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Abstract. In a compartmented access structure, there are disjoint par-
ticipants C1, . . . , Cm. The access structure consists of subsets of partic-
ipants containing at least ti from Ci for i = 1, . . . , m, and a total of at
least t0 participants. Tassa [2] asked: whether there exists an efficient
ideal secret sharing scheme for such an access structure? Tassa and Dyn
[5] presented a solution using the idea of bivariate interpolation and the
concept of dual program [9, 10]. For the purpose of practical applications,
it is advantageous to have a simple scheme solving the problem. In this
paper a simple scheme is given for this problem using the similar idea
from [5].
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1 Introduction

Shamir [1] and Blake [7] proposed (t, n) threshold secret sharing scheme, that is,
sharing a secret among a given set of n participants, such that every k(k ≤ n)
of those participants could recover the secret by pooling their shares together,
while no subset of less than k participants can do so. Simmons [3] studied a new
structure: compartmented access structure. In this structure, there are different
compartments, say C1, . . . , Cm, and positive integers t1, . . . , tm and t0, the access
structure consists of all subsets containing at least ti participants from Ci for
1 ≤ i ≤ m, and a total of at least t0 participants. We will restate a formal
definition [2] and the related conception [5] here.

Remark 1. Simmons’ original notion had t0 =
∑m

i=1, Brickell [4] generalized his
notion to t0 ≥

∑m
i=1, and we use Brickell’s definition.

Definition 1 (Ideality). A secret sharing scheme with domain of secrets S is
ideal if the domain of shares of each user is S. An access structure Γ is ideal if
for some finite domain of shares S, there exists an ideal secret sharing scheme
realizing it.

Definition 2 (Compartmented Access Structure). Let C be a set of n par-
ticipants and assume that C is composed of compartments, i.e., C =

⋃m
i=1 Ci where
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Ci ∩ Cj = ∅ for all 1 ≤ i < j ≤ m. Let t = {ti}m
i=0 be a sequence of integers such

that t0 ≥
∑m

i=1 ti. Then the (t, n)-compartmented access structure is

Γ = {V ⊂ C :| V ∩ Ci |≥ ti ∀i ∈ {1, . . . ,m}and | V |≥ t0} (1)

Brickell [4] studied this structure later, he proved that this access structure
is ideal, but the solution scheme he proposed suffered from the same problem
of inefficiency as Simmons’ schemes [3] did (namely, the dealer must perform
possibly exponentially many checks when assigning identities and shares the
participants). So Tassa [2] asked: whether there exists an efficient ideal secret
sharing scheme for such access structures? Tassa and Dyn [5] answered this
question positively. Their idea result from the following conclusion [9, 10]: If an
access structure Λ is computed by a monotone span program M, then the dual
access structure Λ∗ is computed by a monotone span program M∗ of the same
size, and M∗ can be efficiently computed from M. Tassa and Dyn [5] gave a
solution to the dual access structure of (1), so they can efficiently construct a
solution for (1). This is a good idea, but hard to understand, and computing
M∗ from M is not an easy work. As a matter of fact, we need not to use the
idea of dual span program, just make a little modification of the idea from [5],
then we can get an easier solution for the compartmented access structure (1).
First let us neglect the restriction of ideality, then there is nothing difficult, we
describe a solution to realize the weaken version of the compartmented access
structure (1) here :

– The dealer generates a random polynomial R(y) =
∑t0

i=1 aiy
i, the dealer

generates other random polynomials Pi(x) =
∑ti

j=1 bijx
j(1 ≤ i ≤ m).

– The secret is S = a1 +
∑m

i=1 bi1

– Each participant cij from compartment Ci will be identified by a unique
public point (xij , yij), where xij 6= xil for j 6= l; yij 6= ykl for (i, j) 6= (k, l).
and his private share will be (Pi(xij), R(yij)).

This idea can be seen as a compound version of shamir’s (t,n) threshold, but it
is not ideal. In this paper, we try to modify this idea and finally get an ideal
scheme, the scheme borrows idea from [5], especially its proof skills, and the
scheme is probabilistic, that is, although V ∈ Γ , sometimes the participants in
V cannot recover the secret either, but that is only a small probability event, we
will prove this result in the rest of the paper, so the scheme is useful. The paper
is organized as followsµin Sect.2, we provide the necessary notation agreements
and background, in Sect.3, we will give the revised scheme and prove its validity.

2 Preliminaries

We begin this section by the description of some notation agreements. Let:

– F is a finite field of size q, and all the operations execute in F.
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Next we will introduce a lemma, which provides an upper bound for the number
of zeros of a multivariate polynomial over a finite field. and it will play a key
role throughout this paper.

Lemma 1 (Schwartz-Zippel Lemma). [5] Let G(z1, z2, . . . , zk) be a nonzero
polynomial of k variables over a finite field F of size q. Assume that the highest
degree of each of the variables zj in G is no larger than d. Then the number of
zeros of G in Fk is bounded from above by kdqk−1.

Proof. The claim is obviously true for k = 1. Proceeding by induction, we as-
sume that it holds for k − 1 variables and prove the claim for k variables. The
polynomial G may be written as follows:

G(z1, z2, . . . , zk) =
d∑

j=0

Gj(z1, z2, . . . , zk−1)z
j
k (2)

For every selection of (z1, z2, . . . , zk−1) ∈ Fk−1, there are two possibilities: Either
Gj(z1, z2, . . . , zk−1) 6= 0 for at least one 0 ≤ j ≤ d, or Gj(z1, z2, . . . , zk−1) = 0
for all 0 ≤ j ≤ d. In the first case, there are at most d values of zk for which
G(z1, z2, . . . , zk) = 0; in the second case, on the other hand, G(z1, z2, . . . , zk) = 0
for all zk ∈ F. By the induction assumption, the number of points (z1, z2, . . . , zk−1)
∈ Fk−1 of the second kind, denoted herein `, satisfies ` ≤ (k − 1)dqk−2. Hence,
the number of points (z1, z2, . . . , zk) ∈ Fk at which Gj(z1, z2, . . . , zk) = 0 is
bounded by
(qk−1 − `) · d + ` · q = dqk−1 + ` · (q − d) < dqk−1 + (k − 1)dqk−1 = kdqk−1 ut

3 New solution and proofs

In this section we will describe a probabilistic scheme to realize the compart-
mented access structure Γ and give its proof.

3.1 New solution

1. The dealer generates a random polynomial R(y) =
∑l

i=1 aiy
i, l1 =deg(R(y))

= t0 −
∑m

i=1 ti, the dealer generates other m random polynomials Pi(x) =∑ti

j=1 bijx
j , let Qi(x, y) = Pi(x) + R(y) (1 ≤ i ≤ m).

2. The secret is S = a1 +
∑m

i=1 bi1.
3. Each participant cij from compartment Ci will be identified by a unique

public point (xij , yij), where xij 6= xil for j 6= l; yij 6= ykl for (i, j) 6= (k, l).
And his private share will be Qi(xij , yij).

The scheme is similar with “Secret Sharing Scheme4” in [5]. The difference is
that there are m random polynomials here, but only one in [5]. So we can do
more things here. Obviously, this is an ideal scheme since the private shares of
1 if l=0, then it it a trivial problem, we omit such situation.
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all users are taken from the domain of secrets F. The unknown variables are
coefficients of all the polynomials R(y) and Pi(x) (1 ≤ i ≤ m), the total number
of these variables is t0. In view of the above, if any participants want to recover
the secret S, they must recover every polynomial before-mentioned, so the total
number of these participants is at least t0, and the members from Ci is at least
ti, in brief, this scheme agrees with the constraints in Γ . Such demonstration
may not be convincingly enough, we proceed to give a strict proof.

3.2 Proofs

Theorem 1. If V ∈ Γ , it may recover the secret S with probability 1 − Cq−1,
where the constant C depends on t0, t1, · · · tm.

Proof. Let V be a minimal set in Γ , then |V| = t0. We assume that |V ∩ Ci| =
ki ≥ ti, 1 ≤ i ≤ m. If V ∩ Ci = {ci1, · · · , ciki

} and cij is identified by the
point (xij , yij), then we can reduce the recover of the polynomials R(y) and
Pi(x) (1 ≤ i ≤ m) to the solution of the following linear equations:

M ·A = Q (3)

Where

M =


M1 G1

M2 G2

. . .
Mm Gm

 (4)

A =
(
b11 · · · b1t1 · · · bm1 · · · bmtm

a1 · · · al

)t (5)

Q =
(
Q1(x11, y11) · · · Q1(x1k1 , y1k1) · · · Qm(xm1, ym1) · · · Qm(xmkm , ymkm)

)t

The pair of blocks Mi and Gi, 1 ≤ i ≤ m, represents the equations that are
contributed by the ki participants from compartment Ci. They have the following
form:

(Mi · · ·Gi) =


xi1 x2

i1 · · · xti
i1 · · · yi1 y2

i1 · · · yl
i1

xi2 x2
i2 · · · xti

i2 · · · yi2 y2
i2 · · · yl

i2
...

...
...

... · · ·
...

...
...

...
xiki x2

iki
· · · xti

iki
· · · yiki y2

iki
· · · yl

iki

 (6)

Here, Mi is a block of size ki × ti, and Gi is a block of size ki × l(We omit the
trivial situation l = 0, so G always exists). Besides Mi and Gi, all the other
places of M is 0. M is of size t0× t0. The unknown variables are the components
of A. According to the knowledge of linear algebra, the equation (3) has only
one solution only when det(M) 6= 0, so the probability that we can solve A is
equal to the probability that det(M) 6= 0. Now we will consider the expansion
of det(M). Clearly, it has the following properties:

(1) det(M) is a nonzero polynomial of 2t0 variables over the finite field F.
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(2) The highest degree of each of the variables in det(M) is no larger than
d = MAX(t1, · · · , tm, l).

According to Lemma 1, we may conclude that the number of zeros of det(M)
in F2t0 is bounded by 2t0dq2t0−1, but in det(M), the 2t0 variables can have q2t0

values. So the probability that det(M) = 0 is bounded by 2t0dq2t0−1 · q−2t0 =
2t0dq−1. ut

We give an example here, suppose m = 3, t0 = 9, t1 = 2, t2 = 2, t3 = 3, k1 =
3, k2 = 2, k3 = 4, then

M =



x11 x2
11 0 0 0 0 0 y11 y2

11

x12 x2
12 0 0 0 0 0 y12 y2

12

x13 x2
13 0 0 0 0 0 y13 y2

13

0 0 x21 x2
21 0 0 0 y21 y2

21

0 0 x22 x2
22 0 0 0 y22 y2

22

0 0 0 0 x31 x2
31 x3

31 y31 y2
31

0 0 0 0 x32 x2
32 x3

32 y32 y2
32

0 0 0 0 x33 x2
33 x3

33 y33 y2
33

0 0 0 0 x34 x2
34 x3

34 y31 y2
34


(7)

and d = MAX(2, 2, 3, 2) = 3. We just give the form of M here, and it will be
helpful to understand this theorem. In the next part of this section, we will use
computer to illustrate the validity of the above theorem. We give the result in
tables only, without any details. In the following two tables, q is the size of the
finite field F, other parameters are as in above. The column of “Times” stands
for how many experiments have we make, “Results” stands for the probability
of det(M) = 0 when we make experiments, “Theoretical” stands for the lower
bound probability of det(M) = 0 under Theorem 1

Table 1. q = 4999

Parameters Times Results Theoretical

t1 = 2, t2 = 3, m = 2
k1 = 3, k2 = 6, t0 = 9 10000 99.98% > 98.55%

t1 = 1, t2 = 1, t3 = 1, m = 3
k1 = 1, k2 = 1, k3 = 2, t0 = 4 10000 99.96% > 99.83%
t1 = 2, t2 = 2, t3 = 3, m = 3
k1 = 3, k2 = 2, k3 = 4, t0 = 9 10000 99.93% > 98.91%

From the tables above, we can see that if q is large enough, then we can
recover the secret with probability very close to 1. That is, when q is larger,
the probability will be closer to 1. The results is in accord with the theorem.
It provide us with the information that if we want to put the above idea into
practice, we must chose a enough large finite field F.
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Table 2. q = 832809541

Parameters Times Results Theoretical

t1 = 2, t2 = 3, m = 2
k1 = 3, k2 = 6, t0 = 9 10000 100% > 1− 9× 10−8

t1 = 1, t2 = 1, t3 = 1, m = 3
k1 = 1, k2 = 1, k3 = 2, t0 = 4 10000 100% > 1− 1× 10−8

t1 = 2, t2 = 2, t3 = 3, m = 3
k1 = 3, k2 = 2, k3 = 4, t0 = 9 10000 100% > 1− 7× 10−8

Theorem 2. If V /∈ Γ , then with probability 1 − Cq−1 it may not learn any
information about the secret S, where the constant C depends on t0, t1, · · · , tm.

Proof. Assume that V /∈ Γ , then we will have two situations to consider: |V ∩
Ci| = ki < ti for some 1 ≤ i ≤ m or |V| < t0 but |V ∩ Ci| > ti for all 1 ≤ i ≤ m,
in the first case, let ki chose the maximal value, that is, ki = ti − 1. If V ∩ Ci =
{ci1, ci2, · · · , ci(ti−1)} and cij is identified by the point (xij , yij), consider the
matrix as follows:

M
′

i =


1 0 0 0

xi1 x2
i1 · · · xti

i1

xi2 x2
i2 · · · xti

i2
...

...
...

...
xi(ti−1) x2

i(ti−1) · · · xti

i(ti−1)

 (8)

M
′

i is a matrix of size ti × ti. Solving the value of bi1 is equal to say that
det(M

′
) = 0, but according to the property of vandermonde determinant, it is

easy to conclude that det(M
′
) 6= 0. So we cannot get bi1, nor can we recover the

secret S. In the second case, without lose of generality, suppose |V| = t0 − 1,
define a t0 dimension vector

e =
(
1 · · · 0 · · · 1 · · · 0 1 · · · 0

)t (9)

e can be seen as a vector transformed from A, if we replace bi1 (1 ≤ i ≤ m) and
a1 by 1, replace other components by 0, we will get e. Similiarly as the proof
of Theorem 1, we can get a matrix M

′
,the differences are: in (4) the size of M

is t0 × t0, but here M
′
is of size (t0 − 1)× t0. We need to show that the vector

e is, most probably, not spanned by the rows of M
′
. In order to show this, we

augment M
′
by adding to it the vector e as the first row and note the augmented

matrix as M
′′
, we need to show that the probability of det(M

′′
) = 0 is 1−Cq−1.

The proof goes along the same as in the proof of Theorem 1. ut

4 Conclusions

We use the similar idea of [5], give a probabilistic solution for the open problem
proposed in [2]. The solution result from Tassa’s idea, but easier than his. In
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practical application, q, the size of the finite field F, is large, so the value of
1−Cq−1 is close to 1, which implies the practicability of this scheme. Moreover,
ideality is a theoretic notation, in practical application, we need not restrict the
scheme to ideality. In such case, the scheme proposed in the introduction of this
paper will be a good choice.
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