
Multi Party Distributed Private Matching, Set Disjointness and

Cardinality Set Intersection with Information Theoretic Security

Sathya Narayanan G1 ⋆, Aishwarya T1 ⋆⋆, Anugrah Agrawal2, Arpita Patra3 ⋆ ⋆ ⋆ †, Ashish
Choudhary3 ‡, and C. Pandu Rangan3 §

1 {sathya.phoenix,aishwarya.t}@gmail.com
National Institute of Technology, Trichy.
2 anugrah.agrawal.apm06@itbhu.ac.in

Institute of Technology, BHU.
3 {arpita,ashishc}@cse.iitm.ernet.in , rangan@iitm.ernet.in

Indian Institute of Technology, Madras.

Abstract. In this paper, we focus on the specific problems of Private Matching, Set Disjointness and
Cardinality Set Intersection in information theoretic settings. Specifically, we give perfectly secure protocols

for the above problems in n party settings, tolerating a computationally unbounded semi-honest adversary,
who can passively corrupt at most t < n/2 parties. To the best of our knowledge, these are the first such
information theoretically secure protocols in a multi-party setting for all three problems. Previous solutions
for Distributed Private Matching and Cardinality Set Intersection were cryptographically secure and the
previous Set Disjointness solution, though information theoretically secure, is in a two party setting. We
also propose a new model for Distributed Private matching which is relevant in a multi-party setting.

Keywords: Privacy preserving Set operations, Multiparty Computation.

1 Introduction

Consider the following problem: Alice has a set A of values and there exists an element a ∈ A. Bob
also has a set of values B. Alice wants to check if her element a belongs to Bob’s set B or not; i.e.,
if a ∈ B or not. Alice does not want to reveal her element a to Bob and nor does Bob want Alice
to know about any of the elements in his set. Alice should ultimately learn if her element belongs to
Bob’s set or not and nothing more. And Bob should not learn anything (neither about Alice’s value
nor about its presence in his set). This is the private matching problem. In the distributed private
matching problem proposed by Ye et al. [16], Bob’s dataset B is distributed across n servers such that
t or less servers cannot come together and reconstruct his dataset.

Consider another problem: Alice and Bob have sets A and B respectively and Alice wishes to find
out if A∩B = φ. Alice and Bob also do not want to reveal any other information about their datasets
to either party. The only information that Alice should gain is whether A ∩ B = φ or not and Bob
learns no new information. This is known as the private set disjointness test [6].

Suppose Alice and Bob have the sets A and B respectively and Alice wants to find out the
cardinality of the set A ∩ B. The solution should only reveal |A ∩ B| to Alice and should not reveal
any more information about Bob’s dataset to Alice and at the end of the solution, Bob should not
gain any extra information about Alice’s dataset. This is the Cardinality Set-Intersection Problem [3].

Private Matching has a lot of motivating examples from real life. For example, assume Alice has
a highly sensitive information and wants to know if Bob has any record of the same. Bob, concerned
about the security of his data and in order to cater to needs across the globe, has distributed all the
information he has, in a database over n servers. Bob is willing to help Alice, but at the same time
is not ready to reveal any other information that might help Alice get his dataset. Also, Alice does
not want to reveal her sensitive information to Bob. For example, Alice could be a credit card service
provider and Bob could have the set of all credit faulters from a single service. Alice might want to

⋆ Work supported by IIT-M Summer Fellowship 2009, IIT Madras
⋆⋆ Work supported by Project No. CSE/05-06/075/MICO/CPAN on Foundation Research in Cryptography, sponsored

by Microsoft Research, India.
⋆ ⋆ ⋆ Financial Support from Microsoft Research India Acknowledged

† Dept. of Computer Science and Engineering, IIT Madras, Chennai India. Email: arpita, ashishc@cse.iitm.ernet.in,
rangan@iitm.ernet.in

‡ Financial Support from Infosys Technology India Acknowledged
§ Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Compu-

tation, sponsored by Department of Information Technology, Govt. of India.

check if her customer belongs to bad credit union before agreeing to provide services and Bob would
not want Alice to gain information about anyone else on the list. The Distributed Private Matching
protocol gives solution to such problems.

As another example, suppose that a community social services centre has a list of drug abusers in
the age group 11-19. A school administration in the locality wants to find out if its school is ’clean’
or not. Since this is highly sensitive information the centre would not like to reveal any information
or names in the list and would be willing to reveal only whether there are report cases of drug abuse
from the school. This is an example of private set disjointness test. Again, if the school wants to know
the number of students on the list and the centre is willing to reveal the number but does not want
to divulge any more information, it becomes an example of the cardinality set intersection.

Existing Literature: Private matching was introduced as a private two-party matching problem by
Freedman et al.[3], who solved the problem under cryptographic assumptions, using oblivious poly-
nomial evaluation with a public-key homomorphic encryption system. In the protocol, Alice has an
element a and Bob has a dataset B = {b1, b2, · · · , bm}. At the end of the protocol, Alice gets to know
if his element a belongs to Bob’s Dataset B. The protocol does not reveal Alice’s element a to Bob and
Alice knows nothing more than whether a ∈ B. Ye, Wang and Pieprzyk [16] extended this problem to
a Distributed scenario. In Distributed Private Matching, Alice has a value a and Bob has his dataset
B = {b1, b2, · · · , bm} distributed among n servers such that t or less servers cannot discover Bob’s
Original Dataset while t + 1 or more servers can reconstruct Bob’s dataset. In [16], a protocol for
distributed private matching problem under cryptographic assumptions is provided.

Quite a few protocols exist for the set disjointness problem. Freedman et al. [3] proposed a protocol
for two-party set disjointness under cryptographic assumptions, based on the representation of datasets
as roots of a polynomial and oblivious polynomial evaluation techniques. The protocol reveals informa-
tion about the cardinality of set intersection. It is very efficient against honest-but-curious adversaries
but invokes expensive sub-protocols to work against malicious adversaries. Hohenberger and Weis [5]
had used similar construction as in [3] and proposed a protocol in cryptographic setting (the security
proof relies on the hardness of the discrete logarithm problem). Their protocol assumes an honest Alice
while Bob can be malicious and again reveals information about the cardinality of the set intersection.
Kiayias and Mitrofanova [7] proposed three protocols for set disjointness. The first protocol works on
a relatively smaller domain for set disjointness, the second uses a new primitive called superposed
encryption based on Pedersen commitments [13], the third uses a multi variate polynomial to reduce
the high round complexity of the second protocol. Both [5] and [7] work in the two party setting. [17]
provided the first information theoretic solution to the private set disjointness problem. [17] presented
two protocols using Sylvester matrices technique for two-party set disjointness with round complexity
O(1). While the first protocol is secure against honest-but-curious adversaries, the second protocol is
secure against malicious adversaries.

The Cardinality Set-Intersection problem was previously studied in [3] in the two-party setting.
In [7], Kiayias et al. studied private set disjointness as mentioned above which can be looked at as a
restricted version of Cardinality Set Intersection. In [8], Kisner et al. studied the problem in the multi-
party setting and proposed efficient solutions for both honest-but-curious and malicious adversary
under cryptographic assumptions, using zero knowledge proofs. Vaidya and Clifton [15] presented a
protocol for cardinality set intersection that is scalable and efficient in cryptographic settings and
hence suitable for data mining applications.

Also, multi-party set intersection problems in information theoretic settings have been studied in [9]
and [12]. Though there exist protocols for set intersection and in general for Multi-Party Computations,
using them to solve set disjointness or cardinality set intersection will be an overkill and highly
inefficient. Our goal is to design efficient customised protocols as opposed to using generic abstract
protocols.

Our Motivation and Contribution: From the literature, we find that existing solutions for private
matching are in cryptographic settings. Also, the Distributed Private Matching proposed in [16] is
essentially between two parties, where the data set of the second party is distributed among n servers.
In this paper, we propose the first information theoretically secure protocol for Distributed Private
Matching in the model proposed in [16]. We then propose a new model for Distributed Private Matching

in a multi-party setting. The distributed private matching in our new model can be looked at as a
general n-party Private Matching, where each party has a dataset and Alice has a value a and wants to
know if a belongs to any of the n datasets. Here, the parties distribute their datasets among themselves
such that t or less parties cannot come together and gain information about any honest party’s dataset.
Thus the parties themselves act as the servers used in the 2-party setting. The n-party Distributed
Private Matching is useful in many scenarios. For example, suppose there are n trading agencies
who store information about the available resources in a region. This information is sensitive and to
ensure its safety, they share it among each other, so that any set of t or less agencies cannot get the
information of any other agency. Now assume that Alice is a trader interested in setting up a factory
over this region but needs to know if she can get the necessary resources for her production from any
of the trading agencies. But Alice does not want to reveal her requirements to the agencies till she can
get a confirmation that they will be of help. In such a case, n-party Distributed Private Matching is
helpful. We also propose an information theoretically secure protocol for n-party Distributed Private
Matching, secure against a semi-honest adversary.

Set Disjointness has been handled in information theoretic setting previously [17], but only in
a 2-party setting. We provide the first multi party information theoretically secure protocol for set
disjointness, secure against a semi-honest adversary. In our model, there are n parties where each
party’s dataset is distributed among the n parties, such that t + 1 or more parties need to come
together to reconstruct the entire dataset, similar to our proposed model for n-party Distributed
Private Matching.

Privacy law is the area of law concerned with the protection and preservation of the privacy rights
of individuals. The law of privacy regulates the type of information which may be collected and how
this information may be used. Many privacy rules and regulations like HIPAA, GLBA and SOX [10]
exist that restrict companies from sharing their data as it is to other parties. For example, there could
be a hospital database and there could be a vendor who wants to check if the technology used by
his mobile results in complaints such as ear ache, headache etc. Also there could be a vendor who
wants to check for multiple ailments which could result from the use of his product. So, he would like
to find out if a threshold number of customers have complained of these ailments by checking with
the hospital database. Also, the hospital’s database would be governed by privacy rules like the ones
mentioned above. Hence, this problem is an example for multi-party cardinality set intersection.

The existing solutions for Cardinality Set Intersection problem (both in 2-party and n-party set-
ting) are in cryptographic settings. We provide the first multi party information theoretically secure
protocol for Cardinality Set Intersection problem, secure against a semi-honest adversary.

Hence our contribution in this paper is to provide information theoretically secure protocols for
Private Matching, Set Disjointness and Cardinality Set-Intersection in a multi-party setting against a
semi-honest adversary. We also show how to adapt our protocols to work against an active adversary
in the same model. To the best of our knowledge, this is the first work to address these problems in
in a multi-party scenario, in information theoretic settings.

2 Model Definitions and Preliminaries

In this paper, we will be considering two different models. The first model is adapted from [16], while
the second model is proposed by us. We provide a perfectly secure protocol for Two party distributed
private matching problem in the first model, while we propose perfectly secure protocols for n-party
distributed private matching, Cardinality Set Intersection and Set Disjointness in the second model.
We now briefly discuss these models. We also give the details of various existing sub-protocol, used in
this paper.

2.1 Model for 2-Party Distributed Private Matching [16]

Here Alice and Bob are two parties. Alice has a secret value a ∈ F and Bob has a private dataset
B = {b(1), . . . , b(m)}, consisting of m elements from a finite prime field F, where |F| > n. The dataset
of Bob is distributed among n servers in a manner as explained in section 2.5, where n ≥ 2t+1. There
exists a passive adversary with unbounded computing power, who can control at most t servers out of

the n servers. We assume that Alice does not interact with Bob directly. Instead Alice contacts the
set of n servers to perform the private-matching operations. We assume also that no server colludes
with Alice to cheat and only Alice learns the output of any operation. More precisely, the following
conditions should hold [16]:

1. Correctness: If Alice and the servers honestly follow the steps of the protocol, then protocol works
and Alice learns the correct result of the operation specified in the protocol.

2. Alice’s Security : If Alice is honest, then at the end of the protocol, the adversary controlling t
servers should not get any information whatsoever about a.

3. Bob’s Security : Provided that no server colludes with Alice, the protocol ensures that Alice does
not get any extra information other than the output of the operation. In addition, any t or less servers
should not able to find out any information about Bob’s dataset.

2.2 Model for n-party Distributed Private Matching, Set Disjointness and Cardinality
Set Intersection

Here we consider a complete synchronous network of n parties, denoted as P = {P1, . . . , Pn}, who
are pairwise connected by a secure channel. There exists a centralized adversary, having unbounded
computing power, who can passively control at most t < n/2 parties. This is a valid assumption as
information theoretic MPC against a computationally unbounded t-active passive adversary is possible
iff n ≥ 2t + 1 [2]. By passive adversary, we mean that all the parties under the control of adversary
follow the prescribed steps of the protocol, but may try to learn something extra from the messages
seen during the execution of the protocol. Each party Pi has a private data set Bi = {b(i,1), . . . , b(i,m)},
consisting of m elements from a finite prime field F where |F| > n (the protocols presented in this
paper will also work if the number of elements in each data set is different). All computation and
communication in our protocols are done over F. To ensure the secrecy and distributed nature of
datasets, each party Pi distributes his dataset among all other parties, as shown in Section 2.5 and
Section 2.5. We now state the security definition, associated with n-party distributed private matching,
Cardinality Set Intersection and Set Disjointness.

Security Definition for n-Party Distributed Private Matching Here Alice has an element
a ∈ F, whose presence she wants to check for in any of the n datasets. For this, she interacts with the
n parties. As in [16], we assume that no party colludes with Alice and only Alice learns the output of
any operation. More precisely, the following should hold as in [16]:

1. Correctness: If Alice and the parties honestly follow the steps of the protocol, then protocol works
and Alice learns the correct result of the operation specified in the protocol.

2. Alice’s Security : If Alice is honest, then at the end of the protocol, the adversary controlling t
parties should not get any information whatsoever about a.

3. Party’s Security : Provided that no party colludes with Alice, the protocol ensures that Alice
does not get any extra information other than the output of the operation. In addition, if Pi is honest,
then his dataset Bi is secure against a passive adversary controlling at most t parties.

Security Definition for n-Party Set Disjointness Here the n parties want to know whether
(B1∩B2∩· · ·∩Bn) = φ or not and nothing more. More specifically, the following conditions should be
satisfied at the end of the protocol, even if t < n/2 parties are passively corrupted by a computationally
unbounded adversary:

1. Correctness: If the parties honestly follow the steps of the protocol, then they learn if (B1 ∩B2 ∩
· · · ∩ Bn) = φ or not.

2. Party’s Security : The adversary should not get any extra information about the input and
output of honest parties, other than what can be inferred by the input of t corrupted parties (i.e., the

dataset of these parties) and the output of t corrupted parties (which is (B1 ∩ B2 ∩ · · · ∩ Bn)
?
= φ).

Security Definition for n-Party Cardinality Set Intersection Here the parties want to know
|B1 ∩ B2 ∩ · · · ∩ Bn| and nothing more. More specifically, the following conditions should be satisfied
at the end of the protocol, even if t < n/2 parties are passively corrupted by a computationally
unbounded adversary:

1. Correctness: If the parties honestly follow the steps of the protocol, then the parties learn |B1 ∩
B2 ∩ · · · ∩ Bn|.

2. Party’s Security : The adversary should not get any extra information about the input and
output of honest parties, other than what can be inferred by the input of t corrupted parties (i.e., the
dataset of these parties) and the output of t corrupted parties (which is |B1 ∩ B2 ∩ · · · ∩ Bn|).

2.3 Sharing a Value s Among n Parties

Consider the following problem: there exists a dealer D ∈ P. D has a secret s ∈ F, which he wants to
share among P1, . . . , Pn, such that if t or less parties pool their shares, then they will know nothing
about s. On the other hand, if t + 1 or more parties pool their shares, then they can reconstruct
s. This problem is called secret sharing. One of the methods to solve this problem is Shamir Secret
Sharing [14], where to share s, D chooses a random polynomial f(x) of degree t, such that f(0) = s.
D then gives Pi his share si = f(αi), where each αi is a publicly known distinct element from F.
To reconstruct s, each party produces his share si. Once all the n shares are available, anyone can
interpolate the t degree polynomial f(x) passing through (αi, si)’s and hence reconstruct s = f(0). It
is easy to see that if t parties pool their shares, then they will know nothing about s [14].

d-Sharing and its Properties [1] We say a value s ∈ F is d-shared among the parties in P, if every
(honest) party Pi ∈ P is holding a share si of s, such that there exists a degree-d polynomial p(·) with
p(0) = s and p(αi) = si for every Pi ∈ P. The vector of shares (s1, . . . , sn) is called a d-sharing of s,
and is denoted by [s]d. In the rest of the paper, whenever we say that the parties have [s]d for some
s ∈ F, we mean to say that each party is holding his share corresponding to d-sharing of s.

Shamir sharing is a t-sharing scheme and generates t-sharing [s]t of secret s. Notice that Shamir
sharing satisfies the following properties:

1. [a]t + [b]t = [a + b]t, for any a, b ∈ F.

2. [a]t[b]t = [ab]2t, for any a, b ∈ F.

Thus if the parties hold [a]t and [b]t, then they can locally generate [a + b]t, without doing any
communication, by simply adding their respective shares of a and b. On the other hand, if the parties
simply multiply their respective shares of a and b, then this will generate [ab]2t. To generate [ab]t from
[a]t and [b]t, we need to use the multiplication protocol specified in section 2.4.

2.4 Multiplying Shared Values

Let a and b be two values, which are Shamir shared (i.e., t-shared) among P1, . . . , Pn using degree-t
polynomials f(x) and g(x) respectively. Thus party Pi has shares ai and bi of a and b respectively.
Then the parties P1, . . . , Pn can generate the Shamir shares of c = ab by using the multiplication
protocol of [4] as follows: Let di = aibi. Each party Pi Shamir share di, say using degree-t polynomial
hi(x). This results in party Pi holding the share-share d1i, · · · , dni of d1, . . . , dn respectively. Then
from Lagrange’s interpolation, the degree-t polynomial h(x) =

∑n
i=1 wihi(x) is the polynomial that

Shamir shares c, where

wi =

n∏

j=1,j 6=i

αj/(αj − αi) (1)

To get jth share of c, party Pj computes cj = h(αj) =
∑n

i=1 wihi(αj) =
∑n

i=1 widij . It is easy to
see that during this process, an adversary passively controlling at most t parties does not get any
information about a, b and c [4]. Also, the method works only if n > 2t which holds in our case.

Lemma 1. The above multiplication protocol communicates O(n2) field elements and takes one round
of communication.

Proof: In the protocol, each party Shamir shares a value, which involves a communication complexity
of O(n) field elements and one round of communication. Hence the lemma. 2

Lemma 2. Suppose the parties have [a(1)]t, . . . , [a
(ℓ)]t and [b(1)]t, . . . , [b

(ℓ)]t, where each a(l) and b(l)

belongs to F and ℓ ≥ 1. Then the parties can generate [a(l)b(l)]t, for l = 1, . . . , ℓ in 1 communication
round using the above multiplication protocol. On the other hand the parties can generate [a(1) . . . a(ℓ)]t
in log2 ℓ communication rounds.

Proof: Computing [a(l)b(l)]t for l = 1, . . . , ℓ will require 1 round because each a(l)b(l) is independent of
the other and we can generate these products in parallel. On the other hand, generating [a(1) . . . a(ℓ)]t
requires log2 ℓ communication rounds because we can multiply two operands at a time, say ai and
a

i+⌊ ℓ
2
⌋ for i = 1, · · · , ⌊ ℓ

2⌋, and find their products in the first round and then make pairs among the

resulting products(after the first round) and multiply them in the next round and so on. 2

2.5 Dataset Distribution of Parties

In both the models, namely the one presented in section 2.1 and section 2.2, the parties distribute
their dataset in a specif manner. We now give the details of how this is done.

Dataset Distribution for Two Party Distributed Private Matching Here Bob on having the
data set B = {b(1), . . . , b(m)} does the following: Bob forms a polynomial F (x) such that the elements
of his set B are roots of the polynomial (i.e.,) F (x) =

∏m
i=1(x − b(i)) =

∑m
i=0 Cix

i, such that Cm

= 1. Bob then Shamir shares each Ci among the n servers. It is easy to see that even if t or less
servers combine their shares, they will have no information about B. On the other hand, B can be
reconstructed by pooling the shares of any t + 1 or more servers.

Dataset Distribution for n-party Distributed Private Matching Here each party Pi on having
a dataset Bi = {b(i,1), . . . , b(i,m)} distributes it in the following way: Pi forms a polynomial Fi(x)
such that the elements of his set Bi are roots of the polynomial (i.e.,) Fi(x) =

∏m
j=1(x − b(i,j)) =∑m

j=0 C(i,j)xj , such that C(i,m) = 1. Party Pi then Shamir shares each C(i,j) among the n parties. It
is easy to see that even if t or less parties combine their shares, they will have no information about
Bi. On the other hand, Bi can be reconstructed by pooling the shares of any t + 1 or more servers.

Dataset Distribution for n-party Set Disjointness and Cardinality Set Intersection Here
each party Pi on having dataset Bi = {b(i,1), . . . , b(i,m)}, distributes it in the following way: for j =
1, . . . , m, party Pi Shamir shares b(i,j) among the parties in P. Since each element in the dataset is
individually shared using a t-degree polynomial, it implies that if Pi is honest, then each element of
his dataset Bi is secure against a passive adversary controlling at most t parties. Moreover, any set of
t + 1 or more parties can reconstruct Bi by pooling their shares.

2.6 Checking If a Shared Value is Zero

Nishide and Ohta [11] present an efficient and deterministic protocol to check if a shared value is zero
or not. More specifically, the protocol takes [s]t as input, where s is shared using Shamir sharing and
outputs the following:

1. If s = 0, then the protocol generates [1]t.

2. If s 6= 0, then the protocol generates [0]t.

The protocol performs 81l multiplications of shared values, where l = log(|F|) and takes 8 rounds. In
the rest of the paper, we use this protocol for testing if a shared value is zero. We shall henceforth
refer to this protocol as TEST-IF-ZERO.

Remark 1. The TEST-IF-ZERO protocol of [11] is a deterministic protocol, without any error, which
we use in the rest of this paper. A drawback of this protocol is that it performs very large number
of multiplications. In the last section of this paper, we present a simple protocol for testing if a
shared value is zero, involving significantly less number of multiplications. However, this protocol is
probabilistic and gives the correct output, except with an error probability of 1

|F| .

3 Two-Party Distributed Private Matching Protocol

Recall that in the 2-party distributed private matching, Bob has a private data set B of m elements,
which he has distributed among n servers, say S1, . . . , Sn, as explained in section 2.5. Alice has a secret
element a ∈ F, whose presence she wants to check in Bob’s dataset. For this she interacts with the
servers. We now present a perfectly secure protocol for this problem. Before proceeding further, we
give the following trivial lemma:

Lemma 3. The value a belongs to B iff F (a) = 0, where F (x) =
∏m

i=1(x − b(i)) =
∑m

i=0 Cix
i.

Proof: The proof is obvious and it follows from the definition of F (x). 2

The high level idea of the protocol is as follows: Alice first Shamir shares the values a, . . . , am among
n servers. Hence all the servers, apart from having the shares of the coefficients of F (x), now also have
the shares of a, . . . , am. The servers then compute the Shamir shares of Vj = Cja

j for 1 ≤ j ≤ m,
using the multiplication protocol (see section 2.4). Since F (a) =

∑m
j=0 Vj , by a linear combination of

all the shares that a server has, each server gets his share of F (a). Till this point, the servers have
generated the Shamir shares of F (a). Now if the servers give their shares of F (a) to Alice, then Alice
could reconstruct F (a) and find whether a belongs to B. But directly revealing F (a) to Alice will
violate Bob’s security, as Alice would come to know about one point on F (x).

Since Alice wants to know only if a ∈ B or not, all we need to find out is if F (a) = 0 or not.
For this, all the servers run the TEST-IF-ZERO protocol on the shares of F (a) and reconstruct the
output towards Alice. If the output is one then Alice concludes that F (a) = 0, otherwise F (a) 6= 0.
Accordingly, Alice concludes that a belongs (does not belong) to B. The protocol called 2-party DPMP

is formally given in the following table:

2-Party DPMP

Setup Phase:

Alice Shamir shares a, . . . , am among n servers. Bob distributes his dataset B = {b(1), . . . , b(m)} among n servers as
explained in section 2.5. Let F (x) =

Qm

j=1(x − b(j)) =
Pm

j=0 Cjx
j . Thus the parties have [Cj]t for j = 0, . . . , m.

Computation (by each server):

1. The servers compute [Vj]t = [Cja
j]t for 1 ≤ j ≤ m using the multiplication protocol described in section 2.4.

2. The servers then compute [F (a)]t = [V1]t + . . . + [Vm]t.
3. Finally the servers run the protocol TEST-IF-ZERO on [F (a)]t to generate [v]t, where v = 1(0), if F (a) = 0(6= 0).

Reconstruction Phase:

The servers give their shares of v to Alice. Alice reconstruct v and checks if v = 1. If v = 1, then a ∈ B else a /∈ B.

Before proceeding further to prove the properties of 2-Party DPMP, we make the following claim.

Claim. In protocol 2-Party DPMP if Alice is honest, then a passive adversary controlling at most t
servers does not get any information about a even after knowing t shares of a, . . . , am.

Proof: The proof follows easily from the properties of Shamir sharing and simple linear algebra. For
a complete proof, see APPENDIX A. 2

Lemma 4. Protocol 2-party DPMP satisfies the properties of 2-party distributed private matching.

Proof: The correctness property is trivial. The secrecy of Bob’s dataset against a passive adversary
controlling at most t servers follows from the properties of Shamir sharing. The secrecy of Bob’s data
set against a passive Alice follows from the secrecy of TEST-IF-ZERO. Finally, secrecy of Alice’s a
follows from Claim 3. 2

Lemma 5. Protocol 2-party DPMP communicates O(n2m) field elements and involves one invocation
of TEST-IF-ZERO. The protocol takes two rounds.

Proof: In the setup phase, the parties communicates O(nm) field elements for data set distribution. In
the computation phase, there are m multiplications and hence it communicates O(n2m) field elements.
Since all the multiplications are independent, by lemma 2 it can be done in parallel in one round.
Moreover, setup phase takes one round. 2

4 n-Party Distributed Private Matching Protocol

We now present a perfectly secure protocol called n-party DPMP for distributed private matching in
n-party settings. For this, we use the model presented in section 2.2. Recall that in this model, there
are n parties denoted as P = {P1, . . . , Pn}, where each Pi has a private dataset Bi = {b(i,1), . . . , b(i,m)}
represented using Fi(x) =

∏m
j=1(x−b(i,j)) =

∑m
j=0 C(i,j)xj . Moreover, the dataset Bi is Shamir shared

among the n parties; i.e., the parties hold [C(i,j)]t, for i = 1, . . . , n and j = 0, . . . , m (see Section 2.5).
Alice has a secret element a. Alice wants to know if a ∈ (B1 ∪ . . . ∪ Bn). Before proceeding further,
we give the following lemma.

Lemma 6. a ∈ (B1 ∪ B2 ∪ · · · ∪ Bn) iff atleast one of the Fi(a) = 0.

The high level idea of protocol n-party DPMP is as follows: Alice first Shamir shares the values a, . . . , am

among n servers. Thus parties hold [aj]t for j = 1, . . . , m . The parties then compute [V (i,j)]t =
[C(i,j)aj]t using the multiplication protocol. The parties then compute the Shamir shares of [Fi(a)]t =∑m

j=0[V
(i,j)]t. Since shamir sharing is linear, this can be done locally. The parties then compute [F (a)]t

where

F (a) =
n∏

i=0

Fi(a) (2)

After this step, the parties have [F (a)]t. To ensure that no more information is revealed to Alice
than what is necessary, the parties run the TEST-IF-ZERO protocol on [F (a)]t and reconstruct the
output towards Alice, so that Alice gets to know only if F (a) is zero or not and nothing more. Alice
checks if the reconstructed value is 0 or not to find if a ∈ (B1 ∪B2 ∪ · · · ∪Bn). Protocol n-party DPMP

is formally given in the following table.

n-Party DPMP

Setup Phase:

Alice shamir shares a, a2, a3, · · · , am among the n parties and each party Pi for 1 ≤ i ≤ n distributes his dataset
Bi using the polynomial Fi(x) =

Pm

j=0 C(i,j)xj among n parties using Dataset Distribution scheme described

in section 2.5. Thus the parties have [aj]t for 1 ≤ j ≤ m and [C(i,j)]t for 1 ≤ i ≤ n and 0 ≤ j ≤ m.

Local Computation (by each party):

1. The parties compute [V (i,j)]t = [C(i,j)aj]t for 0 ≤ j ≤ m and 1 ≤ i ≤ n and compute [Fi(a)]t =
Pm

j=0[V
(i,j)]t.

2. The parties compute [F (a)]t =
Qn

i=1[Fi(a)]t by running the multiplication protocol specified in section 2.4.

3. The parties now run the protocol TEST-IF-ZERO on [F (a)]t to generate [v]t, where v = 1(0), if F (a) =
0(6= 0).

Reconstruction Phase: The parties give their shares of v to Alice. Alice reconstructs v and checks if v = 1.
If v = 1, then a ∈ B1 ∪ B2 ∪ · · · ∪ Bn else a /∈ B1 ∪ B2 ∪ · · · ∪ Bn .

Lemma 7. Protocol n-party DPMP satisfies the properties of n-party distributed private matching.

Proof: Follows directly from the protocol steps and properties of Shamir sharing and TEST-IF-

ZERO protocol. 2

Lemma 8. Protocol n-party DPMP communicates O(n3m) field elements and executes one instance
of TEST-IF-ZERO. The protocol involves O(log(n)) communication rounds.

Proof: The communication complexity is easy to analyze. In setup phase, O(nm) values are t shared
and it communicates O(n2m) field elements. During computation phase, in step 1, we first do nm
multiplications simultaneously which can be done in 1 round. In step 2, n shared values need to be
multiplied. Since these values are dependant, the multiplications totally take O(log(n)) communication
rounds and communicates O(n3m) field elements by lemma 1 and lemma 2. 2

5 n-Party Set Disjointness Protocol

We now present a perfectly secure protocol called n-party Set Disjointness for n-party set disjointness
problem. Recall that in this problem, there are n parties P = {P1, . . . , Pn}, where each Pi has a
private dataset Bi = {b(i,1), . . . , b(i,m)}. Moreover, each b(i,j) is Shamir shared among the n parties for
j = 1, . . . , m. Thus the parties hold [b(i,j)]t. The parties want to know if B1 ∩ . . .∩Bn = φ or not. We
first present a protocol called Gen-El, which we will later use in solving the n-party set disjointness
as well as cardinality set intersection problem.

5.1 Protocol Gen-El

In this section we give a protocol that helps in solving the set cardinality and disjointness problems.
We call this protocol as Gen-El, which generates shares of El (which we will define subsequently).
We first observe that, (B1 ∩ · · · ∩ Bn) ⊆ Br for any 1 ≤ r ≤ n. Hence we fix a party Pr ∈ P as
reference and refer to the elements of his dataset as {a1, . . . , am} for convenience. Now we check if
some element of Br is present in the the dataset of each party in P \ Pr. If there exists any such
element al ∈ {a1, . . . , am}, then the sets Bi’s are not disjoint. Protocol Gen-El checks for the presence
of any such element al.

Gen-El

Setup Phase:

1. Each party Pi on having dataset Bi = {b(i,1), . . . , b(i,m)} Shamir shares each b(i,j). Thus the parties hold [b(i,j]t,
for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

2. The parties fix one arbitrary party among them as the reference, say, the lowest index party, P1. For the ease of
presentation, let {a1, . . . , am} denote the element of P1’s dataset.

Computation (by each party):

1. The parties first compute [V (l,i,j)]t = [b(i,j)]t − [al]t for i = 2, . . . , n, j = 1 . . . , m and l = 1 . . . , m.

2. The parties use the multiplication protocol to generate [C(i,l)]t =
Qj=m

j=1 [V (l,i,j)]t for i = 2, . . . , n and l = 1 . . . , m.

3. The parties then compute [El]t =
Pi=n

i=2 [C(i,l)]t.

Lemma 9. If El = 0 is zero, then the element al ∈ B1 is also present in (B1 ∩ · · · ∩ Bn).

Proof : The proof follows easily from the protocol steps. 2

Lemma 10. Protocol Gen-El communicates O(n3m2) field elements in setup phase. The protocol takes
O(log(nm2)) communication rounds.

Proof: The communication complexity and the number of multiplications is easy to analyze. Since
there are nm2 multiplications and all of them are dependent, from Lemma 2, the number of rounds
needed to perform these multiplications is O(log(nm2)). 2

5.2 Protocol for Multi Party Set Disjointness

To compute multi party set disjointness, the parties first execute protocol Gen-El to generate [El]t
for l = 1, . . . , m. The parties then compute [E]t =

∏l=m
l=0 (El) by using the multiplication protocol.

The parties then execute TEST-IF-ZERO on [E]t to generate [v]t. Finally v is reconstructed by each
party, after which the parties conclude whether the sets are disjoint or not.

n-party Set Disjointness

1. The parties run protocol Gen-El to generate [El]t for l = 1, . . . , m.
2. The parties now run multiplication protocol to compute [E]t =

Ql=m

l=1 ([El]t).
3. The parties then run the TEST-IF-ZERO protocol on [E]t to generate [v]t.

Reconstruction Phase:

The parties produce their respective share of v. Once v is reconstructed, the parties check if v = 0 or 1. If v = 0,
then (B1 ∩ · · · ∩ Bn) = φ else (B1 ∩ · · · ∩ Bn) 6= φ.

Lemma 11. Protocol n-party Set Disjointness satisfies the properties of n-party set disjointness.

Proof: The proof follows easily from the protocol steps, properties of protocol Gen-El and Shamir
secret sharing. 2

Lemma 12. Protocol n-party Set Disjointness communicates O(n3m2 + n2m) field elements, and ex-
ecutes one instance of TEST-IF-ZERO. The protocol takes O(log(nm2) + log(m)) communication
rounds.

Proof: Communication complexity is easy to analyze. In the protocol, Gen-El performs nm2 multi-
plications. Computing [E]t require m multiplications. Hence the total number of multiplications done
is (nm2 + m). Since these multiplications are dependent, we require O(log(nm2) + log(m)) rounds to
perform them. It is easy to see that protocol executes one instance of TEST-IF-ZERO. 2

6 n-Party Cardinality of Set Intersection

We now present a perfectly secure protocol called n-party Cardinality Set Intersection for n-party cardi-
nality set intersection. Recall that in this problem, there are n parties P = {P1, . . . , Pn}, where each
Pi has a private dataset Bi = {b(i,1), . . . , b(i,m)}. Moreover, each b(i,j) is Shamir shared among the
n parties for j = 1, . . . , m. Thus the parties hold [b(i,j)]t. The parties want to only know the value
|B1 ∩ · · · ∩Bn| and nothing more. Protocol n-party Cardinality Set Intersection is formally given in the
following table.

n-party Cardinality Set Intersection

1. The parties run the protocol Gen-El to generate the [El]t for l = 1, . . . , m.

2. For l = 1, . . . , m, the parties run TEST-IF-ZERO on [El]t to generate [vl]t.

3. The parties then compute [v]t =
Pl=m

l=1 [vl]t.

Reconstruction Phase: All the parties produce their respective shares of v to reconstruct v. The value v is
|B1 ∩ · · · ∩ Bn|.

Lemma 13. Protocol n-party Cardinality Set Intersection satisfies the properties of n-party cardinality
set intersection.

Proof: The security of honest parties’ dataset is satisfied because the elements of the dataset of
honest parties are Shamir and hence are safe against a passive adversary having control over t parties.
Also the final outcome of the protocol is only the cardinality of (B1∩· · ·∩Bn) and not anything more.
The correctness property follows from Lemma 9 and protocol steps. 2

Lemma 14. Protocol n-party Cardinality Set Intersection communicates O(n3m2) field elements and in-
vokes m instances of TEST-IF-ZERO protocol. The protocol has a round complexity of O(log(nm2)).

Proof: The protocol communicates O(n2m) field elements for sharing the datasets and does nm2

multiplications. Since all the multiplications are dependent, from Lemma 2, it takes O(log(nm2))
communication rounds to perform them. From protocol, we can clearly see that it involves m invoca-
tions of TEST-IF-ZERO protocol. 2

7 A Simple Protocol for Checking if a Shared Value is Zero

In section 2.6, we gave the details of protocol TEST-IF-ZERO, which checks whether a shared value
is zero or not. The protocol is used in all our protocols as a black-box. However, protocol TEST-IF-

ZERO involves a large number of multiplications. We now present a protocol new-TEST-IF-ZERO,
which takes [a]t as an input and produces [V]t as the output, where a ∈ F is a random value. The
protocol has the following properties:

1. If a = 0, then V = 0.
2. If V = 0, then except with probability 1

|F| , a = 0.

3. If a 6= 0 then except with probability 1
|F| , V can be any random non-zero value.

4. Even if V is reconstructed by each party, a passive adversary controlling at most t parties/servers
will have no information about a.

5. The protocol performs significantly less number of multiplications in comparison to protocol
TEST-IF-ZERO.

The protocol is formally given in the following table.

new-TEST-IF-ZERO

Setup Phase:

1. Each party Pi chooses a random value r(i) ∈ F and Shamir shares r(i). So now the parties have [a]t and [r(i)]t for
1 ≤ i ≤ n.

Computation (by each party):

1. The parties compute [R]t =
Pn

i=1[r
(i)]t.

2. The parties compute [V]t = [R]t[a]t by using the multiplication protocol.

Reconstruction Phase:

The parties reconstruct the value V . If V is non-zero, then the parties conclude that a is also non-zero. If V is 0,
then the parties conclude that a is 0 with very high probability.

Lemma 15. Protocol new-TEST-IF-ZERO satisfies all the properties mentioned above.

Proof: Before proceeding further, we first note that R =
∑n

i=1 r(i) is completely random. This is
because at least one r(i) in R is shared by an honest Pi and hence r(i) is random, implying that
R is also random. It is easy to see that if a = 0 then V = Ra will be also zero. Thus if V = 0,
the probability that a 6= 0 is same as the probability R = 0, which is 1

|F| . Moreover, if a 6= 0, then

except with probability 1
|F| , V can be any random value. This is because R can be any random value.

If a passive adversary knows t shares of a, then even after knowing V = Ra, the value a remains
information theoretically secure due to the random R. Finally it is easy to see that the protocol
performs only one multiplication. 2

7.1 Application of Protocol new-TEST-IF-ZERO

By seeing the properties of protocol new-TEST-IF-ZERO, we find that it be used as a substitute
of TEST-IF-ZERO in any protocol, where we just want to know whether the shared value a is zero
or not. In protocols 2-Party DPMP, n-party DPMP and n-party Set Disjointness, protocol TEST-IF-

ZERO was used to just check whether a shared value a is zero or not. So we can replace TEST-IF-

ZERO with our new protocol new-TEST-IF-ZERO in 2-Party DPMP, n-party DPMP and n-party

Set Disjointness. Since new-TEST-IF-ZERO requires less number of multiplications than TEST-IF-

ZERO, the resultant protocols for 2-Party DPMP, n-party DPMP and n-party Set Disjointness becomes
more efficient. However, since protocol new-TEST-IF-ZERO involves a negligible error probability,
the resultant protocols for 2-Party DPMP, n-party DPMP and n-party Set Disjointness will also now
involve a negligible error probability in correctness.

Notice that we cannot use our new protocol new-TEST-IF-ZERO as a substitute of TEST-IF-

ZERO in protocol n-party Cardinality Set Intersection. This is because if a 6= 0, then new-TEST-

IF-ZERO outputs [V]t, where except with probability 1
|F| , V can be any random non-zero value.

On the other hand, protocol TEST-IF-ZERO would output [0]t in this case. Now in protocol n-

party Cardinality Set Intersection, the parties added the outcome of each instance of TEST-IF-ZERO

to count the number of elements in the intersection of n sets. However, the parties cannot do so if
TEST-IF-ZERO is replaced by new-TEST-IF-ZERO.

8 Some Optimization Issues

8.1 Further Reduction of Communication Complexities

In all our protocols, we have used the multiplication protocol of [4], which communicates O(n2)
field elements to generate the t-sharing of the product of two t-shared values, in the presence of a

computationally unbounded passive adversary, controlling t < n/2 parties/servers. To further optimise
the communication complexity of our protocols, we can use the multiplication protocol in [1]. In [1]
the authors have presented a perfectly secure multiplication protocol tolerating a t-active malicious
adversary. The MPC protocol of [1], when executed with n = 2t + 1 parties, in the presence of a
passive adversary, controlling at most t parties, will communicate O(n) field elements to generate the
t-sharing of the product of two t-shared values. Moreover, the protocol will take O(1) communication
rounds.

8.2 Adapting our Protocols to Work Against Malicious Adversary

All our protocols can be extended to work against a t-active malicious adversary 4, having unbounded
computing power, by doing the following steps:

1. Taking n = 3t + 1, instead of n = 2t + 1. This is required because from [2], secure computation
tolerating an all powerful, t-active malicious adversary is possible iff n ≥ 3t + 1.

2. Using Verifiable Secret Sharing (VSS) [2] instead of Shamir’s secret sharing scheme for n = 3t + 1.
3. Using multiplication protocol of [1] secure against a malicious adversary.
4. Modifying the TEST-IF-ZERO protocol as suggested in [11] to work against a malicious adver-

sary.

9 Conclusion and Open Problems

In this paper, we have given perfectly secure protocols for private matching, set disjointness and
cardinality set intersection problems in information theoretic settings, secure against a computationally
unbounded passive adversary. Future work would be to come up with efficient protocols that can
work against more powerful adversaries such as byzantine and mixed adversaries. Also, improving
the communication complexity of the protocols presented in this paper is another interesting future
direction.

References

1. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with linear communication complexity. In TCC,
pages 213–230, 2008.

2. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In STOC, pages 1–10, 1988.

3. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection. In EURO-

CRYPT, pages 1–19, 2004.
4. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fact-track multiparty computations with

applications to threshold cryptography. In PODC, pages 101–111, 1998.
5. Susan Hohenberger and Stephen A. Weis. Honest-verifier private disjointness testing without random oracles. In

Privacy Enhancing Technologies, pages 277–294, 2006.
6. Aggelos Kiayias and Antonina Mitrofanova. Testing disjointness of private datasets. In Financial Cryptography,

pages 109–124, 2005.
7. Aggelos Kiayias and Antonina Mitrofanova. Syntax-driven private evaluation of quantified membership queries. In

ACNS, pages 470–485, 2006.
8. Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In CRYPTO, pages 241–257, 2005.
9. Ronghua Li and Chuankun Wu. An unconditionally secure protocol for multi-party set intersection. In ACNS, pages

226–236, 2007.
10. Ron Ben Natan. Implementing Database Security and Auditing. ELSEVIER, 2005.
11. Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality, and comparison without bit-

decomposition protocol. In Public Key Cryptography, pages 343–360, 2007.
12. Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Information theoretically secure multi party set intersection

re-visited. Cryptology ePrint Archive, Report 2009/116, 2009. http://eprint.iacr.org/.
13. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In CRYPTO, pages

129–140, 1991.
14. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

4 A malicious adversary takes complete control of the parties under its control and can make them behave in any
arbitrary fashion during the protocol execution.

15. Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with application to association rule mining.
Journal of Computer Security, 13(4):593–622, 2005.

16. Qingsong Ye, Huaxiong Wang, and Josef Pieprzyk. Distributed private matching and set operations. In ISPEC,
pages 347–360, 2008.

17. Qingsong Ye, Huaxiong Wang, Josef Pieprzyk, and Xian-Mo Zhang. Efficient disjointness tests for private datasets.
In ACISP, pages 155–169, 2008.

APPENDIX A: Properties of Protocol 2-Party DPMP

Claim 3: In protocol 2-Party DPMP if Alice is honest, then a passive adversary controlling at most t
servers does not get any information about a even after knowing t shares of a, . . . , am.

Proof: Without loss of generality, let the adversary passively controls the servers S1, . . . , St. Thus
the adversary will know the first t shares of a, . . . , am. We first show that knowing t shares of a and
a2, the adversary does not get any extra information than just knowing the t shares of a. So let a
and a2 be Shamir shared using degree-t polynomials f(x) and g(x) respectively, where f(0) = a and
g(0) = a2. Moreover, for i = 1, . . . , t, we have f(αi) = ai and g(αi) = a2

i . Here ai and a2
i denotes ith

share of a and a2 respectively. Moreover, α1, . . . , αt are publicly known distinct elements from F.
From the shares of a, the adversary can form a t− 1 degree polynomial fint(x) such that fint(x) =

f(x), for x = α1, . . . , αt. The polynomial f(x) can thus be expressed in terms of fint(x) in the following
way :

f(x) = fint(x) + γ(x − α1) . . . (x − αt) (3)

The adversary knows fint(0) and α1, . . . , αt. However, f(0) is information theoretically secure because
of the fact that γ is still unknown to the adversary. Thus the security of a lies on the inability of the
adversary to gain information on γ.

Similarly, the adversary can form a t − 1 degree polynomial gint(x), such that

g(x) = gint(x) + β(x − α1) . . . (x − αt) (4)

If Alice would have only Shamir shared a2, then a2 would be information theoretically secure because
adversary would have no information about β. However, from Eqn (3) and Eqn (4), the adversary can
form the following system of equations:

f(x) = fint(x) + γ(x − α1) . . . (x − αt) (5)

g(x) = gint(x) + β(x − α1) . . . (x − αt) (6)

With the above two equations for f(x) and g(x), the adversary can obtain the following relation :

a = fint(0) + γ(−α1) . . . (−αt) (7)

a2 = gint(0) + β(−α1) . . . (−αt) (8)

Using the relation between a and a2, adversary can obtain the following relation between γ and β:

(fint(0) + (−1)tγ ×

t∏

i=1

αi)
2 = (gint(0) + (−1)tβ ×

t∏

i=1

αi) (9)

As we see, we can only get β in terms of γ and vice versa. As long as γ is secure, the whole set of
dependent information is secure and we can see that, because of the dependency, the security of a2

is also in terms of γ. The argument can be further extended to other powers of a or to any set of
values that are dependent on a showing that ultimately all their security depend on γ and hence on
the security of a as is the case when we share just a (and not its powers). 2

