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1 Introduction

Chameleon signatures, introduced by Krawczyk and Rabin [12], are based on
well established hash-and-sign paradigm, where a chameleon hash function is
used to compute the cryptographic message digest. A chameleon hash func-
tion is a trapdoor one-way hash function, which prevents everyone except the
holder of the trapdoor information from computing the collisions for a randomly
given input. Chameleon signatures simultaneously provide non-repudiation and
non-transferability for the signed message as undeniable signatures [4] do, but
the former allows for simpler and more efficient realization than the latter. In
particular, chameleon signatures are non-interactive and less complicated. Be-
sides, since the chameleon signatures are based on well established hash-and-sign
paradigm, it provides more generic and flexible constructions.

One limitation of the original chameleon signature scheme is that signature
forgery results in the signer recovering the recipient’s trapdoor information, i.e.,
the private key. The signer then can use this information to deny other signatures
given to the recipient. Ateniese and de Mederious [1] firstly addressed the key ex-
posure problem of chameleon hashing and introduced the idea of identity-based
chameleon hashing to solve this problem. Due to the distinguishing property
of identity-based system, the signer can sign a message to an intended recip-
ient, without having to first retrieve the recipient’s certificate. Moreover, the
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signer uses a different public key (corresponding a different private key) for each
transaction with a recipient, so that signature forgery only results in the signer
recovering the trapdoor information associated to a single transaction. There-
fore, the signer will not be capable of denying signatures on any message in
other transactions. We argue that this idea only provides a partial solution for
the problem of key exposure since the recipient’s public key is changed for each
transaction.

Chen et al. [6] proposed the first full construction of a key-exposure free
chameleon hash function in the gap Diffie-Hellman (GDH) groups with bilinear
pairings. Ateniese and de Mederious [2] then presented three key-exposure free
chameleon hash schemes, two based on the RSA assumption, as well as a new
construction based on pairings. Recently, Gao et al. [10] claimed to present a key-
exposure free chameleon hash scheme based on the Schnorr signature. However,
it requires an interactive protocol between the signer and the recipient and thus
violates the basic definition of chameleon hashing and signatures. Chen et al. [7]
proposed the first discrete-logarithm-based key-exposure free chameleon hashing
without using the GDH groups. Besides, Gao et al. [9] proposed a factoring-based
chameleon hash scheme without key exposure, which we call Gao-Wang-Xie’s
chameleon hash scheme. Independently, Kurosawa et al. [11] proposed a double-
trapdoor commitment scheme based on factoring. Since any commitment scheme
with a non-interactive commitment phase induces a chameleon hash function
and vice versa, these two schemes are actually equivalent to each other. Also, we
argue that they are both closely related to the presentation problem of factoring
[8].

Our Contribution. In this paper, we give a comment on Gao-Wang-Xie’s
chameleon hash scheme and point out some security flaws of the scheme. We also
propose an improved chameleon hash scheme based on factoring which achieves
all the desired security notions of chameleon hashing.

Organization. The rest of the paper is organized as follows: Some preliminaries
are given in Section 2. Gao-Wang-Xie’s chameleon hash scheme is introduced in
Section 3. The comment on Gao-Wang-Xie’s chameleon hash scheme is given in
Section 4. The improved key-exposure free chameleon hashing based on factoring
is proposed in Section 5. Finally, conclusions will be made in Section 6.

2 Preliminaries

In this section, we first introduce the formal definitions and security requirements
of chameleon hashing [1, 2], and then introduce a variant Rabin signature scheme
[9].

2.1 Chameleon Hashing

A chameleon hash function is a trapdoor collision-resistant hash function, which
is associated with a trapdoor/hash key pair (TK, HK). Anyone who knows the
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public key HK can efficiently compute the hash value for each input. However,
there exists no efficient algorithm for anyone except the holder of the secret key
TK, to find collisions for every given input. In the following, we present a formal
definition of a chameleon hash scheme.

Definition 1. A chameleon hash scheme consists of four efficient algorithms
(GenKey,Hash,UForge, IForge):

– GenKey: A probabilistic polynomial-time algorithm that, on input a security
parameter k, outputs a trapdoor/hash key pair (TK, HK).

– Hash: A probabilistic polynomial-time algorithm that, on input the hash key
HK, a label L, a message m, and a random string r, outputs the hashed
value h = Hash(HK, L, m, r). Note that h does not depend on TK.

– UForge (universal forge): A deterministic polynomial-time algorithm F that,
on input the trapdoor key TK, a message m, a random string r, and another
message m′ 6= m, outputs a string r′ that satisfies

Hash(HK, L, m′, r′) = Hash(HK, L, m, r).

Moreover, if r is uniformly distributed in a finite space R, then the distribu-
tion of r′ is computationally indistinguishable from uniform in R.

– IForge (instance forge): A deterministic polynomial-time algorithm that,
on input a tuple (HK, L, m, r, m′, r′) such that h = Hash(HK, L, m′, r′) =
Hash(HK, L, m, r), outputs a new collision (m′′, r′′) that also satisfies h =
Hash(HK, L, m′′, r′′).

A secure chameleon hashing scheme satisfies the following properties:

– Collision resistance: Without the knowledge of trapdoor key TK, there ex-
ists no efficient algorithm that, on input a message m, a random string r, and
another message m′, outputs a string r′ that satisfy Hash(HK, L, m′, r′) =
Hash(HK, L, m, r), with non-negligible probability.

– Semantic security: For all pairs of messages m and m′, the probability dis-
tributions of the random values Hash(HK, L, m′, r) and Hash(HK, L, m, r)
are computationally indistinguishable. In formal terms, let H [X ] denote the
entropy of a random variable X , and H [X |Y ] the entropy of the variable X
given the value of a random function Y of X . Semantic security is the state-
ment that the conditional entropy H [m|h] of the message given its chameleon
hash value h equals the total entropy H [m] of the message space.

– Message hiding: Given a collision (m′, r′) and (m, r) of the chameleon
hash scheme, i.e., h = Hash(HK, L, m′, r′) = Hash(HK, L, m, r). Then the
sender can successfully contest this invalid claim by releasing a third pair
(m′′, r′′) such that h = Hash(HK, L, m′′, r′′), without having to reveal the
original signed message m.

– Key exposure freeness: If a recipient has never computed a collision under
a label L, then there is no efficient algorithm for an adversary to find a
collision for a given chameleon hash value Hash(HK, L, m, r). This must
remain true even if the adversary has oracle access to F and is allowed
polynomially many queries on triples (Lj , mj , rj) of his choice, except that
Lj is not allowed to equal the challenge L.
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2.2 A Variant of Rabin Signature Scheme

Let N = pq is a Blum integer, where p, q are two random primes such that
p = q = 3 mod 4. Denote by QRN the set of all quadratic residue modulo N ,
we know that either m ∈ QRN or −m ∈ QRN if the Jacobi symbol (m

N ) =
+1. Note that the Jacobi symbol can be calculated without knowledge of the
factorization of N . Also, for a Blum integer, squaring is a permutation on the
group of quadratic residues QRN . Trivially, it can be extended to 2l-th power
for any positive integer l.

Define a cryptographic hash function H : {0, 1}∗ → Z∗

N [+1], where Z∗

N [+1] =
{a|a ∈ Z∗

N , (m
N ) = +1} is the set of elements of Z∗

N with Jacobi symbol is +1.
Constructions of the hash function H can be found in [5, 9]. A variant Rabin
signature scheme based on factoring assumption is given as follows:

– Sign: Given a message m, compute the signature σ = |H(m)|
1
2 mod N ,

where |H(m)| = H(m) if H(m) ∈ QRN ; |H(m)| = −H(m) otherwise.

– Verify: Given a pair (m, σ), if either σ2 = H(m) mod N or σ2 = −H(m)
mod N holds, then σ is a valid signature for message m.

3 Gao-Wang-Xie’s Chameleon Hashing

In this section, we introduce Gao-Wang-Xie’s chameleon hash scheme without
key exposure based on factoring [9], which consists of the following efficient
algorithms.

– GenKey: Given a security parameter k, let N = pq where p, q are two
distinct odd primes with the same length such that p = q = 3 mod 4. Define
a cryptographic hash function H : {0, 1}∗ → Z∗

N [+1]. The public key is N
and the secret key is (p, q). Additionally, we restrict the considered message
space of the chameleon hash is {0, 1}f(k) where f(k) is super-logarithmic in
k, i.e., 0 ≤ m ≤ 2f(k) − 1. Trivially, the case of the message space of {0, 1}∗

can be easily extended by using a resistant hash function from {0, 1}∗ to
{0, 1}f(k).

– Hash: Given the public key N , a label L, and a message m ∈ {0, 1}f(k),
firstly choose a random string r ∈ ZN and compute the hash value

h = Hash(N, L, m, r) = bJmr2f(k)

mod N,

where J = H(L), b ∈ {+1,−1}.

– Uforge: Given the secret key p, q, the original input (m, r), another message

m′ 6= m, first compute the ephemeral trapdoor B = |H(L)|
1

2f(k) mod N
for the label L, here |H(L)| = H(L) if H(L) ∈ QRN ; |H(L)| = −H(L)
otherwise. Then compute the corresponding random string r′ = rBm−m′
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mod N . Note that

Hash(N, L, m′, r′) = ±H(L)m′

r′2
f(k)

= ±H(L)m′

(rBm−m′

)2
f(k)

= ±H(L)m′

|H(L)|m−m′

r2f(k)

= ±H(L)mr2f(k)

= ±Hash(N, L, m, r)

Since the only difference between Hash(N, L, m, r) and Hash(N, L, m′, r′) is
±, (m, r) and (m′, r′) are viewed as a valid collision of the chameleon hash
function.

– IForge: Given a valid collision (m, r) and (m′, r′), we have Hash(N, L, m, r) =

±Hash(N, L, m′, r′) mod N , i.e., |H(L)|m−m′

= (r′/r)2
f(k)

mod N . Simi-
lar to the technique in [8], we can compute a square root θ of J ′ = |H(L)|
as follows:
Let 2s = gcd(m − m′, 2f(k)), where 0 ≤ s < f(k). Compute u, v ∈ Z such
that u(m − m′) + v2f(k) = 2s and then compute

J ′2s

= J ′u(m−m′)+v2f(k)

= (J ′m−m′

)u(J ′v)2
f(k)

= ((r′/r)uJ ′v)2
f(k)

mod N

Let θ = ((r′/r)uJ ′v)2
f(k)−s−1

, we have J ′2s

= (θ2)2
s

. Since J ′, θ ∈ QRN and
square is a permutation of the group QRN , we have J ′ = θ2 mod N .
Now if m′ ≥ 2f(k)−1, let m′′ = m′ − 2f(k)−1 and r′′ = r′θ mod N ; if m′ <
2f(k)−1, let m′′ = m′ + 2f(k)−1 and r′′ = r′/θ mod N . We can verify that
Hash(N, L, m′′, r′′) = ±Hash(N, L, m′, r′) mod N .

Theorem 1. The above chameleon hash scheme enjoys the properties of colli-
sion resistance, message hiding, semantic security, and key-exposure freeness.

Proof. – Collision Resistance: Exposing a collision allows anybody to compute
a variant Rabin signature |H(L)|

1
2 on message L. Since the variant Rabin

signature is existentially unforgeable under the factoring assumption, the
proposed chameleon hash function is collision resistance.

– Message Hiding: Given a collision (m, r) and (m′, r′), we can use the algo-
rithm IForge to compute another pair (m′′, r′′).

– Semantic Security: For each message m, the hash value h = Hash(N, L, mr, )

is uniquely determined by the value r2f(k)

with ignoring ±, and vice versa. So,

the conditional probability taken over the message space µ(m|h)=µ(m|r2f(k)

).

Also, µ(m|r2f(k)

) = µ(m) since m and r are independent variables. So,
µ(m|h) = µ(m), i.e., the chameleon hash value h discloses no information
about m.
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– Key-exposure Freeness: If an attacker A1 against the above chameleon hash
scheme can be successful with respect to the property of key-exposure free-
ness, then we can use it to construct an attacker A2 of type uf-ecma against
the above variant Rabin signature as follows: First A2 is given the public
parameters (N, H, f(k)) of the variant Rabin signature, and A2 passes them
to A1. Then when A1 makes a query (Li, mi, ri) to the oracle UForge, A2

can get the ephemeral trapdoor |H(L)|
1

2f(k) mod N from its own oracle ac-
cess and further compute a collision (m′

i, r
′

i) as in UForge and return it. At
last, A1 returns a collision (m, r) and (m′, r′) and a never queried label L

such that Hash(N, L, m′, r′) = Hash(N, L, m, r), A2 can compute |H(L)|
1
2

mod N as in IForge, which is the variant Rabin signature for message L.

4 Comments on Gao-Wang-Xie’s Chameleon Hashing

In this section, we present some security flaws of Gao-Wang-Xie’s chameleon
hash scheme.

Firstly, we point out that the definition of Gao-Wang-Xie’s chameleon hash-
ing is not rigorous. For a given input, the hash value h is a random variable
dependent on the random bit b. This is considered to be a main trick to de-
sign key-exposure free chameleon hashing based on factoring. For more details,
please refer to the remark 2 of [9]. Also, (m, r) and (m′, r′) is a valid collision if
Hash(N, L, m′, r′) = ±Hash(N, L, m, r) holds. This strongly violates the original
definition of chameleon hashing and the collisions. The reason for this paradoxi-
cal definition is that anyone without the information of p, q can not know whether
H(L) is a quadratic residue. We present a solution to this problem as follows:

Define the chameleon hash function h = Hash(N, L, m, r) = H(L)mr2f(k)

mod N. We consider the following situations:

– If H(L) ∈ QRN , the receiver with the trapdoor H(L)1/2f(k)

to compute a

pair (m′, r′) such that h = H(L)m′

r′2
f(k)

.
– If H(L) /∈ QRN , then −H(L) ∈ QRN .

• If m is an even, then h = H(L)mr2f(k)

= (−H(L))mr2f(k)

mod N ,

the receiver can use the trapdoor (−H(L))1/2f(k)

to compute a collision
(m′, r′) where m′ is also an even.

• If m is an odd, then h = H(L)mr2f(k)

= −(−H(L))mr2f(k)

mod N ,

the receiver can use the trapdoor (−H(L))1/2f(k)

to compute a collision
(m′, r′) where m′ is also an odd.

Therefore, we can always define h = Hash(N, L, m, r) = H(L)mr2f(k)

mod N.
This makes the chameleon hash scheme very simple and easily to be understand.
In the section 5, we present another solution which still uses the random bit b
to fix this problem.

The second security flaw is the proof for key-exposure freeness. When A1

makes queries (Li, mi, ri) to Uforge, can A2 always know the information

|H(Li)|
1/2f(k)

? Note that A2 can not know the master trapdoor (p, q).
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Let us consider IForge more carefully: Given a collision (m, r) and (m′, r′)

for L, we have |H(L)|m−m′

= (r′/r)2
f(k)

. Define gcd(m − m′, 2f(k)) = 2s, here
0 ≤ s < k (this imply that m ≤ 2f(k) − 1). Compute (u, v) such that u(m −

m′) + v2f(k) = 2s, so we have ((r′/r)u|H(L)|v)2
k

= |H(L)|2
s

.

Trivially, θ = ((r′/r)u|H(L)|v)2
f(k)−s−1

= |H(L)|
1
2 mod N (this is the re-

sult of [9]). On the other hand, if we define θ′ = (r′/r)u|H(L)|v , then we have

θ′ = |H(L)|
1

2f(k)−s mod N . Of course, if we know θ′, we can compute θ easily.

However, for any integer s > 0, it is difficult to compute |H(L)|
1

2f(k) .
In the proof for key-exposure freeness of Gao-Wang-Xie’s chameleon hash

scheme, the attackerA2 can always obtain the ephemeral trapdoor key |H(L)|
1

2f(k)

mod N from its own oracle access. This requires that the variant Rabin signature
is still existentially unforgeable against the so-called uf-ecma attacker under the
factoring assumption. The uf-ecma attacker is more powerful than the traditional
adaptively chosen message attacker because uf-ecma attacker can always access

to an oracle to obtain |H(L)|
1

2f(k) mod N . This seems to be a much stronger
assumption to prove the security of the variant Rabin signature, i.e., it is much
more difficult to prove the unforgeability of the variant Rabin signature. The au-

thors [9] do not provide the complete proof. Actually, observe that |H(L)|
1

2l is

f(k) consecutive trapdoors, where 1 ≤ l ≤ f(k). A higher trapdoor |H(L)|
1

2l can

be used to compute a lower trapdoor |H(L)|
1

2l−1 . In the random oracle model,
we argue that it is enough to compute a collision of the chameleon hash scheme
with the trapdoor |H(L)|

1
2 . Therefore, it only requires that the variant Rabin

signature is existentially unforgeable against the traditional adaptively chosen
message attacker, which can be easily proven based on the technique [3]. We will
present the details in the section 5.

Finally, the collision (m′′, r′′) is a fixed pair in IForge of Gao-Wang-Xie’s
chameleon hash scheme. Actually, we can provide plenty of other collisions since

the real ephemeral trapdoor is not H(L)
1
2 , but |H(L)|

1

2f(k)−s as discussed above.
Therefore, for any message m′′ such that 2s|m′ − m′′, we can compute the cor-
responding r′′ as a collision. Only when s = f(k)−1, the pair (m′′, r′′) is unique
determined. For more details, please refer to section 5.

5 Improved Chameleon Hashing Based on Factoring

In this section, we present an improved chameleon hashing without key exposure
based on factoring. Our chameleon hash scheme is defined as

h = Hash(N, L, m, r, b) = bJmr2f(k)

mod N,

where J = H(L), b ∈ {+1,−1}.
Though we also use a random bit b, it is viewed as a part of the input of the

chameleon hash scheme. This modification makes the chameleon hash value h is
a constant for a given input. Also, (m, r, b) and (m′, r′, b′) is a valid collision if
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Hash(N, L, m′, r′, b′) = Hash(N, L, m, r, b) holds. This consists with the original
definition of the collisions since we avoid the notation “ ± ”.

The improved chameleon hash scheme based on factoring consists of the
following efficient algorithms:

– GenKey: The system parameters are the same as that of Gao-Wang-Xie’s
chameleon hash scheme.

– Hash: Given the public key N , a label L, and a message m ∈ {0, 1}f(k),
firstly choose a random string r ∈ ZN and a random bit b ∈ {+1,−1},
compute the hash value

h = Hash(N, L, m, r, b) = bJmr2f(k)

mod N,

where J = H(L).
– Uforge: Given the secret key (p, q), the original input (m, r, b), another mes-

sage m′ 6= m, first compute the trapdoor B = |H(L)|
1

2f(k) mod N for the
label L, here |H(L)| = H(L) if H(L) ∈ QRN ; |H(L)| = −H(L) otherwise.
Then the corresponding collision (r′, b′) can be given as follows:

r′ = rBm−m′

mod N,

b′ =

{

b, if H(L) ∈ QRN

b(−1)m−m′

, Otherwise

Note that

Hash(N, L, m′, r′, b′) = b′Jm′

r′2
f(k)

= b′H(L)m′

(rBm−m′

)2
f(k)

= b′H(L)m′

|H(L)|m−m′

r2f(k)

= bH(L)mr2f(k)

= Hash(N, L, m, r, b)

Therefore, the forgery is successful. Moreover, if (r, b) is uniformly distributed,
then the distribution of (r′, b′) is computationally indistinguishable from uni-
form.

– IForge: Given a collision (m, r, b) and (m′, r′, b′), we have Hash(N, L, m, r, b) =

Hash(N, L, m′, r′, b′) mod N , i.e., |H(L)|m−m′

= (r′/r)2
f(k)

mod N . Let
2s = gcd(m − m′, 2f(k)), where 0 ≤ s < f(k). Compute u, v ∈ Z such that
u(m − m′) + v2f(k) = 2s. Similarly, we can compute θ = (r′/r)u|H(L)|v =

|H(L)|
1

2f(k)−s mod N . Trivially, we can compute |H(L)|
1
2 mod N . More-

over, if θ2f(k)−s

= H(L), then H(L) ∈ QRN ; else, −H(L) ∈ QRN . That is,
it is efficient to check whether H(L) is a quadratic residue modulo N .

For any message m′′ such that 0 ≤ m′′ ≤ 2f(k) − 1 and 2s|m′ − m′′, the
corresponding collision (r′′, b′′) can be given as follows:
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r′′ = r′θ2−s(m′
−m′′) mod N,

b′′ =

{

b′, if H(L) ∈ QRN

b′(−1)m′
−m′′

, Otherwise

Actually, note that

Hash(N, L, m′′, r′′, b′′) = b′′Jm′′

r′′2
f(k)

= b′′H(L)m′′

(r′θ2−s(m′
−m′′))2

f(k)

= b′′H(L)m′′

θ2(f(k)−s)(m′
−m′′)

r′2
f(k)

= b′′H(L)m′′

|H(L)|m
′
−m′′

r′2
f(k)

= b′H(L)m′

r′2
f(k)

= Hash(N, L, m′, r′, b′)

Thus, the instance forgery is successful.

Theorem 2. The proposed chameleon hash scheme enjoys the properties of col-
lision resistance, message hiding, semantic security, and key-exposure freeness.

Proof. We prove that the proposed chameleon hash scheme satisfies all the de-
sired security properties.

– Collision Resistance: Given two pairs (m, r) and (m′, r′) with the label L
such that Hash(N, L, m′, r′, b′) = Hash(N, L, m, r, b), then as in IForge the

trapdoor |H(L)|
1

2f(k)−s mod N is revealed, which allows anybody to com-

pute a variant Rabin signature |H(L)|
1
2 on message L. Since the variant

Rabin signature is existentially unforgeable under the factoring assumption,
the proposed chameleon hash function is collision resistance.

– Message Hiding: Given a collision (m, r) and (m′, r′), we can use IForge to
compute another pair (m′′, r′′).

– Semantic Security: For each message m, the hash value h = Hash(N, L, m, r, b)

is uniquely determined by the value (r2f(k)

, b), and vice versa. So, the con-

ditional probability taken over the message space µ(m|h)=µ(m|(r2f(k)

, b)).

Also, µ(m|(r2f(k)

, b)) = µ(m) since m and (r, b) are independent variables.
So, µ(m|h) = µ(m), i.e., the chameleon hash value h discloses no information
about m.

– Key-exposure Freeness: If an attacker A1 against the above chameleon hash
scheme can be successful with respect to the property of key-exposure free-
ness, then we can use it to construct an adaptive chosen message attacker
A2 against the above variant Rabin signature as follows:
Suppose A2 is given the public parameters (N, H, f(k)) of the variant Rabin
signature, and A2 is allowed to makes queries to the H oracle and Sign oracle
of the variant Rabin signature scheme. A2 then passes (N, Hash(), H, f(k))
to A1, where Hash() is the proposed chameleon hash scheme. Similar to [9],
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the security analysis will view H as a random oracle. When A1 makes a
query (Li, mi, ri, bi) to the oracle UForge, A2 firstly makes a query Li to

the H oracle and Sign oracle to get a pair (H(Li), σi = |H(Li)|
1
2 mod N),

and then uses the trapdoor σi to compute a collision (m′

i, r
′

i, b
′

i) as follows:

Let s = f(k) − 1 in IForge, we have mi − m′

i = ±2f(k)−1. Therefore, if
mi ≥ 2f(k)−1, then the collision is (mi − 2f(k)−1, riσi, bi); if mi < 2f(k)−1,
then the collision is (mi + 2f(k)−1, ri/σi, bi). A2 sends H(Li) and the colli-
sion (m′

i, r
′

i, b
′

i) to A1. At the end of the game, the output of A1 is a col-
lision (m, r, b) and (m′, r′, b′) for a never queried label L 6= Li such that

Hash(N, L, m′, r′, b′) = Hash(N, L, m, r, b). Then A2 can compute |H(L)|
1
2

mod N as in IForge, which is the variant Rabin signature for message L.
Since the variant Rabin signature is existentially unforgeable against the
adaptively chosen message attacker in the random oracle model, the pro-
posed chameleon hash scheme is key-exposure free. So, it is unnecessary
to prove that the variant Rabin signature is still existentially unforgeable
against the so-called uf-ecma attacker in the random oracle model (even the
claim is true).

6 Conclusions

Chameleon signatures simultaneously provide the properties of non-repudiation
and non-transferability for the signed message. However, the initial constructions
of chameleon signatures suffer from the problem of key exposure. This creates
a strong disincentive for the recipient to forge signatures, partially undermining
the concept of non-transferability. Recently, some constructions of chameleon
hashing and signatures without key exposure are presented based on different
mathematical assumptions.

In this paper, we present some security flaws and disadvantages of the key-
exposure free chameleon hash scheme based on factoring [9]. Moreover, we pro-
pose an improved chameleon hash scheme without key exposure based on fac-
toring which enjoys all the desired security notions of chameleon hashing.
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