
Analysis of the End-by-Hop Protocol for Secure Aggregation
in Sensor Networks

Erik Zenner

Technical University of Denmark
Department of Mathematics

e.zenner@mat.dtu.dk

Abstract. In order to save bandwidth and thus battery power, sensor network measurements
are sometimes aggregated en-route while being reported back to the querying server. Authen-
tication of the measurements then becomes a challenge if message integrity is important for
the application.

At ESAS 2007, the End-by-Hop protocol for securing in-network aggregation for sensor nodes
was presented [4]. The solution was claimed to be secure and efficient and to provide the
possibility of trading off bandwidth against computation time on the server.

In this paper, we disprove these claims. We describe several attacks against the proposed
solution and point out shortcomings in the original complexity analysis. In particular, we
show that the proposed solution is inferior to a naive solution without in-network aggregation
both in security and in efficiency.

1 Introduction

Sensor nodes are resource-restricted processors that are combined with sensors to measure
environmental data (e.g. light, noise, temperature, smoke, pressure...) and radio equipment
to send and receive data over a radio interface. Sensor networks typically consist of a large
number of such nodes, with the individual node being low-cost and thus computationally
restricted.

Sensor networks are often controlled by a server who can ask queries and obtain responses
that are forwarded through the sensor network. In order to save bandwidth, it often makes
sense to aggregate the result on the way. To give an example from a wildfire alarm network,
if the server is only interested in the maximum temperature in the controlled area, then it is
not necessary to forward all individual measurements. Instead, each node only forwards the
maximum of all measurements routed through it, keeping the total message length small.

However, aggregating measurements along the way makes securing the transmission
difficult. One important question is whether the aggregated data received by the server
actually corresponds to the measurements done by the nodes, or whether the aggregated
value was modified along the way. Cryptographic standard techniques are often not directly
applicable due to key management issues1. Thus, a number of advanced protocols have been
proposed to provide message authenticity and integrity [8, 9, 1, 2, 6, 11, 5] for networks with
in-network aggregation.

1 One simple solution is the use a network-wide key, but this means that corrupting a single node is
equivalent to corrupting the whole network. Another option would be to let nodes share pairwise different
keys with all of their neighbouring nodes, which creates problems in the network setup as well as the
amount of non-volatile memory consumed by the keys.

DTU MAT report no. 2009-01

In this paper, we concentrate on the End-by-Hop protocol by Farrell and Jensen [4],
presented at ESAS 2007. It was claimed that this solution provides a secure integrity ser-
vice for networks with in-network aggregation, allowing to trade off bandwidth (and thus
battery) consumption with server computation time. In the remainder of this paper, we will
evaluate these claims.

Organisation of the Paper: We start by giving a description of the End-by-Hop protocol
in Section 2. Subsequently, Section 3 presents three different types of attack against the
protocol. Finally, Section 4 discusses the resource consumption of the End-by-Hop protocol,
compares it to a naive solution and shows that it does not compare well to other protocols
discussed in the literature.

2 The End-by-Hop Protocol

The following is a high-level description of the End-by-Hop protocol [4].

2.1 Network Architecture

The sensor network considered is tree-structured, though the tree is not necessarily binary
or balanced. The nodes in the tree are labelled N1, . . . , Nn, with N1 being the root or sink
node. This sink node is the only one that has a connection to the server or querier Q
which has significantly more computational power than the sensor nodes. The querier asks
the network for measurements and processes the results upon receiving them.

Since radio transmission is expensive in terms of battery consumption, network traffic
shall be minimised as much as possible. Thus, it is desirable that data is aggregated en-route,
i.e., the internal nodes of the tree preprocess the output of lower-level nodes before passing
the result on to higher-level nodes. This saves significant bandwidth if the server is only
interested in e.g. the minimum, maximum, average, sum etc. of the individual measurements.
The authors make the assumption that the individual measurements are from a small set
of possible values.

2.2 Security Goals

The purpose of the security solution is to provide a special type of message integrity. The
final aggregated output of the sensor network (as received by the server) contains the fol-
lowing information:

1. Which query gave rise to the result (type and time of query)?
2. Which nodes have contributed to the result?
3. What is the result?

The protocol goal is that any illegitimate modification to any of these information will be
detected by the server.

Note that the protocol does not protect against the removal of individual nodes or
even parts of the network. In many typical application situations for a sensor network, it is
possible for an adversary to either physically remove nodes or to jam their radio connection.

2

DTU MAT report no. 2009-01

In this case, their inputs will be missing from the total result. However, an explicit goal is
that the link node can identify the slave nodes which did not contribute.

Another problem is that the adversary might be able to take over individual nodes or
parts of the network. In this case, he can not only produce fake measurements for these
nodes, but also control the aggregation of results (if he controls an inner node). While we
can not prevent the adversary from providing wrong measurements for the hijacked nodes,
the protocol should prevent him from modifying measurements from lower-level nodes, or
from combining those in a wrong way.

2.3 Protocol Description

In order to achieve the above security goals, the End-by-Hop protcol proceeds as follows
(note that our notation deviates from the one used in [4]):

Key distribution: For the whole network, public Diffie-Hellman (DH) parameters (a modulus
p and a generator g) are fixed upon setup. The server as well as all nodes have a copy of
those parameters. In addition, the server has a fixed DH exponent x (which is only known
to itself), and each node Ni has a fixed DH exponent yi (which is known only to itself and
to the server).

Query phase: The server sends a query q which is forwarded through the network to all
relevant nodes. This query consists of a request type (e.g., the code for “Send max. temper-
ature”) and a nonce. Along with this query, the server also sends his DH value gx mod p.2

Response phase: Each node Ni that contributes to the result does the following:

1. Derive a shared key k1,i = KDF1(gxyi mod p), where KDF1 is a suitable key derivation
function.3 Use this key to compute a Query Integrity Field (QuIF) as follows:

QuIFi =

qk1,i ·
∏
j∈Ci

QuIFj

 mod p,

where Ci is the set of Ni’s children (possibly empty, in which case QuIFi = qk1,i).
2. Derive a shared key k2,i = KDF2(gxyi mod p), where KDF2 is a suitable key derivation

function. Use this key to compute a Response Integrity Field (called MEASMAC)
as follows:

MEASMACi = HMACk2,i
(di)⊕

⊕
j∈Ci

MEASMACj ,

2 The assumption seems to be that the nodes don’t have the non-volatile memory to permanently store
this value.

3 Note that KDF details in [4] are rather fishy. When computing gx and gxyi , the authors omit the reduction
modulo p in their notation. While this is sometimes done for simplicity, it is understood that the operation
is nonetheless present. Thus, we assume that the result of gxyi is in the range {1, . . . , p− 1}, being non-
uniformly distributed [12]. Now the authors apply two key derivation functions which are not specified
(and which we compose into KDF1 for simplicity), stating that the final result is uniformly distributed
over {1, . . . , p− 1}. This, however, is obviously not possible, since KDF1 must be a permutation and can
thus not change the probability distribution. The problem could be solved, though, if the output of KDF1

was in a group of order significantly less than p.

3

DTU MAT report no. 2009-01

where di is the actual data provided by Ni and Ci is the set of its children (possibly
empty, in which case MEASMACi = HMACk2,i

(di)).
3. Send QuIFi and MEASMACi on to the parent node. In addition, attach the aggregated

result for the subtree for which Ni is a root. Note that di itself is not sent.

Response Evaluation: In order to verify the response, the server proceeds as follows:

1. Given the value QuIF1, the server tries (using brute force) to find a subset S of all nodes
such that the integer

s =

 ∑
Ni∈S

k1,i

 mod (p− 1)

fulfills the equality
QuIF1 = qs mod p.

If the server finds such a set S, then it assumes that the authentication was sent by the
nodes in S. Otherwise, it assumes that something went wrong.

2. Given the value MEASMAC1, the server tries (using brute force) to find a combination
of inputs di (for Ni ∈ S) such that

MEASMAC1 =
⊕
Ni∈S

HMACk2,i
(di).

If the server can find such a combination, then it assumes that the message di was sent
by the node Ni. Otherwise, it assumes that something went wrong.

3. Finally, given all contributing messages di, the server checks whether they indeed pro-
duce the aggregate result received.

3 Security Analysis

From a security perspective, there are a number of problems with this protocol. It is overly
complicated for its purpose, uses cryptographic primitives in an unfamiliar fashion, and
gives no real indication for why it should be secure. In the following, we give some examples
of attacks that become possible due to these shortcomings.

3.1 Deletion Attack

It is easy for an adversary to remove a node’s contribution from the reply. If he can observe
the input and output for a node Ni, then he can easily compute the values qk1,i mod p and
HMACk2,i

(di). He can then use this knowledge to later remove Ni’s contribution at any
point in the network tree by dividing / xoring it out. Note that this attack requires next to
no computational resources and can thus be executed on a very small computational device
(e.g., a rogue node).

One might argue that the adversary could achieve the same result by simply destroying
the node Ni, or by jamming the signal sent by this node. However, such physical attacks
require the ability to actively manipulate precisely the node whose signal the adversary
wants to suppress. The cryptographic attack described above, on the other hand, requires

4

DTU MAT report no. 2009-01

only the ability to observe input and output for node Ni, and to modify the signal of any
one node in the network. Timing of signals plays a crucial role for this type of attack, since
the adversary has to transmit input and output of the target node to the corrupted node
before the end of the response time. Note that the corrupted node can be anywhere in
the network - even a leaf node in another (slower) branch of the tree can introduce the
necessary changes. Thus, the practical applicability of this attack depends on the network’s
response delay: If some nodes are allowed to respond later than others, then the deletion
attack becomes possible.

3.2 Modifying the Query

The security goal for the QuIF value is to allow the server to verify that his query was
unaltered on the way to the nodes, i.e. that the nodes are answering the question that
was actually asked. As it turns out, this security goal is not met, since a discrete power
qk mod p is not a secure authentication of a message q.4 A simple standard attack against
such an “authentication scheme” is to query two authenticators a1 = (q1)k and a2 = (q2)k

and to construct a third one by computing a3 = a1 · a2 = (q1 · q2)k, which is the correct
authenticator for the message q3 = q1 · q2.

Details of such an attack depend on the protocol specification, but it is easy to give
an example. Consider an implementation of the End-by-Hop protocol with the following
specification:

– Any l-bit value is a valid nonce.
– The code for “Give avg. temperature” is 0.

The code for “Give min. temperature” is 1.
The code for “Give max. temperature” is 2.

– A query consists of a concatenation of the query code c and the nonce N . For the purpose
of computing the authenticator, such a query is interpreted as an integer q = c · 2l +N .

The adversary can now proceed as follows:

1. As preparation, he sends a fake query, using query code 0 and nonce 2. This means that
the integer representation of the query is 2, and the node will answer by sending an
authenticator 2k.

2. When the server sends a query with code 2 (maximum temperature), the corresponding
integer is 2 · 2l +N (for some arbitrary nonce N). Now the adversary divides this query
by two before forwarding it to the node, thus sending 1 · 2l + N/2 to the node.5 The
node believes that the minimum temperature was requested and answers accordingly.

3. The node also sends the authenticator (1 · 2l + N/2)k. The adversary multiplies this
with the value 2k, which he knows from step 1, obtaining (2 · 2l + N)k. This forged
authenticator is sent to the server who identifies it as a correct answer to its query.

As a result, the server believes that the node sent a response to a “maximum temperature”
query, even though the node responded to a “minimum temperature” query.
4 In this subsection, we write k instead of k1,i in order to keep notation simple. We also assume that all

arithmetics is modulo p, without explictly saying so every time.
5 For simplicity, we assume that N was even, which happens for every second query.

5

DTU MAT report no. 2009-01

The above example can be prevented by ad-hoc countermeasures such as padding. How-
ever, this does not solve the underlying problem of the QuIF solution: A value of the form
qk mod p is not a cryptographically secure authenticator. It protects the key k, but does
not give any guarantees considering the message q. Thus, in the End-by-Hop protocol, the
adversary can trick the nodes into answering the wrong kind of query, without this being
noticed by the server.

3.3 Forging the Aggregate Result

As opposed to most wide-spread solutions in cryptography, the values QuIF and MEASMAC
mix both message and integrity check into one authenticator6. Thus, their security level is
in fact less than the authenticator length indicates.

As an example, consider MEASMAC. Denote the output size of HMAC by b (in bits)
and the number of contributing nodes by ν. In addition, we denote the number of possible
messages by d and the number of possible aggregation results by d′.

Now the adversary picks the aggregate result of his choice and then simply guesses a
final authenticator MEASMAC1. The server verifies this authenticator as follows:

1. He first tries to find a combination of measurements that produce the correct MAC.
Since there are dν such combinations, he succeeds with probability ≈ dν/2b.

2. He then checks whether the supposed measurements from step 1 lead to the aggregate
result that he received. This happens in 1 out of d′ cases if all d′ results are equally
likely, and with even higher probability otherwise.

Summing up, the adversary’s success probability for a simple guessing attack is ≈ dν/(2b·d′).
If d′ ≈ d (as is the case for many functions like e.g. SUM, AVG, MIN, MAX etc.), then we
have a success probability of dν−1/2b, as opposed to 1/2b for a standard MAC.

Put another way, the security provided by the MAC has been reduced by (ν−1) · log2(d)
bit. Even for extremely small values for d and ν, this is a significant loss. Using the toy
example from [4], where d = 8 and ν = 5, the MAC strength is reduced by 4 · log2(8) = 12
bit. For real-world examples with ν ≥ 100 and d ≥ 20, a standard-sized MAC (e.g. b = 160
for HMAC-SHA-1) would provide no security at all.

In general, mixing the message and the authenticator into one value is not recommend-
able7. It provides neither extra security nor extra bandwidth, but makes analysis of both
parts more difficult. Thus, we recommend to clearly distinguish between a message part and
an authenticator part. The resulting solution may be less fancy, but it allows us to build
upon existing cryptographic techniques and to give thorough analysis and security proofs.

4 Resource Consumption

An obvious question is how the End-by-Hop protocol can be repaired to become secure. How-
ever, even if the protocol was secure, it would be too inefficient for its purpose, meaning that
other solutions proposed in the literature provide a better starting point for improved pro-
tocols. In the following, we will illustrate our point by comparing the End-by-Hop protocol
to a naive solution.
6 This is related to digital signatures with message recovery, a technique that is hardly used in practice.
7 This also holds for the QuIF value, although analysis is more complicated there.

6

DTU MAT report no. 2009-01

4.1 A Naive Solution

Consider the following naive solution without in-network aggregation. Assume that each
node Ni shares a secret key ki with the server. Then the protocol has the following phases:

Query Phase: The server sends a query, consisting of a query type code c and a nonce N .

Response Phase: In the message field, the nodes concatenate their measurements into a
long string, without aggregation. In addition, each node contributes an indicator that is
has contributed – either by appending its node ID to the message or by setting a flag in
a bit array. For integrity, each node computes a contribution ai = MACki

(c||N ||di). All of
these ai are xored to obtain the final authenticator. For a formal security treatment of this
scheme, see Katz and Lindell [10]. For our purposes, it suffices to know that this MAC is
secure and does not suffer from the shortcomings of the End-by-Hop protocol.

Response Evaluation: Given the individual measurements and the list of contributing nodes,
the server computes the MAC and compares it to the one received. If they match, he accepts
the measurements, otherwise he rejects.

4.2 Bandwidth Consumption

Battery consumption is a major bottleneck for a sensor network, and the radio transmitter
drains the battery faster than the processor. Thus, as little data as possible should be sent
over the network. In the following, we analyse the required bandwidth of both protocols.

To simplify analysis, we assume in the following that all n nodes contribute to the aggre-
gated result, and that all measurements occur with equal probability. We point out, though,
that our observations also hold for a smaller number of nodes and for more complicated
measurement distributions, even though the resulting formulas would be more complicated.

End-by-Hop Protocol: We start by making two observations:

1. The QuIF part is very expensive in terms of bandwidth. The most recent ECRYPT
report recommends a key length of at least 1024 bit [7] for DH-based algorithms, meaning
that the length of QuIF alone would be in the order of 128 byte8. This seems to be
wasteful since the Diffie-Hellman key is in fact used here as a symmetric key. Note that
the value gyi mod p is neither used as a public key (i.e. known to every node) nor as a
private key (i.e. known only to node Ni), but as a shared key between Ni and S. Thus,
the QuIF part could be implemented using a standard symmetric solution similar to the
one used for MEASMAC, significantly reducing the bandwidth consumption without
reducing the security.

2. The End-by-Hop protocols sends sufficient information to reconstruct the full list of
contributing nodes and the full list of measurements. We know from information theory
that there is no way of doing this more efficiently than by sending a perfect compression
of these values, meaning that the QuIF and MEASMAC fields have to be at least as
long as the entropy of the contributors list and measurements list, respectively.

8 Elliptic-curve based variants could reduce this length to 20-40 byte, but the way the protocol is described
in [4] indicates that the idea was to use a multiplicative group modulo a prime.

7

DTU MAT report no. 2009-01

Looking at the concrete bandwidth consumption for the End-by-Hop solution, we see that
at least the following information needs to be sent:

– In the QuIF part, sufficient information to reconstruct all contributing nodes, plus se-
curity information. Since it must be possible to reconstruct the subset of contributing
nodes from the QuIF part, its length has to be at least n bit. In addition, it has to
provide an additional number of bits for security, which we denote by s1.

– In the MEASMAC part, sufficient information to reconstruct all contributing measure-
ments, plus security information. Since all n nodes could send any of the dmeasurements,
we need n · log(d) bit for the MEASMAC part. If we also want the forgery probability
to be at most 2−s2 , then the MEASMAC length goes up to at least n · log(d) + s2 bit.

– In the message part, the aggregated result. Thus, here we have to spent another log(d′)
bit, where d′ is the length of the aggregation.

Thus, the total length of a End-by-Hop response is n + n · log(d) + log(d′) + s1 + s2. This
is much larger than assumed in the original paper, which implicitly states a bandwidth
consumption of only log(d′) + s1 + s2 bit.

Naive Protocol: Now consider the bandwidth consumption of the naive solution. It has
to send the concatenated measurements (n · log(d) bit) and the message IDs (n bit), plus
a MAC of length s2 bits. Thus, the total bandwidth consumption is n + n · log(d) + s2,
doing away with the aggregated result and the expensive Diffie-Hellman parameter. We see
that even though the naive solution provides a higher security level, it consumes much less
bandwidth.

4.3 Other Resources

In the remainder of this section, we discuss the use of other resources by the two protocols.

Computation Time (Nodes): For the resource-restricted nodes, computations cost both
time and battery power and should thus be kept to a minimum. By using Diffie-Hellman
multiplication, the End-by-Hop protocol places a heavy computational workload on the
nodes. As an example, the benchmarks for the Crypto++ v5.5 library [3] state that a DH
key agreement for 1024-bit keys takes about 2.1 million cycles on a Pentium 4 CPU, i.e. a
64-bit processor. For a light-weight processor as used for sensor node purposes, such as
the Mica mote (8-bit processor at 4 MHz), one such computation can be expected to take
between several seconds and more than a minute and thus to be unrealistic. But even for
larger nodes, using significant computation time just for the security part is typically not
in the best interest of the system designer.

The naive protocol does not have this expensive DH multiplication. Here, the main
workload is generated by computing the MAC which maps an input of n + n · log(d) bits
to an output of s2 bits. Already for moderate sizes of n and d, this is more efficient than
the MEASMAC, which has to map n · log(d) bits onto n · log(d) + s2 bits. Thus, the naive
protocol clearly uses significantly less computation time than the End-by-Hop protocol.

8

DTU MAT report no. 2009-01

Memory (Nodes): Memory (both volatile and non-volatile) is also an important limiting
factor. For the End-by-Hop protocol, the Diffie-Hellman key dominate the memory con-
sumption. Note that the node has to store the generator g, the prime p, and the secret
exponent yi, all of which have a length of about 128 byte. Thus, in order to store the keys
alone, 384 byte of memory are consumed.

On the other hand, the naive solution only needs to store a symmetric key that is shared
with the server. This key would typically be between 10 and 16 byte long, offering significant
savings compared to the End-by-Hop protocol.

Computation Time (Server): Normally, the computational resources of the server are not
critical when communicating with light-weight nodes. However, the brute-force operations
used by the End-by-Hop protocol in order to de-aggregate the list of contributors and the
list of measurements change this picture. Here, the server has to run up to 2n brute-force
steps to reconstruct the list of participants, and dν brute-force steps to reconstruct the
measurements (where ν ≤ n is the number of contributing nodes).

Again, the naive solution does not need a brute-force search, i.e. the computation time of
the server is dominated by computing the MAC, which corresponds to one single brute-force
step in the End-by-Hop protocol.

4.4 Comparison to State of the Art

We have shown now that the naive protocol is superior to the End-by-Hop protocol with
respect to both security and efficiency. On the other hand, several protocols have been
proposed in the literature that are superior to the naive solution in most (if not all) aspects
[8, 9, 1, 2, 6, 11, 5]. Thus, by transitivity, we can conclude that they also are superior to the
End-by-Hop protocol.

5 Conclusions

We have analysed the End-by-Hop protocol from ESAS 2007 [4], showing that it does not
compare well with the state of the art in secure in-network aggregation. As it turns out, the
protocol achieves neither its security goals nor the claimed resource savings. It is difficult
to see how the protocol could be repaired to be more secure and efficient than competing
solutions currently discussed in the literature.

References

1. E.-O. Blass, O. Wilke, M. Zitterbart. “A Security-Energy Trade-Off for Authentic Aggregation in Sensor
Networks”. Proc. 2nd IEEE Workshop on Wireless Mesh Networks (WiMesh 2006). pp 135–137, IEEE,
2006.

2. H. Chan, A. Perrig, D. Song. “Secure Hierarchical In-Network Aggregation for Sensor Networks. Proc.
13th ACM Conference on Computer and Communications Security. pp. 278-287, ACM, 2006.

3. W. Dai. “Crypto++ 5.5 Benchmarks”. Version from May 5, 2007. Available from:
http://www.cryptopp.com/benchmarks.html.

4. S. Farrell, C. Jensen. “End-by-Hop Data Integrity”. Proc. 4th European Workshop on Security and
Privacy in Ad hoc and Sensor Networks (ESAS 2007), Springer LNCS 4572, pp. 142–155, 2007.

9

DTU MAT report no. 2009-01

5. K. Frikken, J. Dougherty. “An Efficient Integrity-Preserving Scheme for Hierarchical Sensor Aggrega-
tion”. Proc. First ACM Conference on Wireless Network Security (WiSec 2008). pp. 68–76, ACM, 2008.

6. M. Garofalakis, J. Hellerstein, P. Maniatis. “Proof Sketches: Verifiable In-Network Aggregation”. Proc.
23rd IEEE Int. Conference on Data Engineering (ICDE 2007). pp. 996–1005, IEEE, 2007.

7. C. Gehrmann, M. Näslund. “ECRYPT Yearly Report on Algorithms and Keysizes (2006)”. Revision
1.1, January 2007. Available from:
http://www.ecrypt.eu.org/documents/D.SPA.21-1.1.pdf.

8. L. Hu, D. Evans. “Secure Aggregation for Wireless Networks”. Proc. 2003 Symposium on Applications
and the Internet Workshops (SAINT’03), pp. 384–394, IEEE Computer Society, 2003.

9. P. Jadia, A. Mathuria. “Efficient Secure Aggregation in Sensor Networks”. Proc. 11th Int. Conference
on High Performance Computing (HiPC 2004), Springer LNCS 3296, pp. 40–49, 2004.

10. J. Katz, Y. Lindell. “Aggregate Message Authentication Codes”. Topics in Cryptology – CT-RSA 2008,
Springer LNCS 4964, pp. 155–169, 2008.

11. M. Manulis, J. Schwenk. “Provably Secure Framework for Information Aggregation in Sensor Networks”.
Proc. Int. Conference on Computational Science and its Applications (ICCSA 2007). Springer LNCS
4705, Part I, pp. 603–621, 2007.

12. C. Waldvogel, J. Massey. “The Probability Distribution of the Diffie-Hellman Key”. Proc. Asiacrypt
’92, Springer LNCS 718, pp. 492–504, 1992.

10

DTU MAT report no. 2009-01

