
Automorphic Signatures in Bilinear Groups
and an Application to Round-Optimal Blind Signatures

Georg Fuchsbauer

École normale supérieure, CNRS - INRIA, Paris, France
http://www.di.ens.fr/∼fuchsbau

Abstract

We introduce the notion of automorphic signatures, which satisfy the following properties: the verification
keys lie in the message space, messages and signatures consist of elements of a bilinear group, and verification
is done by evaluating a set of pairing-product equations. These signatures make a perfect counterpart to the
powerful proof system by Groth and Sahai (Eurocrypt 2008). We provide practical instantiations of automor-
phic signatures under appropriate assumptions and use them to construct the first efficient round-optimal blind
signatures. By combining them with Groth-Sahai proofs, we moreover give practical instantiations of various
other cryptographic primitives, such as fully-secure group signatures, non-interactive anonymous credentials
and anonymous proxy signatures. To do so, we show how to transform signature schemes whose message space
is a group to a scheme that signs arbitrarily many messages at once.

1 Introduction

One of the main goals of modern cryptography is anonymity. A classical primitive ensuring user anonymity is
group signatures [Cv91]: they allow members that were enrolled by a group manager to sign on behalf of a group
while not revealing their identity. To prevent misuse, anonymity can be revoked by an authority. Another example
is anonymous credentials [Cha85], by which a user can prove that she holds a certain credential, and at the same
time remain anonymous. Blind signatures [Cha82] were introduced for electronic cash to prevent the linking of a
coin to its spender, and are also used in electronic voting systems, where anonymity is indispensable.

Security of such primitives is addressed by defining a security model, which is typically first proved to be
satisfiable in theory under general assumptions. Let us consider the example of dynamic group signatures by
Bellare et al. [BSZ05]. To show feasibility of their strong model, they give the following generic construction:
Assume the existence of a signature scheme, an encryption scheme and general zero-knowledge proofs. The group
manager publishes a signature verification key and uses the corresponding signing key to issue certificates on the
group members’ personal verification keys. A member produces a group signature by first signing the message with
her personal signing key, and then encrypting her certificate, her verification key, and the signature on the message.
The group signature consists of these ciphertexts completed by a non-interactive zero-knowledge (NIZK) proof
that the certificate and the signature in the plaintext are valid. The fact that a signature is a ciphertext and a NIZK
proof that leaks no information guarantees user anonymity.

For a long time the only efficient ways to instantiate such primitives was to either rely on the random-oracle
heuristic [BR93] for NIZK—or to directly use interactive assumptions (like the LRSW assumption [LRSW00] and
its variants, or “one-more” assumptions [BNPS03]). Due to a series of criticisms starting with [CGH98], more and
more practical schemes are being proposed and proved secure in the standard model (i.e., without random oracles)
and under falsifiable (and thus non-interactive) assumptions [Nao03]. In particular, groups with a bilinear map
(pairing) turned out to be an attractive tool to achieve efficiency. Many of the practical instantiations use ad hoc
constructions, since the generic ones—in particular zero-knowledge proofs—are by far too inefficient.

The Groth-Sahai Proof System. In [GS08], Groth and Sahai propose efficient zero-knowledge proofs for a large
class of statements over bilinear groups, which already found use in many implementations [CGS07, Gro07, GL07,



BCKL08, CCS09, BCKL09, BCC+09, FPV09]. They start by constructing witness-indistinguishable (WI) proofs
of satisfiability of various types of equations: given a witness of satisfiability, one makes commitments to its values
and then constructs proofs which assert that the committed values satisfy the equations. As already observed
by [Gro06], the most interesting and widely used type is the following: pairing-product equations (PPE) whose
variables are elements of the bilinear group (cf. Sect. 2.2). A PPE consists of products of pairings applied to the
variables and constants from the group. Since the employed commitments to group elements are extractable, the
resulting proofs actually constitute proofs of knowledge as well.

To efficiently implement the generic construction of group signatures from [BSZ05], Groth [Gro07] instantiates
encryption and proofs of plaintext validity with the Groth-Sahai WI proof system. Extractability of the commit-
ments serves two purposes: first, it lets the opener extract the user’s verification key and thereby trace the signer
(the commitments are thus used as encryptions that can be decrypted with the extraction key); second, it makes it
possible to reduce unforgeability of group signatures directly to unforgeability of the underlying signatures. For
the Groth-Sahai methodology to be applicable, Groth gives certification and signing schemes such that certificates,
signature verification keys and signatures (i.e., the components that need to be hidden) are group elements whose
validity is verified by evaluating PPEs.1 (cf. Sect. 3.3).

Signatures and the Groth-Sahai Proof System. The first practical schemes to use Groth-Sahai-like proofs were
the group signatures by Boyen and Waters [BW06, BW07], who independently developed their proofs using tech-
niques from [GOS06]. They require weakly secure2 signatures whose components and messages can be encrypted
(committed to) and proved to be valid. To produce certificates lying the bilinear group, they modify the weak
Boneh-Boyen signatures [BB04], which consist of one group element and whose messages are scalars: instead
of giving the scalar directly, they give it as an exponentiation of two different group generators. The security of
their construction holds under a variant of the strong Diffie-Hellman assumption (SDH) [BB04] called hidden SDH
(HSDH).

Belenkiy et al. [BCKL08] apply the Boneh-Boyen [BB04] transformation “from weak to strong security” to
the Boyen-Waters scheme. They thereby obtain fully secure signatures, at the price of introducing a “very strong
assumption” (according to [BCC+09]) they call triple Diffie-Hellman. Their signatures consist of group elements,
yet the messages are scalars. To construct anonymous credentials, they make commitments to a message and a sig-
nature on it and prove that their content is valid using Groth-Sahai proofs. Since from the employed commitments
only group elements can be extracted efficiently, they are obliged to define f -extractability, meaning that only a
function of the committed value can be extracted. This entails stronger security notions (“F -unforgeability”) for
the signature scheme in order to prove security of their construction.

In the abovementioned group signatures from [Gro07] this drawback is avoided by designing the key-certi-
fication scheme so that all committed values are group elements. The key certification is thus different from the
signature scheme whose keys are certified. Moreover, the certificate-verification key is an element of the target
group. As opposed to standard group signatures, in hierarchical group signatures [TW05] or anonymous proxy
signatures [FP08], or more generally, to instantiate certification chains, verification keys are not only certified
once, but must also serve to certify other keys. The message space must thus contain the verification keys. If we
want to apply the Groth-Sahai methodology to “anonymize” such schemes and prove unforgeability by reducing it
to the security of the underlying signatures, everything has to be in the bilinear group.

We identify the all-purpose building block to efficiently instantiate privacy-related primitives as the following:
a practical signature scheme secure against adaptive chosen-message attacks that can sign its own verification
keys; and which at the same time respects the pairing-product paradigm, that is, keys, messages and signatures
consist of group elements and the signature-verification relations are PPEs. We call such a scheme an automorphic
signature, as it is able to sign its own keys and verification preserves the structure of keys and messages, which
makes it perfectly suitable to be combined with Groth-Sahai proofs. We believe that working with group elements
enables a modular approach of combining signatures with Groth-Sahai proofs, and automorphic signatures are the

1The certified signatures defined by Ateniese et al. [ACHM05] satisfy these properties as well (and they can be completely randomized).
The certificates are (a variant of) CL signatures [CL04] on the user’s secret key; certification is thus an interactive protocol. Moreover, their
construction strongly relies on interactive (thus non-falsifiable) assumptions, such as the strong LRSW [ACM05] assumption.

2Throughout the paper we call a signature scheme weakly secure if an adversary getting signatures on random messages cannot produce
a signature on a new message.

2



building block tailored to do so. As demonstrated in Sect. 3, they yield straightforward efficient implementations
of generic constructions of a variety of primitives, by simply plugging in concrete schemes for generic ones.

We note that a scheme in [Gro06] based on the decision linear assumption [BBS04] can be considered auto-
morphic, but should rather be regarded as a proof of concept due to its inefficiency (a signature consists of hundreds
of thousands of group elements), whereas we give practical-level efficiency under reasonable assumptions.

Blind signatures. Blind signatures, introduced by Chaum [Cha82], allow a user to obtain a signature on a message
such that the signer cannot relate the resulting message/signature pair to the execution of the signing protocol.
They were formalized by [JLO97, PS00] and practical schemes without random oracles have been constructed in
e.g. [CKW04, KZ06, Oka06, KZ08]. However, all these schemes require more than one round (i.e., two moves)
of communication between the user and the signer to issue a blind signature. This is even the case for most
instantiations in the random-oracle model, an exception being Chaum’s scheme proved secure in [BNPS03] under
an interactive assumption.

In [Fis06], Fischlin gives a generic construction of round-optimal blind signatures in the common-reference
string (CRS) model: the signing protocol consists of one message from the user to the signer and one response by
the signer. This immediately implies concurrent security, an explicit goal in other works such as [HKKL07]. Up to
now, a practical instantiation of round-optimal blind signatures in the standard model has been an open problem.

Anonymous Proxy Signatures. Proxy signatures allow the delegation of signing rights; they were introduced
by [MUO96] and later formalized by [BPW03, SMP08]. Anonymous proxy signatures [FP08] unify (multi-level)
proxy signatures and group signatures by guaranteeing anonymity to the proxy signer and intermediate delegators.

They enable users (“original delegators”) to delegate others to sign on their behalf; the latter can furthermore
re-delegate the received rights to other users. Anonymity ensures that proxy signatures do not reveal who signed
and who re-delegated; however, they guarantee that there exists a delegation chain from the original delegator to
the proxy signer. As for group signatures, an algorithm to revoke anonymity is provided to deter from misuse.
Due to consecutiveness of delegation, this primitive also models hierarchical group signatures satisfying a security
model generalizing the one of [BSZ05]. The only concrete instantiation of anonymous proxy signatures was given
in [FP09] using Groth-Sahai-like proofs; it is however fairly impractical and relies on a new type of assumption.

Our Contribution

We define automorphic signatures and start with giving illustrative applications. The first is an efficient instantiation
of round-optimal (and thus concurrently secure) blind signatures in the common-reference-string model [Fis06],
which solves an open problem. A concrete round-optimal scheme that is more efficient than the instantiation of
the generic construction is given in Sect. 5.2.

In Sect. 3.2 and 3.3, we use automorphic signatures to build CCA-secure group signatures and revisit the
construction of non-interactive anonymous credentials of [BCKL08]; in particular, we achieve actual message
extractability and give an efficient credential-issuing protocol. We then present the first efficient instantiation of
anonymous proxy signatures (APS) in the standard model. We use automorphic signatures to certify public keys,
so delegation is done by simply signing the delegatee’s public key. An anonymous proxy signature is a Groth-Sahai
(GS) proof of knowledge of a certification chain that starts at the original delegator and ends at the message.

We then strengthen the model for APS by enhancing the anonymity guarantees (Sect. 3.5). We first revise
delegation so that intermediate delegators remain anonymous to the delegatee whereas the generic construction in
[FP09] only provides anonymity w.r.t. the verifier. Moreover, we give a protocol for blind delegation: a user can
be delegated to without revealing her identity. These enhancements do not affect the signature size, which grows
linearly in the number of delegations (which is optimal, since the signature must contain opening information.)

Recently, Belenkiy et al. [BCC+09] introduced delegatable anonymous credentials (DAC). They also provide
mechanisms enabling users to prove possession of certain rights while remaining anonymous; and they consider
re-delegation of received rights. Similarly to the construction of APS, a delegatable credential consists of a chain
of certificates that is encrypted and proved valid. The core protocol of DAC lets a user obtain a proof of knowledge
of a signature on her secret key, without revealing the identity of neither the signer nor the user. This imposes inter-
activity of the delegation process, while (non-blind) delegations for APS are non-interactive, even when delegators

3



remain anonymous. (We show how to achieve delegatee anonymity at the expense of non-interactivity). Besides,
DAC only deal with authentication rather than signing, and do not provide tracing mechanisms.

We believe that APS is a conceptually simpler primitive than DAC and provides a similar functionality. More-
over, automorphic signatures combined with GS proofs yield efficient instantiations in a straightforward fashion,
whereas this is not the case for DAC (see below).

Instantiations. We give two concrete instantiations of automorphic signatures and show them to be strongly
unforgeable under chosen-message attack (Sect. 5.1). The first one relies on an assumption recently introduced
by Fuchsbauer et al. [FPV09]: the double hidden SDH assumption (DHSDH) is a variant of SDH in the flavor of
HSDH in symmetric bilinear groups (“Type-1” in the terminology of [GPS08]). As also pointed out by [GSW09],
the most efficient instantiation of Groth-Sahai proofs is the one in asymmetric bilinear groups (“Type-3”) based
on SXDH (cf. Sect. 2.1). In order to construct automorphic signatures over these groups, we define a variant of
DHSDH in asymmetric groups, called ADHSDH and prove it secure in the generic group model [Sho97]. Lastly,
we give a new type of flexible CDH assumption, which is weaker than all previous versions such as [LV08].
Together with ADHSDH it implies strong unforgeability of our second automorphic-signature instantiation in
asymmetric bilinear groups. The scheme can be combined with the SXDH-instantiation of GS proofs and its
signatures consist of only 5 group elements. We insist that all our assumptions are non-interactive and falsifiable
[Nao03], and hold in the generic group model.

In Sect. 5.2, we use our schemes to give the first efficient instantiation of round-optimal blind signatures.
The blind signature and the user message are of order 30 group elements (depending on the instantiation of the
employed GS proofs) and the signer message consists of 5 elements. They can be based on either DHSDH or
ADHSDH, the latter leading to a scheme that is automorphic itself, which makes it especially suitable for our
applications. In the last section, we give a generic transformation of a signature scheme whose message space is an
algebraic group and contains the verification keys to one that signs vectors of arbitrary length. Our transformation
preserves the structure of verification; thus applied to an automorphic scheme the resulting scheme is automorphic.

Comparison of our APS instantiation with the DAC instantiation of Belenkiy et al. In [BCC+09], the un-
derlying signature (called authenticator) on a user private key is in G5

1 × G2
2, thus of size similar to that of our

automorphic signature. In the delegation protocol, the issuer first sends a GS proof of knowledge of the first 6 sig-
nature components. The issuer and the user then run a two-party protocol to jointly compute the last component,
using a homomorphic encryption scheme and interactive ZK proofs that blinding values are in the correct ranges.
The authors suggest using Paillier encryption [Pai99] based on an RSA modulus of size at least 23kp2.

Using the NIST recommendations from 2007 [NIS07] for k = 128 bits of security, the RSA modulus N must
be at least 23072; Paillier ciphertexts are thus of size N2 ≥ 26144. Since the interactive proofs of knowledge of
plaintexts and values lying in certain intervals are not given explicitly, it is not clear how many rounds of interaction
the protocol requires and how many elements are sent in each of them. Our blind delegation protocol for APS is the
issuing protocol for our blind signatures (see above), which is round-optimal; moreover, in the SXDH instantiation,
the user message and the signer message together consist of 20 elements from G1 and 18 elements from G2. For
128-bit security, using e.g. the groups suggested by Barreto and Naehrig [BN05], elements of G1 and G2 are
represented by 256 and 512 bits, respectively. The total of communication bandwidth for a blind delegation in our
scheme is thus roughly of the size of only 2 Paillier ciphertexts for comparable security parameters.

Concerning the assumptions on which the employed signature schemes are based, they are very similar and
both fall in Boyen’s [Boy08] generalized “Uber-Assumption” family and have the same generic security bound
(see Appendix C.1).

2 Preliminaries

2.1 Primitives

We recall some standard concepts from the literature.

Commitments. A non-interactive commitment scheme Com is composed of an algorithm SetupCom, outputting
a commitment key ck, and an algorithm Com with arguments ck, a message M and randomness ρ ∈ R. We require

4



that (1) the scheme is perfectly binding, i.e., for a commitment c there exists only one M s.t.: c = Com(ck,M, ρ)
for some ρ; (2) the scheme is computationally hiding, in particular, there exists SmSetupCom outputting keys
that are computationally indistinguishable from those output by SetupCom, and which generate perfectly hiding
commitments. A commitment scheme is extractable if there exists an algorithm ExSetupCom outputting (ck, ek),
where ck is distributed as the output of SetupCom, and an algorithm Extr that on input the extraction key ek and a
commitment extracts the committed value from it. Note that a commitment scheme with all the above properties
can be viewed as a lossy encryption scheme [BHY09].

Digital Signatures. A digital signature scheme Sig consists of the following algorithms: SetupSig outputs public
parameters pp. KeyGenSig outputs a pair (vk, sk) of verification and signing key. Sign(sk,M) outputs a signature
σ, which is verified by VerifySig(vk,M, σ). Signatures are existentially unforgeable under chosen-message attack
(EUF-CMA) [GMR88] if no adversary, given vk and a signing oracle for messages of its choice, can output a pair
(M,σ) s.t. M was never queried and Verify(vk,M, σ) = 1. Signatures are strongly UEF-CMA if no adversary can
output a valid pair (M,σ) such that (M,σ) 6= (Mi, σi) for all i, with Mi being the i-th oracle query and σi the
response.

Blind Signatures. Blind signatures extend digital signatures by an interactive protocol Issue↔Obtain between the
signer and a user allowing the latter to obtain a signature on a message hidden from the signer. Security is defined
by the following requirements [Oka06, HKKL07]: Blindness: An adversary impersonating the signer interacting
with Obtain twice for messages of its choice cannot relate the resulting signatures to their issuings. Unforgeability:
No adversary interacting q − 1 times with Issue can output q different messages and valid signatures on them.

Bilinear Groups. A bilinear group is a tuple BG = (p,G1,G2,GT , e,G1, G2) where G1,G2 and GT are cyclic
groups of prime order p, G1 and G2 generate G1 and G2, respectively, and e : G1 × G2 → GT is an efficient
non-degenerate bilinear map, i.e., ∀X ∈ G1 ∀Y ∈ G2 ∀ a, b ∈ Z : e(Xa, Y b) = e(X,Y )ab, and e(G1, G2)
generates GT . We will denote group elements by capital letters and integers by lower-case letters. BG is called
symmetric if G1 = G2 and G1 = G2.

The Symmetric External Diffie-Hellman (SXDH) Assumption [ACHM05] states that given (Gr1, G
s
1, G

t
1) for

random r, s ∈ Zp, it is hard to decide whether t = rs or t is random; and analogously for G2.
The Decision Linear (DLIN) Assumption [BBS04] in a symmetric group (p,G,GT , e,G) states that given

(Gα, Gβ, Grα, Gsβ, Gt) for random α, β, r, s ∈ Zp, it is hard to decide whether t = r + s or t is random.
Throughout the paper, we will assume two fixed generators G and H of G1 and G2, respectively (with G 6= H

when G1 = G2). We call a pair (A,B) ∈ G1 × G2 a Diffie-Hellman pair (w.r.t. (G,H)), if there exists a ∈ Zp
such that A = Ga and B = Ha. Using the bilinear map e, such pairs are efficiently decidable by checking
e(A,H) = e(G,B). We let DH denote the set of DH pairs and implicitly assume them to be w.r.t. G and H .

2.2 Groth-Sahai Proofs for Pairing-Product Equations

We start with presenting perfectly binding extractable commitments, which are computationally hiding under either
SXDH or DLIN, and then give an overview of Groth-Sahai proofs introduced in [GS08].

SXDH Commitments. Let BG be a bilinear group in which SXDH holds; we define ComX. SetupX(BG) chooses
α1, α2, t1, t2 ← Zp and returns ck =

(
u1 = (G1, G

α1
1 ),v1 = (Gt11 , G

α1t1
1 ),u2 = (G2, G

α2
2 ),v2 = (Gt22 , G

α2t2
2 )

)
.

ExSetupX additionally outputs the extraction key ek := (α1, α2). Let k be 1 or 2. A commitment to a group element
X ∈ Gk using randomness ρ = (ρ1, ρ2) ∈ RX := Z 2

p is defined as ComX(ck, X, ρ) := (uρ1k,1 ·v
ρ2
k,1, X ·u

ρ1
k,2 ·v

ρ2
k,2).

Extraction from (c1, c2) in Gk done by computing ExtrX
(
(α1, α2), (c1, c2)

)
:= c2 · c−αk

1 . SmSetupX replaces vk,2
in ck by Gαktk−1

k for k = 1, 2 (which is indistinguishable by SXDH), resulting in perfectly hiding commitments.

Linear Commitments. For ComL, let BG be a symmetric bilinear group in which DLIN holds. SetupL(BG)
chooses α, β, r1, r2 ← Zp and outputs ck =

(
u1 = (Gα, 1, G),u2 = (1, Gβ, G),u3 = (Gr1α, Gr2β, Gr1+r2)

)
.

ExSetupL also outputs the extraction key ek := (α, β). A commitment to X ∈ G with randomness ρ ∈ RL := Z 3
p

is defined as ComL
(
ck, X, ρ

)
:=
(∏

uρi
i,1,
∏

uρi
i,2, X·

∏
uρi
i,3

)
. ExtrL

(
(α, β), (c1, c2, c3)

)
outputs c3·c−1/α

1 ·c−1/β
2 .

SmSetupL replaces u3,3 in ck with Gr1+r2−1, which is indistinguishable by DLIN.

5



Groth-Sahai WI Proofs. We use Groth-Sahai witness-indistinguishable (WI) proofs of satisfiability of pairing-
product equations. A pairing-product equation (PPE) over variables X1, . . . ,Xm ∈ G1, Y1, . . . ,Yn ∈ G2 is an
equation of the form

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi,Yj)γi,j = tT , (E)

determined by Aj ∈ G1, Bi ∈ G2, γi,j ∈ Zp, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and tT ∈ GT .
Depending on the instantiation, the proof system makes use of one of the above commitment schemes; let

Com = (Setup,Com,ExSetup,Extr,SmSetup) denote thus either ComX or ComL. The proof system for a
bilinear group BG is set up by running Setup(BG) which produces a perfectly binding commitment key ck. Given
an assignment Xi ← Xi and Yj ← Yj , for Xi ∈ G1 and Yj ∈ G2, satisfying E, one first commits to the values
Xi, Yj by choosing randomness ρi, τj ← R and setting cXi := Com(ck, Xi, ρi) and cYj := Com(ck, Yj , τj) for all
i, j. Running ProveGS(ck, E, (Xi, ρi)mi=1, (Yj , τj)

n
j=1) generates a proof3 φwhich asserts that the values committed

in cXi and cYj satisfy E. A proof φ for equation E and commitments (cXi)
m
i=1 and (cYj )nj=1 under ck is verified

by VerifyGS(ck, E, (cXi)
m
i=1, (cYj )nj=1, φ). An honestly computed proof for commitments to values satisfying E is

always accepted by VerifyGS.

Security. Soundness. Given commitments (cXi)
m
i=1, (cYj )nj=1 s.t. VerifyGS(ck, E, (cXi)

m
i=1, (cYj )nj=1, φ) = 1 for

some φ and the extraction key ek output by ExSetup, algorithm Extr applied to cXi and cYj for all i, j yields
vectors (Xi)mi=1, (Yj)

n
j=1 satisfying E.

Witness Indistinguishability (WI). If the commitment key is replaced by ck∗ output by SmSetup (which is in-
distinguishable) then a commitment c := Com(ck∗, X, ρ) is perfectly hiding; i.e., given c, then for any X there
exists ρ ∈ R s.t. c = Com(ck∗, X, ρ). Moreover, given values ((X1, ρ1), . . . , (Xm, ρm), (Y1, τ1), . . . , (Yn, τn))
and ((X ′1, ρ

′
1), . . . , (X ′m, ρ

′
m), (Y ′1 , τ

′
1), . . . , (Y ′n, τ

′
n)) such that for all i, j: Com(ck∗, Xi, ρi) = Com(ck∗, X ′i, ρ

′
i)

and Com(ck∗, Yj , τj) = Com(ck∗, Y ′j , τ
′
j), and (X1, . . . , Xm, Y1, . . . , Yn) and (X ′1, . . . , X

′
m, Y

′
1 , . . . , Y

′
n) both sat-

isfy E, then ProveGS(ck∗, E, (Xi, ρi)mi=1, (Yj , τj)
n
j=1) and ProveGS(ck∗, E, (X ′i, ρ

′
i)
n
i=1, (Y

′
j , τ
′
j)
n
j=1) generate the

same distribution of proofs.

Examples. (1) Proof of Two Commitments Containing the Same Value. Let Eequal(X1, X2) denote the equa-
tion e(X1, H) e(X2, H

−1) = 1. Given two commitments cM = Com(ck,M, ρ) and cN = Com(ck, N, σ),
Prove(ck, Eequal, (M,ρ), (N, σ)) proves that cM and cN commit to the same value.

(2) Proof of Commitments to a DH-Pair. Define EDH(X,Y ) as e(X,H) e(G−1, Y ) = 1. A proof for Equation
EDH proves that a pair of committed values is in DH. Under ComL, the proof is in G3.

Randomizing Groth-Sahai Proofs. As observed by [FP09] and [BCC+09] and formalized by the latter, Groth-
Sahai WI proofs of knowledge can be randomized. This means that there exists an algorithm RdComGS that on
input ck, a commitment c and fresh randomness ρ′ outputs a randomization of c under ρ′.

Moreover, a proof φ for an equationE and vectors of commitments (cXi)
m
i=1 and (cYj )nj=1 can be adapted (and

randomized itself) to the randomizations c′Xi
= RdComGS(ck, cXi , ρ

′
i) and c′Yj

= RdComGS(ck, cYj , τ
′
j): running

RdProofGS(ck, E, (cXi , ρ
′
i)
m
i=1, (cYj , τ

′
j)
n
j=1, φ) computes φ′ such that ((c′Xi

)mi=1, (c
′
Yj

)nj=1, φ
′) is distributed as((

ComGS(ck, Xi, ρ̂i)
)m
i=1
,
(
ComGS(ck, Yj , τ̂j)

)n
j=1

, ProveGS
(
ck,E, (Xi, ρ̂i)mi=1, (Yj , τ̂j)

n
j=1

))
for ρ̂i and τ̂j uniformly distributed in R (and therefore VerifyGS(ck, E, (c′Xi

)mi=1, (c
′
Yj

)nj=1, φ
′) = 1). Basically, if

(for all i, j) ρi, τj are the randomness of the original commitments then c′Xi
= ComGS(ck, Xi, ρi + ρ′i) and c′Yj

=
ComGS(ck, Yj , τj + τ ′j), and φ′ is distributed as proofs output by ProveGS(ck, E, (Xi, ρi+ρ′i)

m
i=1, (Yj , τj + τ ′j)

n
j=1)

(see [FPV09] for the DLIN instantiation).
3 In the SXDH instantiation, a proof for a PPE is in G4

1 × G4
2. In the DLIN instantiation, the proof is in G9; however, if E is a

linear equation (i.e., γi,j = 0 for all i, j), then the proof reduces to 3 group elements. Note that in this context the word proof can
either denominate “proof of satisfiability” (or language-membership)—which thus includes the commitments—or mean a proof that the
content of some given commitments satisfies a given equation. We adopt the latter diction, and say proof of knowledge when we include the
commitments.

6



3 Automorphic Signatures and Their Applications

Definition 1. An automorphic signature over a bilinear group (p,G1,G2,GT , e,G1, G2) is an EUF-CMA secure
signature whose verification keys are contained in the message space. Moreover, the messages and signatures
consist of elements of G1 and G2, and the verification predicate is a conjunction of pairing-product equations
over the verification key, the message and the signature.

Before giving concrete instantiations in Sect. 5, we highlight the multitude of applications of automorphic signa-
tures. As going into details would be beyond the scope of this paper, we merely sketch the application areas.

3.1 Round-Optimal Blind Signatures

In [Fis06], Fischlin gives a generic construction for concurrently executable blind-signature schemes with optimal
round complexity in the common reference string (CRS) model. The construction relies on commitment, encryp-
tion and signature schemes and generic NIZK proofs for NP-languages. In the signature-issuing protocol, the user
first sends a commitment to the message to the signer (issuer), who responds with a signature on the commitment.
The user then constructs the blind signature as follows: she encrypts the commitment and the signature and adds a
NIZK proof that the signature is valid on the commitment and that the committed value is the message.

Following [HKKL07], Abe and Ohkubo [AO09] replace the NIZK proof in Fischlin’s construction by a
witness-indistinguishable proof and concretely suggest Groth-Sahai (GS) proofs. (Note that GS commitments
on group elements can be “decrypted” using the extraction key.) To be compatible, the signature scheme must have
messages and signatures consisting of group elements and verification must amount to evaluating pairing-product
equations. However, they only mention the highly inefficient scheme from [Gro06] as a feasibility result and leave
open the problem of an efficient construction. Automorphic signatures satisfy all the compatibility requirements
and enable thus an efficient instantiation of round-optimal blind signatures; it suffices to construct a commitment
scheme such that commitments lie in the message space of the signature (or are vectors of messages) and correct
opening is verifiable by PPEs.

We directly construct a scheme in Sect. 5.2 which has smaller blind signatures than an instantiation of the
generic construction: in the end of our issuing protocol, the user holds a signature on the message rather than on a
commitment to it. To make this possible, the user sends a randomization of the message to the issuer in addition
to the commitment. From this, the issuer makes a “pre-signature” and sends it to the user, who turns it into an
actual signature on the message by adapting the randomness. The blind signature is then a GS proof of knowledge
of a signature on the message (rather than a commitment), which avoids a proof that the commitment opens to the
message. The size of our signature is around 30 group elements (depending on the GS instantiation) and the two
messages sent during issuing are even smaller.

3.2 P-Signatures and Anonymous Credentials

In order to realize non-interactive anonymous credentials, Belenkiy et al. [BCKL08] introduce a new primitive
called P-signature. It extends a signature and a commitment scheme by the following functionalities: a protocol
Issue↔Obtain between a signer and a user allows the latter to obtain a signature on a value the signer only knows
a commitment to; and the holder of a message and a signature on it can produce a commitment to the message
and a proof of knowledge of the signature. The commitments and proofs are instantiated with the Groth-Sahai
methodology; the compatible signature scheme is the one discussed in Sect. 1. Using an automorphic signature
instead has the following advantages: the signatures and messages being group elements, they can be extracted in
the security reduction, which avoids notions like F -unforgeability. Moreover, a small modification of the signature-
issuing protocol of our blind signatures (cf. Remark 6) yields an efficient Issue↔ Obtain protocol (whereas the
one in [BCKL08] resorts to generic secure multiparty computation).

3.3 Fully-Secure Group Signatures

In order to implement the model for group signatures by [BSZ05], Groth [Gro07] uses the following ingredients to
achieve CCA-anonymity: the tag-based encryption scheme [MRY04] Enctb by Kiltz [Kil06] and a strong one-time

7



signature scheme4 Sigot. A tag-based encryption scheme is a public-key encryption scheme whose encryption and
decryption algorithms take as additional argument a tag. Kiltz’ scheme is selective-tag weakly CCA-secure, i.e.,
an adversary outputting a tag t∗ (before receiving the public key) and two messages and getting an encryption of
one of them under t∗ cannot decide which one was encrypted—even when provided with an oracle decrypting any
ciphertext with tag t 6= t∗

In Groth’s scheme a user produces a signature key pair (vk, sk) and is enrolled by the issuer who gives her a
certificate cert on vk. Now to make a group signature on a message M , the user holding (cert, vk, sk) generates
a key pair (vkot, skot) for Sigot, makes a signature sig on vkot under vk and produces a Groth-Sahai WI proof of
knowledge π of (cert, vk, sig) s.t. cert is a valid certificate on vk and sig is a signature on vkot valid under vk.
She produces an Enctb-ciphertext C encrypting sig under tag vkot and adds a Groth-Sahai NIZK proof ζ that the
encrypted value sig is the same as in the commitment contained in π. Using skot, she finally makes a signature sigot
on (M, vkot, π, C, ζ) and outputs the group signature σ = (vkot, π, C, ζ, sigot). To verify σ, check whether sigot,
the proofs π and ζ, and the ciphertext C are valid. The opener holds a key enabling her to extract (cert, vk, sig)
from π. The key vk allows to determine the signer and sig acts as a non-frameable proof of correct tracing.

Using automorphic signatures to instantiate the schemes for cert and sig immediately yields a group signature
scheme secure in the BSZ-model. More concretely, [FPV09] suggest to substitute the certified-signature scheme
used by Groth, which is based on the “q-U Assumption”, by one based on the more natural DHSDH (cf. Sect. 4).
Their replacement however uses Waters signatures [Wat05] which entail a dramatic increase of the public-key size.
This can be avoided by using instead the certified-signature scheme given in Remark 3 (based on DHSDH as well).

3.4 Anonymous Delegation of Signing Rights

Anonymous Proxy Signatures. Anonymous proxy signatures (APS) generalize group signatures in that everyone
can become a group manager by delegating his signing rights to other users who can then anonymously sign in his
name; moreover, received rights can be re-delegated. We give a brief overview of the model defined in [FP08].

Algorithm Setup establishes the public parameters. Users generate key pairs using KeyGen and run a protocol
Reg with the issuer and their opener when joining the system. (This is essential to achieve traceability; see below.)
To delegate to Bob, Alice runs Delgt on Bob’s public key, which produces a warrant she gives to Bob. With this
warrant, Bob can either sign or re-delegate to Carol, in which case Carol can again re-delegate or produce an proxy
signature with PSign on behalf of Alice, which is verifiable by Verify on Alice’s verification key.

Anonymity ensures that from a proxy signature one cannot tell who actually signed (or re-delegated), thus Bob
and Carol remain anonymous. To prevent misuse, Alice’s opener can revoke the anonymity of the intermediate
delegators and the proxy signer. Traceability asserts that every valid signature can be opened to registered users
and non-frameability guarantees that no adversary, even when colluding with the issuer, openers and other users,
can produce a signature that opens to an honest user for a delegation or a signing she did not perform.

A Generic Construction. The generic construction by [FP08] proving feasibility of the model is as follows.
Assume an EUF-CMA-secure signature scheme. The issuer and the users choose a signing/verification key pair
each. When enrolling, a user Ui obtains a signature certi on her verification key vki from the issuer. A warrant
warr1→2 from user U1 to user U2 is a signature on (vk1, vk2) valid under vk1. U2 re-delegates to U3 by send-
ing warr1→2 and warr2→3, a signature on (vk1, vk2, vk3) under vk2. Additionally, in each delegation step, the
delegators’ certificates are also passed on. Given a warrant (warr1→2,warr2→3), U3 proxy-signs a message M
on behalf of U1 as follows: first produce a signature sig on (vk1, vk2, vk3,M) using sk3; then define the plain
proxy signature as (warr1→2, vk2, cert2,warr2→3, vk3, cert3, sig). In general we say that a plain proxy signature
Σ = (warr1→2, . . . , vkk, certk, sig) on message M under vk1 is valid if:

• ∀i : certi is a signature on vki valid under the issuer’s verification key;
• ∀i : warri→i+1 is a signature on (vk1, . . . , vki+1) valid under vki; (VerPPS)
• sig is a signature on (vk1, . . . , vkk,M) valid under vkk.

4A signature scheme is strongly one-time if an adversary making a single chosen-message query before receiving the public key can
neither output a new signed message nor a new signature on the queried message. Groth uses weak Boneh-Boyen signatures [BB04].

8



Now to transform this into an anonymous proxy signature, the signer encrypts Σ under the public key of U1’s
opener (contained in vk1) and adds a NIZK proof that the plaintext satisfies the relations in (VerPPS). Due to her
decryption key, the opener can retrieve the plain signature and thus trace the delegators and the signer. The warrants
and sig are non-frameable proofs of correct tracing.

Concrete Instantiations. Restricting the model to CPA-anonymity, the building blocks can be instantiated as
follows: define encryption to be Groth-Sahai commitments (which can be “decrypted” due to extractability) and
use Groth-Sahai proofs to show that the verification relations are satisfied by the committed values. For this to work
however, the plain proxy signatures must fit the Groth-Sahai framework; meaning that the EUF-CMA signature
scheme’s verification keys, messages and signatures must be group elements satisfying pairing-product equations;
in short, they must be automorphic signatures. We note that Fuchsbauer and Pointcheval [FP09] gave a CPA-
anonymous instantiation of APS which is however fairly inefficient due to the used signature scheme (its public
keys contain several commitments to each bit of the corresponding secret key). Moreover, they only consider
one general opener and there is a maximum number of consecutive re-delegations. These limitations are easily
overcome by using automorphic signatures.

In Appendix A.1, we show how to make the above scheme CCA-anonymous and thus fully satisfy the security
model defined by [FP08]. In Appendix A.2 we discuss how to sign one message on behalf of several delegators.
In all our constructions, public attributes can be easily included as messages for the signatures in delegation. The
delegators can thus specify for which tasks they delegate signing rights.

3.5 Anonymous Proxy Signatures with Enhanced Anonymity Guarantees

We briefly sketch how to instantiate the extended model of APS discussed at the end of Sect. 1. A formal descrip-
tion can be found in Appendix E.

Blind Delegation. Using our blind automorphic signatures from Sect. 5.2, we can define blind delegation: instead
of directly signing the delegatee’s public key, the delegator runs a blind issuing protocol with the delegatee. In the
end, the latter holds an actual warrant (cf. Sect. 3.1) and continues as in the scheme above.

Delegator Anonymity. Due to the modularity of Groth-Sahai proofs (for each equation its proof only depends on
the commitments to the variables appearing in it), the “anonymization” of a signature need not be delayed until
the proxy signing: warrants can be anonymized by the delegators already and randomized in each delegation step
(which prevents linkability of signatures). However, we need to revise the way warrants are defined, since the
present scheme requires knowledge of the identities of all previous delegators to construct them. We follow the
general approach by [BCC+09], who associate an identifier id to each original delegation. A warrant from the
user at level i in the delegation chain to the next one is then a signature on (Hash(id ‖ i), vki+1) under vki, where
Hash : {0, 1}∗ → G is a collision-resistant hash function.5 The hash value prevents combining different warrants
and reordering the same warrant.

Consider the following situation (we simplify our exposition by assuming the certificate from the issuer is
contained in the user public key, and by omitting the hash values): Oliver (the original delegator), owning vkO,
delegated to Alice by giving her a signature warrO→A on her key vkA. Alice re-delegates to Bob sending him
(warrO→A, vkA,warrA→B). Bob can now delegate to Carol without revealing Alice’s identity: He makes com-
mitments cO→A, cA and cA→B to warrO→A, vkA and warrA→B , respectively. He makes a trivial commitment
cB = ComGS(ck, vkB, 0) to his own key, and the following proofs: φO→A for cO→A containing a valid warrant
from vkO to the content of cA, and φA→B for cA→B containing a valid warrant from the content of cA to the
content of cB . He sends w̃arr := (vkO, cA, cO→A, φO→A, cB, cA→B, φA→B) and a warrant warrB→C to Carol.

Now, Carol produces a signature on behalf of Oliver onM as follows (re-delegation works analogously): make
a signature sig on M valid under vkC ; randomize the commitments and adapt the proofs in w̃arr, in particular, set
c′B := RdComGS(ck, cB, ρB); make commitments to warrB→C , vkC and sig, and proofs of validity of warrB→C
and sig. Note that for the first proof the randomness of the related commitments—in particular c′B—is required.
Since cB was a trivial commitment, the randomness of c′B is ρB which was chosen by Carol (cf. end of Sect. 2.2).

5Since id and i are publicly known, Hash(id‖ i) ∈ G will be considered a constant in the Groth-Sahai proofs.

9



Remark 1. (1) Note that delegator-anonymous delegation is compatible with blind delegation: instead of simply
sending warrB→C , Bob runs the interactive blind-issuing protocol with Carol, upon which she obtains warrB→C
and continues as above.

(2) Bob could also hide his own identity to Carol as follows: he sends (hiding) commitments to his own key
and to warrB→C , and in addition a trivial commitment to Carol’s key and proof of validity of warrB→C . Carol
randomizes what Bob sent her, commits to a signature on the message and proves validity. In Appendix E, we
formally describe an instantiation of anonymous proxy signatures with delegator anonymity.

4 Assumptions

We first restate the assumption from [FPV09], present a variant for asymmetric groups and introduce another mild
assumption.

Assumption 1 (q-DHSDH). In a bilinear group (p,G,GT , e,G), given (H,K,X=Gx) ∈ G3 and q − 1 tuples(
Ai = (K ·Gvi)

1
x+ci , Ci = Gci , Di = Hci , Vi = Gvi , Wi = Hvi

)q−1

i=1
, for ci, vi ← Zp,

it is hard to output a new tuple (A∗, C∗, D∗, V ∗,W ∗) ∈ G5 of this form, i.e., a tuple that satisfies

e(A∗, X ·C∗) = e(K ·V ∗, G) e(C∗, H) = e(G,D∗) e(V ∗, H) = e(G,W ∗) (1)

Argument. As pointed out by its inventors, under the Knowledge-of-Exponent Assumption (KEA) [Dam92, BP04],
hardness of q-DHSDH follows from hardness of the following problem:

q-SDH-III: Given
(
G,K,X = Gx, (Ai = (K ·Gvi)

1
x+ci , ci, vi)

q−1
i=1

)
, produce a new tuple (A∗, c∗, v∗) satisfying

e(A∗, X ·Gc∗) = e(K ·Gv∗ , G).

(KEA asserts that given (G,H), then from an adversary returning (Gc
∗
, Hc∗) and (Gv

∗
, Hv∗) one can extract c∗

and v∗.) They then prove that hardness of q-SDH-III is implied by hardness of q-SDH [BB04], a well-established
assumption by now. DHSDH is thus similar to HSDH [BW07] which is also KEA-equivalent to a problem (forging
a weak Boneh-Boyen signature) whose hardness is implied by SDH.6

We introduce a variant of DHSDH for asymmetric bilinear groups (ADHSDH) to allow for more flexibility
and in addition a more efficient instantiation of automorphic signatures. The element H will now be in G2 and
the other generators in G1; we add an additional generator F ∈ G1 and give the elements Ci as Ci = F ci . This
makes it possible to include Y = Hx needed for verification (if we also gave Gci , we arrive at an easy problem;
see Appendix C.1). Due to asymmetry, the first verification equation for a tuple changes.

Assumption 2 (q-ADHSDH). Given (G,F,K,X=Gx; H,Y =Hx) ∈ G4
1 ×G2

2 and q − 1 tuples(
Ai = (K ·Gvi)

1
x+ci , Ci = F ci , Vi = Gvi , Di = Hci , Wi = Hvi

)q−1

i=1
, for ci, vi ← Zp,

it is hard to output a new tuple (A∗, C∗, V ∗, D∗,W ∗) ∈ G3
1 ×G2

2 of this form, i.e., a tuple that satisfies

e(A∗, Y ·D∗) = e(K ·V ∗, H) e(C∗, H) = e(F,D∗) e(V ∗, H) = e(G,W ∗) (2)

Argument. Due to the fact that we give Y = Hx, the KEA-reduction to SDH does not apply here. Instead, we
directly prove that the assumption holds in the generic group model [Sho97] in Appendix C.2.

6The q-HSDH assumption states that given G,H,Gx and q − 1 triples (G
1

x+ci , Gci , Hci) for random ci ∈ Zp, it is hard to produce a
new triple (G

1
x+c∗ , Gc∗ , Hc∗) with c∗ 6= ci for all i. HSDH is incomparable to SDH: an HSDH instance can be computed from an SDH

instance and an HSDH solution can be computed from an SDH solution, but not the other way round. Note that BB-HSDH [BCC+09],

which states that given Gx, Hx and tuples (G
1

x+ci , ci) it is hard to compute (G
1

x+c∗ , (G′)c∗ , Hc∗) for a new c∗, is easily shown to be
stronger than SDH (cf. Appendix C.1).

10



Remark 2. Assumption 2 is also valid in generic symmetric bilinear groups; in particular, in Appendix C.2 we
prove generic security of ADHSDH in the symmetric setting (thus, a fortiori it holds when G1 6= G2).

The next assumption is a weaker variant of the 1-flexible CDH assumption [LV08], which is itself a weakening
of the 2-out-of-3 CDH assumption [KP06]. The latter states that given (G,Ga, Gb), it is hard to output (R,Rab)
for an arbitrary R; to solve 1-flexible CDH, one must additionally compute Ra. We weaken the assumption further
by defining a solution as (R,Ra, Rb, Rab), and call it the weak flexible CDH assumption.

Assumption 3 (WFCDH). Given (G,Ga, Gb) ∈ G3 for random a, b← Zp, it is hard to output a non-trivial tuple
(R,Ra, Rb, Rab), i.e., with R ∈ G∗.

We define a generalization to asymmetric groups of the above assumption. Gwill be the generator of G1 and in-
stead ofGb, we give a random generatorH of G2; so a solution (Gr, Gra, Grb, Grab) becomes (Gr, Gra, Hr, Hrb)
and can be efficiently verified due to the pairing.

Assumption 4 (AWFCDH). Given random generators G ∈ G1 and H ∈ G2, and A = Ga for a← Zp, it is hard
to output (Gr, Gra, Hr, Hra) ∈ (G∗1)2 × (G∗2)2, i.e., a tuple (R,M,S,N) that satisfies

e(A,S) = e(M,H) e(M,H) = e(G,N) e(R,H) = e(G,S) (3)

Argument. Under KEA, Assumption 4 is equivalent to the discrete-logarithm (DL) assumption, thus a fortiori it
holds in the generic group model. Let (G,A) ∈ G1 be a DL instance, i.e., we have to compute a := logGA. Let
H ∈ G2 be the group element for KEA. Give the adversary (G,A,H). From a successful output, by KEA, we
can extract m := logGM = logH N and r := logGR = logH S. From (3), we have ar = m, and since r 6= 0, a
solution a = m

r .

5 Instantiations

5.1 Automorphic Signatures

DHSDH immediately yields a weakly secure signature scheme if we consider X as the public key, (V,W ) as a
message in DH = {(Gv, Hv) | v ∈ Zp} and (A,C,D) as the signature.7 We show how to transform this into a
CMA-secure signature scheme by assuming WFCDH. We add some more randomness to the signature that lets us
map a query for a message chosen by the adversary to a given tuple (Ai, Ci, Di, Vi,Wi) from a DHSDH instance.
WFCDH then asserts that the adversary cannot produce a signed new message

(
(A∗, C∗, D∗, R∗, S∗), (M∗, N∗)

)
that maps back to a tuple from the instance (see the proof of Theorem 2).

Scheme 1 (SigFPV). Given a bilinear group (p,G,GT , e,G), SetupFPV chooses parameters (H,K, T ) ← G3,
which define the message space as DH := {(Gm, Hm) |m ∈ Zp}. KeyGenFPV chooses a secret key x ← Zp and
sets vk := Gx. A message (M,N) ∈ DH is signed by SignFPV(x, (M,N)) which chooses c, r ← Zp and outputs(

A := (K ·T r ·M)
1

x+c , C := Gc, D := Hc, R := Gr, S := Hr
)
.

VerifyFPV accepts a signature (A,C,D,R, S) on a message (M,N) ∈ DH for public key X if it satisfies

e(A,X ·C) = e(K ·M,G) e(T,R) e(C,H) = e(G,D) e(R,H) = e(G,S) (4)

Theorem 1. Under q-DHSDH and WFCDH, SigFPV is strongly existentially unforgeable against adversaries
making at most q − 1 adaptive chosen-message queries.

The proof is analogous to that of Theorem 2.
7Note that this is not the case for the q-HSDH assumption (cf. Footnote 6): we cannot regard (Gc, Hc) as the message, since the signer

must know c in order to produce G
1

x+c . If the message is a public key then the exponent cannot be given to the signer, which is precisely
the reason for the complex protocol in [BCC+09].

11



Remark 3. (1) The above scheme can be easily extended to a certified signature8 [BFPW07]: consider two
instances of SigFPV (one for certification, one for signatures) that share parameters G,K and T but use a different
Hi each. The certification authority’s key is Gx, user public keys are of the form (Gv, Hv

1 ) and messages of the
form (Gm, Hm

2 ). Security follows analogously to the next construction:
(2) From the certified signature we can construct an automorphic scheme Sig2FPV as follows.9 The public key is a
certification-authority key extended to (Gx, Hx

2 ). An automorphic signature on a message (Gm, Hm
2 ) is produced

by generating a random user key (Gv, Hv
1 ) and making a certified signature on the message under that key.

Public keys of Sig2FPV are thus contained in the message space. Security follows from the following hybrid
argument. Forgeries using a new one-time key (Gv, Hv

1 ) are reduced to forgeries for the 1st-level scheme (the
simulator chooses h ← Zp, sets H2 := Gh and can thus produce a Sig2FPV key from a SigFPV key). Forgeries
recycling a key from a signing query are reduced security of the 2nd-level scheme (the simulator sets H1 := Gh,
guesses the recycled key (Gv, Hv

1 ) and sets it to (X,Xh) with X a challenge public key of the 2nd-level scheme).
A signature consists of 12 group elements satisfying 7 PPEs (of which 5 are linear).

In the asymmetric setting (or assuming ADHSDH rather than DHSDH in symmetric groups), we get the fol-
lowing more efficient construction, whose signatures are in G3

1 ×G2
2.

Scheme 2 (SigA). SetupA Given BG = (p,G1,G2,GT , e,G,H), choose additional generators F,K, T ∈ G1.
The message space containing the public key space is DH := {(Gm, Hm) |m ∈ Zp}.

KeyGenA Choose sk = x← Zp and set vk = (Gx, Hx).

SignA A signature on (M,N) ∈ DH, valid under public key (Gx, Hx), is defined as(
A := (K ·T r ·M)

1
x+c , C := F c, D := Hc, R := Gr, S := Hr

)
, for random c, r ← Zp

VerifyA (A,C,D,R, S) is valid on a message (M,N) ∈ DH under a public key vk = (X,Y ) ∈ DH iff

e(A, Y ·D) = e(K ·M,H) e(T, S) e(C,H) = e(F,D) e(R,H) = e(G,S) (5)

Theorem 2. Assuming q-ADHSDH and AWFCDH, SigA is strongly existentially unforgeable against adversaries
making at most q − 1 adaptive chosen-message queries.

A proof can be found in Appendix D.1. Note that the scheme can also be instantiated for G1 = G2.

Remark 4. SigA can also sign bit strings (matching thus the standard definition of signatures) if we assume a
collision-resistant hash function Hash : {0, 1}∗ → Zp. Define Sig∗A := (SetupA,KeyGenA,Sign∗A,Verify∗A) with
Sign∗A(sk,m) :=SignA(sk, (GHash(m), HHash(m))) and Verify∗A(vk,Σ,m) :=VerifyA(vk,Σ, (GHash(m), HHash(m))).
Security against chosen-message attacks follows by a straightforward reduction to security of SigA and collision
resistance of Hash.

5.2 Blind Automorphic Signatures

Before defining it formally, we give some intuition for the scheme discussed in Sect. 3.1. To obtain a blind sig-
nature on (M,N), the user chooses a random ρ← Zp, and blinds M by the factor T ρ. In addition to U := T ρ·M ,
she sends Groth-Sahai commitments to (M,N) and (Gρ, Hρ) and proofs of consistency. The signer now formally
produces a “signature” on U ,10 for which we have A = (K ·T r ·U)1/(x+c) = (K ·T r+ρ ·M)1/(x+c); thus A is the
first component of a signature on (M,N) with randomness r+ρ. The user can complete the signature by adapting
randomness r to r + ρ in the other components. The blind signature is a Groth-Sahai proof of knowledge of this
signature.

8A certified signature consists of the user public key, a certificate on it and a signature on the message under the user public key. Given
certified signatures for various public keys, it must be hard to produce a new certified signature (either with a new or a given user key).

9Basically, we transform a certified-signature scheme whose authority keys lie in the message space to an automorphic-signature scheme.
10Note that the user does not obtain a signature on U (unless U = M ), since it is not an element of the message space. To produce

(U,H logG U ) ∈ DH in addition to M,N,P and Q, the user would have to break weak flexible CDH.

12



Obtain(ck, pk, (M,N)) Choose ρ← Zp, τM , τN , τP , τQ ← R, set P := Gρ, Q := Hρ, and send the following:

cM := ComGS(ck,M, τM ) cN := ComGS(ck, N, τN ) φM := ProveGS
(
ck, EDH, (M, τM ), (N, τN )

)
cP := ComGS(ck, P, τP ) cQ := ComGS(ck, Q, τQ) φP := ProveGS

(
ck, EDH, (P, τP ), (Q, τQ)

)
U := T ρ ·M φU := ProveGS

(
ck, EU , (M, τM ), (Q, τQ)

)
with Equation EU (M,Q) defined as e(T,Q) e(M,H) = e(U,H).

Issue(ck, x) If all proofs are valid, choose c, r ← Zp and send:

A := (K ·T r ·U)
1

x+c C := F c D := Hc R′ := Gr S′ := Hr

The user sets R := R′ ·P , S := S′ ·Q, and checks whether (A,C,D,R, S) is valid on (M,N) under pk. The blind
signature is a Groth-Sahai proof of knowledge (~c, ~π) of (A,C,D,R, S) satisfying (5) for ck.

Figure 1: Two-move blind signing protocol.

Scheme 3 (BSig). SetupB(BG) runs (G,F,K, T,H)← SetupA(BG) and ck← SetupGS(BG) and returns these
outputs as common parameters pp. As for SigA, the message space is DH.

KeyGenB is defined as KeyGenA.

Issue↔Obtain The blind signing protocol is given in Fig. 1.

VerifyB(pp, (X,Y ), (M,N), (~c, ~π)) For (X,Y ), (M,N) ∈ DH, VerifyB runs VerifyGS(ck, EVerA ,~c, ~π), withEVerA

being the equations in (5).

Theorem 3. Under Assumptions ADHSDH and AWFCDH, and SXDH or DLIN (depending on the instantiation),
scheme BSig is an unforgeable blind-signature scheme.

Unforgeability is shown by reduction to unforgeability of SigA. In the WI setting, two GS proofs of knowledge
of different signatures on the same message are indistinguishable; moreover, the issuer gets no information on the
message during the issuing protocol. Together this implies blindness. See Appendix D.2 for a proof.

The round complexity of the scheme is optimal [Fis06]. In the DLIN instantiation, the user sends 22 group
elements (GE), since all proofs are for linear equations (cf. Footnote 3), and the signer sends 5 GE. Blind signatures
consist of 30 GE (~c is in G5×3 and ~π consists of 9 + 2·3 GE). In the SXDH instantiation, the user message is in
G17

1 × G16
2 , the signer message in G3

1 × G2
2 and a blind signature is in G18

1 × G16
2 . Note that the scheme remains

automorphic, since commitments and proofs are composed of group elements and are verified by checking PPEs.

Remark 5 (Weaker Assumptions). If we base BSig on a symmetric bilinear group and the scheme SigFPV rather
than SigA, we obtain a round-optimal blind signature scheme which is not automorphic but which is secure under
DHSDH and WFCDH (and SXDH or DLIN).

Remark 6 (Signing Committed Values). The core building block for P-signatures [BCKL08] is an interactive
protocol allowing a user that published a commitment to obtain a signature on the committed value. If the user
publishes (cM , cN , φM ) before running the blind-signature protocol we get exactly this.

5.3 Automorphic Signatures on Message Vectors

In order to sign vectors of messages of arbitrary length, we proceed as follows. We first show how to transform a
scheme whose message space forms a group (and contains the public-key space) to one that signs 2 messages at
once—if we exclude the neutral element from the message space of the transform. A signature on a message pair
will contain 3 signatures (of the original scheme) of different products of the messages. In Appendix B we show
that 3 are indeed necessary. Note that DH, the message space for the schemes SigFPV and SigA, is a group when
the group operation is defined as component-wise multiplication.

13



We then give a straightforward generic transformation from any scheme signing 2 messages (and whose verifi-
cation keys lie in the message space) to one signing message vectors of arbitrary length (Def. 3). Both transforma-
tions do not modify setup and key generation and they are invariant w.r.t. the structure of verification; in particular,
if the verification predicate of the original scheme is a conjunction of PPEs then so is that of the transform.

Definition 2. Let Sig = (Setup,KeyGen, Sign,Verify) be a signature scheme whose message space (M, ·) is a
group and contains the verification keys. The pair transform of Sig with message space (M\ {1})2 is defined as
Sig′ = (Setup,KeyGen,Sign′,Verify′) with

Sign′sk(M1,M2) • (vk0, sk0)← KeyGen

• σ :=
(
vk0, Signsk(vk0), Signsk0(M1), Signsk0(M1 ·M2), Signsk0(M1 ·M3

2 )
)
.

Verify′vk
(
(M1,M2), (vk0, τ, σ1, σ2, σ3)

)
:= Verifyvk(vk0, τ)
∧ Verifyvk0(M1, σ1) ∧ Verifyvk0(M1 ·M2, σ2) ∧ Verifyvk0(M1 ·M3

2 , σ3).

Theorem 4. If Sig is secure against EUF-CMA then so is Sig′.

Definition 3. Let Sig = (Setup,KeyGen,Sign,Verify) be a signature scheme whose message space contains
its public-key space and which signs pairs of messages. Assume an efficiently computable injection Inj from
{1, . . . , nmax} to the message space, where nmax is the maximum length of a message vector. The vector trans-
form of Sig is defined as Sig′′ = (Setup,KeyGen,Sign′′,Verify′′) with

Sign′′sk(M1, . . . ,Mn) : (vk0, sk0)← KeyGen; return σ :=
(
vk0, Signsk(vk0, Inj(n)),

(
Signsk0(Mi, Inj(i))

)n
i=1

)
.

Verify′′vk
(
(M1, . . . ,Mn), (vk0, σ0, σ1, . . . , σn)

)
:= Verifyvk

(
(vk0, Inj(n)), σ0

)
∧
∧n
i=1 Verifyvk0

(
(Mi, Inj(i)), σi

)
.

Theorem 5. If Sig is secure against EUF-CMA then so is Sig′′.

Proofs of Theorems 4 and 5 can be found in Appendices D.3 and D.4, resp. In Appendix B, we discuss why
the construction in Def. 2 is somewhat optimal and why it seems hard to construct a vector transform directly.

6 Conclusions

We introduced the concept of automorphic signatures and gave two instantiations; the first is based on known
assumptions while the second is more efficient and can be instantiated in asymmetric bilinear groups. It relies on a
new assumption, which we prove to hold in the generic group model. We used our scheme to give the first efficient
instantiation of Fischlin’s round-optimal blind signatures. Furthermore, we illustrated the numerous benefits of
automorphic signatures by constructing fully-secure group signatures and anonymous credentials, and by giving
the first efficient instantiation of anonymous proxy signatures, providing additional anonymity guarantees that have
not been considered so far.

We leave as an open problem the construction of a practical automorphic signature whose messages are single
group elements. It would also be interesting to see if the techniques used in Def. 2 can be generalized to vectors of
arbitrary (but fixed) length; that is, to define a direct transformation from a signature scheme whose message space
is a group to one signing an arbitrarily fixed number of messages.

Acknowledgments

The author would like to thank David Pointcheval and Damien Vergnaud for many invaluable discussions that led
to the present paper. The author is also grateful to Masayuki Abe for a discussion on round-optimal blind signatures
and for pointing out a flaw in an earlier construction of the vector transform. This work was supported by EADS,
the French ANR-07-SESU-008-01 PAMPA Project and the European Commission through the ICT Program under
Contract ICT-2007-216646 ECRYPT II.

14



References
[ACHM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical

group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005.
http://eprint.iacr.org/.

[ACM05] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable RFID tags via insubvertible encryp-
tion. In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors, ACM CCS 05, pages 92–101. ACM
Press, November 2005.

[AO09] Masayuki Abe and Miyako Ohkubo. A framework for universally composable non-committing blind signatures.
In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 435–450. Springer, December 2009.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan Ca-
menisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer, May 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, August 2004.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav Shacham.
Randomizable proofs and delegatable anonymous credentials. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 108–125. Springer, August 2009.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 356–374. Springer,
March 2008.

[BCKL09] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash and simulatable
VRFs revisited. In Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of LNCS, pages
114–131. Springer, August 2009.

[BFPW07] Alexandra Boldyreva, Marc Fischlin, Adriana Palacio, and Bogdan Warinschi. A closer look at PKI: Security
and efficiency. In Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages
458–475. Springer, April 2007.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption and com-
mitment secure under selective opening. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 1–35. Springer, April 2009.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In Bart Preneel
and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319–331. Springer, August 2005.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215,
June 2003.

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Kenneth G. Paterson,
editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer, September 2008.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge
protocols. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 273–289. Springer,
August 2004.

[BPW03] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy signature schemes for delegation
of signing rights. Cryptology ePrint Archive, Report 2003/096, 2003. http://eprint.iacr.org/.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic groups.
In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 136–153. Springer, February 2005.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 427–444. Springer, May / June 2006.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In Tatsuaki
Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages 1–15. Springer, April 2007.

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure against key
dependent chosen plaintext and adaptive chosen ciphertext attacks. In Antoine Joux, editor, EUROCRYPT 2009,
volume 5479 of LNCS, pages 351–368. Springer, April 2009.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (preliminary ver-
sion). In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size without random oracles. In
Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007, volume 4596 of
LNCS, pages 423–434. Springer, July 2007.

15



[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203, 1982.
[Cha85] David Chaum. Security without identification: Transaction systems to make big brother obsolete. Commun.

ACM, 28(10):1030–1044, 1985.
[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signatures without random ora-

cles. In Carlo Blundo and Stelvio Cimato, editors, SCN 04, volume 3352 of LNCS, pages 134–148. Springer,
September 2004.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, August 2004.

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EUROCRYPT’91, volume
547 of LNCS, pages 257–265. Springer, April 1991.

[Dam92] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In Joan Feigen-
baum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer, August 1992.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, August 2006.

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures. In Rafail Ostrovsky, Roberto De
Prisco, and Ivan Visconti, editors, SCN 08, volume 5229 of LNCS, pages 201–217. Springer, September 2008.

[FP09] Georg Fuchsbauer and David Pointcheval. Proofs on encrypted values in bilinear groups and an
application to anonymity of signatures. In Hovav Shacham and Brent Waters, editors, PAIRING
2009, volume 5671 of LNCS, pages 132–149. Springer, August 2009. Full version available at
http://eprint.iacr.org/2008/528.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable constant-size fair e-cash. In Juan A.
Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS 09, volume 5888 of LNCS, pages 226–247. Springer,
December 2009. Full version available at http://eprint.iacr.org/2009/146.

[GL07] Jens Groth and Steve Lu. A non-interactive shuffle with pairing based verifiability. In Kaoru Kurosawa, editor,
ASIACRYPT 2007, volume 4833 of LNCS, pages 51–67. Springer, December 2007.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In Serge
Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer, May / June 2006.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Xue-
jia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, December
2006.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru Kurosawa, editor, ASI-
ACRYPT 2007, volume 4833 of LNCS, pages 164–180. Springer, December 2007.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, April 2008.

[GSW09] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. Groth–sahai proofs revisited. Cryptology ePrint
Archive, Report 2009/599, 2009. http://eprint.iacr.org/.

[HKKL07] Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-secure blind signatures
without random oracles or setup assumptions. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 323–341. Springer, February 2007.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended abstract). In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 150–164. Springer, August 1997.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 581–600. Springer, March 2006.

[KP06] Sébastien Kunz-Jacques and David Pointcheval. About the security of MTI/C0 and MQV. In Roberto De Prisco
and Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages 156–172. Springer, September 2006.

[KZ06] Aggelos Kiayias and Hong-Sheng Zhou. Concurrent blind signatures without random oracles. In Roberto De
Prisco and Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages 49–62. Springer, September 2006.

[KZ08] Aggelos Kiayias and Hong-Sheng Zhou. Equivocal blind signatures and adaptive UC-security. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 340–355. Springer, March 2008.

[LRSW00] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In Howard M. Heys
and Carlisle M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages 184–199. Springer, August 2000.

[LV08] Benoı̂t Libert and Damien Vergnaud. Multi-use unidirectional proxy re-signatures. In Peng Ning, Paul F.
Syverson, and Somesh Jha, editors, ACM CCS 08, pages 511–520. ACM Press, October 2008.

16



[MRY04] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Definitions, construc-
tions, and applications. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 171–190. Springer,
February 2004.

[MUO96] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy signatures for delegating signing operation. In
ACM CCS 96, pages 48–57. ACM Press, March 1996.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 96–109. Springer, August 2003.

[NIS07] Recommendation for key management, special publication 800-57 part 1, NIST, 03/2007, 2007.
[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In Shai Halevi and

Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 80–99. Springer, March 2006.
[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques Stern,

editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, May 1999.
[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. Journal

of Cryptology, 13(3):361–396, 2000.
[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor, EURO-

CRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, May 1997.
[SMP08] Jacob C. N. Schuldt, Kanta Matsuura, and Kenneth G. Paterson. Proxy signatures secure against proxy key

exposure. In Ronald Cramer, editor, PKC 2008, volume 4939 of LNCS, pages 141–161. Springer, March 2008.
[TW05] Mårten Trolin and Douglas Wikström. Hierarchical group signatures. In Luı́s Caires, Giuseppe F. Italiano, Luı́s

Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of LNCS, pages 446–458.
Springer, July 2005.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, EU-
ROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, May 2005.

A Further Extensions of Anonymous Proxy Signatures

A.1 CCA-Anonymous Proxy Signatures.

CCA-anonymity (i.e., anonymity against adversaries provided with an opening oracle) of Groth’s group signatures
[Gro07] (sketched in Sect. 3.3) is proved as follows: modify the security game by substituting the opener’s commit-
ment key by one that results in perfectly hiding commitments and WI proofs; then due to the additional encryptions
contained in a group signature, opening queries for all but the challenge signature can still be simulated.

We transform the anonymous proxy signature scheme given in Sect. 3.4 into one satisfying CCA-anonymity
analogously. Suppose a proxy signer holds W := (vk1, (warri, certi, vki)ki=2) and skk. To make a signature, she
first chooses keys for a one-time signature (vkot, skot)← KeyGenot and signs vkot (instead of M ) with her personal
key skk yielding sig. She makes commitments ~c to the elements of W and sig, and adds a WI proof φj for each
equation Ej in (VerPPS) in Sect. 3.4, which are satisfied by W and sig—as in the original scheme.

In addition, for 2 ≤ i ≤ k she computes an Enctb-encryption Ci of warri under tag vkot and, as in [Gro07],
she makes a Groth-Sahai NIZK proof ζi that the plaintext of Ci is the value committed in cwarri . She computes
sigot := Signot(skot, (vkot,M,~c, ~φ, ~C, ~ζ)) and outputs the signature (vkot,~c, ~φ, ~C, ~ζ, sigot). A signature is valid if
sigot is valid under vkot, the proofs φj are valid for all j, and the proofs ζi and the ciphertexts Ci are valid for all i.
Given a valid signature, the opener returns the values (vki,warri)ki=1 extracted from the commitments ~c using the
extraction key.

The proof for CCA-anonymity is analogous to that for Groth’s group signatures. Let Game 0 denote the game
for CCA-anonymity defined by [FP08]. The adversary A controls the issuer and the users and has on opening
oracle for an honest opener. After the first phaseA returns a public key pk for an original delegator, two user secret
keys and two valid warrants of equal length from pk to the users, as well as a message. A receives an anonymous
proxy signature produced with one of the secret keys and the corresponding warrant. After a second phase of
opening queries, A has to decide which key/warrant pair was used.

In Game 1, the opening queries are simulated by decrypting ~C, checking for which users the warrants are
valid and returning their registered keys together with the warrants. Soundness of the proofs ~ζ guarantees perfect
simulation. In Game 2, we replace the opener’s commitment key by a witness-indistinguishable one and in Game 3
we simulate the proofs in ~ζ. The unforgeability of the one-time signature Sigot prevents the adversary from

17



querying opening of a proxy signature which is different from the challenge but contains the same vkot. We can
thus use an adversary winning Game 3 to break selective-tag weak CCA security of Enctb since we only have to
answer decryption queries for tags vk′ot 6= vkot.

A.2 Multiple Original Delegators

If in anonymous proxy signatures, we allow delegation to take the form of a tree (whose leaves represent original
delegators, and delegation goes from the leaves to the root) rather than a list, we can define proxy signatures on
behalf of several originators. For example, consider three original delegators O, P , Q, the first of which delegates
to A who re-delegates to B. User B is also delegated by P and re-delegates the rights for both O and P to C.
Moreover Q delegates to C. Now C can produce a signature on behalf of O, P and Q.

In general, we define a multi-originator signature (MOS) recursively: A (plain) MOS consists of a signature
on the message, the signer’s verification key and a list of objects del for the signer (which represent the delegations
to her). A del for user U is either a warrant from an originator for U or a warrant from a user U ′, the verification
key of U ′ and a list of del’s for U ′. A (plain) signature on behalf of a set of originators is valid if the signature
on the message is valid, all warrants are valid and it contains a warrant from each of the originators. As for the
single-originator case, a plain signature is anonymized by committing to its components and adding proofs of
validity.

In the above example, a signature by C on behalf ofO, P andQ has the following form (we let ψU1→U2 denote
cU1→U2 ‖φU1→U2 , and ψM denote a commitment to sig and a proof of validity):{

ψM , cC ,
{{
ψB→C , cB, {{ψA→B, cA, ψO→A}, ψP→B}

}
, ψQ→C

}}
.

B A Discussion on the Transformations in Section 5.3

Transforming a signature scheme whose verification keys lie in the message space to one that signs vectors of
messages of arbitrary length is somewhat hard. An approach that comes to mind is the following: For each
signature, the signer first produces a temporary key pair (vk, sk), signs vk with her secret key and uses sk to sign
every component of the vector. An easy attack would be to reorder the messages of a queried vector. To prevent
this shuffling attack, we let sk sign one transient key per message component, which will sign the message and its
index. To thwart an attack that returns a truncated message, we also sign the length.

To sign the indices and the length, we need to assume an injection Inj from natural numbers into the message
space as in Def. 3. The above construction however succumbs to a series of attacks, which come from the fact
that verification keys, images under Inj, and message all have the same form, which is inherent. An adversary
could for example query a signature on the message (Inj(2), Inj(1)) and return a signature on (Inj(1), Inj(2)) by
simply reordering the signature components. If however we start from a signature scheme signing 2 messages,
we avoid all these problems as can be seen by the natural construction in Def. 3 and its straightforward proof in
Appendix D.4

The crucial step is thus that from 1 to 2 messages. If we assume some structure on the message space (which
is the case for our constructions, since messages are elements of an algebraic group), then we could try to sign
several messages at once by signing their product. Again, we first sign a “one-time” key with the actual key, and
use that key to produce the signatures contained in a signature of the transform. This prevents the adversary from
combining signatures received from different queries and we thus only have to handle one-time attacks. As it turns
out, we have to construct the messages we actually sign very carefully to prevent the adversary from deriving a
signature on a new message from a signing-query response. If we only sign one product of the components, there
are trivial attacks. Signing two products seems more promising, but we show that this do not suffice either:

Concretely, we want to devise a scheme that signs (M1,M2) by signing two linear combinations of the mes-
sages; i.e., a signature on (M1,M2) consists of a signature on (Ma1

1 ·M
a2
2 ) and one on (M b1

1 ·M
b2
2 ), for some fixed

(a1, a2, b1, b2) ∈ Z4.
Assume first that (a1, a2) and (b1, b2) are linearly dependent, i.e., b1 = ca1 and b2 = ca2 for some c and that

a1 6= 0 (otherwise signatures would be independent of M1 and thus easily forgeable). After querying a transform

18



signature on (M1,M2) (and thus receiving signatures on (Ma1
1 ·M

a2
2 ) and (M ca1

1 ·M
ca2
2 )), one can produce a forgery

as follows: set M∗1 := M1 ·Ma2/a1

2 (M∗2 )−a2/a1 for an arbitrary M∗2 6= M2. A signature on this messages consists
thus of a signature on (M∗1 )a1 ·(M∗2 )a2 = Ma1

1 ·M
a2
2 and (M∗1 )ca1 ·(M∗2 )ca2 = M ca1

1 ·M ca2
2 , thus the precise two

messages for which we have signatures from the signing query.
Assume now that (a1, a2) and (b1, b2) are linearly independent, i.e., a1b2 − b1a2 6= 0; w.l.o.g., assume that

b2 6= 0. Querying (M1,M2) yields signatures Σ1 and Σ2 on (Ma1
1 ·M

a2
2 ) and (M b1

1 ·M
b2
2 ), respectively. Setting

M∗1 := M
(b1b2−a1a2)/D
1 ·M (b22−a2

2)/D
2 (with D := a1b2 − b1a2) and M∗2 := M

a1/b2
1 ·Ma2/b2

2 ·(M∗1 )−b1/b2 makes
(M∗1 )a1 ·(M∗2 )a2 = M b1

1 ·M
b2
2 and (M∗1 )b1 ·(M∗2 )b2 = Ma1

1 ·M
a2
2 , thus we can reuse the signatures, i.e., produce a

forgery (Σ2,Σ1) on (M∗1 ,M
∗
2 ).

Moreover, note that finding three linear combinations leading to a valid scheme is not trivial either. E.g.,
choosing M1, M1 ·M2 and M1 ·M2

2 succumbs to the following attack: Setting M∗1 := M1 ·M2
2 and M∗2 := M−1

2 ,
we can recycle and reorder the signatures from the query.

C The q-ADHSDH Assumption

C.1 A Note on ADHSDH

One could be tempted to transfer the DHSDH assumption to asymmetric groups by adding Y := (logG)H to the
instance, which would allow to check validity of a tuple (A,C, V,D,W ). However, this assumption is wrong, as
it succumbs to the following attack: Given an instance (G,H,K,X, Y, (Ai, Ci, Vi, Di,Wi)

q−1
i=1 ), set A∗ := A−1

1 ,
C∗ := X−2·C−1

1 , D∗ := Y −2·D−1
1 , V ∗ := V1, W ∗ := W1. Then we have e(A∗, Y ·D∗) = e(A−1

1 , (Y ·D1)−1) =
e(K ·V1, H) = e(K ·V ∗, H). The attack comes from the fact that we can use X and Y to simultaneously build
C∗ and D∗. This is what makes it indispensable to use a different basis for the C, leading to a generically secure
assumption, as proved in the next section.

The q-ADHSDH assumption is quite similar to the q-BB-HSDH assumption introduced in [BCC+09], which
states the following:

Assumption 5 (BB-HSDH). Let x, c1, . . . , cq−1 ← Zp. Then on input G,Gx, F ∈ G1 and H,Hx ∈ G2 and

tuples (G
1

x+ci , ci)
q−1
i=1 , it is infeasible to output a tuple (G

1
x+c , F c, Hc) with c 6= ci for all i.

It is however incomparable to ADHSDH, since while ADHSDH gives the adversary more flexibility in his
output, BB-HSDH gives him more information as input, since the ci are given explicitly. Moreover, BB-HSDH is
somehow asymmetric, in that the task is to output a tuple that is easier to construct than a tuple that has the form
of the q − 1 input tuples. Note that if we had F = G (as in the original definition of HSDH in [BW07]), the
BB-HSDH problem would become easy as the attack sketched above would work as well.

C.2 Generic Security of the q-ADHSDH Assumption

We prove generic security of ADHSDH in symmetric bilinear groups, as this covers the asymmetric case as well.
For convenience we restate the assumption.

(q-ADHSDH) Given (G,F,H,K,X=Gx, Y =Hx) ∈ G6 and q − 1 tuples(
Ai = (K ·Gvi)

1
x+ci , Bi = F ci , Di = Hci , Vi = Gvi , Wi = Hvi

)
,

with ci, vi ← Z∗p for i = 1, . . . , q − 1, it is hard to output a new tuple (A∗, B∗, D∗, V ∗,W ∗) that satisfies

e(A∗, Y ·D∗) = e(K ·V ∗, H) e(B∗, H) = e(F,D∗) e(V ∗, H) = e(G,W ∗) . (6)

Theorem 6. The q-ADHSDH assumption holds in generic bilinear groups when q is a polynomial.

19



Proof. We assume that the reader is familiar with the methodology of proofs in the generic group model and thus
focus on our particular assumption. We work with the “discrete-log” representation of all group elements w.r.t.
basis G. A q-ADHSDH instance is thus represented by the following rational fractions (each lower-case letter
denotes the logarithm of the group elements denoted by the corresponding upper-case letter):

1, f, h, k, x, y = xh,
{
ai = k+vi

x+ci
, bi = cif, di = cih, vi, wi = vih

}q−1

i=1
(7)

Considering the logarithms of the GT -elements in (6) w.r.t. the basis e(G,G) yields

a∗(xh+ d∗) = (k + v∗)h b∗h = d∗f v∗h = w∗ (8)

In a generic group, all the adversary can do is apply the group operation to the elements of its input. We will show
that the only linear combinations (a∗, b∗, d∗, v∗, w∗) of elements in (7) satisfying (8) are (a∗ = ai = k+vi

x+ci
, b∗ =

bi = cif, d
∗ = di = cih, v

∗ = vi, w
∗ = wi = vih) for some i; which means all the adversary can do is return a

quintuple from the instance. We make the following ansatz for a∗ (and analogously for b∗, d∗, v∗ and w∗):

a∗ = α+αff +αh h+αk k+αx x+αy xh+
∑
αai

k+vi
x+ci

+
∑
αb,i cif +

∑
αd,i cih+

∑
αv,i vi +

∑
αw,i vih

Since for any v∗ the adversary forms, it has to provide v∗h as well, we can limit the elements used for v∗ to those
of which their product with h is also given: 1, x and vi (for all i). Similarly, plugging in the ansätze for b∗ and
d∗ in the second equation of (8) and equating coefficients eliminates most of the coefficients. Thus, the last two
equations of (8) simplify b∗, d∗, v∗ and w∗ to

b∗ = γff +
∑
γb,i cif v∗ = µ+ µxx+

∑
µv,ivi

d∗ = γf h+
∑
γb,i cih w∗ = µh+ µxxh+

∑
µv,ivih

We substitute a∗, d∗, v∗ by their ansätze in the first equation of (8), that is a∗(xh + d∗)− v∗h = kh. After some
rearranging we get (for convenience, we omit one h per term, i.e., we symbolically “divided” the equation by h):

(αγf − µ) 1 + (αfγf ) f + (αhγf ) h + (α+ αxγf − µx) x + (αh + αyγf ) xh + (9a)∑
(αa,iγf ) k+vi

x+ci
+
∑

(αb,iγf + αfγb,i) cif +
∑

(αd,iγf + αhγb,i) cih +
∑

(αw,iγf ) vih + (9b)

(αf ) xf + (αk) xk + (αx) x2 + (αy) x2h +
∑

(αd,i + αyγb,i) cixh +
∑

(αb,i) cixf + (9c)∑
(αv,i) vix +

∑
(αw,i) vixh +

∑
(αγb,i) ci +

∑
(αkγb,i) cik +

∑
(αxγb,i)xci + (9d)∑∑

(αb,iγb,j) cicjf +
∑∑

(αd,iγb,j) cicjh +
∑∑

(αv,iγb,j) vicj +
∑∑

(αw,iγb,j) vicjh + (9e)

(αkγf )︸ ︷︷ ︸
=:λk

k +
∑

(αv,iγf − µv,i)︸ ︷︷ ︸
=:λv,i

vi +
∑

(αa,i)︸ ︷︷ ︸
=:λxa,i

x(k+vi)
x+ci

+
∑∑

(αa,iγb,j)︸ ︷︷ ︸
=:λca,i,j

cj(k+vi)
x+ci

= k (9f)

Comparison of coefficients11 of the two sides of the equation shows that all coefficients in lines (9a)–(9e) must be
0, whereas for the last line we have a different situation: adding x(k+vi)

x+ci
and ci(k+vi)

x+ci
reduces to k + vi (but this is

the only combination that reduces); we have thus

for all i : λxa,i = λca,i,i for all i 6= j : λca,i,j = 0 (10)

coefficient of k:
∑
λxa,i + λk = 1 coefficient of vi: λxa,i + λv,i = 0 (11)

We now solve the equations “all coefficients in Lines (9a) to (9e) equal 0”, and Equations (10) and (11) for the
values

(
α, αf , αh, αk, αx, αy, γf , µ, µx, {αa,i, αb,i, αd,i, αv,i, αw,i, γb,i, µv,i}

)
:

The first four terms and the last term in Line (9c) and the first two terms in Line (9d) immediately yield:
αf = αk = αx = αy = αb,i = αv,i = αw,i = 0 for all i. Now αy = 0 implies αh = 0 by the last term in (9a), and

11To do straightforward comparison of coefficients, we actually would have to multiply the equation by
Qq−1

i=1 (x+ ci) first. For the sake
of presentation, we keep the fractions and instead introduce new equations for the cases where a linear combination leads to a fraction that
cancels down.

20



αy = 0 implies αd,i = 0 for all i by the fifth term in in (9c). Plugging in these values, the only equations different
from “0 = 0” are the following:

αγf − µ = 0 α− µx = 0 (12)

αa,i γf = 0 (∀i) αγb,i = 0 (∀i) (13)

αa,i(1− γb,i) = 0 (∀i) αa,i γb,j = 0 (∀i 6= j) (14)∑q−1
i=1 αa,i = 1 αa,i − µv,i = 0 (∀i) (15)

where the second equation in (12) “(12.2)” follows from the fourth term in (9a) and αx = 0. (13.1) and (13.2)
follow from the first term in (9b) and the third term in (9d), respectively. Equations (14) are the equations in (10);
and those in (15) are the ones from (11) taking into account that αk = 0 and αv,i = 0 for all i. The variables not
yet proved to be 0 are α, γf , µ, µx, αa,i, γb,i and µv,i for 1 ≤ i ≤ q − 1.

We first show that there exists i∗ ∈ {1, . . . , q − 1} such that αa,j = 0 for all j 6= i∗: assume there exist i 6= j
such that αa,i 6= 0 and αa,j 6= 0; then by (14.1) we have γb,i = γb,j = 1, which contradicts (14.2).

This result implies the following: by (15.1) we have αa,i∗ = 1 and by (14.1) we have γb,i∗ = 1, whereas for
all j 6= i∗: γb,j = 0 by (14.2). We have thus shown that αa,i∗ = γb,i∗ = 1 and αa,j = γb,j = 0 for all j 6= i∗.

This now implies α = 0 (by (13.2)) and thus µ = µx = 0 by ((12.1) and (12.2), respectively). Moreover γf = 0
(by (13.1)) and for all i: αa,i = µv,i (by (15.2)). The only non-zero variables are thus αa,i∗ = γb,i∗ = µv,i∗ = 1.

Plugging in our results in the ansätze for a∗, b∗, d∗, v∗ and w∗, we proved that there exists i∗ ∈ {1, . . . , q − 1}
such that a∗ = k+vi∗

x+ci∗
, b∗ = ci∗f , d∗ = ci∗h, v∗ = vi∗ and w∗ = vi∗h. This means that the only tuples

(A∗, B∗, D∗, V ∗,W ∗) satisfying (6) and being generically constructable from a ADHSDH instance are the tuples
from that instance, which concludes our proof of generic security of ADHSDH.

D Proofs

D.1 Proof of Theorem 2

Consider an adversary that after receiving parameters (G,F,K, T,H) and public key (X,Y ) is allowed to ask for
q − 1 signatures (Ai, Ci, Di, Ri, Si) on messages (Mi, Ni) ∈ DH of its choice and outputs (M,N) ∈ DH and
a valid signature (A,C,D,R, S) on it, such that either (M,N) was never queried, or (M,N) = (Mi, Ni) and
(A,C,D,R, S) 6= (Ai, Ci, Di, Ri, Si). We distinguish two kinds of forgers: An adversary is called of Type I if its
output satisfies the following

∀ 1 ≤ i ≤ q − 1 :
[
e(T, S ·S−1

i ) 6= e(Mi ·M−1, H) ∨ C 6= Ci
]

; (16)

otherwise it is called of Type II. We will use the first type to break q-ADHSDH and the second type to break
AWFCDH.

Type I Let
(
G,F,K,X,H, Y, (Ai, Ci, Vi, Di,Wi)

q−1
i=1

)
be a q-ADHSDH challenge. It satisfies thus

e(Ai, Y ·Di) = e(K ·Vi, H) e(Ci, H) = e(F,Di) e(Vi, H) = e(G,Wi) (17)

Let A be a forger of Type I. Choose t ← Zp and give parameters (G,F,K, T :=Gt, H) and the public key
(X,Y ) to A. The i-th query for (Mi, Ni) ∈ DH is answered as(

Ai, Ci, Di, Ri := (Vi ·M−1
i )

1
t , Si = (Wi ·N−1

i )
1
t

)
.

It is easily verified that it satisfies (5); and it is correctly distributed since vi is uniformly random in the
ADHSDH instance. If the adverseray produces a valid signature/message pair ((A,C,D,R, S), (M,N))
then by the last 2 equations of (5), there exist c, r s.t. C = F c, D = Hc, R = Gr, S = Hr, and

e(A, Y ·D) = e(K ·M,H) e(T, S) . (18)

21



The tuple (A,C,D, V := Rt ·M,W := St ·N) satisfies (2), since (C,D) and (V,W ) are Diffie-Hellman

pairs and e(K ·V,H) = e(K · (Gr)t ·M,H) = e(K ·M,H) e(T, S) (18)= e(A, Y ·D). Moreover, it is
a solution for the ADHSDH instance, since it is a new tuple: assume that for some i we have C = Ci
and W = Wi, that is St ·N = Sti ·Ni. Since (M,N), (Mi, Ni) ∈ DH, we have e(T, S) e(M,H) =
e(T, S) e(G,N) = e(G,St ·N) = e(G,Sti ·Ni) = e(T, Si) e(G,Ni) = e(T, Si) e(Mi, H). We have thus
e(T, S ·S−1

i ) = e(Mi ·M−1, H) and C = Ci which contradicts (16) and thus the fact that A is of Type I.

Type II Let (G,H, T = Gt) be an AWFCDH instance; letA be a forger of Type II. Pick F,K ← G1 and x← Zp,
set X := Gx, Y := Hx and give the adversary parameters (G,F,K, T,H) and public key (X,Y ). Answer
a signing query on (Mi, Ni) ∈ DH by returning a signature (Ai, Ci, Di, Ri, Si) produced by SignA(x, ·).
SupposeA returns ((A,C,D,R, S), (M,N)) satisfying (5) s.t. e(T, S·S−1

i ) = e(Mi·M−1, H) and C = Ci
for some i. Then (M∗ := Mi·M−1, N∗ := Ni·N−1, R∗ := R·R−1

i , S∗ := S·S−1
i ) is a AWFCDH solution:

(S∗,M∗), (M∗, N∗) and (R∗, S∗) satisfy the respective equations in (3), and (M∗, N∗, R∗, S∗) is non-
trivial: if M∗ = 1 = R∗ then M = Mi and R = Ri; since moreover C = Ci and since the values M,C and
R completely determine a message/signature pair, this means thatA returned a message and a signature that
it obtained from a query for this message, which means that A did not break strong unforgeability.

D.2 Proof of Theorem 3

The protocol is correct: The signer sends A = (K ·T r ·U)
1

x+c = (K ·T r+ρ ·M)
1

x+c , C = F c, D = Hc, R′ = Gr,
S′ = Hr and the user sets R := R′ ·P = Gr+ρ and S := S′ ·Q = Hr+ρ, which makes it a valid signature on
(M,N).

Blindness: If we are given two messages from the adversary and run Obtain twice for these messages (in random
order) with the adversary, and then give the two resulting signature/message pairs, then the adversary cannot
relate them to their issuings.

We modify the security game by setting setting ck ← SmSetup (leading to perfectly WI commitments and
proofs). This modification is indistinguishable by DLIN or SXDH (depending on the used Groth-Sahai instan-
tiation). A signature/message pair

(
(~c, π), (M,N)

)
that the adversary gets in the end now perfectly hides the

signature, since the commitments are under ck. Moreover, for every pair (M ′, N ′) ∈ DH, there exists ρ′ ∈ Zp s.t.
U = T ρ

′·M ′. By witness indistinguishability of Groth-Sahai proofs, every such tuple (M ′, N ′, P ′ := Gρ
′
, Q′ :=

Hρ′) leads to the same distribution of (cM , cN , cP , cQ, φM , φP , φU ). The adversary’s view after the first round of
the protocol is thus independent of (M,N).

Unforgeability: After running the protocol q − 1 times with an honest signer, no adversary can output q different
messages and valid blind signatures on them.

We reduce unforgeability to the security of the signature scheme SigA, which follows from ADHSDH and
AWFCDH by Theorem 2. Given parameters ppA = (G,F,K, T,H) and a public key (X,Y ) for SigA, we first run
(ck, ek)← ExSetup and give the adversary pp = (ppA, ck). We then run the protocol (simulating the signer) with
adversary A as follows. Whenever A sends (cM , cN , φM , cP , cQ, φP , U, φU ), we use ek to extract (M,N,P,Q).
Soundness of the proofs φM , φP , φU ensures that there existm, ρ ∈ Zp s.t.M = Gm, N = Hm, P = Gρ, Q = Hρ

and U = T ρ·M . We query our SignA oracle for a signature on (M,N). On receiving (A,C,D,R, S), we give the
adversary (A,C,D,R′ :=R·P−1, S′ :=S ·Q−1). This perfectly simulates Issue: let c and r̂ be such that C = F c

and R = Gr̂; then A = (K ·T r̂ ·M)
1

x+c = (K ·T r̂−ρ ·U)
1

x+c , R′ = Gr̂−ρ and S′ = H r̂−ρ, which corresponds to a
real Issue reply using randomness c and r := r̂ − ρ.

The adversary wins the game if after q − 1 issuings, it outputs q blind signatures on different messages. We
extract the SigA signature on a message which we did not query to our own oracle. By soundness of GS proofs,
this is a valid signature and can thus be returned as a forgery.

22



D.3 Proof of Theorem 4

Consider an adversaryA making q queries on messages (M (i)
1 ,M

(i)
2 ) for 1 ≤ i ≤ q and outputting a new message

(M∗1 ,M
∗
2 ) and a valid signature σ∗ = (vk∗0, τ

∗, σ∗1, σ
∗
2, σ
∗
3) on it. Let vk be a challenge for Sig. We call adversaries

Type 1 if vk∗0 6= vk(i)
0 for all 1 ≤ i ≤ q. Type 1 forgeries are reduced by giving vk to the adversary as the challenge

key and answering signing queries by choosing (vk0, sk0)← KeyGen, querying vk0 to the signing oracle and using
sk0 to complete a Sig′ signature. From the adversary’s output we can return (vk∗0, τ

∗) as a forgery under vk.
Forgeries of Type 2, i.e., for some i we have vk∗0 = vk(i)

0 , are handled as follows. Let vk be a Sig challenge
key. We choose (vk′, sk′) ← KeyGen and i∗ ← {1, . . . , q} and give vk′ to the adversary. Knowing sk′, we answer
the signing queries by running Sign′sk′ —except for the i∗-th query: being queried message (M1,M2), we set

vk(i∗)
0 := vk, and use our signing oracle on messages M1, M1 ·M2 and M1 ·M3

2 to simulate a Sig′ signature. We
show that if we guessed correctly (i∗ = i) then from A’s output we can extract a forgery under vk.

In particular, we show that any valid forgery σ∗ with vk∗0 = vk on (M∗1 ,M
∗
2 ) must contain a signature on

a message we have not queried to our oracle. We proceed by case distinction: if σ∗1 , the signature on M∗1 , is a
signature on a message we have queried our oracle then M∗1 is either M1, M1 ·M2 or M1 ·M3

3 .

• M∗1 = M1. In this case, if the message of σ∗2 (i.e., M∗1 ·M∗2 ) has also been queried, then either
– M∗1 ·M∗2 = M1, thus M∗2 = 1 which is not in the message space and thus the adversary did not win, or
– M∗1·M∗2 = M1·M2, thusM∗2 = M2, thus the adversary did not return a valid forgery since (M∗1 ,M

∗
2 ) =

(M1,M2), or
– M∗1 ·M∗2 = M1·M3

2 , thus M∗2 = M3
2 , thus σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1·M9

2 , which we
have not queried to our oracle, since M2 6= 1 (see below).

• M∗1 = M1 ·M2. Again, if we queried M∗1 ·M∗2 , then either
– M∗1 ·M∗2 = M1, thus M∗2 = M−1

2 , thus σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1 ·M−2
2 , which we

have not queried to our oracle, or
– M∗1 ·M∗2 = M1 ·M2, thus M∗2 = 1, which is not a valid message, or
– M∗1 ·M∗2 = M1·M3

2 , thus M∗2 = M2
2 , thus σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1·M7

2 , which we
have not queried to our oracle.

• M∗1 = M1 ·M3
2 . Again, if we queried M∗1 ·M∗2 , then either

– M∗1 ·M∗2 = M1, thus M∗2 = M−3
2 , thus σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1 ·M−6

2 , which we
have not queried to our oracle, or

– M∗1 ·M∗2 = M1 ·M2, thus M∗2 = M−2
2 , thus σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1 ·M−3

2 , which
we have not queried to our oracle, or

– M∗1 ·M∗2 = M1 ·M3
2 , thus M∗2 = 1, which is not a valid message.

Note that all the above messages were indeed not queried to the oracle: they are all of the form M1 ·M i
2 with

i /∈ {0, 1, 3}, whereas the messages queried to the Sig oracle are of the form M1·M j
2 with j ∈ {0, 1, 3}. If we had

M1 ·M i
2 = M1 ·M j

2 for any of the above values of i and j, we would have M i−j
2 = 1 for i 6= j and thus M2 = 1,

which would not have been accepted in a signing request.
We thus showed that any valid message/signature pair the adversary returns contains a forgery.

D.4 Proof of Theorem 5

Let q be the maximal number of the adversary’s signing queries. Let ~M (i) := (M (i)
1 , . . . ,M

(i)
ni ) denote the

adversary’s i-th signing query, let σ(i) := (vk(i)
0 , σ

(i)
0 , . . . , σ

(i)
ni ) denote the replies, and let the adversary’s final

output be
(
(M∗1 , . . . ,M

∗
n∗), (vk∗0, σ

∗
0, . . . , σ

∗
n∗)
)
. Let vk be a challenge for Sig. We distinguish two types of

forgers and show how to reduce them to EUF-CMA of Sig.

23



1. ∀i :
(
vk∗0 6= vk(i)

0 ∨ n∗ 6= ni
)
. Give vk to the adversary and answer the i-th signing query by choosing

(vk(i)
0 , sk(i)

0 ), querying (vk(i)
0 , Inj(ni)) to the Sign-oracle and using sk(i)

0 to sign (M (i)
j , Inj(j)) for all j. If σ∗

is of Type 1, then ((vk∗0, Inj(n∗)), σ∗0) is a forgery under vk.

2. ∃i :
(
vk∗0 = vk(i)

0 ∧ n∗ = ni
)
. Choose i∗ ← {1, . . . , q}, produce (vk′, sk′) ← KeyGen(1k) and give the

adversary vk′ as challenge. Answer all queries as in the protocol, except for the i∗-th query: set vk(i∗)
0 := vk

and query signatures on (M (i∗)
j , Inj(j)) for all j to the Sign-oracle and complete the signature using sk′.

Suppose σ∗ is of Type 2 and we guessed correctly (i∗ = i). Since (M∗1 , . . . ,M
∗
ni

) is a valid forgery, for

some 1 ≤ j ≤ ni we have M∗j 6= M
(i)
j . Thus

(
(M∗j , Inj(j)), σ∗j

)
is a valid forgery under vk for a message

we did not query.

E An Anonymous Proxy Signature Scheme with Delegator Anonymity

We formally describe an instantiation of anonymous proxy signatures with delegator anonymity as discussed in
Remark 1 (2).

E.1 Building Blocks

To instantiate APS with delegator anonymity, we will use the following building blocks that were introduced in
Sections 2.2 and 5.1, respectively. We can instantiate them over asymmetric bilinear groups in which SXDH holds,
or over symmetric groups in which DLIN is hard.

• Commitments: ExSetup(·) takes as input the asymmetric (or symmetric) bilinear group and outputs a com-
mitment key ck ∈ G3

1 × G3
2 (or ck ∈ G5) and an extraction key ek ∈ Z 2

p . On inputs a commitment key, a
group element, and randomness fromR := Z 2

p (orR := Z 3
p ), Com(·, ·, ·) outputs a commitment in consist-

ing of 2 (or 3) group elements. RdCom(·, ·, ·) takes a commitment key, a commitment and fresh randomness,
and outputs a randomized commitment to the same value; Extr(·, ·) outputs the committed value on input ek
and a commitment.

• Groth-Sahai proofs: Prove(·, ·, ·) produces a proof in G4
1 ×G4

2 (for the DLIN instantiation, the proofs are in
G3 for linear equations, and in G9 for general equations) on inputs a commitment key, the description of a
PPE and a vector of pairs of committed values / randomness. On inputs the commitment key, the equation
description, a vector of commitments and a proof, Verify(·, ·, ·) outputs a value in {0, 1}. The algorithm
RdProof(·, ·, ·) takes as inputs a commitment key, an equation description, a vector of pairs of commit-
ments and fresh randomness, and a proof; and outputs a new proof adapted to the randomizations of the
commitments.

• Automorphic signatures: let Sig = (Setupsig,KeyGensig, Signsig,Verifysig) denote Scheme 2 in Sect. 5.1.
For vk = (X,Y ), m = (M,N) and σ = (A,C,D,R, S), let Esig(vk,m, σ) denote the equations in (5)
and the following two equations: e(X,H) = e(G, Y ) and e(M,H) = e(G,N). (We implicitly assume
fixed parameters (G,F,H,K, T ).) Analogously, let E′sig(vk, (m1,m2), σ) be the verification relations for a
signature on a message consisting of 2 DH-pairs from Definition 2.

E.2 Instantiation

Setupaps(1λ)

• Generate a bilinear group BG for security parameter λ.

• Run Setupsig(BG) to get parameters ppsig.

• Run KeyGensig(ppsig) to produce a key pair (ipk, ik). Return the public parameters pp := (ppsig, ipk)
and the issuer’s key ik.

24



Regaps is a protocol between a new user, the issuer and the user’s opener.

• The user runs (vk, sk) ← KeyGensig(ppsig) and produces a signature (possibly via an external PKI12)
σpki on vk. She sends (vk, σpki) to the issuer and vk to the opener.

• The issuer checks σpki, produces cert ← Signsig(ik, vk), sends cert to the user, and writes (vk, σpki) to
its register.

• The opener runs (ck, ek) ← ExSetup(BG) and sends ck to the user. It sets the opening key as ok :=
(vk, ck, ek).

• The user sets his public key upk = (vk, ck) and his secret key usk = (upk, sk, cert).

Delgtaps(usk, [warr], upk)

• Set k = 0 if this is an original delegation (i.e., there is no optional argument warr), otherwise let k be s.t.
this is the k-th intermediate delegation. Parse usk as

(
(vkk, ckk), skk, certk

)
and upk as (vkk+1, ckk+1).

• If k = 0 then choose an identifier id, compute warr0→1 ← Signsig
(
sk0, (Hash(id‖1), vk1)

)
and return

(ck0, id, vk0,warr0→1).

• If k = 1 then do the following:

− Parse warr as (ck, id, vk0,warr0→1).
− Compute warr1→2 ← Signsig

(
sk1, (Hash(id‖2), vk2)

)
.

− Choose ρ(v), ρ(c), ρ
(w)
1 , ρ

(w)
2 ← R and compute the following commitments and proofs:

cwarr0→1 ← Com(ck,warr0→1, ρ
(w)
1 ), cvk1 ← Com(ck, vk1, ρ

(v)), ccert1 ← Com(ck, cert1, ρ(c)),
cwarr1→2 ← Com(ck,warr1→2, ρ

(w)
2 ), cvk2 ← Com(ck, vk2, 0), (Footnote13)

φcert1 ← Prove
(
ck, Esig(ipk, ·, ·), ((vk1, ρ

(v)
1 ), (cert1, ρ(c))

)
,

φwarr0→1 ← Prove
(
ck, E′sig

(
vk0, (Hash(id‖1), ·), ·

)
,
(
(vk1, ρ

(v)), (warr0→1, ρ
(w)
1 )

))
,

φwarr1→2 ← Prove
(
ck, E′sig

(
·, (Hash(id‖2), ·), ·

)
,
(
(vk1, ρ

(v)), (vk2, 0), (warr1→2, ρ
(w)
2 )

))
.

− Return warr′ :=
(
ck, id, vk0, (cwarr0→1 , φwarr0→1 , cvk1 , ccert1 , φcert1), cwarr1→2 , φwarr1→2 , cvk2

)
.

• Otherwise, do the following:

− Parse warr as
(
ck, id, vk0, (cwarr(i−1)→i

, φwarr(i−1)→i
, cvki , ccerti , φcerti)

k−1
i=1 ,

cwarr(k−1)→k
, φwarr(k−1)→k

, cvkk

)
.

− Compute warrk→(k+1) ← Signsig
(
skk, (Hash(id‖k + 1), vkk+1)

)
.

− Choose randomness for commitments and randomization: Pick ρ(v)
i , ρ

(c)
i , ρ

(w)
i ← R for 1 ≤ i ≤ k

and ρ(w)
k+1 ← R.

− Randomize the commitments and adapt the proofs in warr:
For 1 ≤ i ≤ k: c′warr(i−1)→i

← RdCom(ck, cwarr(i−1)→i
, ρ

(w)
i ), c′vki

← RdCom(ck, cvki , ρ
(v)
i ),

φ′warr(i−1)→i
← RdProof

(
ck, E′sig

(
·, (Hash(id‖ i), ·), ·

)
,

((cvki−1 , ρ
(v)
i−1), (cvki , ρ

(v)
i ), (cwarr(i−1)→i

, ρ
(w)
i )), φwarr(i−1)→i

)
.

For 1 ≤ i ≤ k − 1: c′certi ← RdCom(ck, ccerti , ρ
(c)
i ),

φ′certi ← RdProof
(
ck, Esig(ipk, ·, ·),

(
(cvki , ρ

(v)
i ), (ccerti , ρ

(c)
i )
)
, φcerti

)
.

− Compute the following commitments and proofs:
ccertk ← Com(ck, certk, ρ

(c)
k ), cwarrk→(k+1)

← Com(ck,warrk→(k+1), ρ
(w)
k+1),

cvkk+1
← Com(ck, vkk+1, 0),

φcertk ← Prove
(
ck, Esig(ipk, ·, ·), ((vkk, ρ

(v)
k ), (certk, ρ

(c)
k )
)

12To achieve strong notions of non-frameability, it is necessary to assume an external PKI infrastructure (cf. [BSZ05])
13cvk2 is thus a trivial commitment.

25



φwarrk→(k+1)
← Prove

(
ck, E′sig

(
·, (Hash(id‖k + 1), ·), ·

)
,

((vkk, ρ
(v)
k ), (vkk+1, 0), (warrk→(k+1), ρ

(w)
k+1))

)
.

− Return warr′ =
(
ck, id, vk0, (c′warr(i−1)→i

, φ′warr(i−1)→i
, c′vki

, c′certi , φ
′
certi)

k−1
i=1 ,

(c′warr(k−1)→k
, φ′warr(k−1)→k

, c′vkk
, ccertk , φcertk), cwarrk→(k+1)

, φwarrk→(k+1)
, cvkk+1

)
.

PSignaps(usk,warr,msg) Signing is done similarly to delegation, where the message now plays the rôle of vkk+1.
Since the message is public, it is not committed to; moreover, ck and vk0 are part of the verification key and
need thus not be included in the signature (see (19)).

Verifyaps(upk,msg,Σ)

• Parse upk as (vk0, ck) and parse the signature Σ as(
id, (cwarr(i−1)→i

, φwarr(i−1)→i
, cvki , ccerti , φcerti)

k
i=1, csig, φsig

)
. (19)

• Return 1 if all of the following return 1, otherwise return 0.

− Verify
(
ck, Esig(ipk, ·, ·), (cvki , ccerti), φcerti

)
, for 1 ≤ i ≤ k;

− Verify
(
ck, E′sig(vk0, (Hash(id‖ i), ·), ·), (cvk1 , cwarr0→1), φwarr0→1

)
;

− Verify
(
ck, E′sig(·, (Hash(id‖ i), ·), ·), (cvki−1 , cvki , cwarr(i−1)→i

), φwarr(i−1)→i

)
, for 2 ≤ i ≤ k;

− Verify
(
ck, E′sig(·, (Hash(id‖k + 1),msg), ·), (cvkk

, csig), φsig
)
.

Openaps(ok,msg,Σ) Parse ok as (vk, ck, ek), parse Σ as (19) and check if it is valid. If so then set vki ←
Extr(ek, cvki) and warr(i−1)→i ← Extr(ek, cwarr(i−1)→i

) for 1 ≤ i ≤ k, and sig ← Extr(ek, csig). Return(
(vk1, . . . , vkk), (warr0→1, . . . ,warr(k−1)→k, sig)

)
, where the second component is the proof.

26


