
FACTOR-4 AND 6 COMPRESSION OF CYCLOTOMIC
SUBGROUPS OF F∗24m AND F∗36m

KORAY KARABINA

Abstract. Bilinear pairings derived from supersingular elliptic curves of em-
bedding degrees 4 and 6 over finite fields F2m and F3m , respectively, have
been used to implement pairing-based cryptographic protocols. The pairing
values lie in certain prime-order subgroups of the cyclotomic subgroups of or-
ders 22m +1 and 32m−3m +1, respectively, of the multiplicative groups F∗

24m

and F∗
36m . It was previously known how to compress the pairing values over

characteristic two fields by a factor of 2, and the pairing values over character-
istic three fields by a factor of 6. In this paper, we show how the pairing values
over characteristic two fields can be compressed by a factor of 4. Moreover, we
present and compare several algorithms for performing exponentiation in the
prime-order subgroups using the compressed representations. In particular, in
the case where the base is fixed, we expect to gain at least a 54% speed up
over the fastest previously known exponentiation algorithm that uses factor-6
compressed representations.

1. Introduction

The Diffie-Hellman key agreement protocol [8] can be used by two parties A and
B to establish a shared secret by communicating over an unsecured channel. Let
G = 〈g〉 be a prime-order subgroup of the multiplicative group F∗q of a finite field Fq.
Party A selects a private key a and sends ga to B. Similarly, B selects a private
key b and sends gb to A. Both parties can then compute the shared secret gab.
Security of the protocol depends on the intractability of the problem of computing
gab from ga and gb; this is called the Diffie-Hellman problem in G. The best
method known for solving the Diffie-Hellman problem in G is to solve the discrete
logarithm problem in G, that is, computing a from ga. If q is prime (say q = p),
then the fastest algorithms known for solving the discrete logarithm problem in
G are Pollard’s rho method [20] and the number field sieve [12]. To achieve a
128-bit security level against these attacks, one needs to select #G ≈ 2256 and
p ≈ 23072 [9, Section 4.2]. Note that even though the order of G is approximately
2256, the natural representation of elements of G, namely as integers modulo p, are
approximately 3072 bits in length. This brings an overhead both to the efficiency
of the protocol and to the number of bits that need to be stored or transmitted.
In recent years, there have been several proposals for compressing the elements of
certain subgroups of certain finite fields.
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The first proposal was by Smith and Skinner in 1994 [27] (see also [4]). The main
idea is that Lucas functions can be used modulo a prime to perform exponentiation
in cryptographic applications. In fact, using this method the elements of the order-
(q + 1) subgroup G of F∗q2 can be identified by their traces over Fq. More precisely,
the elements of G can be uniquely identified up to conjugation over Fq. This
construction yields a compression factor of 2.

Gong and Harn [11] obtained a factor-3/2 compression and efficient exponentiation
for the compressed form of the elements in the order-(p2 +p+1) subgroup G of F∗p3 .
Elements of G are represented by a pair of elements from Fp. Similarly, Giuliani
and Gong [10] obtained a factor-5/2 compression and efficient exponentiation for
the compressed form of the elements in the order-(p4 − p3 + p2 − p + 1) subgroup
G of F∗p10 . Brouwer, Pellikaan and Verheul [6] obtained a factor-3 compression by
representing elements of the order-(p2 − p + 1) subgroup G of F∗p6 by a pair of
elements from Fp. Even though they did not give an algorithm to exponentiate the
elements in G in their compressed form, they noted that to exponentiate an element
in G it suffices to know its compressed form and the exponent. In 2000, Lenstra
and Verheul [17] showed that elements of the order-(p2 − p + 1) subgroup G of F∗p6

can be uniquely represented (up to conjugation over Fp2) by their traces over Fp2 .
Note that the compression factor is the same as in [6]. An important contribution of
Lenstra and Verheul was a very efficient algorithm for exponentiation in G using the
trace representation. More recently, Shirase et al. [25] observed that the elements
of the order-(q −

√
3q + 1) subgroup G of F∗q6 , where q = 3m for some odd number

m, can be uniquely represented (up to conjugation over Fq) by their traces over
Fq, thereby achieving a factor-6 compression. They also presented an algorithm
for exponentiation in G. If g ∈ G and c is its factor-6 compressed form in Fq,
they first lifted c to the trace of g in Fq2 and thereafter used an analogue of the
Lenstra-Verheul algorithm to exponentiate g.

Rubin and Silverberg [21] introduced a compression/decompression method for fi-
nite field elements by using a rational parametrization of an algebraic torus. For a
positive integer k and a prime power q the algebraic torus Tk is a ϕ(k)-dimensional
algebraic variety over Fq and its group Tk(Fq) of Fq-rational points is isomorphic
to the order-Φk(q) subgroup of F∗qk . Here, Φk(q) is the kth-cyclotomic polynomial
evaluated at q, and ϕ is Euler’s totient function. Rubin and Silverberg noted that
one would hope to use only ϕ(k) elements in Fq in order to (uniquely) represent
elements of Tk(Fq). For the cases k = 2 and k = 6, they presented explicit com-
pression/decompression algorithms for the elements of Tk(Fq), and showed that
the Smith-Skinner, Gong-Harn and Lenstra-Verheul representations are based on
certain quotients of the algebraic tori, T2, T3 and T6, respectively, thus explaining
the compression ratios of 2/ϕ(2) = 2, 3/ϕ(3) = 3/2 and 6/ϕ(6) = 3. Later, van
Dijk et al. [30], improving on an earlier work [31], constructed an efficient bijection
between Tk(Fq) × Fm

q and Fϕ(k)+m
q and obtained, asymptotically, a compression

factor of k/ϕ(k). In particular, when representing i elements in Tk(Fq) for k = 30
and k = 210, they obtained compression factors 30i/(8i + 2) with m = 2, and
210i/(48i + 24) with m = 24, respectively.

We provide more details about some of the previous work in Appendix A.
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Let q = 2m, where m is odd, and note that

q4 − 1 = (q − 1)(q + 1)Φ4(q)

= (q − 1)(q + 1)(q −
√

2q + 1)(q +
√

2q + 1).

In this paper, we achieve a factor-4 compression for the subgroups G of T4(Fq) of
orders q ±

√
2q + 1. We show that the elements of G can be uniquely represented

(up to conjugation over Fq) using their traces over Fq, and that exponentiation in
G can be efficiently performed using the compressed representations. Our method
gives a better compression factor than the Smith-Skinner system. We note that our
factor-4 compression does not contradict the Rubin-Silverberg observation about
the necessity of using ϕ(k) Fq-elements for representing elements of Tk(Fq) since our
construction compresses elements of subgroups of relatively small order of T4(Fq)
and the resulting set of compressed elements do not preserve the group structure.

Let q = 3m, where m is odd, and note that

q6 − 1 = (q3 − 1)(q + 1)Φ6(q)

= (q3 − 1)(q + 1)(q −
√

3q + 1)(q +
√

3q + 1).

As mentioned earlier, Shirase et al. showed that by using traces over Fq one can
achieve a factor-6 compression (up to conjugation over Fq) for the elements of the
order-(q −

√
3q + 1) subgroup G of T6(Fq). Moreover, exponentiation in G can

be efficiently performed when elements are represented by their traces over Fq2 .
We observe that a similar compression technique and efficient exponentiation also
applies to the order-(q +

√
3q + 1) subgroup G of T6(Fq). Suppose that g ∈ G and

c ∈ Fq is its factor-6 compressed representation. We present six exponentiation
algorithms. The first works directly with the compressed element c. The second
algorithm first lifts c to the trace of g over Fq3 , and then employs an exponentiation
algorithm of Scott and Barreto [24]. The third algorithm first lifts c to g, and then
uses a conventional exponentiation method. In the fourth algorithm, we first deter-
mine f2(x), the minimal polynomial of g over Fq2 , by partially decompressing c to
an element in Fq2 . Then we construct Fq6 = Fq2 [x]/(f2(x)), and use a conventional
exponentiation method. The idea of the fifth and sixth algorithms is similar to the
fourth algorithm except that we use the minimal polynomials of g over Fq3 and Fq,
respectively. In the case where the base is fixed, the first algorithm is expected to
be at least 54% faster than the XTR3 algorithm presented in [25].

Besides reducing transmission costs in the Diffie-Hellman and related protocols, we
observe that compression techniques have applications in pairing-based cryptogra-
phy where bilinear pairings derived from supersingular elliptic curves of embedding
degree 4 and 6 over finite fields F2m and F3m are employed. The pairing values lie
in prime-order subgroups of orders dividing q ±

√
2q + 1 and q ±

√
3q + 1 (where

q = 2m or q = 3m) of F∗24m and F∗36m , respectively, and thus it can be beneficial to
compress these pairing values.

The remainder of the paper is organized as follows. We begin in Section 2 by
describing some cryptographic applications of our compression methods. Section 3
introduces some terminology and sets the notation that we will use throughout the
paper. Sections 4 and 5 describe our compression and exponentiation techniques for
the characteristic two and three fields. The exponentiation methods are compared
in Section 6. We make some concluding remarks in Section 7.
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2. Cryptographic applications

In this section we give some examples of cryptographic protocols where our com-
pression techniques can be beneficial.

As described in Section 1, compression is useful in Diffie-Hellman and related key
agreement protocols where the underlying group is a prime-order subgroup of the
multiplicative group of a finite field. Indeed, Koblitz [15] studied the efficiency of
discrete logarithm protocols when the underlying group G is a subgroup of T6(Fq)
for q = 3m, and where #G divides q ±

√
3q + 1.

Beginning with the seminal work of Joux [14], Sakai-Ohgishi-Kasahara [22] and
Boneh-Franklin [5], bilinear pairings have been widely used to design protocols for
various cryptographic tasks. These protocols can be described using symmetric
bilinear pairings e : G1 × G1 → G where G1 and G are groups of prime order
n. A necessary condition for the security of these protocols is that the discrete
logarithm problems in G1 and G should be intractable. Such pairings can be
realized by selecting G1 to be a group of points in E1(Fq), where q = 2m and
E1 : Y 2 + Y = X3 + X + b where b ∈ {0, 1} is a supersingular elliptic curve over
Fq with #E1(Fq) = q ±

√
2q + 1. This elliptic curve has embedding degree 4, i.e.,

the smallest positive integer k for which #E1(Fq) divides qk − 1 is k = 4. Then G
is the order-n subgroup of F∗q4 . For example, if a 128-bit security level is desired,
then one could use E1/Fq : Y 2 + Y = X3 + X with q = 21223 [1]. This curve has
the property that #E1(Fq) = 5n where n is a 1221-bit prime, and so Pollard’s rho
method for solving the discrete logarithm problem in G1 or G has running time
approximately 2611. Moreover, Coppersmith’s algorithm [7] for solving the discrete
logarithm problem in G has running time very roughly 2128 (see Table 6 of [16]).

Symmetric bilinear pairings can also be realized by selecting G1 to be a group of
points in E2(Fq), where q = 3m and E2 : Y 2 = X3−X±1 is a supersingular elliptic
curve over Fq with #E2(Fq) = q±

√
3q+1. This elliptic curve has embedding degree

6, and G is the order-n subgroup of F∗q6 . For example, if a 128-bit security level is
desired, then one could use E2/Fq : Y 2 = X3−X + 1 with q = 3509 [1]. This curve
has the property that #E2(Fq) = 7n where n is a 804-bit prime, and so Pollard’s
rho method for solving the discrete logarithm problem in G1 or G has running time
approximately 2402. Moreover, Coppersmith’s algorithm for solving the discrete
logarithm problem in G has running time very roughly 2128.

In the Waters signature scheme [32], party A has a private key Z = zP and a public
key ζ = e(P, P )z. In order to sign a message M , A first computes H = Hash(M) ∈
G1, where Hash is a cryptographic hash function that hashes its input elements into
elliptic curve group elements, and chooses a random integer r ∈ [1, n− 1]. Then A
computes α = Z +rH and β = rP and sends (α, β) as her signature on M . A party
B accepts A’s signature on M if and only if e(α, P ) = ζ · e(β, H). Our compression
technique reduces the size of A’s public key ζ by a factor of 4 or 6. More precisely,
at the 128-bit security level, the size of the public key is reduced from 4892 bits to
1223 bits if E1 is used, or from 4841 bits to 807 bits if E2 is used. In order to verify
A’s signature, B can check if the compressed value of e(α, P )e(β,−H) is equal to
the compressed value of ζ.
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Another pairing-based application is the identity-based key agreement protocol of
Scott [23]. In Scott’s protocol, party A first computes a particular pairing value
g ∈ G, and sends PA = ga to party B. Similarly, B computes the pairing value
g ∈ G and sends PB = gb to A. Finally, both A and B compute the shared secret
P a

B = P b
A. (For details of the computations, please refer to [23].) If the symmetric

bilinear pairings described above are employed, then messages exchanged can be
compressed by factors of 4 or 6, and moreover the computations can take place over
smaller fields rather than Fq4 or Fq6 .

3. Preliminaries and notation

Let q be a prime power, and let Fq denote a finite field with q elements. Let n be a
prime such that gcd(n, q) = 1, and let k be the smallest positive integer such that
qk ≡ 1 (mod n). Then Fqk has a multiplicative subgroup of order n which cannot
be embedded in the multiplicative group of any extension field Fqi for 1 ≤ i < k.
For such a triple (q, k, n) we denote the multiplicative group of order n by µn and
call k the embedding degree of µn over Fq.

Let g ∈ Fqk and let s be a positive divisor of k. We assume that g is not contained
in any proper subfield of Fqk . The conjugates of g over Fqs are gi = gqis

for
0 ≤ i < k/s. The trace of g over Fqs is the sum of the conjugates of g over Fqs , i.e.,

Trs(g) =

k
s−1∑
i=0

gi ∈ Fqs .(3.1)

The minimal polynomial of g over Fqs is the monic polynomial

fg,s(x) =

k
s−1∏
i=0

(x− gi).(3.2)

Note that fg,s(x) ∈ Fqs [x]. When s = 1 we simply use Tr(g) and fg(x) by abuse of
notation. Also, we will assume that the conjugates of g over Fqs are well defined
for any integer i by setting gi = gi mod k/s.

We fix some notation for finite field operations that will be used in the remainder
of the paper. We will denote by Ai, ai, Ci, Fi, Ii, Si,Mi and mi the operations of
addition, addition by 1 or 2, cubing, exponentiation by a power of the characteristic
of the field, inversion, squaring, multiplication, and multiplication by 2 in Fqi for
i = 1, 2, 3. SRi,j will denote the cost of finding a root of a degree i irreducible
polynomial over Fqj . We use soft-O notation Õ(·) as follows: a = Õ(b) if and only
if for some constant c, a = O(b(log2 b)c).

4. Multiplicative groups with embedding degree k = 4

In this section we concentrate on multiplicative groups µn with embedding degree
k = 4 over Fq. In other words, we fix parameters (q, n) such that q is a prime power,
n is a prime, gcd(q, n) = 1, q4 ≡ 1 (mod n), and qi 6≡ 1 (mod n) for 1 ≤ i < 4.
Finally, we let h be a positive integer and define th = q + 1− h · n to be the trace
of µn over Fq with respect to the cofactor h. Throughout the rest of this section
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we will assume that the cofactor h is fixed, and we simply denote the trace of µn

by t instead of th.

In the following lemma we show that g ∈ µn together with its conjugates can be
uniquely represented by the pair (Tr(g),Tr(gt)) of Fq-elements. This already gives
us compression by a factor 2. Furthermore, we will show in Corollary 4.5 that in
characteristic two finite fields it is possible to write all the coefficients of the minimal
polynomial of g over Fq in terms of Tr(g) alone and hence achieve compression by
a factor 4.

Lemma 4.1. Let µn be the multiplicative subgroup of F∗q4 of order n with embedding
degree 4, trace t, and cofactor h. Let g ∈ µn and let gi, for i = 0, 1, 2, 3, be the
conjugates of g over Fq. (Recall the convention that gi = gi mod 4.) Then
(i) gigi+1 = gt

i for i = 0, 1, 2, 3.
(ii) gigi+2 = 1 for i = 0, 1.
(iii) fg(x) = x4 − Tr(g)x3 + (Tr(gt) + 2)x2 − Tr(g)x + 1.

Proof. (i) gigi+1 = gq+1
i = gt

i since gi is of order n and q + 1− t ≡ 0 (mod n).
(ii) gigi+2 = gq2+1

i = 1 since gi is of order n and q2 + 1 ≡ 0 (mod n).
(iii) Using (i) and (ii) gives

fg(x) =
3∏

i=0

(x− gi)

= x4 −

(
3∑

i=0

gi

)
x3 +

 ∑
0≤i<j≤3

gigj

x2 −

 ∑
0≤i<j<k≤3

gigjgk

x + 1

= x4 − Tr(g)x3 + (Tr(gt) + 2)x2 − Tr(g)x + 1. �

Suppose we fix a generator g ∈ Fq4 of µn, that is µn = 〈g〉. In order to simplify
the notation we define cu = Tr(gu) for any integer u. Note that c0 = 0, c1 = Tr(g),
cu = cu mod n and cqu = cq

u = cu.

Lemma 4.2. Let µn = 〈g〉 be the multiplicative subgroup of F∗q4 of order n with
embedding degree k = 4 and trace t. Then for all integers u and v we have
(i) cu = c−u.
(ii) cucv = cu+v + cu−v + cu+v(t−1) + cv+u(t−1).
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Proof. (i) This follows from Lemma 4.1(ii).
(ii) By Lemma 4.1(i) and (ii) it follows that

cucv = (gu
0 + gu

1 + gu
2 + gu

3 )(gv
0 + gv

1 + gv
2 + gv

3)

=
3∑

i=0

gu+v
i +

3∑
i=0

gu
i gv

i+1 +
3∑

i=0

gu
i gv

i+2 +
3∑

i=0

gu
i gv

i+3

= cu+v +
3∑

i=0

gu−v
i (gv

i gv
i+1) +

3∑
i=0

gu−v
i (gv

i gv
i+2) +

3∑
i=0

gv
i gu

i+1

= cu+v +
3∑

i=0

g
u+v(t−1)
i +

3∑
i=0

gu−v
i +

3∑
i=0

g
v+u(t−1)
i

= cu+v + cu+v(t−1) + cu−v + cv+u(t−1). �

Theorem 4.3. Let µn = 〈g〉 be the multiplicative subgroup of F∗q4 of order n with
embedding degree 4 and trace t. Then for all integers u and v we have

cu+v = cucv − cu−v(ctv + 2) + cu−2vcv − cu−3v.(4.1)

Proof. First start with

cucv = (gu
0 + gu

1 + gu
2 + gu

3 )(gv
0 + gv

1 + gv
2 + gv

3)

= cu+v +
3∑

i=0

3∑
j=0

j 6=i

gu
i gv

j

= cu+v +
3∑

i=0

3∑
j=0

j 6=i

gu−v
i (gv

i gv
j )

= cu+v +
3∑

i=0

gu−v
i (gtv

i + gtv
i+3 + 1), by Lemma 4.1(i) and (ii)

= cu+v + cu−v + cu−vctv −
3∑

i=0

gu−v
i (gtv

i+1 + gtv
i+2).(4.2)

Then observe that
3∑

i=0

gu−v
i gtv

i+1 =
3∑

i=0

gu−v
i gqtv

i

=
3∑

i=0

g
(u−2v)+qv
i since qt ≡ q2 + q ≡ q − 1 (mod n)(4.3)

and
3∑

i=0

gu−v
i gtv

i+2 =
3∑

i=0

gu−v
i g−tv

i

=
3∑

i=0

g
(u−2v)−qv
i , since t ≡ q + 1 (mod n).(4.4)
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Substituting (4.3) and (4.4) into (4.2) we obtain

cucv = cu+v + cu−v + cu−vctv − (c(u−2v)+qv + c(u−2v)−qv).(4.5)

Now, let u′ = u− 2v, v′ = qv. Then

u′ + v′(t− 1) ≡ (u− 2v) + q2v ≡ u− 3v (mod n),
v′ + u′(t− 1) ≡ qv + (u− 2v)q ≡ q(u− v) (mod n),

and using Lemma 4.2 (ii) with u′, v′ gives

c(u−2v)+qv + c(u−2v)−qv = cu−2vcqv − (cu−3v + cq(u−v))
= cu−2vcv − (cu−3v + cu−v).(4.6)

Finally, (4.5) and (4.6) complete the proof. �

4.1. Characteristic two finite fields. Let r be a positive integer, and let q =
22r+1, t = ±2r+1, T = |t|. The values of r for which q + 1− t = hn and n is prime
lead to a multiplicative subgroup µn of F∗q4 of prime order n with embedding degree
4. Throughout this section we fix h, n, q, t, T and µn = 〈g〉 in this way, and also
write cu = Tr(gu).

The following recursive relations follow from Theorem 4.3 by noting that the char-
acteristic of Fq is 2 and also that cvt = cvT = cT

v (see Lemma 4.2(i)).

Corollary 4.4. Let µn be the multiplicative subgroup of F∗q4 with embedding degree
4 and trace t. Then for all integers u and v we have
(i) cu+v = cucv + cu−vcT

v + cu−2vcv + cu−3v.
(ii) c2u = c2

u.

Corollary 4.5. Let µn be the multiplicative subgroup of F∗q4 with embedding degree
4 and trace t. Let fgu(x) be the minimal polynomial of gu ∈ µn over Fq. Then

fgu(x) = x4 + cux3 + cT
u x2 + cux + 1.

Proof. The proof follows from Lemma 4.1(iii) and Corollary 4.4(ii). �

Remark 4.6. Throughout the remainder of this section we will assume without
loss of generality that the trace t is positive. If t is negative then one can replace
the expressions of the form c

p(t)
u , where p is some polynomial, by c

p(T )
u without

changing the validity of the results in this section.

4.2. An exponentiation algorithm in µn. Corollary 4.5 shows that the element
gu ∈ µn can be represented uniquely (up to conjugation) by its trace cu. Our
next objective is to develop an efficient method for computing ca given c1 and
a; this is the exponentiation operation in µn. We define s1 = [c−1, c0, c1, c2] =
[c1, 0, c1, c

2
1] to be the initial state. For a given state su = [cu−2, cu−1, cu, cu+1] with

u ≥ 1, if we can efficiently compute the states s2u = [c2u−2, c2u−1, c2u, c2u+1] and
s2u+1 = [c2u−1, c2u, c2u+1, c2u+2] then we immediately have an efficient double-and-
add algorithm for computing ca given c1 and a.
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Theorem 4.7. Let µn = 〈g〉 be the multiplicative subgroup of F∗q4 with embedding
degree 4 and trace t. Let cu = Tr(gu),

A =


c1 c1 0 0
0 c1 c1 0
0 1 ct

1 1
1 ct

1 1 0

 , X =


c2u−3

c2u−1

c2u+1

c2u+3

 , Y =


(cu + cu−2)2 + c2

u−1c
t
1

(cu+1 + cu−1)2 + c2
uct

1

(cu + cu+1)2c1

(cu−1 + cu)2c1

 .

Then
(i) A is invertible and AX = Y .
(ii) If c1 is given then A and A−1 can be efficiently computed.
(iii) c2u−1 = 1

ct+1
1

(
(cu+1 + cu + cu−1 + cu−2)2 + (cu + cu−1)2(ct

1 + c2
1)
)
.

(iv) c2u+1 = c2u−1 + 1
c1

(
(cu+1 + cu−1)2 + c2

uct
1

)
.

Proof. (i) Noting that the characteristic of Fq is 2, we can show that the determinant
of A is equal to ct+2

1 . Hence A is invertible if and only if c1 6= 0. In fact, c1

is never zero as otherwise the minimal polynomial fg(x) = x4 + 1 = (x + 1)4

is not irreducible. This proves the first part. For the second part we combine
the four equations obtained from Corollary 4.4 with the following (u, v) values:
(2u− 3,−1), (2u− 2,−1), (2u− 1,−1), (2u,−1), and also note that c2u = c2

u.
(ii) Let A−1[i] be the ith row of A−1. Then one can check that

A−1[1] = [(ct
1 + 1)/ct+1

1 , 1/ct+1
1 , 0, 1/ct

1],

A−1[2] = [1/ct+1
1 , 1/ct+1

1 , 0, 1/ct
1],

A−1[3] = [1/ct+1
1 , (ct

1 + 1)/ct+1
1 , 0, 1/ct

1],

A−1[4] = [(ct
1 + 1)/ct+1

1 , (c2t
1 + ct

1 + 1)/ct+1
1 , 1, (ct+1

1 + 1)/ct
1]

and the proof follows.
(iii) The inner product of A−1[2] and Y is equal to c2u−1, and by part (ii) we can
write

A−1[2]Y =
1

ct+1
1

(
(cu+1 + cu + cu−1 + cu−2)2 + (cu + cu−1)2(ct

1 + c2
1)
)
.

(iv) The proof is similar to the proof of part (iii). �

The formulas for c2u−1 and c2u+1 in Theorem 4.7 yield Algorithm 1 for exponenti-
ation in µn.

Remark 4.8. Algorithm 1 can be used to compute cab given ca and b as follows.
We set c′1 = ca and the initial state becomes s′1 = [c′−1, c

′
0, c

′
1, c

′
2] = [ca, 0, ca, c2

a].
With input c′1 and b, Algorithm 1 outputs c′b = cab.

Since the cost of addition is negligible in finite fields of characteristic two, we will
ignore addition costs in the performance analysis of algorithms in this section.
Moreover, we may ignore the cost (1F1 +1S1) in the precomputation steps of Algo-
rithm 1 as it is negligible comparing to (1I1 + 1M1). Then the cost of Algorithm 1
can be approximated as:

Precomputation (steps 2 and 3): 1I1 + 1M1.

Main loop (steps 4–15): (4M1 + 4S1)(`− 1).
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Algorithm 1 Computing ca

Input: c1 and a
Output: ca

1: Write a =
∑`−1

i=0 ai2i where ai ∈ {0, 1} and a`−1 = 1
2: su = [cu−2, cu−1, cu, cu+1]← [c1, 0, c1, c

2
1]

3: m1 ← 1/ct+1
1 and m2 ← 1/c1

4: for i from `− 2 down to 0 do
5: c2u−1 ← m1

(
(cu+1 + cu + cu−1 + cu−2)2 + (cu + cu−1)2(ct

1 + c2
1)
)

6: c2u ← c2
u

7: c2u+1 ← c2u−1 + m2

(
(cu+1 + cu−1)2 + c2

uct
1

)
8: if ai = 1 then
9: c2u+2 ← c2

u+1

10: su ← [c2u−1, c2u, c2u+1, c2u+2]
11: else
12: c2u−2 ← c2

u−1

13: su ← [c2u−2, c2u−1, c2u, c2u+1]
14: end if
15: end for
16: Return (cu)

We note that Algorithm 1 has a limited degree of built-in resistance to side-channel
analysis attacks because the same types of operations are executed whether the bit
ai of the exponent is 1 or 0.

4.3. Other algorithms for exponentiation with compressed elements. Al-
gorithm 1 works directly with the factor-4 compressed elements. In this section,
we describe four algorithms for computing cab given ca and b. The first algorithm
partially decompresses ca to an element c̃a ∈ Fq2 , and then uses the LUC method
for exponentiating in this representation. The second algorithm decompresses ca

to an element in Fq4 , and then employs a standard window-NAF exponentiation
method. The third and fourth methods use the Brouwer-Pellikaan-Verheul idea (cf.
Appendix A.2) by using minimal polynomials over Fq2 and Fq, respectively. The
five exponentiation algorithms are compared in Section 6.

First, we prove the following.

Lemma 4.9. Let µn = 〈g〉 be the multiplicative subgroup of F∗q4 with embedding
degree 4, trace t, and cofactor h. Let cu = Tr(gu) and c̃u = Tr2(gu). Then {c̃u, c̃q

u}
is the set of roots of the polynomial f̃gu(x) = x2 + cux + ct

u.

Proof. Since g has order n and q + 1 ≡ t (mod n) and q2 ≡ −1 (mod n), we have
(x− c̃u)(x− c̃q

u) = (x− (gu + guq2
))(x− (guq + guq3

)) = x2 + cux+ ct
u = f̃gu(x). �

4.3.1. An algorithm based on the LUC cryptosystem. We first describe an algorithm
to compute ca given c1 and a. The idea of the algorithm is as follows. Let d̃1 = c̃q

1.
Suppose we know an element in the set {c̃1, d̃1}. If c̃1 is known then we will compute
c̃a, and if d̃1 is known then we will compute d̃a. In both cases, we can determine
ca = c̃a + c̃q

a = d̃a + d̃q
a.
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Now, by Lemma 4.9 one can determine {c̃1, d̃1} from c1 by finding the roots of
the polynomial f̃g(x) = x2 + c1x + ct

1 in Fq2 . By the argument in the previous
paragraph, we may assume without loss of generality that c̃1 is known. Note that
the minimal polynomial of g over Fq2 is fg,2(x) = x2 + c̃1x + 1, and for all integers
u and v we have the following recursive relation (see [27] or Appendix A.1):

c̃u+v = c̃uc̃v − c̃u−v.

In particular, since the characteristic of the field is 2, we have c̃2u = c̃2
u and c̃2u+1 =

c̃u+1c̃u+ c̃1. Thus, if we define su = [c̃u, c̃u+1], then s1 = [c̃1, c̃
2
1], s2u = [c̃2

u, c̃u+1c̃u+
c̃1], and s2u+1 = [c̃u+1c̃u + c̃1, c̃

2
u+1]. This leads to the double-and-add algorithm

described in Algorithm 2. We note that Algorithm 2 can be used to compute cab

given ca and b (cf. Remark 4.8).

Algorithm 2 Computing ca based on the LUC cryptosystem
Input: c1 and a
Output: ca

1: Write a =
∑`−1

i=0 ai2i where ai ∈ {0, 1} and a`−1 = 1
2: c̃1 ← a root of the polynomial x2 + c1x + ct

1, c̃1 ∈ Fq2

3: su = [c̃u, c̃u+1]← [c̃1, c̃
2
1]

4: for i from `− 2 down to 0 do
5: c̃2u+1 ← c̃u+1c̃u + c̃1

6: if ai = 1 then
7: c̃2u+2 ← c̃2

u+1

8: su ← [c̃2u+1, c̃2u+2]
9: else

10: c̃2u ← c̃2
u

11: su ← [c̃2u, c̃2u+1]
12: end if
13: end for
14: Return (c̃u + c̃q

u)

We may ignore the costs (1F1 + 1S2) and 1F2 in the precomputation steps and in
step 14 of Algorithm 2 as they are dominated by SR2,1 and (1M2 + 1S2)(` − 1),
respectively. Then the cost of Algorithm 2 can be approximated as:

Precomputation (steps 2 and 3): 1SR2,1.

Main loop (steps 4–14): (1M2 + 1S2)(`− 1).

4.3.2. Decompressing and direct exponentiation in µn (Algorithm DDE). Given ca

and an `-bit integer b, in order to compute cab we will decompress ca to ga (or to
one of its conjugates over Fq). Then we will compute gab (up to conjugation over
Fq). Finally, summing the four conjugates of gab over Fq gives cab.

In order to decompress ca we first construct the polynomial f̃ga(x) = x2 + cax + ct
a

(see Lemma 4.9) over Fq and find a root in Fq2 ; without loss of generality, suppose
that this root is c̃a. Next we construct the minimal polynomial of ga over Fq2 , i.e.,
fga,2(x) = x2 + c̃ax + 1 and find a root of fga,2(x) in Fq4 . Hence we obtain ga
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or one of its conjugates over Fq. The decompression can be achieved at a cost of
1SR2,1 + 1SR2,2 (we ignore the cost 1F1 that is dominated by SR2,1 and SR2,2).

Now, to exponentiate ga ∈ µn (or one of its conjugates over Fq) to the power
b, one first determines the width-w NAF representation of b, i.e., b =

∑`′

i=0 bi2i

where `′ ∈ {` − 1, `}, b`′ 6= 0, each nonzero bi is odd, |bi| < 2w−1, and at most
one of any w consecutive digits is nonzero. The width-w NAF representation of
b contains on average `/(w + 1) nonzero digits (see [19] for properties of width-
w NAF representations). After precomputing and storing elements gi = gai for
i ∈ {±1,±3,±5, . . . ,±2w−1 − 1}, one can compute gab at an average cost of `
squarings and `/(w + 1) multiplications in Fq4 . Finally, we note that Karatsuba’s
technique can be used to multiply two elements in Fq4 at a cost of 9M1, and squar-
ing in µn can be performed at a cost of 4S1. Note that by choosing a suitable
polynomial for the extension Fq4/Fq, we may ignore the cost of polynomial reduc-
tions in the extension field arithmetic. We may also ignore the cost for computing
gi’s in the precomputation step as it is dominated by SR2,1 and SR2,2 and the cost
for computing the sum of the four conjugates of gab.

Hence, the expected cost of computing cab can be approximated as 1SR2,1 +
1SR2,2 + (4S1 + 9

(w+1)M1)`.

4.3.3. Direct exponentiation in µn without decompressing (Algorithm BPV-I). This
algorithm is based on the idea of Brouwer, Pellikaan and Verheul (see [6] or Appen-
dix A.2). Suppose ca and an `-bit integer b are given. By Lemma 4.9, we can deter-
mine the minimal polynomial of ga or gaq over Fq2 at a cost of 1SR2,1 (we ignore the
cost 1F1 that is dominated by SR2,1). Without loss of generality let’s assume that
we know fga,2(x) = x2 + c̃ax+1. That is, we have a copy of Fq4 = Fq2 [x]/(fga,2(x))
and next we compute xb modulo fga,2(x) using the conventional repeated square-
and-multiply algorithm. Since (τ1x + τ0)2 = (τ2

1 c̃a)x + (τ2
0 + τ2

1 ), the squaring step
can be achieved at a cost of 1M2 +2S2. And, since (τ1x+τ0)x = (τ1c̃a)x+(τ1 +τ2),
the multiplication step can be achieved at a cost of 1M2. Therefore, computing
xb = w1x+w0 with wi ∈ Fq2 costs on average ((1M2 +2S2)+ 1

2M2)(`−1). Finally,
we compute cab = Tr(xb) = Tr(Tr2(w1x) + Tr2(w0)) = Tr(w1c̃a) = w1c̃a + (w1c̃a)q

at a cost of 1F2 + 1M2. Hence, the approximate expected cost of the algorithm is
1SR2,1 + ((1M2 + 2S2) + 1

2M2)(`− 1) (we ignore the cost (1F2 + 1M2) in the last
step that is dominated by the cost of the main loop).

4.3.4. Direct exponentiation in µn without decompressing (Algorithm BPV-II). The
idea of the algorithm is similar to Algorithm BPV-I, except that we work with a
minimal polynomial over Fq instead of Fq2 . Given ca and b, we first determine
fga(x) = x4 + cax3 + ct

ax2 + cax + 1 at a cost of 1F1. Now, we have a copy of
Fq4 = Fq[x]/(fga(x)) and next we compute xb modulo fga(x) using the conventional
repeated square-and-multiply algorithm. Since x6 = (c3

a + ca)x3 +(c2t
a + ct+2

a + c2
a +

1)x2 + (ct+1
a + c3

a + ca)x + (ct
a + c2

a) modulo fga(x), and (τ3x
3 + τ2x

2 + τ1x + τ0)2 =
τ2
3 x6 + τ2

2 x4 + τ2
1 x2 + τ2

0 , the squaring step can be achieved at a cost of 6M1 + 4S1.
And, since (τ3x

3+τ2x
2+τ1x+τ0)x = (τ3ca+τ2)x3+(τ3c

t
a+τ1)x2+(τ3ca+τ0)x+τ3,

the multiplication step can be achieved at a cost of 2M1. Therefore, computing
xb = w3x

3 + w2x
2 + w1x + w0 with wi ∈ Fq costs ((6M1 + 4S1) + 1M1)(` − 1).

Finally, using x4 = cax3 + ct
ax2 + cax + 1 in Fq4 = Fq[x]/(fga(x)), we can compute
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cab = Tr(xb) = Tr(w3x
3 + w2x

2 + w1x + w0) = w3c3a + w2c2a + w1ca = w3ca(c2
a +

ct
a + 1) + w2c

2
a + w1ca at a cost of 1F1 + 4M1 + 1S1. Hence, the approximate

expected cost of the algorithm is 1F1 + (7M1 + 4S1)(` − 1) (we ignore the cost
(1F1 +4M1 +1S1) in the last step that is dominated by the cost of the main loop).

5. Multiplicative groups with embedding degree k = 6

In this section we concentrate on multiplicative groups µn with embedding degree
k = 6 over Fq. In other words, we fix parameters (q, n) such that q is a prime power,
n is a prime, gcd(q, n) = 1, q6 ≡ 1 (mod n), and qi 6≡ 1 (mod n) for 1 ≤ i < 6.
Finally, we let h be a positive integer and define th = q + 1− h · n to be the trace
of µn over Fq with respect to the cofactor h. Throughout the rest of this section
we will assume that the cofactor h is fixed, and we simply denote the trace of µn

by t instead of th.

In the following lemma we show that g ∈ µn together with its conjugates can be
uniquely represented by the triple (Tr(g), Tr(gt), Tr(g2)) of Fq-elements. In fact,
it is easy to show that Tr(g2) can be written in terms of Tr(g) and Tr(gt). This
already gives us compression by a factor of 3 . Furthermore, as first proven by
Shirase et al. [25], Corollary 5.6 shows that in characteristic three finite fields it is
possible to write all the coefficients of the minimal polynomial of g over Fq in terms
of Tr(g) alone and hence achieve compression by a factor of 6.

Lemma 5.1. Let µn be the multiplicative subgroup of F∗q6 of order n with embedding
degree 6, trace t, and cofactor h. Let g ∈ µn and let gi, for i = 0, 1, . . . , 5, be the
conjugates of g over Fq. (Recall the convention that gi = gi mod 6.) Then
(i) gigi+1 = gt

i for i = 0, 1, . . . , 5.
(ii) gigi+2 = gi+1 for i = 0, 1, . . . , 5.
(iii) gigi+3 = 1 for i = 0, 1, 2.
(iv) fg(x) = x6 − Tr(g)x5 + (Tr(gt) + Tr(g) + 3)x4 − (Tr(g2) + 2Tr(g) + 2)x3 +
(Tr(gt) + Tr(g) + 3)x2 − Tr(g)x + 1.

Proof. (i) gigi+1 = gq+1
i = gt

i since gi is of order n and q + 1− t ≡ 0 (mod n).
(ii) gigi+2 = gq2+1

i = gi+1 since gi is of order n and q2 + 1 ≡ q (mod n).
(iii) gigi+3 = gq3+1

i = 1 since gi is of order n and q3 + 1 ≡ 0 (mod n) .
(iv) By (iii) we can write

fg(x) =
5∏

i=0

(x− g0)

= x6 −

(
5∑

i=0

gi

)
x5 +

 ∑
0≤i<j≤5

gigj

x4 −

 ∑
0≤i<j<k≤5

gigjgk

x3

+

 ∑
0≤i<j≤5

gigj

x2 −

(
5∑

i=0

gi

)
x + 1.
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Moreover, by (i), (ii), and (iii) we have

∑
0≤i<j≤5

gigj =
5∑

i=0

gigi+1 +
5∑

i=0

gigi+2 +
2∑

i=0

gigi+3

=
5∑

i=0

gt
i +

5∑
i=0

gi+1 +
2∑

i=0

1

= Tr(gt) + Tr(g) + 3

and

∑
0≤i<j<k≤5

gigjgk =
5∑

i=0

gigi+1gi+2 +
2∑

i=0

5∑
j=0

j 6≡i,i+3 (mod 6)

gigi+3gj +
1∑

i=0

gigi+2gi+4

=
5∑

i=0

g2
i+1 + 2

5∑
j=0

gj + 2

which completes the proof. �

Remark 5.2. Barreto and Naehrig [3, Section 3] suggested that pairing values
for the asymmetric pairing derived from Barreto-Naehrig (BN) elliptic curves can
be compressed to one-sixth of their length. BN pairing values lie in the subgroup
µn ⊂ F∗p12 where n = n(x) = 36x4 +36x3 +18x2 +6x+1, p = p(x) = 36x4 +36x3 +
24x2 + 6x + 1, and x ∈ Z is such that n(x) and p(x) are prime. Their compression
method identifies the elements of the subgroup µn of F∗q6 (where q = p2) with their
traces over Fq. In fact, given q = p2 and n as above, one can write t = q + 1− h · n
where t is the trace of the corresponding BN curve over Fq, p - t, and show that
µn has embedding degree 6 over Fq with trace t. However, as one can see from
Lemma 5.1, Tr(g) does not suffice to identify an element g ∈ µn uniquely up to
its conjugates over Fq. Hence, it is possible that there are collisions for the trace
function. That is, there may exist elements h1, h2 ∈ µn ⊂ F∗q6 such that h1 and h2

are not conjugates of each other over Fq and Tr(h1) = Tr(h2), in which case the
Barreto-Naehrig compression method fails. We searched for collisions in the case
x ∈ {−41,−15,−7,−3,−2,−1, 1, 5, 6, 7, 20} and discovered one when x = 6 (where
n = 55117 and q = (55333)2). In Appendix B we list one BN and eight BN-like sets
of parameters (p, n, T, g, u, v) such that n | (p4 − p2 + 1), µn = 〈g〉 is the order-n
subgroup of F∗q6 , and (gu, gv) is a collision with colliding value T = Tr(gu) = Tr(gv).

Suppose we fix a generator g ∈ Fq6 of µn, that is µn = 〈g〉. In order to simplify
the notation we define cu = Tr(gu) for any integer u. Note that c0 = 0, c1 = Tr(g),
cu = cu mod n and cqu = cq

u = cu.

Lemma 5.3. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 of order n with
embedding degree 6 and trace t. Then for all integers u and v we have
(i) cu = c−u.
(ii) cucv = cu+v + cu−v + cu+v(t−1) + cv+u(t−1) + cu+v(t−2) + cv+u(t−2).
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Proof. (i) This follows from Lemma 5.1 (iii).
(ii) First note that

cucv = (gu
0 + gu

1 + gu
2 + gu

3 + gu
4 + gu

5 )(gv
0 + gv

1 + gv
2 + gv

3 + gv
4 + gv

5)

=
5∑

i=0

gu+v
i +

5∑
i=0

gu
i gv

i+1 +
5∑

i=0

gu
i gv

i+2

+
5∑

i=0

gu
i gv

i+3 +
5∑

i=0

gu
i gv

i+4 +
5∑

i=0

gu
i gv

i+5.

Observing the equations below with the help of Lemma 5.1(i), (ii) and (iii)

5∑
i=0

gu
i gv

i+1 =
5∑

i=0

gu−v
i (gv

i gv
i+1) =

5∑
i=0

g
u+v(t−1)
i ,

5∑
i=0

gu
i gv

i+2 =
5∑

i=0

gu−v
i (gv

i gv
i+2) =

5∑
i=0

gu−v
i gv

i+1 =
5∑

i=0

g
u+v(t−2)
i ,

5∑
i=0

gu
i gv

i+3 =
5∑

i=0

gu−v
i (gv

i gv
i+3) =

5∑
i=0

gu−v
i ,

5∑
i=0

gu
i gv

i+4 =
5∑

i=0

gv
i gu

i+2 =
5∑

i=0

g
v+u(t−2)
i ,

5∑
i=0

gu
i gv

i+5 =
5∑

i=0

gv
i gu

i+1 =
5∑

i=0

g
v+u(t−1)
i

leads us to the result. �

Theorem 5.4. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 of order n with
embedding degree 6 and trace t. Then for all integers u and v we have

cu+v = (cu + cu−4v)cv − (cu−v + cu−3v)(ctv + cv + 3) + cu−2v(2cv + c2v + 2)− cu−5v.
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Proof. First we start with

cucv = (gu
0 + gu

1 + gu
2 + gu

3 + gu
4 + gu

5 )(gv
0 + gv

1 + gv
2 + gv

3 + gv
4 + gv

5)

=
5∑

i=0

gu+v
i +

5∑
i=0

5∑
j=0

j 6=i

gu
i gv

j

= cu+v +
5∑

i=0

5∑
j=0

j 6=i

gu−v
i (gv

i gv
j )

= cu+v +
5∑

i=0

gu−v
i (gtv

i + gtv
i+5 + gv

i+1 + gv
i+5 + 1)

= cu+v + cu−v + cu−vctv + cu−vcv

−

(
5∑

i=0

gu−v
i (gtv

i+1 + gtv
i+2 + gtv

i+3 + gtv
i+4)

)

−

(
5∑

i=0

gu−v
i (gv

i + gv
i+2 + gv

i+3 + gv
i+4)

)
.

Now, since

5∑
i=0

gu−v
i gtv

i+1 =
5∑

i=0

gu−v+qtv
i , by Lemma 5.1(i)

= cq4(u−v)+q5tv, since cqu = cu

= cqu−2v, by Lemma 5.3(i) and q4 ≡ −q (mod n),
5∑

i=0

gu−v
i gtv

i+2 =
5∑

i=0

gu−v+q2tv
i , by Lemma 5.1(i)

= c(u−3v)+qv since q2t ≡ q − 2 (mod n),
5∑

i=0

gu−v
i gtv

i+3 =
5∑

i=0

gu−v+q3tv
i , by Lemma 5.1(i)

= c(u−2v)−qv since q3 ≡ −1 (mod n),
5∑

i=0

gu−v
i gtv

i+4 =
5∑

i=0

gu−v+q4tv
i , by Lemma 5.1(i)

= cu−2qv, by Lemma 5.3(i) and q4t ≡ −2q + 1 (mod n),
5∑

i=0

gu−v
i gv

i+2 =
5∑

i=0

gu−v+q2v
i , by Lemma 5.1(i)

= c(u−2v)+qv since q2 ≡ q − 1 (mod n),
5∑

i=0

gu−v
i gv

i+3 =
5∑

i=0

gu−v+q3v
i , by Lemma 5.1(i)

= c(u−2v) since q3 ≡ −1 (mod n),
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and
5∑

i=0

gu−v
i gv

i+4 =
5∑

i=0

gu−v+q4v
i , by Lemma 5.1(i)

= c(u−v)−qv since q4 ≡ −q (mod n),

we have

cucv = cu+v + cu−v + cu−vctv + cu−vcv(5.1)
−(cqu−2v + c(u−3v)+qv + c(u−2v)−qv + cu−2qv)
−(cu + c(u−2v)+qv + cu−2v + c(u−v)−qv).

In order to eliminate some of the terms in equation 5.1 let us use Lemma 5.3(ii)
with u′ = u− 2v, and v′ = qv. By noting that

cv′ = cv, since cqu = cu,

cu′+v′ = c(u−2v)+qv,

cu′−v′ = c(u−2v)−qv,

cu′+v′(t−1) = c(u−3v)+qv, since q(t− 1) ≡ q2 ≡ q − 1 (mod n),
cu′+v′(t−2) = c(u−3v),

cv′+u′(t−1) = cu−v, since t− 1 ≡ q (mod n) and cqu = cu,

cv′+u′(t−2) = cq(q(u−v)−(u−2v)), since cqu = cu

= c(u−v)−qv,by Lemma 5.3(i),

we can rewrite (5.1) as

cucv = cu+v + 2cu−v + cu−vctv + cu−vcv(5.2)
−(cqu−2v + cu−2qv + cu + cu−2v)
−(cu−2vcv − cu−3v).

By replacing v by −v in (5.2) we obtain another equation and summing this with
(5.2) gives

cu+3v = 2cucv − 3(cu+v + cu−v)− (ctv + cv)(cu+v + cu−v) + 2cu

+cv(cu+2v + cu−2v) + (cu+2v + cu−2v)− cu−3v + cqu−2v

+cu−2qv + cqu+2v + cu+2qv.(5.3)

Also, using Lemma 5.3(ii) with u′ = u and v′ = 2v, and noting that

cu′+v′(t−1) = cu+2qv, since t− 1 ≡ q (mod n),
cu′+v′(t−2) = cq(u+2(q−1)v), since cqu = cu and t− 2 ≡ q − 1 (mod n),

= cqu−2v, since q2 ≡ q − 1 (mod n),
cv′+u′(t−1) = cqu+2v, since t− 1 ≡ q (mod n),
cv′+u′(t−2) = cq(2v+(q−1)u), since cqu = cu and t− 2 ≡ q − 1 (mod n),

= c−u+2qv = cu−2qv, since q2 ≡ q − 1 (mod n) and cu = c−u,

we can rewrite (5.3) as

cu+3v = 2cucv − 3(cu+v + cu−v)− (ctv + cv)(cu+v + cu−v) + 2cu

+cv(cu+2v + cu−2v)− cu−3v + cuc2v.(5.4)
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Finally, using (5.4) with u′ = u− 2v and v′ = v results in

cu+v = cucv − (cu−v + cu−3v)(ctv + cv + 3) + cu−2v(2cv + c2v + 2)
+cu−4vcv − cu−5v,

as required. �

5.1. Characteristic three finite fields. This section follows along the same lines
as Section 4.1. Let r be a positive integer, and let q = 32r+1, t = ±3r+1, T = |t|.
The values of r for which q + 1 − t = hn and n is prime lead to a multiplicative
subgroup µn of F∗q6 of prime order n with embedding degree 6. Throughout this
section we fix h, n, q, t, T and µn = 〈g〉 in this way, and also write cu = Tr(gu).

The following recursive relations follow from Theorem 5.4, using Lemma 5.3(ii) with
u = v, and by noting that the characteristic of Fq is 3 and also that cvt = cvT = cT

v

(see Lemma 5.3(i)).

Corollary 5.5. Let µn be the multiplicative subgroup of F∗q6 with embedding degree
6 and trace t. Then for all integers u and v we have
(i) c2u = c2

u + cu + cT
u .

(ii) cu+v = cucv − (cu−v + cu−3v)(cT
v + cv) + cu−2v(c2

v + cT
v + 2) + cu−4vcv − cu−5v.

Corollary 5.6. Let µn be the multiplicative subgroup of F∗q6 with embedding degree
6 and trace t. Let fgu(x) be the minimal polynomial of gu ∈ µn over Fq. Then

fgu(x) = x6 − cux5 + (cT
u + cu)x4 − (c2

u + cT
u + 2)x3 + (cT

u + cu)x2 − cux + 1.

Proof. The proof follows from Lemma 5.1(iv), Corollary 5.5(i) and from the fact
that cvt = cvT = cT

v . �

Remark 5.7. Throughout the remainder of this section we will assume without
loss of generality that the trace t is positive. If t is negative then one can replace
the expressions of the form c

p(t)
u , where p is some polynomial, by c

p(T )
u without

changing the validity of the results in this section.

5.2. An exponentiation algorithm in µn. Corollary 5.6 shows that the ele-
ment gu can be represented uniquely (up to conjugation) by its trace cu. Sim-
ilarly as in Section 5.2, our aim is to develop an efficient method to compute
ca given c1 and a. We define s1 = [c−1, c0, c1, c2, c3, c4] to be the initial state.
For a given state su = [cu−2, cu−1, cu, cu+1, cu+2, cu+3] with u ≥ 1, if we can effi-
ciently compute the states s2u = [c2u−2, c2u−1, c2u, c2u+1, c2u+2, c2u+3] and s2u+1 =
[c2u−1, c2u, c2u+1, c2u+2, c2u+3, c2u+4] then we immediately have an efficient double-
and-add algorithm for computing ca given c1 and a.

Theorem 5.8. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 with embedding
degree 6 and trace t. Let cu = Tr(gu), C1,t = c1 + ct

1, C1,t,2 = c2
1 + ct

1 + 2,
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M = (ct
1(c

3
1 + ct+1

1 + 2(ct
1 + 1)) + 2(c3

1 + c1 + 1))−1, and

A =


1 C1,t C1,t 1 0 0
0 1 C1,t C1,t 1 0
0 0 1 C1,t C1,t 1
c1 C1,t,2 c1 0 0 0
0 c1 C1,t,2 c1 0 0
0 0 c1 C1,t,2 c1 0

 , X =


c2u−3

c2u−1

c2u+1

c2u+3

c2u+5

c2u+7

 ,

Y =


(c2u+2 + c2u−2)c1 + c2uC1,t,2

(c2u+4 + c2u)c1 + c2u+2C1,t,2

(c2u+6 + c2u+2)c1 + c2u+4C1,t,2

(c2u + c2u−2)C1,t + c2u+2 + c2u−4

(c2u+2 + c2u)C1,t + c2u+4 + c2u−2

(c2u+4 + c2u+2)C1,t + c2u+6 + c2u

 .

Then
(i) A is invertible and AX = Y .
(ii) If c1 is given then A and A−1 can be efficiently computed.
(iii) c2u−1 = M(c3

1+2c2
1+2c1+ct+1

1 , c2
1, 0, 2(c2

1+ct
1)+c1+1, 2(c2

1+ct+1
1 )+c1, 2c1)Y .

(iv) c2u+1 = M(2c2
1, 2c2

1, 0, c1, 2ct
1 + ct+1

1 + c1 + 1, c1)Y .
(v) c2u+3 = M(c2

1, c
3
1 +2c2

1 +2c1 +ct+1
1 , 0, 2c1, 2(c2

1 +ct+1
1 )+c1, 2(c2

1 +ct
1)+c1 +1)Y .

Proof. (i) Noting that the characteristic of Fq is 3 and using Corollary 5.5(i), we can
show that determinant of A is equal to (c1− 1)2t+2(c2− 1). Hence A is invertible if
and only if c1 6= 1 and c2 6= 1. In fact we can show that c1 6= 1 and c2 6= 1 as follows.
If c1 = 1 then fg(x) = x6−x5 + 2x4−x3 + 2x2−x + 1 = (x2 + x + 1)(x2−x + 1)2,
and if c2 = 1 then fg(x) = (x2 +1)(x4−c1x

3 +(c1 +ct
1−1)x2−c1x+1). Both cases

contradict the irreducibility of the minimal polynomial fg(x) over Fq. This proves
that A is invertible. Now, combining the six equations obtained from Corollary 5.5
with the following (u, v) values: (2u−3,−1), (2u−2,−1), (2u−1,−1), (2u,−1), (2u+
1,−1), (2u + 2,−1) and using Corollary 5.5(i) proves that AX = Y .
(ii) The proof follows from part (i) and from the definition of A.
(iii) A computation in Maple shows that the second row of A−1 is A−1[2] = 1

M (c3
1 +

2c2
1 + 2c1 + ct+1

1 , c2
1, 0, 2(c2

1 + ct
1) + c1 + 1, 2(c2

1 + ct+1
1 ) + c1), 2c1). The rest follows

as c2u−1 = A−1[2]Y from part (i).
(iv) We compute A−1[3] = 1

M (2c2
1, 2c2

1, 0, c1, 2ct
1 + ct+1

1 + c1 + 1, c1) and conclude
from c2u+1 = A−1[3]Y .
(v) We compute A−1[4] = 1

M (c2
1, c

3
1+2c2

1+2c1+ct+1
1 , 0, 2c1, 2(c2

1+ct+1
1 )+c1), 2(c2

1+
ct
1) + c1 + 1) and conclude from c2u+3 = A−1[4]Y . �

The formulas for c2u−1, c2u+1, c2u+3 in Theorem 5.8 yield Algorithm 3 for exponen-
tiation in µn.

Remark 5.9. Algorithm 3 can be used to compute cab given ca and b as follows.
We replace c′1 = ca and the initial state becomes s′1 = [c′−1, c

′
0, c

′
1, c

′
2, c

′
3, c

′
4] =

[ca, 0, ca, Ca,t,2,
c3
a, C2

a,t,2 + Ca,t,2 + Ct
a,t,2]. With input c′1 and b, Algorithm 3 outputs c′b = cab.

We may ignore the costs (9A1 + 4a1 + 1C1 + 1F1 + 2m1) in the precomputation
steps of Algorithm 3 and (3a1 + 10m1)(` − 1) in the main loop of Algorithm 3 as
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Algorithm 3 Computing ca

Input: c1 and a
Output: ca

1: Write a =
∑`−1

i=0 ai2i where ai ∈ {0, 1} and a`−1 = 1
2: C2 ← c2

1, Ct ← ct+1
1

3: C1,t ← c1 + ct
1, C1,t,2 ← C2 + ct

1 + 2
4: c2 ← C1,t,2 + c1 + 1, c4 ← c2

2 + c2 + ct
2

5: su = [cu−2, cu−1, cu, cu+1, cu+2, cu+3]← [c1, 0, c1, c2, c
3
1, c4]

6: M ← (ct
1(c

3
1 + Ct + 2(ct

1 + 1)) + 2(c3
1 + c1 + 1))−1

7: for i from `− 2 down to 0 do
8: c2u−4 ← c2

u−2 + cu−2 + ct
u−2, c2u−2 ← c2

u−1 + cu−1 + ct
u−1,

c2u ← c2
u + cu + ct

u, c2u+2 ← c2
u+1 + cu+1 + ct

u+1,
c2u+4 ← c2

u+2 + cu+2 + ct
u+2, c2u+6 ← c2

u+3 + cu+3 + ct
u+3

9: Y1 ← (c2u+2 + c2u−2)c1 + c2uC1,t,2,
Y2 ← (c2u+4 + c2u)c1 + c2u+2C1,t,2,
Y4 ← (c2u + c2u−2)C1,t + c2u+2 + c2u−4,
Y5 ← (c2u+2 + c2u)C1,t + c2u+4 + c2u−2,
Y6 ← (c2u+4 + c2u+2)C1,t + c2u+6 + c2u

10: c2u−1 ←M((c3
1 + 2(C2 + c1) + Ct)Y1 + C2Y2 + (2(C2 + ct

1) + c1 + 1)Y4

+(2(C2 + Ct) + c1)Y5 + 2c1Y6)
11: c2u+1 ←M(2C2(Y1 + Y2) + c1(Y4 + Y6) + (2ct

1 + Ct + c1 + 1)Y5)
12: c2u+3 ←M(C2Y1 + (c3

1 + 2(C2 + c1) + Ct)Y2 + 2c1Y4

+(2(C2 + Ct) + c1)Y5 + (2(C2 + ct
1) + c1 + 1)Y6)

13: if ai = 1 then
14: su ← [c2u−1, c2u, c2u+1, c2u+2, c2u+3, c2u+4]
15: else
16: su ← [c2u−2, c2u−1, c2u, c2u+1, c2u+2, c2u+3]
17: end if
18: end for
19: Return (cu)

they are dominated by (1I1 + 2M1 + 2S1) and (53A1 + 6F1 + 23M1 + 6S1)(`− 1),
respectively. Then the cost of Algorithm 3 can be approximated as:

Precomputation (steps 2–6): 1I1 + 2M1 + 2S1.

Main loop (steps 7–18): (53A1 + 6F1 + 23M1 + 6S1)(`− 1).

We note that Algorithm 3 has a limited degree of built-in resistance to side-channel
analysis attacks as the same types of operations are executed whether the bit ai of
the exponent is 1 or 0.

5.3. Other algorithms for exponentiation with compressed elements. Al-
gorithm 3 works directly with the factor-6 compressed elements. In this section,
we describe five algorithms for computing cab given ca and b. The first algorithm
partially decompresses ca to an element c̃a ∈ Fq3 , and then uses the LUC method
for exponentiating in this representation. The second algorithm decompresses ca

to an element in Fq6 , and then employs a standard window-NAF exponentiation
method. The third, fourth and fifth methods use the Brouwer-Pellikaan-Verheul
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idea (cf. Appendix A.2) by using minimal polynomials over Fq2 , Fq3 and Fq, re-
spectively. The seven exponentiation algorithms including XTR3 [25] are compared
in Section 6.

First, we prove the following.

Lemma 5.10. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 with embedding

degree 6 and trace t. Also, let cu = Tr(gu) and c̃u = Tr3(gu). Then {c̃u, c̃q
u, c̃q2

u } is
the set of roots of the polynomial f̃gu(x) = x3−cux2+(cu+ct

u)x−(c2
u+ct

u−2cu+2).

Proof. Let d̃u = c̃q
u and ẽu = c̃q2

u . Since g has order n and q + 1 ≡ t (mod n) and
q3 ≡ −1 (mod n), we can rewrite the minimal polynomial of gu over Fq as

fgu(x) =
[
(x− gu)(x− gq3u)

] [
(x− gqu)(x− gq4u)

] [
(x− gq2u)(x− gq5u)

]
= (x2 − c̃ux + 1)(x2 − d̃ux + 1)(x2 − ẽux + 1)

= x6 − cux5 + (c̃ud̃u + d̃uẽu + c̃uẽu)x4 − (2cu + c̃ud̃uẽu)x3

+(c̃ud̃u + d̃uẽu + c̃uẽu)x2 − cux + 1.

Comparing the coefficients of this polynomial with the coefficients of fgu(x) as given
in Corollary 5.6 we get

c̃ud̃u + d̃uẽu + c̃uẽu = cu + ct
u

c̃ud̃uẽu = c2
u + ct

u − 2cu + 2.

The proof then follows because

(x− c̃u)(x− d̃u)(x− ẽu) = x3 − (c̃u + d̃u + ẽu)x2 + (c̃ud̃u + d̃uẽu + c̃uẽu)x

−c̃ud̃uẽu

= x3 − cux2 + (cu + ct
u)x− (c2

u + ct
u − 2cu + 2)

= f̃gu(x). �

We will also need the following lemma which was proven in [25].

Lemma 5.11. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 with embedding
degree 6 and trace t. Also, let cu = Tr(gu) and c̃u = Tr2(gu). Then {c̃u, c̃q

u} is the
set of roots of the polynomial f̃gu(x) = x2 − cux + ct

u.

5.3.1. An algorithm based on the LUC cryptosystem. We will describe a ternary
exponentiation algorithm to compute ca given c1 and a. The idea of the algorithm
is as follows. Suppose we know an element in the set {c̃1, c̃

q
1, c̃

q2

1 }. If c̃1 is known
then we will compute c̃a, if c̃q

1 is known then we will compute c̃q
a, and if c̃q2

1 is known
then we will compute c̃q2

a . In all three cases, we can determine ca = c̃a + c̃q
a + c̃q2

a =
c̃q
a + (c̃q

a)q + (c̃q
a)q2

= c̃q2

a + (c̃q2

a )q + (c̃q2

a )q2
.

By Lemma 5.10 we can determine {c̃1, c̃
q
1, c̃

q2

1 } based on c1 by finding the roots of the
polynomial f̃g(x) = x3−c1x

2+(c1+ct
1)x−(c2

1+ct
1−2c1+2). From our argument in

the previous paragraph, we may assume without loss of generality that c̃1 is known.
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Note that the minimal polynomial of g over Fq3 is fg,3(x) = x2− c̃1x+1, and for all
integers u and v we have the following recursive relation (see [27] or Appendix A.1):

c̃u+v = c̃uc̃v − c̃u−v.(5.5)

Moreover, it was shown in [24] that the following equations can be deduced from
(5.5).

c̃3u = c̃3
u(5.6)

c̃3u−1 =
1

c̃2
1 − 1

(c̃3
u−1 + c̃1c̃

3
u)(5.7)

c̃3u−1 =
1

c̃2
1 − 1

((c̃3
1 + c̃1)c̃3

u − c̃3
u+1)(5.8)

c̃3u+1 =
1

c̃2
1 − 1

((c̃3
1 + c̃1)c̃3

u − c̃3
u−1)(5.9)

c̃3u+1 =
1

c̃2
1 − 1

(c̃3
u+1 + c̃1c̃

3
u).(5.10)

We now describe how to obtain c̃a given c̃1 and a; to the author’s knowledge this
exponentiation method was first presented in [24] to compute Lucas sequences.
We will assume that a is written in signed ternary notation, i.e., a =

∑`−1
i=0 ai3i

where ai ∈ {−1, 0, 1} and a`−1 = 1 First, define two states: s
(0)
u = [c̃u, c̃u+1] and

s
(1)
u = [c̃u−1, c̃u]. The algorithm begins with the state s

(1)
1 = [c̃0, c̃1] = [2, c̃1], and

exactly one of the two states, s
(j)
u , j = 0, 1, will be active during the execution of

the algorithm.

If j = 0 in the ith step of the algorithm, then s
(0)
u is active and we will compute c̃3u

based on (5.6) and compute one of c̃3u−1 or c̃3u+1 based on (5.8) or (5.10). In this
case, if ai = 0 then we set j = 0 (i.e., s

(0)
u remains active) and s

(j)
u ← [c̃3u, c̃3u+1];

if ai = 1 we set j = 1 (i.e., s
(1)
u becomes active) and s

(j)
u ← [c̃3u, c̃3u+1]; and if

ai = −1 we set j = 0 (i.e., s
(0)
u remains active) and s

(j)
u ← [c̃3u, c̃3u+1].

If j = 1 in the ith step of the algorithm, then s
(1)
u is active and we will compute c̃3u

based on (5.6) and compute one of c̃3u−1 or c̃3u+1 based on (5.7) or (5.9). In this
case, if ai = 0 then we set j = 1 (i.e., s

(1)
u remains active) and s

(j)
u ← [c̃3u−1, c̃3u]; if

ai = 1 we set j = 1 (i.e., s
(1)
u remains active) and s

(j)
u ← [c̃3u, c̃3u+1]; and if ai = −1

we set j = 0 (i.e., s
(0)
u becomes active) and s

(j)
u ← [c̃3u−1, c̃3u].

At the end of this procedure we obtain c̃a from one of the active states s
(0)
a =

[c̃a, c̃a+1] or s
(1)
a = [c̃a−1, c̃a], as required. The exponentiation method is summa-

rized in Algorithm 4. We may ignore the costs (2A1 + 2a1 + 1A3 + 1C3 + 1F1 +
1I1 + 2m1 + 1S1) in the precomputation steps of Algorithm 4 and (1m3)(`− 1) +
(2A3 + 2F3) in the main loop of Algorithm 4 as they are dominated by 1SR3,1 and
(2C3+2M3)(`−1), respectively. Then the cost of Algorithm 4 can be approximated
as:

Precomputation (steps 2–4): 1SR3,1.

Main loop (steps 5–37): (1A3 + 2C3 + 2M3)(`− 1).
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Algorithm 4 Computing ca based on the LUC cryptosystem
Input: c1 and a
Output: ca

1: Write a =
∑`−1

i=0 ai3i where ai ∈ {−1, 0, 1} and a`−1 = 1
2: C ← 1/(c2

1 − 1)
3: c̃1 ← a root of the polynomial x3 − c1x

2 + (c1 + ct
1)x− (c2

1 + ct
1 + c1 + 2)

4: C̃ ← c̃3
1 + c̃1

5: j ← 1
6: s

(j)
u = [c̃u−1, c̃u]← [2, c̃1]

7: for i from `− 2 down to 0 do
8: c̃3u ← c̃3

u

9: if j = 0 then
10: {s(0)

u = [c̃u, c̃u+1] is active}
11: if ai = −1 then
12: c̃3u−1 ← C(C̃c̃3

u − c̃3
u+1) {see (5.8)}

13: s
(j)
u ← [c̃3u−1, c̃3u]

14: else if ai = 0 then
15: c̃3u+1 ← C(c̃3

u+1 + c̃1c̃
3
u) {see (5.10)}

16: s
(j)
u ← [c̃3u, c̃3u+1]

17: else if ai = 1 then
18: c̃3u+1 ← C(c̃3

u+1 + c̃1c̃
3
u) {see (5.10)}

19: j ← 1
20: s

(j)
u ← [c̃3u, c̃3u+1]

21: end if
22: else
23: {s(1)

u = [c̃u−1, c̃u] is active}
24: if ai = −1 then
25: c̃3u−1 ← C(c̃3

u−1 + c̃1c̃
3
u) {see (5.7)}

26: j ← 0
27: s

(j)
u ← [c̃3u−1, c̃3u]

28: else if ai = 0 then
29: c̃3u−1 ← C(c̃3

u−1 + c̃1c̃
3
u) {see (5.7)}

30: s
(j)
u ← [c̃3u−1, c̃3u]

31: else if ai = 1 then
32: c̃3u+1 ← C(C̃c̃3

u − c̃3
u−1) {( see 5.9)}

33: s
(j)
u ← [c̃3u, c̃3u+1]

34: end if
35: end if
36: end for
37: Return (c̃u + c̃q

u + c̃q2

u )

Remark 5.12. Montgomery [18] presented several methods (binary, binary-ternary,
CFRC, PRAC) to compute Lucas sequences. The main idea in his methods to com-
pute c̃a is to build a Lucas chain for a and at each step in the chain to use the
recursive formula c̃u+v = c̃uc̃v− c̃u−v for some suitable u and v (see Table 4 in [18]).
The length of the derived Lucas chains in these algorithms exceed 1.446(log2 a) (see



24 KORAY KARABINA

Theorem 8 and Table 5 in [18]) and each step in the chain requires at least 1M3 (see
Table 4 in [18]). Therefore, these methods seem unlikely to outperform Algorithm 4
whose cost might be approximated as 2(log3 2)(log2 a)M3 ≈ 1.26(log2 a)M3 after
the precomputation step.

5.3.2. Decompressing and direct exponentiation in µn (Algorithm DDE). Given ca

and an integer b, in order to compute cab we will first decompress ca to ga or one
of its conjugates over Fq. Then we will compute gab (up to conjugation over Fq)
by working directly in Fq6 . Finally, summing the six conjugates of gab gives cab.

In order to decompress ga we first construct the polynomial f̃ga(x) = x3 − cax2 +
(ca+ct

a)x−(c2
a+ct

a−2ca+2) (see Lemma 5.10) over Fq and find a root in Fq3 ; without
loss of generality, suppose that this root is c̃a. Next we construct the minimal
polynomial of ga over Fq3 , i.e., fga,3(x) = x2 − c̃ax + 1 and find a root of fga,3(x)
in Fq6 . Hence we obtain ga or one of its conjugates over Fq. The decompression
can be achieved at a cost of 4A1 + 1a1 + 1F1 + 1S1 + 2m1 + 1SR3,1 + 1SR2,3.

Now, to exponentiate ga ∈ µn (or one of its conjugates over Fq) to the power b, one
first determines the width-w radix-3 NAF representation of b, i.e., b =

∑`
i=0 bi3i

where b` > 0, each nonzero bi is nonzero modulo 3, and |bi| ≤ (3w − 1)/2. The
width-w radix-3 NAF representation of b contains on average 2`/(2w + 1) nonzero
digits (see [29] for more details on width-w radix-3 NAF representations). After
precomputing and storing some elements one can compute gab at an average cost
of l cubings and 2l/(2w + 1) multiplications in Fq6 . Using Karatsuba’s technique,
multiplying two elements in Fq6 can be accomplished with 18 multiplications in
Fq. Cubing in µn can be performed at a cost of 6C1. Note that by choosing a
suitable polynomial for the extension Fq6/Fq, we may ignore the costs of polynomial
reductions in the extension field arithmetic.

Hence, the average cost of computing cab can be approximated as 1SR3,1+1SR2,3+
(6C1 + 36

(2w+1)M1)`.

5.3.3. Direct exponentiation in µn without decompressing (Algorithm BPV-I). This
algorithm is based on the idea of Brouwer, Pellikaan and Verheul (see [6] or Ap-
pendix A.2). Suppose ca and an integer b =

∑`
i=0 bi3i, where bi ∈ {0, 1, 2}, in

base-3 representation is given. By Lemma 5.11, we can determine {c̃a, d̃a}, the set
of traces of ga and gaq over Fq2 . Then the set of minimal polynomials of ga and
gaq over Fq2 are fga,2(x) = x3− c̃ax2 + c̃q

ax− 1 and fgaq,2(x) = x3− d̃ax2 + d̃q
ax− 1.

Without loss of generality let’s assume that we know fga,2(x) (which can be com-
puted at a cost of 1F1 + 1F2 + 1m1 + 1SR2,1). That is, we have a copy of
Fq6 = Fq2 [x]/(fga,2(x)) and next we compute xb modulo fga,2(x) using the repeated
cube-and-multiply algorithm. Since (τ2x

2 + τ1x + τ0)3 = τ3
2 x6 + τ3

1 x3 + τ3
0 , each

cubing (modulo fga,2(x)) can be achieved at a cost of 4A2 +3C2 +5M2. Now, since
(τ2x

2+τ1x+τ0)x = (τ2c̃a+τ1)x2+(2τ2c̃
q
a+τ0)x+τ2, multiplying by x can be achieved

at a cost of 2A2 +1m2 +2M2. Similarly, we can show that multiplying by x2 can be
achieved at a cost of 3A2+2m2+4M2. Therefore, computing xb = w2x

2+w1x+w0

with wi ∈ Fq2 costs on average (4A2 + 3C2 + 5M2 + 1
3 (5A2 + 3m2 + 6M2))(`− 1).

Now, cab = Tr(xb) = Tr(w2x
2 + w1x + w0) = Tr(w2Tr2(x2) + w1Tr2(x)). Also
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note that Tr2(x) = c̃a, and Tr2(x2) = c̃2
a + c̃q

a follows from x3 = c̃ax2 − c̃q
ax + 1 in

Fq6 = Fq2 [x]/(fga,2(x)). Hence, we can write

cab = w1c̃a + (w1c̃a)q + w2(c̃2
a + c̃q

a) + (w2(c̃2
a + c̃q

a))q

and the expected cost of computing cab is 1SR2,1 +( 17
3 A2 +3C2 +7M2))(`−1) (we

ignore the cost (1F1+1F2+1m1) that is dominated by SR2,1 in the precomputation
steps, and the costs (3m2)(`−1) in the main loop and (2F2+2M2) in the last step).

5.3.4. Direct exponentiation in µn without decompressing (Algorithm BPV-II). The
idea of the algorithm is similar to Algorithm BPV-I except that we work with
a minimal polynomial over Fq3 instead of Fq2 . Suppose ca and an integer b =∑`

i=0 bi3i in width-w radix-3 representation is given. By Lemma 5.10, we can
determine the set of minimal polynomials of gaqi

for i = 0, 1, 2. Without loss of
generality let’s assume that we know fga,3(x) = x2−c̃ax+1 (which can be computed
at a cost of 4A1 + 1a1 + 1F1 + 1S1 + 2m1 + 1SR3,1). That is, we have a copy of
Fq6 = Fq3 [x]/(fga,3(x)) and next we compute xb modulo fga,3(x) using width-w
radix-3 NAF exponentiation. Since (τ1x + τ0)3 = τ3

1 (c̃2
a− 1)x + (c̃aτ3

1 + τ3
0 ) modulo

fga,3(x), the cubing step can be achieved at a cost of 1A1 +1a1 +2C3 +2M3 +1m3.
Using Karatsuba’s technique, we can show that multiplying two elements in Fq6 =
Fq3 [x]/(fga,3(x)) can be accomplished at a cost of 4M3. Therefore, computing
xb = w1x+w0, wi ∈ Fq3 , costs (1A1 +1a1 +2C3 +2M3 +1m3 + 8

(2w+1)M3)`. Hence,
the expected cost of computing cab = Tr(xb) = Tr(w1x + w0) = Tr(w1Tr3(x) +
Tr3(w0)) = Tr(w1c̃a + 2w0) = w1c̃a + (w1c̃a)q + (w1c̃a)q2

is 1SR3,1 + (1A1 + 2C3 +
2M3 + 8

(2w+1)M3)` (we ignore the cost (4A1 + 1a1 + 1F1 + 1S1 + 2m1) that is
dominated by SR3,1 in the precomputation steps, and the costs (1a1 + 1m3)` in
the main loop and (2A3 + 2F3 + 1M3) in the last step).

5.3.5. Direct exponentiation in µn without decompressing (Algorithm BPV-III).
The idea of the algorithm is similar to Algorithm BPV-I and BPV-II except that
we work with a minimal polynomial over Fq instead of Fq2 or Fq3 . Given ca

and b =
∑`

i=0 bi3i in width-w radix-3 representation, we first determine fga(x) =
x6−cax5+(ct

a +ca)x4−(c2
a +ct

a +2)x3+(ct
a +ca)x2−cax+1 at a cost of 1S1 (we ig-

nore the cost 2A1 +1a1 +1F1 +2m1). Now, we have a copy of Fq6 = Fq[x]/(fga(x)),
and next we compute xb modulo fga(x) using width-w radix-3 NAF exponentiation.
Since (τ5x

5+τ4x
4+τ3x

3+τ2x
2+τ1x+τ0)3 = τ3

5 x15+τ3
4 x12+τ3

3 x9+τ3
2 x6+τ3

1 x3+τ3
0 ,

cubing modulo fga(x) costs at least 6C1+21M1. Moreover, using Karatsuba’s tech-
nique, multiplying two elements in Fq6 appears to require at least 18M1 in Fq. Hence
computing cab = Tr(xb) costs at least 2A1 +1F1 +1S1 +(6C1 +21M1 + 36

(2w+1)M1)`.

6. Comparisons

6.1. Factor-4 compression. We compare the running times of the five exponen-
tiation algorithms presented in Section 4. We first analyze the costs SR2,1 and
SR2,2. Recall that SR2,1 is the cost of finding a root of the irreducible polyno-
mial f̃(x) = x2 + cx + ct for some c ∈ Fq, and SR2,2 is the cost of finding a
root of the irreducible polynomial f̃(x) = x2 + cx + 1 for some c ∈ Fq2 . Shoup
[26] showed that if a square-free degree-m polynomial over Fpl , where p is a small
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prime, is known to factor into d distinct irreducible same-degree polynomials over
Fpl , then the factorization of that polynomial can be obtained at a cost of Õ(m(dl)2)
Fpl -operations. Therefore, we may set SR2,1 = Õ(8(log2 q)2) Fq2-operations, and
SR2,2 = Õ(32(log2 q)2) Fq4-operations.

Table 6.1. Comparison of exponentiation algorithms for factor-4
compression. The exponent is an `-bit integer.

Algorithms Precomputation Main Loop
Algorithm 1 1I1 + 1M1 (4M1 + 4S1)(`− 1)
Algorithm 2 1SR2,1 (1M2 + 1S2)(`− 1)
DDE (Section 4.3.2) 1SR2,1 + 1SR2,2 ( 9

(w+1)M1 + 4S1)`
BPV-I (Section 4.3.3) 1SR2,1 ( 3

2M2 + 2S2)(`− 1)
BPV-II (Section 4.3.4) 1F1 (7M1 + 4S1)(`− 1)

We can conclude from Table 6.1 that, for a suitable choice of w, Algorithm DDE
is the fastest algorithm if the precomputations are done in advance (which is the
case if the base is fixed). Otherwise, Algorithm 1 is the fastest one.

Remark 6.1. It is possible to obtain better running time estimates (at least for
the running times of the main loops) for some of the algorithms listed in Table 6.1.
Adapting the double-exponentiation technique given in [28] to speed up Algo-
rithm 2, one can estimate the running time of Algorithm 2 as 2SR2,1 + (0.75M2)`.
Using simultaneous multi-exponentiation or window-NAF techniques one can opti-
mize the running times of Algorithms BPV-I and BPV-II. These techniques do not
seem to reduce the cost of the squaring steps in the main loops of Algorithm BPV-I
and BPV-II (which are (1M2 + 2S2)(` − 1) and (6M1 + 4S1)(` − 1), respectively)
other than transferring some of the cost to the precomputation phase. The mixed-
multiplication method (see [13]) can be adapted to speed up Algorithm DDE given
input values ca and b. More precisely, after decompressing ca to ga, one can first
compute gabh for some h ∈ F∗q2 at an approximate cost of ( 2

(w+1)M2)` instead of
computing gab using Karatsuba’s multiplication technique at an approximate cost
of ( 9

(w+1)M1)` (see Section 4.3.2), Then cab can be computed by taking the square

root of Tr((gabh)q2−1) = Tr(gab(q2−1)) = c2ab. Using this method, the cost of Algo-
rithm DDE can be approximated as 1SR2,1 + 1SR2,2 + ( 6

(w+1)M1)` + 1I4; the cost
of this faster algorithm is given in Table 6.2. Hence, we still expect Algorithm 1 to
be the fastest algorithm for general bases and, if the base is fixed, Algorithm DDE
to be faster than Algorithm 1 and Algorithm 2 for a suitable choice of w.

To be more concrete, we list the expected running times of the five exponentiation
algorithms in a particular setting in Table 6.2 based on the estimates given in
Table 6.1. For the 128-bit security level, we let q = 21223 and t = 2612. Then
q + 1 + t = 5n where n is a 1221-bit prime. We will ignore the costs Fi, Si and,
using Karatsuba’s technique, assume M2 = 3M1. We also select w = 5.
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Table 6.2. Comparison of exponentiation algorithms for factor-
4 compression at the 128-bit security level. The exponent is an
1221-bit integer.

Algorithms Multiplication cost for general
bases

Multiplication cost
for fixed bases

Algorithm 1 1I1 + 4881M1 4880M1

Algorithm 2 1SR2,1 + 3660M1 3660M1

DDE (Section 4.3.2, Remark 6.1) 1SR2,1 + 1SR2,2 + 1I4 + 1221M1 1I4 + 1221M1

BPV-I (Section 4.3.3) 1SR2,1 + 5490M1 5490M1

BPV-II (Section 4.3.4) 8540M1 8540M1

6.2. Factor-6 compression. We compare the running times of the six algorithms
presented in Section 5 and the XTR3 [25] algorithm. We note that even though the
running time of XTR3 is estimated as 1SR2,1+(8M1)` in [25], adapting the double-
exponentiation technique for speeding up XTR (see [28]) to XTR3 one can roughly
approximate the cost of XTR3 as 2SR2,1 + (3M1)` which we use it in Table 6.3.

We first analyze the costs SR2,1, SR2,3 and SR3,1. Similarly as in Section 6.1, using
Shoup’s method [26] we may let SR3,1 = Õ(27(log2 q)2) Fq3-operations. Now, we
will consider SR2,1 and SR2,3, and see that these costs are negligible comparing to
SR3,1. We let q = 32r+1 and recall that SR2,1 is the cost of finding a root of the
irreducible polynomial f̃(x) = x2 − cx + ct over Fq. The roots of this polynomial
are 2(c ±

√
c2 + 2ct). Since f̃(x) is irreducible over Fq, C = c2 + 2ct must be a

quadratic non-residue in Fq. Moreover, since q ≡ 3 (mod 4), −1 is a quadratic
non-residue in Fq. Therefore, −C is a quadratic residue in Fq and finding a root of
f̃(x) reduces to finding a square root of −C in Fq. Namely, the roots of f̃(x) are
2(c±

√
−C
√
−1) and also note that

√
−C = (−C)

q+1
4 and

√
−1 ∈ Fq2 . Barreto et

al. [2] observed that

q + 1
4

= 6
r−1∑
i=0

(32)i + 1

and that computing

(−C)
q+1
4 =

(
(C2)

Pr−1
i=0 (32)i

)3

(−C)

can be achieved at a cost of 1S1+(blog2 rc+HW (r))M1. Therefore, after computing√
−1 ∈ Fq2 we can compute a root of f̃(x) in Fq2 at a cost of 1m2 + 1M2 + 1S1 +

(blog2 rc + HW (r) + 1)M1. Hence, we may set 1SR2,1 = 1m2 + 1M2 + 1S1 +
(blog2 rc + HW (r) + 1)M1. Similarly, we can show 1SR2,3 = 1m6 + 1M6 + 1S3 +
(blog2 (3r + 1)c+ HW (3r + 1) + 1)M3.
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Table 6.3. Comparison of exponentiation algorithms for factor-6
compression. The exponent is an `-bit integer.

Algorithms Precomputation Main Loop
Algorithm 3 1I1 + 2M1 + 2S1 (53A1 + 6F1 + 23M1 + 6S1)(`− 1)
Algorithm 4 1SR3,1 (1A3 + 2C3 + 2M3)(log3 2)(`− 1)
DDE (Section 5.3.2) 1SR3,1 + 1SR2,3 (6C1 + 36

(2w+1)M1)(log3 2)`
BPV-I (Section 5.3.3) 1SR2,1 ( 17

3 A2 + 3C2 + 7M2)(log3 2)(`− 1)
BPV-II (Section 5.3.4) 1SR3,1 (1A1 +2C3 +2M3 + 8

(2w+1)M3)(log3 2)`
BPV-III (Section 5.3.5) 1S1 ≥ (6C1 + 21M1 + 36

2w+1M1)(log3 2)`
XTR3 ([25]) 2SR2,1 (3M1)`

We can conclude from Table 6.3 that, for a suitable choice of w, Algorithm DDE
is the fastest algorithm if the precomputations are done in advance (which is the
case if the base is fixed). Otherwise, XTR3 is the fastest one.

Remark 6.2. It is possible to obtain better running time estimates (at least for
the running times of the main loops) for some of the algorithms listed in Table 6.3.
Adapting the double-exponentiation technique given in [28] to speed up Algo-
rithm 4, one can estimate the running time of Algorithm 4 as 2SR3,1 + (0.75M3 +
0.17S3)`. Using simultaneous multi-exponentiation or window-NAF techniques one
might optimize the running times of Algorithms BPV-I, BPV-II and BPV-III. These
techniques do not seem to reduce the cost of the cubing steps in the main loops
of Algorithms BPV-I, BPV-II and BPV-III (which are roughly (5M2)(log3 2)` ≈
(6.31M1)`, (2M3)(log3 2)` ≈ (7.57M1)` and (21M1)(log3 2)` ≈ (13.25M1)`, respec-
tively) other than transferring some of the cost to the precomputation phase. The
mixed-multiplication method (see [13]) can be adapted to speed up Algorithm DDE
by slightly changing its output value from cab to c2ab given input values ca and b
(we note that Algorithm DDE with this slight change in its output can still be used
in the cryptographic applications mentioned in Section 2). More precisely, after
decompressing ca to ga, one can first compute gabh for some h ∈ F∗q3 at an ap-
proximate cost of ( 4

(2w+1)M3)(log3 2)` instead of computing gab using Karatsuba’s
multiplication technique at an approximate cost of ( 36

(2w+1)M1)(log3 2)` (see Sec-

tion 5.3.2). Then Tr((gabh)q3−1) = Tr(gab(q3−1)) = c2ab can be computed at an
approximate cost of 1I6. Using this method, the cost of Algorithm DDE can be
approximated as 1SR3,1+1SR2,3+( 24

(2w+1)M1)(log3 2)`+1I6; the cost of this faster
algorithm is given in Table 6.4. Hence, we still expect XTR3 to be the fastest algo-
rithm for general bases and, if the base is fixed, Algorithm DDE to be significantly
faster than the other algorithms for a suitable choice of w.

To be more concrete, we list the expected running times of the seven exponentiation
algorithms in a particular setting in Table 6.4 based on the estimates given in
Table 6.3. For the 128-bit security level, we let q = 3509 and t = 3255. Then
q+1−t = 7n where n is an 804-bit prime. We will ignore the costs Ai, ai, Ci, Fi,mi

and, using Karatsuba’s technique, assume M2 = 3M1, M3 = 6M1 and M6 =
18M1. We also assume Si = Mi, and select w = 5. Note that r = 254, blog2 rc =
8, blog2 (3r + 1)c = 9,HW (r) = 7,HW (3r + 1) = 8, and 1SR2,1 = 20M1 and
1SR2,3 = 132M1.
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Table 6.4. Comparison of exponentiation algorithms for factor-
6 compression at the 128-bit security level. The exponent is an
804-bit integer.

Algorithms Multiplication cost for general
bases

Multiplication cost
for fixed bases

Algorithm 3 1I1 + 23291M1 23287M1

Algorithm 4 1SR3,1 + 6080M1 6080M1

DDE (Section 5.3.2, Remark 6.2) 1SR3,1 + 1I6 + 1239M1 1I6 + 1107M1

BPV-I (Section 5.3.3) 10660M1 10640M1

BPV-II (Section 5.3.4) 1SR3,1 + 8301M1 8301M1

BPV-III (Section 5.3.5) ≥ 12314M! ≥ 12313M1

XTR3 ([25]) 2452M1 2412M1

7. Concluding remarks

We have shown how to compress, by a factor of 4, pairing values of the commonly-
used symmetric bilinear pairings over characteristic two fields, and also further
explored compressing pairing values of symmetric bilinear pairings over character-
istic three fields by a factor of 6. We have shown how one can exponentiate using
the compressed pairing values. Our exponentiation algorithms are reasonably effi-
cient. In particular, if the base is fixed then we expect at least a 54% speed up over
the fastest previously known algorithm XTR3 for the factor-6 compression case.
Finding more efficient algorithms would be worthwhile. It would also be desirable
to implement the algorithms to verify our estimates of their relative efficiency.
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Appendix A. Previous work on compression factors 2,3 and 6

A.1. Compression factor 2 (LUC cryptosystem). Let µn = 〈g〉 be the multi-
plicative subgroup of F∗q2 of order n = q+1. Let cu = Tr(gu) be the trace of gu over
Fq, and fgu(x) the minimal polynomial of gu over Fq. Then fgu(x) = x2 − cux + 1
and the following recursive relation holds for all integers u and v:

cu+v = cucv − cu−v.

In particular, c2u = c2
u − c0 = c2

u − 2 and c2u+1 = cu+1cu − c1, whence given a
state su = [cu, cu+1] one can compute s2u and s2u+1. This observation leads to an
efficient double-and-add algorithm for computing cab given ca and b (see [27] and
[4]). The cost of the algorithm is log2 b steps, each step costing 1 multiplication
and 1 squaring in Fq.

A.2. Compression factor 3 (LUCKY cryptosystem). Let µn = 〈g〉 be the
multiplicative subgroup of F∗p6 of order n = p2 − p + 1. Brouwer, Pellikaan and
Verheul [6] obtained a compression factor 3 by identifying elements of µn with the
coefficients of their minimal polynomials over Fp. In particular, each element ga

can be uniquely identified (up to conjugation over Fp) with a pair (ca, da) ∈ Fp×Fp.
They also presented an algorithm (see Sections 3.3 and 5 in [6]) to compute (cab, dab)
given (ca, da) and an integer b. The algorithm is as follows. Given (ca, da) we
first construct the minimal polynomial of ga over Fp and adjoin a root ρa of this
polynomial to Fp thus obtaining a copy of Fp6 . Next, we can raise ρa to the power
b and determine the minimal polynomial of ρb

a over Fp. From the coefficients of
this polynomial we can determine (cab, dab), as required.

A.3. Compression factor 3 (XTR cryptosystem). Let p ≡ 2 (mod 3) be a
prime and µn = 〈g〉 the multiplicative subgroup of F∗p6 of order n = p2 − p + 1.
Let cu = Tr(gu) be the trace of gu over Fp2 , and fgu(x) the minimal polynomial
of gu over Fp2 . It was observed in [17] that fgu(x) = x3 − cux2 + cp

ux− 1 and the
following recursive relation holds for all integers u and v:

cu+v = cucv − cp
vcu−v + cu−2v.

In particular, it was shown in [17] that given a state su = [cu−1, cu, cu+1] one
can compute s2u and s2u+1. This observation leads to an efficient double-and-add
algorithm for computing cab given ca and b.

A.4. Compression factor 6 (XTR3 cryptosystem). Let q = 32r+1 and µn =
〈g〉 the multiplicative subgroup of F∗q6 of order n = q −

√
3q + 1. Let cu = Tr(gu)

be the trace of gu over Fq. It was observed in [25] that given cu one can efficiently
compute the trace c̃u of gu over Fq2 up to conjugation over Fq. Now, given ca

and b, one can first compute c̃a, then compute c̃ab using an algorithm analogous
to that of XTR, and finally obtain cab = c̃ab + c̃q

ab. The overall cost is 8 log2 b +
blog2 rc + HW (r) + 2 multiplications in Fq, where HW (·) denotes the Hamming
weight function.



32 KORAY KARABINA

Appendix B. Non-uniqueness of factor-6 compression

We list some parameters (p, n, T, g, u, v) where p > 3 and n are prime, n | (p4 −
p2 + 1), and if µn = 〈g〉 is the subgroup of F∗q6 (where q = p2) of embedding degree
6 over Fq, then the trace function Tr : µn → Fq has collisions with collision value
T = Tr(gu) = Tr(gv), where gu and gv are not conjugates over Fq. In fact, the first
example corresponds to the parameter of a BN curve (see Remark 5.2 and [3]). The
subgroups µn in examples (2)–(5) can be realized as the images of pairing functions
defined on elliptic curves over Fp having embedding degree 12; these elliptic curves
are not BN curves. On the other hand, the subgroups µn in examples (6)–(9)
cannot be realized as the image of pairing functions defined on elliptic curves over
Fp since n is not in the Hasse interval [(

√
p− 1)2, (

√
p + 1)2].

(1) (55333, 55117, 45541, g, 2583, 6758) where
Fq = Fp[z]/(z2 + 2),
Fq6 = Fq[w]/(w6 + 51894z + 9346),
g = (5638z + 51877)w5 + (13297z + 52777)w4 + (20924z + 25318)w3 +
(12991z + 51370)w2 + (12014z + 15762)w + 15570z + 33355.

(2) (113, 97, 46, g, 20, 29) where
Fq = Fp[z]/(z2 + 101z + 3),
Fq6 = Fq[w]/(w6 + 112z),
g = (77z + 47)w5 + (29z + 36)w4 + (52z + 24)w3 + (58z + 14)w2 + (70z +
19)w + 35z + 49.

(3) (297457, 296941, 170970, g, 42243, 120695) where
Fq = Fp[z]/(z2 + 5),
Fq6 = Fq[w]/(w6 + 226781z + 185746),
g = (16282z +114368)w5 +(264807z +131493)w4 +(52866z +175278)w3 +
(153254z + 81017)w2 + (55521z + 87692)w + 27500z + 23791.

(4) (757363, 758053, 147442, g, 195883, 532217) where
Fq = Fp[z]/(z2 + 1),
Fq6 = Fq[w]/(w6 + 538552z + 38070),
g = (155890z+54538)w5+(593065z+407753)w4+(421831z+252766)w3+
(260748z + 405992)w2 + (426293z + 142508)w + 240615z + 248519.

(5) (758743, 758053, 181973, g, 26808, 304248) where
Fq = Fp[z]/(z2 + 1),
Fq6 = Fq[w]/(w6 + 205464z + 531602),
g = (644749z+587471)w5+(152111z+593113)w4+(218499z+561168)w3+
(605298z + 638869)w2 + (634695z + 684366)w + 667616z + 318403.

(6) (107873, 100333, 10836z + 78750, g, 6775, 11682) where
Fq = Fp[z]/(z2 + 3),
Fq6 = Fq[w]/(w6 + 70681z + 104404),
g = (74900z + 35768)w5 + (67288z + 57726)w4 + (107242z + 94650)w3 +
(31629z + 3630)w2 + (87341z + 35135)w + 64176z + 45731.
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(7) (107873, 100333, 97037z + 78750, g, 14995, 20801) where
Fq = Fp[z]/(z2 + 3),
Fq6 = Fq[w]/(w6 + 70681z + 104404),
g = (71680z + 68567)w5 + (99591z + 66980)w4 + (34944z + 30340)w3 +
(8164z + 61554)w2 + (29313z + 44640)w + 33137z + 62160.

(8) (147347, 135193, 56095z + 80249, g, 4989, 12193) where
Fq = Fp[z]/(z2 + 1),
Fq6 = Fq[w]/(w6 + 76671z + 35636),
g = (120469z + 82203)w5 + (77634z + 4734)w4 + (127289z + 74128)w3 +
(106306z + 13444)w2 + (82983z + 115891)w + 34710z + 136734.

(9) (147347, 135193, 91252z + 80249, g, 3676, 12104) where
Fq = Fp[z]/(z2 + 1),
Fq6 = Fq[w]/(w6 + 76671z + 35636),
g = (113834z + 48691)w5 + (87284z + 70855)w4 + (85568z + 73528)w3 +
(102712z + 53673)w2 + (13537z + 46246)w + 105305z + 14472.

Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1

E-mail address: kkarabin@uwaterloo.ca


