

The formal proof of the Separation Logic triple of Sect. 5.1 is technically the most demanding part of the
proof effort. Indeed, we are dealing with a large assembly program (at least by the current standards of proof
assistant-based verification, according to related work dedicated to formal verification of functional correct-
ness of assembly programs, e.g., [AM06, MGO07]). Our assembly implementation of BBS is 239 instructions
long and spread over several snippets of code. The table below makes it more precise which snippets are
used and their respective size:

l Function | Reference in [Code] | Program size ‘
BBS bbs_prg.v 14 insns
Montgomery strict mont_mul_strict_prg.v 9 insns
Montgomery raw mont_mul_prg.v 36 insns
Multi-precision subtraction | multi_sub_prg.v 20 insns
Multi-precision comparison | multi_lt_prg.v 11 insns
Array initialization multi_zero_prg.v 6 insns

(In the table above, “Montgomery raw” stands for the Montgomery multiplication verified in [AMO06], and “Mont-
gomery strict” is the Montgomery multiplication extended with initialization, comparison, and subtraction, so as to
implement modular multiplication, see Appendix E.)

The table below summarizes the size of proof scripts used in the proof of the Separation Logic triple of
BBS (Sect. 5.1). It is always difficult to comment about the size of proof scripts because we are lacking
good metrics for comparison. Yet, looking at related work [AMO06, MGO7], we think that it is fair to
claim that our framework for formal proof of assembly programs allows for short proof scripts: this can
be appreciated by looking at several similar experiments in common among the work in this paper and
[AMO06, MGO7] (verification of multi-precision arithmetic, Montgomery multiplication, but also Montgomery
exponentiation—file mont_exp_triple.v in [Code]—, not used in this paper though). We cannot compare
about BBS itself since it is a new contribution of the work in this paper:
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l Function | Reference in [Code] | Size ‘

BBS bbs_triple.v 841 lines
Montgomery strict mont_{mul,square}_strict_init_triple.v 601 lines
Montgomery raw mont_{mul,square}_triple.v 1205 lines
Multi-precision subtraction | multi_sub_inplace_left_triple.v 506 lines
Multi-precision comparison | multi_lt_triple.v 405 lines
Array initialization multi_zero_triple.v 129 lines

Total 3687 lines

(In the table above, formal proofs of the Montgomery multiplication are duplicated: one version for multiplication
and one version for squaring. This is because, even though the same program can be used to perform multiplication
and squaring, Separation Logic triples are slightly different: this stems from our use of the separating conjunction.
As a result, there are two formal proofs but so similar in contents that we just display the size of only one of them.)

E Implementation of BBS in Assembly: Modular Multiplication

In this section, we explain the concrete implementation of multi-precision square modulo used in the assembly
code of BBS (Sect. 2.2).

We implement multi-precision square modulo using the Montgomery multiplication [Mon85]. This is not
the fastest way to implement multi-precision square modulo but, still, this is reasonable: like the natural
multi-precision multiplication/division, it has a quadratic complexity.Moreover, we already have a formal
proof for an highly-optimized version of the Montgomery multiplication [AMO6], whereas, to the best of our
knowledge, such a formal proof for multi-precision division does not exist yet.

Using Montgomery, modular multiplication is performed as follows. Given three k-word integers M, X, Y,
the Montgomery multiplication computes a k + 1-word integer Z such that 3¥*Z = X.Y (mod M) and Z <
2M (B = 232). This is not almost a multiplication modulo except for the parasite value 3* and because
Z £ M in general. To turn the Montgomery multiplication into a genuine multiplication modulo, one needs
(1) an additional subtraction to reduce Z by M when necessary and (2) two passes to eliminate the parasite
value. The second pass requires as an additional input a k-word A = $% (mod M); given Z such that
p*Z = X.Y (mod M), it suffices to compute Z’ such that f¥Z’ = Z.A (mod M): if M is odd (this is
generally the case for cryptographic applications), one obtains as desired Z’ = X.Y (mod M).

Here follows the assembly code for the Montgomery multiplication extended with comparison and sub-
traction. It makes use of the functions montgomery (the function certified in [AMO6]), (in-place) subtraction
multi_sub (derived from [AMO06]), multi-precision comparison multi_It and an initialization function multi_zero
(see [Code] for the details):

mont_mul_strict_init %

6: multi_zero ext k Z z (* output initialization *)
13: mflhxu gpr_zero (* multiplier inialization *)
14: mthi gpr_zero

15: mtlo gpr_zero

16: montgomery k alpha x y z m one ext int X Y M Z quot C t s

54: beq C gpr_zero 81 (* is the output k + 1-word long? *)
55: addiu tt 46

56: sw C 016t

57: addiu ext k lig

58: multisub ext one z m z M int quot C Z X Y X

80: jmp 118

81: multi_lt_prg k zm X Y int ext Z M

93: beq int gpr_zero 96 (* is the output bigger than the modulus? *)
94: skip

95: jmp 118

96: multisub k one z m z ext int quot C Z X Y X

118:
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Using the assembly code just above, we can complete the assembly code of BBS given in Sect. 2.2. Let
us assume that the register b2k points to the pre-computed k-word A = 3% (mod M). Then the following
two successive calls to mont_mul_strict_init performs a square modulo:

def
mul_mod =

6: mont_mul_strict_init k alpha z x y m one ext int X B2K Y M quot C t s
118: mont_mul_strict_init k alpha y b2k © m one ext int X B2K Y M quot C t s
320:
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