
Security Analysis of Aggregate signature and Batch verification
signature schemes

S. Sharmila Deva Selvi1, S. Sree Vivek?,1, J.Shriram ??2, S.Kalaivani2, and C.Pandu Rangan?,1

1 {sharmila,svivek}@cse.iitm.ernet.in, prangan@iitm.ac.in
Indian Institute of Technology Madras

Theoretical Computer Science Laboratory
Department of Computer Science and Engineering

Chennai, India
2 shriram139@gmail.com, kalaivani.siva@gmail.com

National Institute of Technology Trichy
Department of Computer Science and Engineering

Chennai, India

Abstract. An identity based signature scheme allows any pair of users to communicate securely and
to verify each others signatures without exchanging public key certificates. An aggregate signature
scheme is a digital signature scheme which supports aggregation of signatures. Batch verification
is a method to verify multiple signatures at once. Aggregate signature is useful in reducing both
communication and computation cost. In this paper, we describe the breaks possible in some of the
aggregate signature schemes and batch verification scheme.

Keywords: Identity based signature, aggregate signatures, batch verification, cryptanalysis.

1 Introduction

The concept of an identity based cryptosystem was introduced by Shamir in 1984 [9]. The distinguishing
characteristic of identity-based cryptography is the ability to use identity of the user as the public key of
the user. The corresponding private key can only be derived by a trusted Private Key Generator (PKG)
which uses a master secret key to generate them. An identity-based cryptosystem removes the need for
users to look up and verify the public key before verifying a signature on a message. It avoids the overhead
of storage of certificates of public keys and also the public key of the user can easily be derived from
the identity which uniquely defines the user. Identity based cryptography provides a more convenient
alternative to conventional public key infrastructure.

Identity based signature scheme are designed in such a way that a user can authenticate a message
by producing a unique digital signature on the message using his private key and any other user in the
system can verify the authenticity of the signature by just knowing the identity of the user who signed
the message. Various identity based signature construct have been proposed [2] [14] [7].

? Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and
Computation sponsored by Department of Information Technology, Government of India.

?? Work supported by IITM Summer Fellowship 2009

An important factor to be considered for cryptographic schemes to be practically applicable is effi-
ciency. Efficiency includes both communication and computation efficiency. The growth in bandwidth of
communication networks, seems to have more constraints, which increases the importance of communica-
tion efficiency. In banking services or electronic commerce one server may have to verify many signatures
simultaneously. In order to enhance the efficiency of verification and reduce the communication over-head
we use aggregate signatures. Aggregate signatures was first introduced by Boneh et al. [1] and a practical
realization was also proposed by them.

Since the aggregate signature was presented by Boneh et al., several aggregate signature schemes
have been proposed so far [5] [3] [6] [13] [12] [4]. Gentry and Ramzan in [5] presented the most efficient
identity based aggregate scheme which requires only three pairing computations In this scheme all the
signers participating in aggregateion have to agree upon a common randomness value which makes it
unsuitable for most real life scenarios. Wen et al. in [11] proposed an aggregate signature scheme with
constant pairing operation, but this signture scheme has a forgeability attack which we have pointed
in this paper. Wang Zhu et al. in [10] proposed an practical aggregate signature scheme with constant
pairing operation but was able to achieve only partial aggregation. A valid user of the system will be able
to forge a signature on any message by any user by just seeing a single singnature on some message by
the corresponding user. We describe the possible attack in this paper.

The rest of the paper is organised as follows. In section 2 we discuss the preliminaries and the com-
putational assumptions which we take into considerations. In section 3 we discuss the generic model for
aggregate signature. In section 4 we discuss the generic security model for aggregate signatures. In section
5 we review the Wang Zhu scheme [10] and propose an attack on unforgeability of the scheme in section
6. In section 7 we review the Wen et al. scheme [11] and show the attack possible in the scheme in section
8. In Section 9, we review Seung et al.’s [8] scheme and we show the forgeabilty attack on this scheme
in section 10. In section 11 and 12 we discuss Shi Cui et al.’s [4] and we show how universal forgery is
possible in their batch verification construct. Then in section 13 we post the conclusions and the current
open problems in this area.

2 Preliminaries

2.1 Bilinear Pairing

Let G be an additive cyclic group generated by P , with prime order q, and GT be a multiplicative cyclic
group of the same order q. Let ê be a pairing defined as ê : G × G → GT . It satisfies the following
properties.

– Bilinearity Let P, Q ε G and a, b ε Z∗

q then ê(aP, bQ) = ê(P, Q)ab.
– Non Denegrate Let P ε G then ê(P, P) 6= 1.
– Easily Computable Let P, Q ε G then ê(P, Q) must be easily and efficiently computable.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear maps that are relevant to
the protocol we discuss.

Bilinear Diffie-Hellman Problem (BDHP)

Given (P, aP, bP, cP) ε G
4 for unknown a, b, c ε Z

∗

q , the BDH problem in G is to compute ê(P, P)abc.
The advantage of any probabilistic polynomial time algorithm A in solving the BDH problem in G is

defined as

AdvBDH
A

= Pr[A(P, aP, bP, cP) = ê(P, P)abc|a, b, c ε Z∗

q]

The BDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvBDH
A

is negligibly small.

Decisional Bilinear Diffie-Hellman Problem (DBDHP)

Given (P, aP, bP, cP, α) ε G
4 × GT for unknown a, b, c ε Z

∗

q , the DBDH problem in G is to decide

α = ê(P, P)abc.
The advantage of any probabilistic polynomial time algorithm A in solving the DBDH problem in G

is defined as

AdvDBDH
A

= |Pr[A(P, aP, bP, cP, ê(P, P)abc) = 1]− Pr[A(P, aP, bP, cP, α) = 1]|

The DBDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage
AdvDBDH

A
is negligibly small.

Computation Diffie-Hellman Problem (CDHP)

Given (P, aP, bP) ε G3 for unknown a, b ε Z∗

q , the CDHP problem in G is to compute abP .
The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem in G is

defined as

AdvCDH
A

= Pr[A(P, aP, bP) = abP |a, b ε Z∗

q]

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDH
A

is negligibly small.

3 Generic Model

An identity based aggregate signature scheme(IBAS) consists of five algorithms as follows.

– Setup : The private key generator(PKG) provides the security parameter λ as the input to this
algorithm and generates the system parameters params and the master private key Msk. PKG
publishes the params and keeps the Msk secret.

– KeyGen : The user Ui provides his identity IDi to PKG. The PKG runs this algorithm with identity
IDi, params and Msk as the input and PKG outputs the private key Di to user Ui through a secure
channel.

– Signing : For generating a signature on a message mi, the user Ui provides his IDi, his private key
Di, params and message mi as input to this algorithm. This algorithm generates a valid signature
σi on message mi by user Ui.

– Verify : This algorithm on input of a signature σ on message m by user with identity ID checks
whether σ is a valid signature on message m by ID. If true it outputs “V alid”, else it outputs
“Invalid”.

– Aggregate : On receiving various signatures (σi)i=1 to n from different users (Ui)i=1 to n, any third
party or one of the signers can run this algorithm and generate the aggregate signature σagg and the
message, identity pairs (mi, IDi)i=1 to n.

– Aggregate Verification : This algorithm on input of an aggregate signature σagg, the list of message,
identity pairs (mi, IDi)i=1 to n and the params checks whether σagg is a valid aggregate signature on
all {mi}i=1 to n by the corresponding user Ui with identity IDi. If true it outputs “V alid”, else output
“Invalid”.

4 Security Model

4.1 Unforgeability

An IBAS scheme is secure against existential forgery under adaptive-chosen-identity and adaptive-chosen-
message attack if no probabilistic polynomial time adversary A has non-negligible advantage in the
following game.

– Setup phase : The challenger C runs the setup algorithm and generates the params and Msk.
Challenger C gives the params to adversary A.

– Training phase : Once the setup phase is done A is allowed to ask vaiours queries to C and C

responds correspondingly.

• KeyGen oracle : When A makes a query with IDi, C outputs Di, the private key of IDi to A

provided C knows the secret for the queried identity. Else C aborts.
• Signing oracle : When A makes a signing query with IDi, message mi, C outputs a valid

signature σi on mi by IDi.

– Forgery phase : When the adversary A finishes all the queries, A outputs an aggregate signature
(σ)i=1 to n from the users (IDi)i=1 to n on messages (mi)i=1 to n where there exists a IDT ∈ (IDi)i=1 to n

who is one of the targer identities. The adversary A wins the game if σagg is a valid aggregate signa-
ture and A hasn’t queried for signing query for (IDT , mT) pair for which it had forged.

5 Review of Practical Identiy-Based Aggregate Signature from Bilinear
Maps

In this section we review new aggregate signature scheme by Wang Zhu et al.[10]. The paper claim the
scheme to be computationally efficient with constant pairings in verification. The scheme is based on
weak CDH problem which is defined as follows.

5.1 Definition of wCDH

The wCDH in G1 is defined as follows : Given (P, aP, bP, b2P) for unknown a,b ε Zp compute abP .

5.2 Construction

The scheme consists of six algorithms. The first four algorithms are similar to a ordinary signature and
the last two algorithms provide the aggregating capability.

– Setup Given a security parameter l ε Z, the private key generator (PKG) runs the setup algorithm
which outputs two groups G1 and G2 of prime order p, a generator P of G1, a bilinear map ê :
G1 × G1 −→ G2, master secret key s ∈ Z∗

p. PKG computes Ppub = sP and Ppub2 = s2P . PKG also
chooses cryptographic hash functions. H1 : {0, 1}∗ −→ G1, H2 : {0, 1}∗ −→ Z∗

p.
The system’s public parameters are
params = < p, G1, G2, ê, P, Ppub, Ppub2 , H1, H2 > .

– Extract The PKG provides the user’s identity IDi and the master secret key Msk as input to this
algorithm and receives his public key DIDi

= H1(IDi), private key sIDi
= sDIDi

. The PKG sends
DIDi

and sIDi
securely to the user. The user makes DIDi

public and keeps sIDi
secret.

– Standard signature To sign the message mi, the user sends his identity IDi, message mi as the
input to this algorithm. The algorithm follows the steps below:
• Randomly chooses xi ∈ Z∗

p and computes Ti = xiPpub.
• Computes hi = H2(IDi, mi, Ti)
• Computes the signature σi = (Si, Ti) where Si = xiP + hisIDi

.
• Returns sigmai to user Ui as the signature on message mi.

– Verify Any user can run this algorithm. This algorithm takes as input, a signature σi = (Si, Ti) on
message mi by user with identity IDi, and does the following,
• Compute hi = H2(IDi, mi, Ti)

• Check if ê(Si, Ppub)
?
= ê(P, Ti)ê(hiDIDi

, Ppub2).
• If true output “V alid”, else output “Invalid”.

– Aggregate Signature For the aggregating subset of users U , assign to each user an index i, ranging
from 1 to k ε |U |. This algorithm takes as input user Ui’s identity IDi, a signature (Si, Ti) on a message
mi. It computes S = Σk

i=1Si and outputs the aggregate signature is σ = (S, T1, T2,Tk).

– Aggregate Signature verify This algorithm on receiving the inputs aggregate signature (S, T1, T2, ...Tk)
for an aggregating subset of users U , and the list of <identity, message> pairs {IDi, mi}i=1 to k in-
dexed as before. To verify the aggregate signature,
• The algorithm computes hi = H2(IDi, mi, Ti)
• Checks if the following holds.

ê(S, Ppub)
?
= ê(P, Σk

i=1Ti)ê(Σ
k
i=1hiDIDi

, Ppub2).
• If true output “V alid”, else it outputs “Invalid”.

6 Attack on Wang Zhu et al.’s scheme

We will show that universal forgery is possible in the aggregate scheme of Wang Zhu et al. Consider
the adversary A queries for the private key of some identity IDA. Let the identity on whom the
forgery is to be performed is IDB. Assume the A in the training phase queries for a signature of IDB

on message m. The signature is of the form

T = xPpub (1)

S = xP + hsB (2)

for a random unknown x.
The value of h can be calculated as H2(ID, m, T). The adversary does the following steps to sign a
message m1 on behalf of ID and aggregate with his own signature on some random message with his
identity IDA.
• Choose a random x1 and set T1 = x1Ppub.
• Set h1 = H2(ID, m1, T1).
• Set T ∗ = x

h
h1Ppub. (Dividing 3 by h and multiplying by h1)

• Set S∗ = x
h
h1P + h1sID. (Dividing 4 by h and multiplying by h1.)

• Set S1 = S∗ + x1P

= x
h
h1P + h1sID + x1P .

The signature on m1 by ID is σ1 = (S1, T1).
• Then the adversary A uses his private key sA and signs a random message m2 as follows.
• T2 = x2Ppub + T ∗

= x2Ppub + x
h
h1Ppub.

• h2 = H2(IDA, m2, T2).
• Set S2 = x2P + h2sA

• Then aggregate the Si components of both the signatures and the aggregate signature is of form
σ = (S, T1, T2) on messages m1 and m2. We can verify that this is a valid aggregate signature by
the verification algorithm.

ê(S, Ppub) = ê(
x

h
h1P + h1sID + x1P + x2P + h2sA, Ppub)

= ê(x1P, Ppub)ê(
x

h
h1 + x2P, Ppub)ê(h1sID + h2sA, Ppub).

= ê(T1, P)ê(T2, P)ê(Σ2
i=1hiDIDi

, Ppub2).

= ê(Σ2
i=1Ti, Ppub)ê(Σ

2
i=1hiDIDi

, Ppub2).

Thus this aggregate signature passes the verification. The adversary can forge signature on any message
by any user having just known a single signature of the user. This kind of break is possible since any one
signer is able to cancel out the components of any other user in aggregation. The base signature scheme
is secure but its not secure when aggregated. Thus we have proved a universal forgery on Wang Zhu et
al.’s [10] aggregate signature scheme.

7 Review of the Wen et al.’s Aggregate Signature Scheme

In this section we discuss the aggregate signature scheme as proposed by Wen et al. [11] which claims
to be efficient with constant pairing operations in signature verification. Wen et al.’s aggregate signature
scheme [11] comprises five algorithms: KeyGen, Sign, Verify, Aggregate and Aggregate Verify.
It uses two hash function Ĥ : {0, 1}∗ → Z∗

q and H : {0, 1}∗ → Z∗

q . There are two generators P and P
′

of

group G. The system public parameters are {G, GT , q, ê, P, P
′

, Ĥ, H}

– Key Generation: The PKG provides the identity of the user IDi as input to this algorithm. The
algorithm selects a random sIDi

∈ Z∗

q and DIDi
= sIDi

P . The public key is DIDi
ε G. The private

key is sIDi
.

– Signing: The user Ui with identity IDi who wishes to sign message mi provides his private key sIDi
ε

Z∗

q , and a message mi ε {0, 1}∗ as an input to this algorithm. The algorithm compute ĥ = Ĥ(mi‖sIDi
)

and h = H(mi). Ti = ĥP, Si = (ĥ + hsIDi
)P

′

. The algorithm outputs the signature σi = (Si, Ti) on
message mi by user with identity IDi.

– Verification: This algorithms takes as input the public key, DIDi
, message, mi, and a signature

(Si, Ti) and computes hi = H(mi) and checks if ê(Si, P)
?
= ê(P

′

, Ti + hiDIDi
). If yes it outputs

“V alid”, else it outputs “Invalid”.

– Aggregation: For aggregate signature for a set of users U assign to each user an index i, ranging
from 1 to k = |U |. Any user can run this algorithm with signatures (Si, Ti)i=1 to k by different users
{Ui}i=1 to k on a message {mi}i=1 to k as the input. The aggregate algorithm computes S = Σk

i=1Si

and T = Σk
i=1Ti and outputs the aggregate signature is (S, T) and the set of message,identity pairs

{mi, IDi}i=1 to k.

– Aggregate Verification: This algorithm takes as input an aggregate signature (S, T) for an aggre-
gating subset of users U = {Ui}i=1 to k, indexed as before, and the original messages mi and public
keys DIDi

for all users Ui. To verify, algorithm first computes hi = H(mi) for all i = 1 to, k and
checks if
ê(S, P)

?
= ê(P

′

, T + Σk
i=1hiDi) holds.

If yes it outputs “V alid”, else it outputs “Invalid”.

8 Attack on the Wen et al.’s Aggregate Signature Scheme

The signature scheme as proposed by Wen et al.’s[11] can be forged by any party who may not even be
a legal user of the system.

– Forgery of the signature: The forger chooses a random message m ε {0, 1}∗ and computes the
signature for some user Ui in the following manner,
• Select a random r ∈ Z∗

q

• h = H(m)
• T = rP − hDIDi

, where DIDi
is public identity of the user whose signature he is forging.

• S = rP
′

.
The forged signature passes the verification ê(S, P) = ê(P

′

, T + hDIDi
) because,

ê(P, T + hDIDi
) = ê(P

′

, rP − hDIDi
+ hDIDi) = ê(P

′

, rP) = ê(rP
′

, P) = ê(S, P)

– Forgery of the Aggregate Signature:The aggregate signature can also be forged by anyone in the
similar manner. The forger can generate an aggregate signature for a set of users U . He can generate
(Ti, Si) on mi of his choice for all user ui ε U as mentioned above. He then aggregates, S = Σk

i=1Si

and T = Σk
i=1Ti.

The forged aggregate signature passes the verification ê(S, P) = ê(P
′

, T + Σk
i=1hiDIDi) because,

ê(P
′

, T + Σk
i=1hiDIDi) = ê(P

′

, Σk
i=1Ti + Σk

i=1hiDIDi)

= ê(P
′

, Σk
i=1riP −Σk

i=1hiDIDi + Σk
i=1hiDIDi)

= ê(P
′

, Σk
i=1riP) = ê(Σk

i=1riP
′

, P)

= ê(S, P)

Wen et al. in their paper[11] have proved that their signature is unforgeable in the choosen key model

as given in [1]. Their signature consists of (T = ĥP, S = (ĥ + hs)P
′

) where ĥ = H(m‖s), h = H(m), no

user can verify whether the sender has send T = ĥP or T = rP where r is a random element belonging
to Z∗

q because no user other than the sender himself can calculate ĥ. For every other user it just seems
like a random value. Therefore, due to this weakness, their signature is forgeable by anyone.

9 Identity Based universal designated multi-verifiers signature schemes

Seung et al. [8] have proposed the first identity based universal designated multi-verifiers signature scheme
which generalizes identity based universal designated verifier signature scheme. Inorder to achieve this
they have proposed a new identity based signature scheme which provides batch verification of signatures.
They have proved their signature scheme existentially unforgeable in the random oracle model. In this
paper we show that their scheme is not secure when considered for batch verification. In the following
sections we review the scheme in [8] and propose a universal forgery of the batch verification used in the
scheme.

9.1 Review of Seung et al.’s Identity based signature scheme and its batch verification

In this section we present the identity based signature scheme and its batch verification as proposed by
Seung et al. [8]. This scheme consists of four algorithms, Setup, Extract, IDSign, ID-PV(Identity-Public
Verify).

ID-Based Signature Scheme:

– Setup: The PKG chooses a random generator P of G. PKG chooses s ∈R Z∗

p and computes
Ppub = sP . Then PKG keeps s as the master secret key and publishes system parameters param =
{ê, G, GT , q, P, Ppub, H1, H2} where, H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zq are cryptographic hash
functions.

– Extract: Given an user identity ID, the PKG compute’s its public key DID = H1(ID) and the
private key SID = sDID, and returns (DID, SID) to the user in a secure way. The user makes DID

public and keeps SID as secret.

– ID-Sign: Given a secret key SID and a message m, pick r ∈R Z
∗

q , compute T = rP , h = H2(m, T)
and S = rPpub + hSID. Output the signature σ = (T, S).

– ID-PV: Given the public parameter param, a message m, a signature σ = (T, S), check if

ê(S, P)
?
= ê(T + hDID, Ppub)

If the equality holds then output “V alid”, output “Invalid”.

Batch Verification:

The above mentioned identity based signature scheme allows batch verification of multiple signa-
tures on different messages. That is, a verifier can check the validity of n signatures (T1, S1), . . . , (Tn, Sn)
on n messages m1, ..., mn simultaneously by checking the following:

ê(
∑n

i=1 Si, P)
?
= ê(

∑n

i=1(Ti + hiDi), Ppub)

10 Attack on the Seung et al.’s Scheme

We will show that universal forgery is possible in the batch verification of Seung et al. scheme [8]. Consider
the adversary A queries for the private key of some identity IDA. Let the identity on whom the forgery is
to be performed is IDB. Assume the A in the training phase queries for a signature of IDB on message
m. The signature is of the form

T = xP (3)

S = xPpub + hsB (4)

for a random unknown x.
The value of h can be calculated as H2(m, T)
. The adversary does the following steps to sign a message m1 on behalf of IDB and aggregate with his
own signature on some random message.

– Choose a random x1 and set T1 = x1Ppub.
– Set h1 = H2(m1, T1).
– Set T ∗ = x

h
h1P . (Dividing 3 by h and multiplying by h1)

– Set S∗ = x
h
h1Ppub + h1sID. (Dividing 4 by h and multiplying by h1.)

– Set S1 = S∗ + x1Ppub. = x
h
h1Ppub + h1sID + x1Ppub. The signature on m1 by ID is σ1 = (S1, T1).

– Then the adversary A uses his private key sA and signs a random message m2 as follows.
– T2 = x2P + T ∗

=x2P + x
h
h1P .

– h2 = H2(m2, T2).
– Set S2 = x2Ppub + h2sA

– Then aggregate the Si components of both the signatures and the aggregate signature is of form
σ = (S, T1, T2) on messages m1 and m2. We can verify that this is a valid aggregate signature by the
verification algorithm.

ê(S, P) = ê(
x

h
h1Ppub + h1sID + x1Ppub + x2Ppub + h2sA, P)

= ê(x1Ppub, P)ê((
x

h
h1 + x2)Ppub, P)ê(h1sID + h2sA, P).

= ê(T1, Ppub)ê(T2, Ppub)ê(Σ
2
i=1hiDIDi

, Ppub).

= ê(Σ2
i=1Ti, Ppub)ê(Σ

2
i=1hiDIDi

, Ppub).

= ê(Σ2
i=1(Ti + hiDIDi

), Ppub).

This aggregate signature passes the verification and hence is valid. The adversary can forge signature
on any message by any user by knowing just a single signature of the user. The base signature scheme
is secure but its not secure when aggregated. Thus we have proved a universal forgery on Seung et al.
signature scheme[8] which is claimed to support batch verification.

11 Review of Shi Cui et al.’s Scheme [4]

In this section we review the scheme proposed by Shi Cui et al. in [4] where it is claimed that their
identity based signature construct can be used for efficient batch verification. They propose three types
of batch verifications. The type-3 batch verification construct is similar to aggregate signature construct
where n signers sign in n distinct messages and the signatures on all the messages can be verified in a
single batch verification. The base signature scheme consists of 4 algorithms which are as follows.

– Setup : The trusted authority runs this algorithm with the security parameter l ∈ Z∗

q as the in-
put. The algorithm chooses two groups G1, G2 and chooses randomly a P as generator of G1 and
a s ∈ Z∗

q and computes Ppub = sP and also computes ω = ê(P, P). It chooses a hash function
H : {0, 1}∗×G

∗

2 ←→ Z
∗

l and returns the public parameters params as < P, Ppub, ω, G1, G2, H > and
the master secret key s.

– Extract : For a given identity idi ∈ Z∗

l the trusted authority runs this algorithm with params,msk
s, and identity idi as the input. The algorithm does the folowing.

SIDi
=

1

s + idi

and returns the private key SIDi
to the user idi.

– Sign : A user with idi who wishes to sign message mi runs this algorithm with his private key SIDi
,

params and message mi as input. The signing algorithm does the following.

• Choose a random xi ∈ Z∗

l

• Compute Ti = ωxi

• Compute the hash hi = H(mi, Ti)
• Then compute Si = (xi + hi)Sidi

and return the signature < Si, Ti > as the signature on message mi by identity idi.

– Verify : Any user can run this algorithm to verify the validity of the signature. This algorithm takes
as input the signature < Si, Ti >, the message mi , the identity idi and the params as input. The
algorithm verifies whether

ωhi .Ti
?
= ê(Ppub + idi.P, Si) (5)

If yes it outputs “V alid”, else it outputs “Invalid”.
– Correctness :

ê(Ppub, idi.P, Si)= ê((s + idi)P, Sidi
)hi+xi

= ê((s + idi)P, 1
(s+idi)

P)hi+xi

= ê(P, P)hi+xi

= ωhi+xi

= ωhi .Ti

– Batch verification for type 3 : Suppose there are n signatures from n users {idi}i=1 to n on
n messages {mi}i=1 to n where the signatures is of the form < S1, T1, id1 >< S2, T2, id2 > . . . <

Sn, Tn, idn > and user can run this algorithm with these inputs. The algorithm checks whether

ω
∑

n

i=1
hi .

n∏

i=1

Ti
?
= ê(Ppub,

n∑

i=1

Si)ê(P,

n∑

i=1

idiSi) (6)

If yes it outputs “V alid”, else it outputs “Invalid”.

12 Universal forgery of Shi Cui et al. Scheme with batch verification-type 3

In this section we propose an attack on type-3 batch verification of Shi Cui et al. scheme [4]. Consider a
adversary A who is going to produce a forgery on the target identity IDB. The A queries for the private
key of some identity IDA other than the target identity IDB and the private key is SidA

. The A then
queries the signature of the target identity IDB on some message m1. The signature is of the form

S1 = (h1 + x1)Sid1

T1 = ωx1

for some random x1 and where h1 = H(m1, T1). The adversary then does the following to create a forgery
on message m2.

Chooses a random x2 and set T2 = ωx2 and h2 = H(m2, T2).

Then sets S2 = (h2 + x1.h2

h1

)Sid1
.(By dividing S1 by h1 and multiplying by h2).

Then chooses another random x3,message m3 and set T3 = ωx3ω−x2 .ω
x1.h2

h1 and h3 = H(m3, T3).
Sets S3 = (h3 + x3)SidA

.

Therefore < S2, T2 > is a signature on m2 by target identity id and < S3, T3 > is a signature on m3 by
identity idA.

It passes the batch verification as follows.

ω
∑

3

i=2
hi .

3∏

i=2

Ti
?
= ê(Ppub,

3∑

i=2

Si)ê(P, idS2 + idAS3) (7)

Correctness of Forgery :
LHS is of the form

ωh2+h3 .T2.T3 = ω
h2+h3+x2+x3−x2+

x1.h2

h1 = ω
h2+h3+x3+

x1.h2

h1 (8)

The RHS is of the form

ê(Ppub,

3∑

i=2

Si)ê(P, idS2 + idAS3) = ê(Ppub, S2)ê(Ppub, S3)ê(P, idS2)ê(P, idAS3)

= ê(sP + idP, S2)ê(sP + idAP, S3)

= ê((s + id)P, (h2 +
x1.h2

h1
)

1

s + id
P)ê((s + idA)P, (h3 + x3)

1

s + idA

P)

= ê(P, P)
h2+

x1.h2

h1 .ê(P, P)h3+x3

= ω
h2+

x1.h2

h1
+h3+x3 (9)

The equation 8 is equal to equation 9. Thus this is valid forgery where the adversary by knowing just a
single users private key can forge the signature of any user in the system on any message having seen the
signature of that user on some random message. Thus we have proved that batch verification of type-3
in the scheme in [4] is universally forgeable.

13 Conclusion

We have analysed two aggregate signature schemes which claimed to have efficient computation complex-
ity. We have shown that universal forgery is possible in such constructs and similar constructs. Currently
there is no scheme which achieves constant computation cost in pairings during verification without any
interaction among the signers. The interaction among singers in certain situations is a major disadvantage
since each singer has to broadcast his value to all other signers and that makes n broadcast operations thus
increasing the communication complexity highly. An efficient aggregate signature with constant pairing
computations in verification without any interaction among users remains as an interesting open problem
in this field. Also developing an aggregate signature in the standard model is another open problem to
look at.

References

1. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science,
pages 416–432. Springer, 2003.

2. Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-hellman groups. In Yvo
Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 18–30.
Springer, 2003.

3. Xiangguo Cheng, Jingmei Liu, and Xinmei Wang. Identity-based aggregate and verifiably encrypted signatures
from bilinear pairing. In Osvaldo Gervasi, Marina L. Gavrilova, Vipin Kumar, Antonio Laganà, Heow Pueh
Lee, Youngsong Mun, David Taniar, and Chih Jeng Kenneth Tan, editors, ICCSA (4), volume 3483 of Lecture
Notes in Computer Science, pages 1046–1054. Springer, 2005.

4. Shi Cui, Pu Duan, and Choong Wah Chan. An efficient identity-based signature scheme with batch verifi-
cations. In Xiaohua Jia, editor, Infoscale, volume 152 of ACM International Conference Proceeding Series,
page 22. ACM, 2006.

5. Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung, Yevgeniy Dodis,
Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography, volume 3958 of Lecture Notes in Computer
Science, pages 257–273. Springer, 2006.

6. Javier Herranz. Deterministic identity-based signatures for partial aggregation. Comput. J., 49(3):322–330,
2006.

7. Florian Hess. Efficient identity based signature schemes based on pairings. In Kaisa Nyberg and Howard M.
Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer Science, pages
310–324. Springer, 2002.

8. Seung-Hyun Seo, Jung Yeon Hwang, Kyu Young Choi, and Dong Hoon Lee. Identity-based universal desig-
nated multi-verifiers signature schemes. Comput. Stand. Interfaces, 30(5):288–295, 2008.

9. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.
10. Zhu Wang, Huiyan Chen, Ding feng Ye, and Qian Wu. Practical identity-based aggregate signature scheme

from bilinear maps. volume 13(6), pages 684–687. Shangai Jiao Tong University Press, 2008.
11. Yiling Wen and Jianfeng Ma. An aggregate signature scheme with constant pairing operations. In CSSE (3),

pages 830–833. IEEE Computer Society, 2008.
12. Jing Xu, Zhenfeng Zhang, and Dengguo Feng. Id-based aggregate signatures from bilinear pairings. In

Yvo Desmedt, Huaxiong Wang, Yi Mu, and Yongqing Li, editors, CANS, volume 3810 of Lecture Notes in
Computer Science, pages 110–119. Springer, 2005.

13. HyoJin Yoon, Jung Hee Cheon, and Yongdae Kim. Batch verifications with id-based signatures. In Choonsik
Park and Seongtaek Chee, editors, ICISC, volume 3506 of Lecture Notes in Computer Science, pages 233–248.
Springer, 2004.

14. Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signature scheme from bilinear pairings
and its applications. In Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public Key Cryptography,
volume 2947 of Lecture Notes in Computer Science, pages 277–290. Springer, 2004.

