
The Fermat factorization method revisited

Robert Erra∗ Christophe Grenier†

30th June 2009

Abstract

We consider the well known Fermat factorization method, we call
the Fermat factorization equation the equation solved by it: P(x, y) =
(x + 2R)2 − y2 − 4N = 0; where N = p q > 0 is a RSA modulus with
primes p and q supposed of equal length.

This equation is a bivariate integer polynomial equation and we
propose to solve it directly using Coppersmith’s methods for bivariate
integer polynomials. As we use them as a black box, our proofs will be
brief.

We show a first result: we can factor N in a polynomial time if
|p− q| < N5/18. Using the fact that the Newton polygon of P(x, y) is
in fact a lower triangle we show a better result: we can indeed factor
N in a polynomial time if |p− q| < N1/3. We conclude with proposals
for future works.

1 Introduction

Fermat, in a letter to Mersenne around 1643, exposed an algorithm to factor
odd integers by writing them as a difference of two squares. Fermat was re-
sponding to a challenge proposed by Mersenne, he has presented his method
for the number 2 027 651 281. For a composite integer N > 0, if a difference
such as

4 N = a2 − b2 = (a + b)(a− b) (1)

can be found and neither factor equals one, then we get non-trivial factors
of N .

To find a solution to the equation (1), Fermat proposes to try different
values of a until a2−N is a square, beginning with a = d

√
Ne and following

the algorithm (1). He shows that 12 iterations are sufficiant to factor the
number 2 027 651 281, which was an impressive result for this time.

∗ESIEA, SI&S Lab, erra@esiea.fr
†ESIEA, SI&S Lab & University Rennes I, grenier.christophe@gmail.com

1



Algorithm 1 : Fermat factorisation method
Input: an odd composite integer N > 0 ;
Output: a non trivial factor of N ;
Begin:
a = d

√
Ne;

b =
√

a2 −N ;
While NotInteger(b) Do

a = a + 1 ;
b =

√
a2 −N ;

Endofwhile;
Return (a− b, a + b).

End.

The Fermat factorization method is an iterative, or linear, search. For an
integer N = p q, de Weger’s [4] has shown that the efficiency of the Fermat
factorization method is governed by the ratio

O(
∆2

4n1/2
)

where ∆ = |p− q| is the prime difference.
So, as it was pointed out by de Weger, if ∆ = O(N1/4) then the Fermat

factorization method is quite trivial. The fact that a too small ∆ makes
RSA insecure is a fact known for a long time.

Coppersmith has proposed in 1996 two seminal methods, based on the
LLL algorithm, one to find small roots of an univariate polynomial modular
equation [2] and one to find small roots of a bivariate polynomial integer
equation [1]. Since the equation (1) is a bivariate polynomial integer equa-
tion, our idea is to solve directly it using Coppersmith’s [1] methods as a
black box.

From now, we will call the following bivariate polynomial integer equa-
tion (and its variants):

x2 − y2 − 4N = 0; (2)

the Fermat factorization equation.
The paper is organized as follows:

• in section 2 we present the Coppersmith results we will use;

• in section 3 we present a first result: we can factor in a polynomial
time a RSA modulus N = p q if |p− q| < N5/18;

• we will finish the section 3 with a better result: we can factor in a
polynomial time a RSA modulus N = p q if |p− q| < N1/3;

2



• we conclude by giving some ideas for future works.

As it was pointed out by May [7], known applications of Coppersmith’s
method for bivariate integer polynomials equations are not so numerous:
there is the so called ”factoring with high bits known” presented by Copper-
smith [3] and the May’s result [7]. So, to the best of the authors’s knowledge
this is a new result obtained by Coppersmith’s method for bivariate integer
polynomials and as we use them as a black box, our proofs will be brief.

2 Coppersmith’s results

We will use the two following well known Coppersmith’s theorems [1].

Theorem 1 (Coppersmith [1]). Let P(x, y) ∈ Z[x, y] be an irreducible
polynomial of maximum degree δ in each variable separately. Let W be
defined as W = ‖P(xX, yY )‖∞, the absolute value of the largest entry in
the coefficients vector of P(xX, y Y ) and let X, Y be bounds on the desired
solution (x0, y0). If

X Y ≤ W
2
3δ (3)

then, in time polynomial in log W and 2δ, we can find all integer solutions
(x0, y0) with P(x0, y0) = 0, x0 ≤ X, y0 ≤ Y .

With the same notations, if the polynomial is of total degree δ we have
a better result.

Theorem 2 (Coppersmith [1]). Let P(x, y) ∈ Z[x, y] be an irredutible
polynomial of total degree δ. Let X, Y ∈ N and define W = ‖P(xX, yY )‖∞.
Then we can find all pairs (x0, y0) ∈ Z2 satisfying

P(x0, y0) = 0 with |x0| < X, |y0| < Y

in time polynomial in log W and δ provided that

XY ≤ W
1
δ 2−O(δ).

3 Fermat revisited with Coppersmith’s methods

A direct approach of Fermat method gives P(x, y) = x2 − y2 − N ; this
bivariate polynomial cancels for x = (p + q)/2 and y = (p − q)/2. We can
make a variable change x′ = x + R with R = d

√
Ne and normalize. We

obtain the following bivariate integer polynomial:

P(x, y) = (x + 2R)2 − y2 − 4N (4)

whose roots are x0 = p + q − 2R and y0 = p− q.

3



Since we are looking for a bound based on prime factor difference, we
state as an upper bound of y0

Y = Nα.

Then we use the inequality proven by de Weger [4]

p + q − 2
√

N <
(p− q)2

4
√

N

So, since R = d
√

Ne >
√

N and x0 = p+q−2R, we obtain the upper bound
of x0

X = N2α−1/2

We also notice that W = ‖f(xX, yY )‖∞ = 4N .
Blömer and May have presented a toolkit [6] to maximize the bounds

giving different constructions rules for different shapes of the so called New-
ton polygon of a polynomial. Understanding the shape of a polynomial is
important to obtain the best results as we will see.

First, we will begin by using the Rectangular form [6] applied with pa-
rameters a = 2 and b = 2 which includes our polynomial (see figure 1).

6

a

-

b

s ss
s
s

s

Figure 1: The Newton polygon of ax2+by2+cx y+ · · · is a general rectangle

Using the first Coppersmith’s theorem (1) and neglecting constants, ap-
plying the previous bounds and noticing that our polynomial is of degree 2
in each variable gives the inequality:

N2α−1/2Nα ≤ N
2
6 (5)

that is equivalent to α ≤ 5
18 .

So, we have proved the following lemma.

Lemma 1. Let N = pq be an n-bit RSA modulus and p, q unknown primes,
let ∆ = |p− q| < Nα, then N can be factored in polynomial time if

α <
5
18

.

4



We conducted experiments (using Mathematica) for this bound and found
acceptable results but we can obtain a better result if we use the fact that
our polynomial has in fact no (x y) term and so, it has a Newton polygon
which is a lower triangle (figure (2)) and we can use now the theorem (2).
Therefore, we apply our precedent upper bounds to obtain the inequality:

N2α−1/2Nα ≤ N
1
2

that is equivalent to:

α ≤ 1
3

proving the following result:

Lemma 2. Let N = pq be an n-bit RSA modulus and p, q unknown primes.
Let ∆ = |p− q| < Nα. N can be factored in polynomial time if

α <
1
3
.

6

x x2

-

y

y2

s s s

s

@
@

@
@

@
@

Figure 2: The Newton polygon of ax2 + bx + cy2 + d is a lower triangle

This bound of 1/3 corresponds for a standard balanced RSA-1024 bits
to factors p and q of 512 bits having their 171 most significant bits alike out
of 512. For the bound of 5/18, the need is 228 most significant bits equal. It
must be compared to the initial result of 256 bits so, the gain is, respectively,
85 and 28 bits.

4 Conclusion and future work

The last result we get confirms the idea widely exposed of the need of ade-
quation between the Newton’s polygon and the form to use in Coppersmith’s
method. We need to make more experiments to test these ideas but we think
there are other interesting problems that can be studied with Coppersmith’s
methods. For example, we propose for future work to see what results we
can have if:

• we look at (x + 2R)2 − y2 = 0 mod 4N , the modular Fermat factor-
ization equation ;

5



• we increase the number of variables, for example by considering the
trivariate polynomial integer RSA equation (x + y R)2 − z2 − 4N = 0
or its modular form (x + y R)2 − z2 = 0 mod 4N ;

• we change the equation, considering for example the square root equa-
tion (x + y R)2 − 1 = 0 mod N which is a modular bivariate equation
or the trivariate integer polynomial equation (x + y R)2 − 1− zN = 0;

• we combine the method of ”factoring with high bits known” [3] with
the approach presented here ?

It is not so simple because in almost all these cases it is well known that
Coppersmith’s methods are usually only heuristic but, as usual in crypt-
analysis, a cryptanalytic method is always interesting even in the case it is
not fully general. We thank Éric Filiol to have convinced us to put down
these results, that are a part of a longer paper [5], and Vincent Guyot for
improving the presentation.

References

[1] D. Coppersmith. Finding a small root of a bivariate integer equation;
factoring with high bits known. In Proceedings of Eurocrypt’96, Lecture
Notes in Computer Science, 1996.

[2] D. Coppersmith. Finding a small root of a univariate modular equa-
tion. In Proceedings of Eurocrypt’96, Lecture Notes in Computer Science,
pages 155–165, 1996.

[3] D. Coppersmith. Small solutions to polynomial equations, and low ex-
ponent RSA vulnerabilities. Journal of Cryptology, 10:233–260, 1997.

[4] B. de Weger. Cryptanalysis of RSA with small prime difference. AAECC,
13(1):17–28, 2002.

[5] R. Erra and C. Grenier. How to choose a RSA key ? submitted to the
iAWACS’09 Workshop in LAVAL/FRANCE 2009.

[6] E. Jochemz and A. May. A Strategy for Finding Roots of Multivari-
ate Polynomials with New Applications in Attacking RSA Variants. In
Advances in Cryptology (Asiacrypt 2006), Lecture Notes in Computer
Science. Springer, 2006.

[7] A. May. Computing the RSA Secret Key is Deterministic Polynomial
Time Equivalent to Factoring. In Proceedings of Crypto’04, volume 3152
of Lecture Notes in Computer Science, pages 213–219, 2004.

6


