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Abstract. We revisit the notion of the anonymous signature, first formal-
ized by Yang, Wong, Deng and Wang [12], and then further developed
by Fischlin [6] and Zhang and Imai [13]. We present a new formalism of
anonymous signature, where instead of the message, a part of the signa-
ture is withheld to maintain anonymity. We introduce the notion unpre-
tendability to guarantee infeasibility for someone other than the correct
signer to pretend authorship of the message and signature. Our defini-
tion retains applicability for all previous applications of the anonymous
signature, provides stronger security, and is conceptually simpler. We
give a generic construction from any ordinary signature scheme, and
also show that the short signature scheme by Boneh and Boyen [4] can
be naturally regarded as such a secure anonymous signature scheme ac-
cording to our formalism.
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1 Introduction

An anonymous signature is a signature scheme where the signature σ of a mes-
sage m does not reveal the identity of the signer. Yang et al. [12] discussed the
usefulness of anonymous signatures in many applications where anonymity is
needed, including key exchange protocols, auction systems, and anonymous
paper reviewing.

The notion of the anonymous signature was formalized much later than
that of the anonymous encryption. Bellare et al. [1] had already defined in
Asiacrypt 2001 key-privacy, or anonymity of an encryption scheme, as indistin-
guishability of ciphertexts encrypted by different public keys, that is, an eaves-
dropper cannot obtain any information about the recipient (corresponding to
the public key) from the ciphertext. However, one problem for introducing the
idea of anonymity to digital signatures is that a signature is publicly verifiable;
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if there are only a few candidate signers, the adversary of anonymity can sim-
ply try verification of the message-signature pair with respect to all candidate
public keys to break anonymity. Therefore, as long as the adversary obtains
both the message and the signature, it seems that anonymity is impossible.

Yang et al. resolved the paradox by guaranteeing the anonymity only when
the adversary obtains the signature and not the message, or when there is
some randomness in the message not revealed to the adversary. In fact, there
are many applications where not revealing the complete message is justifiable;
for example, in the key transport example given by Yang et al., Bob already
knows what Alice’s message should be from previous communication, so Al-
ice may send only the anonymous signature without the message, and this
authenticates Alice while protecting Alice’s anonymity from eavesdroppers. In
the case of an auction, a bidder may append some random string r to a mes-
sage m, which is his bid, and sign it. After the auction ends, only the winner
may reveal the randomness r and thus his identity, and the other participants
remain anonymous.

This idea of hidden randomness in the message is used by Fischlin [6] to
propose an elegant generic transform for anonymous signatures out of ordi-
nary signatures, by applying the idea of randomness extractor to extract the
hidden randomness and use it for anonymizing the signature. Fischlin’s for-
mulation of anonymous signatures is slightly different, but essentially captures
the same idea as that of Yang et al. Also in [13], Zhang and Imai suggested the
notion of ‘strong anonymous signatures’, where they considered the case when
there is not much uncertainty in the message.

1.1 Limits of the previous formalism

We revisit the formal definition of anonymous signature and show that pre-
vious formalisms of anonymous signature are not completely satisfactory in
that, they fail to capture the intuition fully, and actually are inconsistent with
some of the suggested applications. Also, we claim that a slightly different
formalism captures the intuition better, retains the applicability, more consis-
tently models the application scenarios, enables simpler constructions, and
gives better security guarantee.

As explained, in the current formalism, the signer anonymity is based on
hidden residual randomness of the message. As long as there is enough such
randomness, the signer maintains anonymity, but of course the signature can-
not be verified. Eventually the randomness in message is revealed explicitly
or implicitly, and whoever has the complete message-signature pair can verify
the signature.

In order to model this, Yang et al. and Fischlin formalize that each signer,
having public key pk, has certain message distribution M(pk). Then, two key
pairs (pk0, sk0), (pk1, sk1) are chosen and pk0 and pk1 are given to the adver-
sary. Also, a message m is chosen from M(pkb) with respect to a random bit
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b ∈ {0, 1}, and the signature σ = Sig(skb, m) is computed and given to the
adversary. If the adversary cannot guess the random bit b with probability not
much greater than 1/2, then the signature scheme is considered anonymous.

But this formalism is not completely satisfactory in some aspects. First, this
is in fact inconsistent to the suggested application of anonymous auction, or
anonymous paper review. In these cases, if m is the original intended message,
then the signer adds some random string r to form appended message m∥r,
and releases the message m, together with the signature σ of the appended
message m∥r. From the point of view of an eavesdropper, different original
message m gives different message distribution of the whole appended mes-
sage m∥r; the message distribution cannot be a function of only the public
key pk, and in fact also depends on the partially revealed portion (m) of the
message.

Second, this definition does not formally give a guarantee of infeasibil-
ity for someone other than the correct signer to come later and pretend that
the signature is his. We call this property unpretendability. For an ordinary
signature for which complete message-signature pair is released at once, this
problem may be less crucial; the pair is publicly verifiable and the authorship
can be attributed to the signer. But for an anonymous signature, where only
a part of the message-signature pair is released initially, there is theoretical
possibility that someone other than the signer may come and claim the au-
thorship of the message and signature. For example, in the anonymous paper
review example, the author A of a paper paperA picks a random string r, com-
putes σ ← Sig(skA, paperA∥r), and releases (paperA, σ) initially, and only later
reveals r when the paper is accepted. Now, if the anonymous signature is not
unpretendable, then another author, B, may be able to compute r′ satisfying
Vf(pkB, paperA∥r′, σ) = true and use such an r′ to claim authorship of paperA.

Hence, we argue that this unpretendability should be an essential feature
of an anonymous signature; otherwise anonymous signature is in fact not ap-
plicable for quite a few of originally proposed applications.

Note that we are not claiming that any of the actual schemes proposed in
previous papers fails to satisfy unpretendability. But, still this notion should
be formally defined and guaranteed for each anonymous scheme. In fact, later
we will give an example of an unforgeable signature scheme which provides
complete anonymity but is not at all unpretendable. This means that, unpre-
tendability does not follow directly from unforgeability and/or anonymity,
and warrants separate definition.

Third, we feel that the idea of a signature of an unknown message is some-
what counter-intuitive. Intuitively, a signature is a proof of authorship for a
given document. If we do not know the document in question, or if we are not
sure whether the document ends with ‘Therefore you should . . . ,’ or ‘There-
fore you should not . . . ,’ then the meaning of a signature for such uncertain
document is at least debatable.
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1.2 Our formalism

Discarding hidden randomness in the message. For these reasons, we propose a
new definition of anonymous signatures as follows: first, instead of relying on
the hidden residual randomness of the message, we introduce hidden random-
ness to the signature. Second, we formalize not only the notion of anonymity,
but also give explicit formalization of unpretendability.

In traditional digital signatures, signature generation is considered as a ran-
domized algorithm in general, therefore this strategy of explicit randomness
is applicable no matter how much entropy (or lack thereof) the distribution of
the message has.

This enables us to disregard the randomness in the message altogether,
and use the provided randomness directly to anonymize the public key. In
fact, even when there is enough entropy in the message distribution, often the
randomness is not diffused in the whole message but well-separated from the
rest of the message and controllable by the signer. For example, in the bidding
example where the bidder appends some random string r to the message m
and then sign the appended message m∥r, certainly the distribution of this
appended message has enough entropy which can be extracted back, but we
feel this is artificial; the original message was m, and intuitively, the signer
is not really interested in protecting the integrity of r, which is not part of
his message m which he really wanted to sign. Hence, it is more natural to
regard this r as a part of the signature, instead of regarding this as a part of
the message which needs to be signed and protected.

Surfacing the verification token. Therefore, in our formalism, we split a digital
signature σ̃ into two parts, σ̃ = (σ, τ). We call τ a verification token, or a token
in short. Then σ, the rest of σ̃, is now just called a signature. The signature σ
and the token τ are computed by the signature generation algorithm which
takes the signer’s secret key and the message m as inputs, and when m, σ,
and τ are presented, then anyone can verify the validity of the signature using
the public key of the signer. But as long as τ is hidden, the adversary cannot
break the anonymity of the signer just from the message m and the signature
σ. Meanwhile, anyone to whom the token τ (along with the identity of the
signer) is revealed may verify the signature.

Note that our formalism is just a specialization of the traditional formalism
of digital signature, and not something incompatible; (σ, τ) together serves as
a signature which is publicly verifiable, and unforgeable according to the usual
definition. We only enforce our signature to have this special format, and to
have anonymity and unpretendability in addition to the unforgeability.

In short, we surfaced the hidden randomness of the anonymous signature
explicit as the verification token, and moved it from the message to the signa-
ture itself. Also we identified and formalized the unpretendability as another
property an anonymous signature should have.
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Enhanced notion of security. Not only separating the randomness extraction
from the anonymous signature results in a conceptually cleaner formalism,
but also it enables us to guarantee better notion of security. Because in pre-
vious formalisms the verification token was ‘diffused’ in the message itself,
the adversary of anonymity could not choose the challenge message by him-
self, and a random challenge message had to be chosen out of some message
distribution. But in our formalism, there is no problem for the adversary to
adaptively choose the challenge message by himself, and indeed we give this
stronger notion of anonymity, which all of our schemes meet.

Our contribution. In this paper, we give a new formalism for an anonymous sig-
nature following the outline given in the introduction. Also, we present some
examples of efficient anonymous signature schemes. We first give a generic
construction out of any ordinary unforgeable signature scheme and a commit-
ment scheme. Also, we show that the short signature scheme by Boneh and
Boyen [4] can be naturally regarded as such a secure anonymous signature
scheme according to our formalism with essentially no modification.

2 Related work

The notion of anonymous signature was first formalized by Yang et al. in [12],
and explored further by Fischlin in [6]. Our work revisits this notion, and
provides an alternative formalism.

Zhang and Imai [13] proposed a very similar approach as ours. Their idea
is to define ‘strong anonymous signature’, which maintains anonymity even
when there is not much uncertainty in the message distribution. Though their
definition of strong anonymity is essentially the same as our anonymity, they
do not discuss unpretendability, which we argue as central to the notion of
anonymous signatures.

Independently from us, Bellare and Duan also presented [2] a formalism
of anonymous signatures similar to ours, but with somewhat stronger notions
of unforgeability and unpretendability (their ‘unambiguity’). They also gave a
through investigation of random oracle based anonymous signature schemes,
starting from a commitment-based generic transform.

There are pre-existing security notions closely related to unpretendability;
Menezes and Smart [9] studied security against the key substitution attack for
signature schemes, where an adversary produces a public key (and the corre-
sponding secret key, in their formulation) to claim the ownership of a message-
signature pair generated by someone else. Also Hu et al. [8] introduced key
replacement attack, which is the similar notion in context of certificateless sig-
natures.

Galbraith and Mao [7] introduced the notion of anonymity to undeniable
and confirmer signatures. Our definition of anonymity of an anonymous sig-
nature is similar to theirs, and also the fact that the signer has to provide the
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verification token later to let others verify the signature looks similar to the
case of undeniable signatures. But an anonymous signature is not an undeni-
able signature; anyone who obtained the token of the signature can in fact let
others verify the signature, without involvement of the signer. In general, an
anonymous signature is much simpler than an anonymous undeniable signa-
ture.

Also, there are notions of anonymity in group and ring signatures, but
these are anonymity within the group or ring in question, on the other hand
the anonymous signature in our formalism or in previous formalism is essen-
tially a conventional signature scheme with some additional properties.

3 Definitions

3.1 Notations and conventions

We denote by v ← A(x, y, z, . . .) the operation of running a randomized algo-
rithm A(x, y, z, . . .) and storing the output to the variable v. If X is a set, then
v R← X denotes the operation of choosing an element v of X according to the
uniform random distribution on X. Unless stated otherwise, all algorithms in
this paper are probabilistic algorithms.

3.2 Anonymous signature

We define an anonymous signature Σ as a triple of algorithms Σ = (Gen, Sig, Vf),
where the key generation algorithm Gen() outputs a key pair (pk, sk)← Gen(),
signature generation algorithm Sig() outputs a pair of a signature and a ver-
ification token σ̃ = (σ, τ) ← Sig(sk, m) with respect to the secret key sk and
a message m ∈ {0, 1}∗, and the deterministic, signature verification algorithm
Vf(pk, m, σ, τ) outputs true or false.

For consistency, we require the following:

Vf(pk, m, Sig(sk, m)) = true,

for (pk, sk)← Gen(), and for any m ∈ {0, 1}∗.

3.3 Unforgeability

For an anonymous signature scheme Σ = (Gen, Sig, Vf) and an adversary A,
we define the unforgeability advantage of A with respect to Σ as

Advuf-cma
Σ (A) def= Pr

[
Expruf-cma

Σ (A) = true
]

in the following experiment:
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Experiment Expruf-cma
Σ (A)

(pk, sk)← Gen()
(m∗, σ∗, τ∗)← ASig(sk,·)(pk)
return Vf(pk, m∗, σ∗, τ∗)

where the adversary A has access to the signing oracle Sig(sk, ·) with respect
to the secret key sk with the requirement that A is not allowed to query the
signing oracle with m∗.

Similarly, we define strong unforgeability advantage of A as

Advsuf-cma
Σ (A) def= Pr

[
Exprsuf-cma

Σ (A) = true
]

in the experiment Exprsuf-cma
Σ (A), which is identical to Expruf-cma

Σ (A), except
that we require A not to have received (σ∗, τ∗) as an answer to any query of
form m∗ to the signing oracle.

Remark 1. In this definition and in the following ones, we define only the ad-
vantage of an adversary in a security experiment, and would not explicitly
define the security notion itself. Informally, Σ is unforgeable if for any effi-
cient adversary A, the advantage Advuf-cma

Σ (A) is negligible. But unlike in the
asymptotic setting, there is no clear-cut definition of ‘efficient’ or ‘negligible’
and it depends on particular applications.

3.4 Anonymity

Consider an adversary which is a pair of algorithmsA = (A1,A2). Let st be the
state information which A1 passes to A2. We define the anonymity advantage
of A with respect to Σ as

Advanon
Σ (A) def=

∣∣∣Pr[Expranon-1
Σ (A) = 1]− Pr[Expranon-0

Σ (A) = 1]
∣∣∣ ,

where experiments Expranon-b
Σ (A) (b = 0, 1) are defined as follows:

Experiment Expranon-b
Σ (A)

(pk0, sk0)← Gen(); (pk1, sk1)← Gen()
(m∗, st)← ASig(sk0,·),Sig(sk1,·)

1 (pk0, pk1)
(σ∗, τ∗)← Sig(skb, m∗)
b′ ← ASig(sk0,·),Sig(sk1,·)

2 (σ∗, st)
return b′

We call Σ anonymous with respect to full key exposure, when the advantage
of any adversary is still negligible even if the adversary also gets the secret
keys sk0, sk1 as additional input. We denote by Advanon-fke

Σ (A) the advantage
of an adversary in the anonymity experiment with full key exposure.
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3.5 Unpretendability

For any adversary A = (A1,A2), we define the unpretendability advantage of
A with respect to Σ as

Advup
Σ (A) def= Pr

[
Exprup

Σ (A) = true
]

in the experiment Exprup
Σ (A) in Figure 1.

Intuitively, the adversary is trying to claim the authorship of (m∗, σ∗),
which is signed by the target secret key sk∗. The adversary tries to produce
an appropriate τ so that the signature is verified with his own public key pk,
which could be freshly chosen, and the definition guarantees that the success
probability for this attempt is negligible.

Also, we define a weaker version of unpretendability: for any adversary
A = (A1,A2,A3), we define the weak unpretendability advantage of A with
respect to Σ as

Advwup
Σ (A) def= Pr

[
Exprwup

Σ (A) = true
]

in the experiment Exprwup
Σ (A) in Figure 1.

The difference between the unpretendability and the weak unpretendabil-
ity is that, in the unpretendability, the adversary is allowed to choose his public
key adaptively, but that is not allowed in the case of weak unpretendability.
The notion of weak unpretendability is applicable for example in situations
where there is trustable PKI under which every party registers his public key
to his identity, possibly timestamped and with proof of secret key possession;
in such cases the adversary cannot adaptively choose his public key after see-
ing the signature, and claim the ownership under the fresh key/identity. Many
applications like anonymous paper review or anonymous auction could fall
into this category, but this depends on how the public keys are managed. The
unpretendability is stronger in that the adversary cannot claim the ownership
of the signature even when he is allowed to freshly create a new public key.

Like the case of anonymity, we say that Σ is (weakly) unpretendable with
respect to full key exposure, when the advantage of any adversary is still neg-
ligible even if the adversary also gets the target secret key sk∗ as additional
input. We denote the advantage of an adversary in the (weak) unpretendabil-
ity experiment with full key exposure by (Advwup-fke

Σ (A)) Advup-fke
Σ (A).

3.6 Security of an anonymous signature

Suppose that Σ = (Gen, Sig, Vf) is an anonymous signature scheme. We say
that Σ is a secure anonymous signature, if Σ is unforgeable, anonymous, and
at least weakly unpretendable.

We emphasize that the unpretendability is a crucial property that an anony-
mous signature should have. Already we showed that if an anonymous signa-
ture is not unpretendable, then it cannot be used for some of the suggested
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Experiment Exprup
Σ (A)

(pk∗, sk∗)← Gen()
(m∗, st)← ASig(sk∗ ,·)

1 (pk∗)
(σ∗, τ∗)← Sig(sk∗, m∗)
(τ, pk)← ASig(sk∗ ,·)

2 (σ∗, τ∗, st)
return Vf(pk, m∗, σ∗, τ) ∧ (pk ̸= pk∗)

Experiment Exprwup
Σ (A)

(pk, st)← A1()
(pk∗, sk∗)← Gen()
(m∗, st′)← ASig(sk∗ ,·)

2 (pk∗, st)
(σ∗, τ∗)← Sig(sk∗, m∗)
τ ← ASig(sk∗ ,·)

3 (σ∗, τ∗, st′)
return Vf(pk, m∗, σ∗, τ)

Fig. 1. Experiments Exprup
Σ (A) and Exprwup

Σ (A)

applications like anonymous paper review. Here, we show an example of an
anonymous signature which is unforgeable, anonymous, but not weakly un-
pretendable.

Suppose Σ = (Gen, Sig, Vf) is an ordinary unforgeable signature scheme.
We then construct an anonymous signature scheme Σ′ = (Gen′, Sig′, Vf′) as
follows: Gen′() is the same as Gen(). Sig′(sk, m) is defined as

Sig′(sk, m) = (σ, τ) def= (Sig(sk, m)⊕ τ, τ)

where the verification token τ is a bitstring of the same bit-length as the sig-
nature Sig(sk, m) and is chosen uniform randomly. Finally, Vf′(sk, m, σ, τ) is
defined as

Vf′(pk, m, σ, τ) def= Vf(pk, m, σ⊕ τ).

It is clear that the anonymous signature Σ′ is both unforgeable and anony-
mous; because the signature Sig(sk, m) is masked with random bitstring τ in
Sig′(sk, m), essentially the adversary has no information about the signature.
Only later when τ is revealed, the signature σ is revealed and signature can
be verified. Thus, this is equivalent to deferring the signing to the last minute
when the token τ has to be revealed. Hence the scheme is unforgeable, and
unless τ is revealed, the signer anonymity is guaranteed.

But, it is trivial to break unpretendability of this scheme; if (m∗, σ∗ =
Sig(sk∗, m∗) ⊕ τ∗) is given, then the adversary may compute Sig(sk, m∗) us-
ing his own secret key sk, and compute τ as

τ
def= Sig(sk, m∗)⊕ σ∗.

Then,

Vf′(pk, m∗, σ∗, τ) = Vf(pk, m∗, σ∗ ⊕ τ) = Vf(pk, m∗, Sig(sk, m∗)) = true.

3.7 Commitment schemes

A commitment scheme Γ consists of a pair of algorithms (Com, CVf) satisfying
the following:
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Correctness: For any message m ∈ {0, 1}∗, CVf(com, dec, m) = true holds,
whenever (com, dec)← Com(m).

Hiding: For any adversaryAwhich is a pair of algorithms (A1,A2), the hiding
advantage with respect to Γ is defined as

Advhide
Γ (A) def=

∣∣∣Pr[Exprhide-1
Γ (A) = 1]− Pr[Exprhide-0

Γ (A) = 1]
∣∣∣

where experiments Exprhide-b
Γ (A) (b = 0, 1) are defined in Figure 2.

Also, we require the adversary A to output m0, m1 of the same length.
Binding: For any adversary A, the binding advantage with respect to Γ is de-

fined as
Advbind

Γ (A) def= Pr
[
Exprbind

Γ (A) = true
]

in the experiment Exprbind
Γ (A) in Figure 2.

Experiment Exprhide-b
Γ (A)

(m0, m1, st)← A1()
(com, dec)← Com(mb)
b′ ← A2(com, st)
return b′

Experiment Exprbind
Γ (A)

(com, dec, m, dec′, m′)← A()
p← CVf(com, dec, m)
p′ ← CVf(com, dec′, m′)
return p ∧ p′ ∧ (m ̸= m′)

Fig. 2. Experiments Exprhide-b
Γ (A) and Exprbind

Γ (A)

3.8 ‘Unique’ commitment schemes

In order to construct a strongly unforgeable anonymous signature from a
strongly unforgeable signature, we define a commitment scheme with a special
property, which we call uniqueness.

A ‘unique’ commitment scheme Γ consists of a pair of algorithms (Prep, Com, CVf)
satisfying the following:

Correctness: For any message m ∈ {0, 1}∗, CVf(com, ω, dec, m) = true holds,
whenever (ω, ρ)← Prep() and (com, dec)← Com(m, ρ).

Hiding: For any adversary A which is a pair of algorithms (A1,A2), the hid-
ing advantage with respect to Γ is defined as

Advhide
Γ (A) def=

∣∣∣Pr[Exprhide-1
Γ (A) = 1]− Pr[Exprhide-0

Γ (A) = 1]
∣∣∣

where experiments Exprhide-b
Γ (A) (b = 0, 1) are defined in Figure 3.

Also, we require the adversary A to output m0, m1 of the same length.
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Experiment Exprhide-b
Γ (A)

(ω, ρ)← Prep()
(m0, m1, st)← A1(ω)
(com, dec)← Com(mb, ρ)
b′ ← A2(com, st)
return b′

Experiment Exprbind
Γ (A)

(com, ω, dec, m, dec′, m′)← A()
p← CVf(com, ω, dec, m)
p′ ← CVf(com, ω, dec′, m′)
return p ∧ p′ ∧ (m ̸= m′)

Fig. 3. Experiments Exprhide-b
Γ (A) and Exprbind

Γ (A)

Binding: For any adversary A, the binding advantage with respect to Γ is
defined as

Advbind
Γ (A) def= Pr

[
Exprbind

Γ (A) = true
]

in the experiment Exprbind
Γ (A) in Figure 3.

Uniqueness: For any adversary A, the uniqueness advantage with respect to
Γ is defined as

Advuniq
Γ (A) def= Pr

[
Expruniq

Γ (A) = true
]

in the following experiment:

Experiment Expruniq
Γ (A)

(ω, m, com, com′, dec, dec′)← A()
p← CVf(com, ω, dec, m)
p′ ← CVf(com′, ω, dec′, m)
return p∧ p′ ∧ (com, dec) ̸= (com′, dec′)

Intuitively, before each commitment, a ‘help string’ ω is chosen, and the
commitment and the decommitment processes are controlled by ω. The com-
mitter sends (com, ω), and the hiding property holds even if the messages
are chosen with the knowledge of ω. Finally, the uniqueness says that given
ω and m, computationally there should be at most one way to create a valid
commitment and decommitment with respect to (ω, m).

A unique commitment scheme can be trivially built in the random oracle
model: in order to commit a message m, pick a random bitstring r, compute
ω ← H(r), and define (com, dec) def= (H(r, ω, m), r). The decommitment can be
done by revealing r and m.

In the standard model, one way to construct a unique commitment scheme
is to use the standard Blum-Micali construction [3]: given a one-way permuta-
tion π and its hard-core bit b, in order to commit a k-bit message m, we pick a
random string ρ and compute ω ← πk+1(ρ), and define

(com, dec) def= (b(πk(ρ))∥b(πk−1(ρ))∥ · · · ∥b(π2(ρ))∥b(π(ρ))⊕m, ρ).
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It is well known that ω∥b(πk(ρ))∥b(πk−1(ρ))∥ · · · ∥b(π2(ρ))∥b(π(ρ)) it-
self is computationally indistinguishable from a uniform random bitstring,
so for any message m, which might have been chosen with knowledge of
ω = πk+1(ρ), the commitment com is computationally indistinguishable from
a uniform random bitstring, from which follows the hiding property. Also,
in order to decommit to a different value, one has to find ρ′ ̸= ρ with ω =
πk+1(ρ) = πk+1(ρ′), but since π is a permutation, it is not possible. Hence
the binding property holds perfectly. Also, ω uniquely determines ρ, therefore
given any ω and m, (com, dec) is unique.

Using stronger assumptions, we may construct more efficient schemes.
For example, one can use decisional Diffie-Hellman assumption or its hashed
variants: let G be a cyclic group of order p, and let g be a random genera-
tor of G and h a random element of G. If the decisional Diffie-Hellman as-
sumption holds, then (g, h, gr, hr) for a random r R← Zp and (g, h, gr, k) for
a uniformly and independently chosen k R← G are indistinguishable. Then
ω

def= hr, (com, dec) def= (m · gr, r) satisfies the required properties, for any mes-
sage m ∈ G.

4 Secure anonymous signature schemes

In this section, first we show how to construct an anonymous signature scheme
generically from any ordinary unforgeable signature scheme. Then, we show
that the short signature scheme of Boneh and Boyen [4] can be naturally con-
sidered as a secure anonymous signature according to our formalism, with
essentially no modification. To be precise, it is a weakly unpretendable anony-
mous signature.

4.1 Generic construction from an unforgeable signature

Here we present a generic construction of an anonymous signature scheme
using an ordinary signature scheme and a commitment scheme. It is required
that the signature scheme is unforgeable, and the public key size and the sig-
nature size are the same for all users.

Let Σ = (Gen, Sig, Vf) be a signature scheme, and let Γ = (Com, CVf) be a
commitment scheme. We construct an anonymous signature Σ′ = (Gen′, Sig′, Vf′)
using these as follows:
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function Gen′()
(pk, sk)← Gen()
pk′ ← pk
sk′ ← sk∥pk
return (pk′, sk′)

function Vf′(pk′, m, σ, τ)
Parse τ as τ1∥τ2
return CVf(σ, τ1, pk′∥τ2) ∧Vf(pk′, m, τ2)

function Sig′(sk′, m)
Parse sk′ as sk∥pk
σ′ ← Sig(sk, m)
(com, dec)← Com(pk∥σ′)
σ← com; τ ← dec∥σ′
return (σ, τ)

Theorem 1. Given an ordinary signature scheme Σ, consider the scheme Σ′ defined
in the above. If Σ is unforgeable, then Σ′ is a secure unforgeable anonymous signature.
Moreover, Σ′ is both anonymous and unpretendable with respect to full key exposure.

Proof. First, we prove the unforgeability of Σ′.
Suppose that A is an adversary attacking the unforgeability of Σ′. Then

using A, we construct an adversary B which attacks the unforgeability of Σ,
and satisfying

Advuf-cma
Σ′ (A) ≤ Advuf-cma

Σ (B).

The adversary B is given a public key pk of Σ, and the corresponding sign-
ing oracle Sig(sk, ·). B sets pk′ = pk, and gives it to A and answers the signing
query of A as follows: for signing query of m, B calls its own signing oracle
with query m to obtain σ′, computes (com, dec) ← Com(pk, σ′) and returns
(σ = com, τ = dec∥σ′) to A. Note that this simulation of the unforgeability
experiment for A by B is perfectly done according to the description of Σ′.

Suppose that A halts with output (m∗, σ∗, τ∗). Then B parses τ∗ as τ1∥τ2,
and halts with output (m∗, τ2).

Whenever the output (m∗, σ∗, τ∗) of A is a successful forgery for Σ′, then
B outputs a successful forgery (m∗, τ2) for Σ since from the definition of Vf′,
Vf′(pk′, m∗, σ∗, τ∗) = true holds only if Vf(pk, m∗, τ2) = true holds. This proves
the claimed inequality.

Also, the time complexity of B is essentially at most that of A plus q ·
Tc(lp + ls), where q is the number of signature queries A makes, Tc(l) is the
time complexity for committing a bitstring of length l, and lp and ls are lengths
of public keys and signatures of Σ, respectively. B also makes at most q signa-
ture queries.

Next, we show that Σ′ satisfies anonymity with respect to full key exposure.
Suppose that A = (A1,A2) is an adversary attacking anonymity of Σ′. Using
A, we construct B attacking the hiding property of the commitment scheme Γ,
satisfying

Advanon-fke
Σ′ (A) ≤ Advhide

Γ (B).

Also, B has essentially the same time complexity as that of A.
Consider the experiment Exprhide-b

Γ (B) with respect to this adversary B. B
generates two key pairs (pk′0, sk′0) and (pk′1, sk′1). B then runsA1(pk′0, pk′1, sk′0, sk′1)
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to obtain an output (m∗, st) and gives s0 = pk0∥Sig(sk0, m∗) and s1 = pk1∥Sig(sk1, m∗)
to the challenger. The challenger computes (com, dec) ← Com(sb), and gives
σ∗ = com to B. B now runs A2(σ∗, st) to obtain an output b′ and then halts
with output b′.

Note that this simulation of the full-key exposure anonymity experiment
for A by B is perfect, and the output of B is the same as the output of A.
Hence, Pr[Exprhide-b

Γ (B)] = Pr[Expranon-fke-b
Σ′ (A)], for b = 0, 1. Therefore,

Advanon-fke
Σ′ (A) =

∣∣∣Pr[Expranon-fke-1
Σ′ (A) = 1]− Pr[Expranon-fke-0

Σ′ (A) = 1]
∣∣∣

=
∣∣∣Pr[Exprhide-1

Γ (B) = 1]− Pr[Exprhide-0
Γ (B) = 1]

∣∣∣
= Advhide

Γ (B).

Finally, we show that Σ′ satisfies unpretendability with respect to full key
exposure. Suppose that A = (A1,A2) is an adversary attacking unpretendabil-
ity of Σ′. Using A, we construct an adversary B attacking the binding property
of the commitment scheme Γ, satisfying

Advup-fke
Σ′ (A) ≤ Advbind

Γ (B).

Also, B has time complexity essentially the same as A.
B generates a key pair (pk′∗, sk′∗), and runs A1(pk′∗, sk′∗) to obtain an out-

put (m∗, st). B then computes (σ∗, τ∗)← Sig′(sk′∗, m∗), and runs A2(σ∗, τ∗, st)
to obtain an output (τ, pk′). Then B parses τ as τ1∥τ2 and τ∗ as τ∗1 ∥τ∗2 and
halts with output (σ∗, τ∗1 , pk′∗∥τ∗2 , τ1, pk′∥τ2). This simulation of the full-key
exposure unpretendability experiment for A by B is perfect.

We claim that, in the above simulation, whenever A succeeds at break-
ing the unpretendability of Σ′, that is, Vf′(pk′, m∗, σ∗, τ) = true and pk′ ̸=
pk′∗, then B also succeeds in breaking the binding property of Γ. From the
definition of Vf′, in order that Vf′(pk′, m∗, σ∗, τ) = true, it is necessary that
CVf(σ∗, τ1, pk′∥τ2) is also true. Moreover, since (σ∗, τ∗) = Sig′(sk′∗, m∗), also
Vf′(pk′∗, m∗, σ∗, τ∗) = true holds, and from this it follows that CVf(σ∗, τ∗1 , pk′∗∥τ∗2 ) =
true. Now, pk′∗ ̸= pk′ so that pk′∗∥τ∗2 ̸= pk′∥τ2 and hence B has successfully
violated the binding property of Γ. ⊓⊔

4.2 Generic construction from a strongly unforgeable signature

If the underlying signature scheme Σ is strongly unforgeable, we may con-
struct a strongly unforgeable anonymous signature generically from Σ. How-
ever, in contrast to the case of an unforgeable signature, we could not find an
efficient, generic construction using any secure commitment scheme. Instead,
we show a generic construction using any unique commitment scheme, which
was defined in Section 3.8. Similarly as before, it is required that the signature
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scheme is strongly unforgeable, and the public key size and the signature size
are the same for all users.

Let Σ = (Gen, Sig, Vf) be a signature scheme, and let Γ = (Prep, Com, CVf)
be a unique commitment scheme. We construct an anonymous signature Σ′ =
(Gen′, Sig′, Vf′) using these as follows:

function Gen′()
(pk, sk)← Gen()
pk′ ← pk
sk′ ← sk∥pk
return (pk′, sk′)

function Vf′(pk′, m, σ, τ)
Parse σ as σ1∥σ2
Parse τ as τ1∥τ2
return CVf(σ1, σ2, τ1, pk′∥τ2) ∧Vf(pk′, m∥σ2, τ2)

function Sig′(sk′, m)
Parse sk′ as sk∥pk
(ω, ρ)← Prep()
σ′ ← Sig(sk, m∥ω)
(com, dec)← Com(pk∥σ′, ρ)
σ← com∥ω; τ ← dec∥σ′
return (σ, τ)

Theorem 2. Given an ordinary signature scheme Σ, consider the scheme Σ′ defined
in the above. If Σ is unforgeable, then Σ′ is a secure unforgeable anonymous signature.
Moreover, Σ′ is both anonymous and unpretendable with respect to full key exposure.
Also, if Σ is strongly unforgeable, then Σ′ is also a secure strongly unforgeable anony-
mous signature.

Proof. We only give proof for the case when the underlying signature scheme
Σ is strongly unforgeable, because the other case can be proved similarly.

First, let us prove the strong unforgeability of Σ′. Suppose that A is an
adversary attacking strong unforgeability of Σ′. Then using A, we construct
an adversary B which attacks strong unforgeability of Σ, and an adversary C
attacking uniqueness of Γ, and together satisfying

Advsuf-cma
Σ′ (A) ≤ Advsuf-cma

Σ (B) + Advuniq
Γ (C).

The adversary B is given a public key pk of Σ, and the corresponding sign-
ing oracle Sig(sk, ·). B then gives pk′ = pk to A. B keeps an associative array L
whose entries are initially all set to ⊥. And, B answers the signing query of A
as follows: for signing query for message m, B computes (ω, ρ)← Prep(), calls
its own signing oracle with query m∥ω. When it obtains its answer σ′, B com-
putes (com, dec) ← Com(pk∥σ′, ρ), updates L[(m∥ω, σ′)] ← (com, dec), and
returns (σ, τ) def= (com∥ω, dec∥σ′) to A. Note that the simulation is perfectly
done according to the description of Σ′.

Suppose that A halts with output (m∗, σ∗, τ∗). Let σ∗ = σ∗1 ∥σ∗2 and τ∗ =
τ∗1 ∥τ∗2 . B then checks if L[(m∗∥σ∗2 , τ∗2 )] = ⊥. If so, then B halts with output
(m∗∥σ∗2 , τ∗2 ). If not, then B aborts.

Now, the description of C is almost identical to that of B: C provides the
same simulation for A as B, but up to the step where A halts with output
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(m∗, σ∗, τ∗). The difference between C and B is that, since the signing oracle for
Σ is not available to C, instead C generates a key pair (pk, sk), gives pk to A, and
answers the signing queries of A using sk. C also checks if L[(m∗∥σ∗2 , τ∗2 )] = ⊥.
If so, then C aborts. If not, then let (com, dec) = L[(m∗∥σ∗2 , τ∗2 )]. Then C halts
with output (σ∗2 , m∗, σ∗1 , com, τ∗1 , dec).

Suppose that the output (m∗, σ∗, τ∗) of A is a successful strong forgery for
Σ′. Then, from the definition of Σ′, we have CVf(σ∗1 , σ∗2 , τ∗1 , pk∥τ∗2 ) = true and
Vf(pk, m∗∥σ∗2 , τ∗2 ) = true. Suppose that in the run of B, at the end L[(m∗∥σ∗2 , τ∗2 )] =
⊥ happened. This means that (m∗∥σ∗2 , τ∗2 ) is a valid strong forgery of Σ, and
in that case B succeeds.

But the probability that L[(m∗∥σ∗2 , τ∗2 )] = ⊥ happens in the simulation of
B for A is identical to the probability that the same event happens in the
simulation of C for A, since up to the point A outputs a forgery attempt,
both B and C provides the identical, perfect simulation of the original security
game.

Now consider the case that the output (m∗, σ∗, τ∗) of A is a successful
strong forgery for Σ′ in the simulation of C, and L[(m∗∥σ∗2 , τ∗2 )] = (com, dec) ̸=
⊥. This means that, A has made a signature query for m∗, C computed Prep()
with output (σ∗2 , ρ) for some ρ, C queried its own oracle for m∗∥σ∗2 to obtain
τ∗2 , computed (com, dec) ← Com(pk∥τ∗2 , ρ), and returned (com∥σ∗2 , dec∥τ∗2 ) as
the signature-token pair for the message m∗.

From the correctness of commitment, CVf(com, σ∗2 , dec, pk∥τ∗2 ) = true. Sup-
pose that (com, dec) = (σ∗1 , τ∗1 ). Then,

(m∗, σ∗, τ∗) = (m∗, σ∗1 ∥σ∗2 , τ∗1 ∥τ∗2 ) = (m∗, com∥σ∗2 , dec∥τ∗2 ),

which contradicts the assumption that (m∗, σ∗, τ∗) is a successful strong forgery
for Σ′. Hence, it follows that (com, dec) ̸= (σ∗1 , τ∗1 ). But this means that the out-
put (σ∗2 , m∗, σ∗1 , com, τ∗1 , dec) of C is a successful attack on uniqueness of Γ. This
proves the claimed inequality.

Also, the time complexity of B is essentially at most that of A plus q ·
(Tc(lp + ls) + Tp + Ta(q)), where q is the number of signature queries Amakes,
Tc(l) is the time complexity for committing a bitstring of length l, Tp is the
time complexity for computing Prep(), Ta(q) is the time complexity for one
operation of associative array of size at most q, and lp and ls are lengths of
public keys and signatures of Σ, respectively. B also makes at most q signature
queries.

The time complexity of C is that of B, plus q · Ts(lω + lm), where Ts(l) is
the time complexity for signing one l-bit message, lω is the bit length of ω for
(ω, ρ)← Prep(), and lm is the maximum length of messages that A queries.

Next, we show that Σ′ satisfies anonymity with respect to full key exposure.
Suppose that A = (A1,A2) is an adversary attacking anonymity of Σ′. Using
A, we construct B attacking the hiding property of the commitment scheme Γ,
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satisfying
Advanon-fke

Σ′ (A) ≤ Advhide
Γ (B).

Also, B has time complexity essentially the same as A.
Consider the experiment Exprhide-b

Γ (B) with respect to this adversary B.
The challenger computes (ω, ρ)← Prep() and runs B with ω as input. B gen-
erates two key pairs (pk′0, sk′0) and (pk′1, sk′1). B then runs A1(pk′0, pk′1, sk′0, sk′1)
to obtain an output (m∗, st) and gives s0 = pk0∥Sig(sk0, m∗∥ω) and s1 =
pk1∥Sig(sk1, m∗∥ω) to the challenger. The challenger computes (com, dec) ←
Com(sb, ρ), and gives com to B. B now runs A2(com∥ω, st) to obtain an output
b′ and then halts with output b′.

Note that this simulation of the full-key exposure anonymity experiment
for A by B is perfect, and the output of B is the same as the output of A.
Hence, Pr[Exprhide-b

Γ (B)] = Pr[Expranon-fke-b
Σ′ (A)], for b = 0, 1. Therefore,

Advanon-fke
Σ′ (A) =

∣∣∣Pr[Expranon-fke-1
Σ′ (A) = 1]− Pr[Expranon-fke-0

Σ′ (A) = 1]
∣∣∣

=
∣∣∣Pr[Exprhide-1

Γ (B) = 1]− Pr[Exprhide-0
Γ (B) = 1]

∣∣∣
= Advhide

Γ (B).

Finally, we show that Σ′ satisfies unpretendability with respect to full key
exposure. Suppose that A = (A1,A2) is an adversary attacking unpretendabil-
ity of Σ′. Using A, we construct an adversary B attacking the binding property
of the commitment scheme Γ, satisfying

Advup-fke
Σ′ (A) ≤ Advbind

Γ (B).

Also, B has essentially the same time complexity as A.
B generates a key pair (pk′∗, sk′∗) = (pk∗, sk∗∥pk∗), and runsA1(pk′∗, sk′∗) to

obtain an output (m∗, st). B then computes (ω, ρ)← Prep(), σ∗ ← Sig(sk∗, m∗∥ω),
(com, dec) ← Com(pk∗∥σ∗, ρ), and then runs A2(com∥ω, dec∥σ∗, st) to obtain
an output (τ, pk′) = (τ1∥τ2, pk). Then B outputs (com, ω, dec, pk∗∥σ∗, τ1, pk∥τ2)
and halts. This simulation of the full-key exposure unpretendability experi-
ment for A by B is perfect.

We claim that, in the above simulation, whenever A succeeds at breaking
the unpretendability of Σ′, that is, Vf′(pk, m∗, com∥ω, τ1∥τ2) = true and pk ̸=
pk∗, then B also succeeds in breaking the binding property of Γ. From the defi-
nition of Vf′, in order that Vf′(pk, m∗, com∥ω, τ1∥τ2) = true, it is necessary that
CVf(com, ω, τ1, pk∥τ2) = true. Moreover, since (com, dec) = Com(pk∗∥σ∗, ρ),
also CVf(com, ω, dec, pk∗∥σ∗) = true holds. Now, pk∗ ̸= pk so that pk∗∥σ∗ ̸=
pk∥τ2 and hence B has successfully violated the binding property of Γ. ⊓⊔

Remark 2. If we instantiate the unique commitment scheme using ideas of Sec-
tion 3.8, the resulting construction would look like

(σ, τ)← (((pk∥Sig(sk, m∥H(τ)))⊕ G(τ)) ∥H(τ), τ),
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where H(τ) is a collision resistant function, and G(τ) is a pseudorandom gen-
erator which remains pseudorandom when H(τ) is exposed. (For example,
H(τ) = πk+1(τ), G(τ) = b(πk(τ))∥b(πk−1(τ))∥ · · · ∥b(π2(τ))∥b(π(τ)), fol-
lowing Blum-Micali construction.) This is similar to the construction given by
Zhang and Imai in Section 4.2 of [13]. We note that care is needed for that con-
struction: in our notation, they defined Sig′(sk′, m, τ) to be Sig(sk, m∥τ)⊕G(τ).
In their construction, it is not sufficient for G to be a pseudorandom genera-
tor. This is because Sig(sk, m∥τ) and G(τ) are correlated by the hidden vari-
able τ. In order to prove anonymity of this construction, G has to look pseu-
dorandom even when Sig(sk, m∥τ) is exposed: for example, suppose we are
given an unforgeable signature Sig(). Using this, we construct Sig(sk, m∥τ) def=
Sig(sk, m∥τ) ⊕ G(τ), i.e., in order to sign a message with length larger than
or equal to l0, which is the length of τ, sign the message and xor it with
the output of the pseudorandom generator for the last l0 bits of the mes-
sage. In that case, the construction of Zhang and Imai gives Sig′(sk′, m, τ) =
Sig(sk, m∥τ) ⊕ G(τ) = Sig(sk, m∥τ). If Sig leaks information about pk corre-
sponding to sk, then so does Sig′.

Note that in contrast to our construction, they allow G to be different be-
tween different users, so this example is not directly applicable. But still G has
to be a pseudorandom generator satisfying the stronger property.

4.3 Boneh-Boyen short signature

Here we give a brief description of the Boneh-Boyen signature scheme [4] for
completeness.

Parameter generation A bilinear group (G1, G2, GT) with a pairing e : G1 ×
G2 → GT , where |G1| = |G2| = |GT | = p for some prime p, is chosen. The
message space is Zp, which gives no essential problem since the domain
can be extended by using a (target) collision resistant hash function.

Key generation Key generation algorithm chooses random generators g1 and
g2 of G1 and G2, respectively, and chooses x, y R← Z∗p, computes u← gx

2 ∈
G2, v← gy

2 ∈ G2. Then, pk def= (g1, g2, u, v), and sk def= (g1, x, y).
Signing For a secret key (g1, x, y) and a message m ∈ Zp, the signing algo-

rithm chooses τ
R← Zp \ {− x+m

y }, and computes σ ← g1/(x+m+yτ)
1 ∈ G1.

Then the signature is the pair (σ, τ).
Verification For a public key (g1, g2, u, v), a message m, and a signature (σ, τ),

the verification can be done by checking whether e(σ, u · gm
2 · vτ) = e(g1, g2).

4.4 Security of Boneh-Boyen as an anonymous signature

The Boneh-Boyen short signature can be naturally considered as an anony-
mous signature, by regarding τ in (σ = g1/(x+m+yτ)

1 , τ) as the verification
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token. To be precise, because τ should not be equal to −(x + m)/y modulo
p, we need to make slight modifications both to the signature scheme and
to the formalism itself; for example, instead of choosing τ uniformly from
Zp \ {−(x + m)/y}, τ may be chosen uniformly from Zp, and instead the
signing algorithm may be allowed to fail in the negligible possibility that
τ = −(x + m)/y.

Then, the Boneh-Boyen short signature scheme becomes a secure anony-
mous signature scheme; we show that it is strongly unforgeable, anonymous
with full key exposure, and weakly unpretendable with full key exposure.

Strong unforgeability Because our definition of strong unforgeability for anony-
mous signatures is identical to the ordinary definition of strong unforgeability,
the proof of Boneh and Boyen for the strong unforgeability of the short signa-
ture scheme is directly applicable. Their proof is based on the SDH assumption
on bilinear groups (G1, G2, GT).

Anonymity with full key exposure For a message m ∈ Zp chosen by the

adversary, consider the distribution of the signature σ, where σ = g1/(x+m+yτ)
1 ,

for uniformly chosen token τ
R← Zp, when the secret key (g1, x, y) is given to

the adversary. Then, even conditioned on g1, x, m, and y, still 1/(x + m + yτ)
has uniform distribution on Z∗p ∪{⊥}, and σ has uniform distribution on (G1 \
{1}) ∪ {⊥}. Because this is true for any secret key (g1, x, y), we conclude that
the Boneh-Boyen short signature scheme is anonymous with full key exposure.

Weak unpretendability with full key exposure We prove weak unpretend-
ability of Boneh-Boyen signature with full key exposure, under the follow-
ing assumption on the bilinear groups (G1, G2, GT) which we call ‘adversarial
pairing inversion assumption’:

With respect to any adversarially chosen h ∈ GT \ {1}, it is infeasi-
ble to find X ∈ G2 satisfying e(g, X) = h, for g R← G1 \ {1}.

It is a nonstandard variant of pairing inversion problem; it is known that
some versions of pairing inversion problem is as hard as the computational
Diffie-Hellman problem [5,11], but here h is allowed to be chosen by the adver-
sary, and it is not known whether this assumption can be derived from more
traditional assumptions. Note also that this is an interactive assumption. But,
the adversarial choice of h does not seem to allow any obvious attacks, and as
a partial justification of the assumption, it can be shown that this assumption
holds in generic bilinear groups.

Let A be an adversary of weak unpretendability of the Boneh-Boyen signa-
ture, with key exposure. Using A, we construct the adversary B of the adver-
sarial pairing inversion problem. B runs A, which would output its public key
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(g1, g2, u, v) ∈ G1 ×G2 ×G2 ×G2 of A, B outputs h ← e(g1, g2) as his chosen
instance for the adversarial pairing inversion to the challenger.

Then, the challenger sends B a random g R← G1 \ {1}. B defines g∗1
def= g,

and randomly chooses g∗2
R← G2 \ {1}, x∗, y∗ R← Zp, and sends g∗1 , g∗2 , x∗, y∗ to

A. A then outputs the challenge message m∗. B randomly chooses τ∗
R← Zp,

computes σ∗ ← (g∗1)1/(x∗+m∗+y∗τ∗), and sends (σ∗, τ∗) to A. A eventually halts
with some τ. Using τ, B outputs X, where X is defined as

X def= (ugm∗
2 vτ)1/(x∗+m∗+y∗τ∗).

In the above, B provides perfect simulation for A. Suppose that the attack
of A is successful: then

e(g1, g2) = e(σ∗, ugm∗
2 vτ)

holds. Since σ∗ = (g∗1)1/(x∗+m∗+y∗τ∗) = g1/(x∗+m∗+y∗τ∗), the above equation is
equivalent to e(g, X) = e(g1, g2) = h, which shows that B solves the pairing
inversion, whenever the weak unpretendability attack of A is successful.

On unpretendability of Boneh-Boyen The Boneh-Boyen signature scheme
satisfies weak unpretendability with full key exposure, but it is not unpretend-
able; it is easy to break unpretendability when the adversary is allowed to
choose his public key adaptively.
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