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Abstract. The potential high efficiency of public-key encryption based on structured lattices was first
indicated by the NTRU cryptosystem, which was proposed about 10 years ago. Unfortunately, the
security of NTRU is only heuristic. Thus, it remained an important research challenge to construct an
efficient encryption scheme based on structured lattices which admits a proof of security relative to a
well established cryptographic assumption. We make progress in addressing the above challenge. We
show how to construct a CPA-secure public-key encryption scheme with security provably based on the
worst case hardness of the approximate Shortest Vector Problem in structured ideal lattices. Under the
assumption that the latter is exponentially hard to solve even with a quantum computer, our scheme
resists any subexponential attack and offers (quasi-)optimal asymptotic performance: if n is the security
parameter, both keys are of bit-length O (n) and the amortized costs of both encryption and decryption
are 5(1) per message bit. Our construction adapts the trapdoor one-way function of Gentry, Peikert
and Vaikuntanathan (STOC 2008), based on the Learning With Errors problem, to structured lattices.
Our main technical tools are an adaptation of Ajtai’s trapdoor key generation algorithm (ICALP 1999)
to structured ideal lattices, and a re-interpretation of Regev’s quantum reduction between the Closest
Vector Problem and sampling short lattice vectors. We think these techniques are very likely to find
further applications in the future.

Keywords: Public-Key Encryption, Lattices, Provable Security, Post-Quantum Cryptog-
raphy

1 Introduction

Lattice-based cryptography has been rapidly developing in the last few years, inspired by the break-
through theoretical result of Ajtai in 1996 [1], who constructed a one-way function with average-case
security provably related to the worst-case complexity of hard lattice problems. The attractiveness
of lattice-based cryptography stems from its provable security guarantees, well studied theoretical
underpinnings, simplicity and potential efficiency (evaluating Ajtai’s one-way function essentially
consists of just a matrix-vector multiplication over a small finite field), and also the apparent security
against quantum computing attacks. The main complexity assumption in lattice-based cryptogra-
phy is the hardness of approximate versions of the Shortest Vector Problem (SVP). The v(n)-SVP
problem is to find, given a lattice of dimension n, a non-zero lattice vector of length at most v(n)
times the length of the shortest non-zero lattice vector. The complexity of ~v(n)-SVP increases
with n, but decreases with ~(n). Although this complexity is believed to be exponential in n for
any polynomial (n), minimizing the degree of v(n) is very important in practice, to allow the use
of a practical dimension n for a given security level.

LATTICE-BASED PUBLIC-KEY ENCRYPTION. The first provably secure lattice-based cryptosystem
was proposed by Ajtai and Dwork [4], and relies on the worst-case hardness of Poly(n)-SVP in



arbitrary lattices. Several subsequent works focused on improving its efficiency [34, 32,12, 29]. The
current state of the art [12,29] is a scheme with public/private key length O(n?) and encryp-
tion/decryption throughput of 6(n) bit operations per message bit. Its security against polynomially-
bounded attacks relies on the quantum worst-case hardness of 5(n1'5)—SVP in arbitrary lattices. In
parallel to the provably secure encryption schemes, there have also been heuristic proposals [14, 15].
In particular, unlike the above provably secure schemes which use unstructured random matrices, the
NTRU encryption scheme [15] exploits the properties of structured matrices/lattices to achieve high
efficiency with respect to both public/private key length (6 (n) bits) and encryption/decryption cost
(O(1) bit operation per message bit). Unfortunately, the security of NTRU remains heuristic and it
was an important open challenge to provide a provably secure scheme with comparable efficiency.

PROVABLY SECURE SCHEMES FROM IDEAL LATTICES. Micciancio [21] introduced the class of struc-
tured cyclic lattices, which correspond to ideals in polynomial rings Z[z]/(z™ — 1), and presented
the first Ajtai-type provably secure one-way function based on the worst-case hardness of the re-
striction of Poly(n)-SVP to cyclic lattices. At the same time, thanks to its algebraic structure,
this one-way function enjoys high efficiency comparable to the NTRU scheme (O(n) evaluation
time and storage cost). Subsequently, Lyubashevsky and Micciancio [19] and independently Peikert
and Rosen [30] showed how to modify Micciancio’s function to construct an efficient and prov-
ably secure collision resistant hash function. For this, they introduced the more general class of
ideal lattices, which correspond to ideals in polynomial rings Z[z]/f(x). The collision resistance of
the hash function relies on the hardness of the restriction of Poly(n)-SVP to ideal lattices (called
Poly(n)-Ideal-SVP). A variant (SWIFFT/SWIFFTX) has been implemented and submitted to the
NIST SHA-3 hash competition [7]. The average-case collision-finding problem for this hash function
is a natural computational problem called Ideal-SIS, which has been shown to be as hard as the
worst-case instances of Ideal-SVP. Provably secure efficient signature schemes from ideal lattices
have also been proposed [20,17,18,16]. However, constructing efficient provably secure public key
encryption from ideal lattices was an interesting open problem.

OUR RESULTS. In this paper, we describe the first provably secure public key encryption scheme
whose security relies on the hardness of the worst-case instances of O(n?)-Ideal-SVP against subex-
ponentially bounded quantum attacks. It achieves asymptotically optimal efficiency: the public/private
key length is O(n) bits and the amortized encryption/decryption costs are O(1) bit operations per
message bit. We note that our security model rules out even subexponential time attacks, taking full
advantage of the commonly believed exponential hardness of Poly(n)-SVP, even against quantum
attacks. Such a security model obsoletes most of modern public key cryptography and highlights
the strength of lattice-based cryptography. Our main technical tools are an adaptation of Ajtai’s
trapdoor key generation algorithm [3] to structured ideal lattices, and a re-interpretation of Regev’s
quantum reduction [34]| between the Closest Vector Problem and sampling short lattice vectors. We
think these techniques are very likely to find further applications in the future. As examples, we also
use our results to construct efficient provably secure trapdoor signatures and ID-based identification
schemes.

All previous cryptosystems based on general lattices [34,32,12,29] rely on the average case hard-
ness of the Learning With Errors (LWE) problem introduced in [34]. Our scheme is similarly based
on a structured variant of LWE, that we call Ideal-LWE. However, we introduce novel techniques to
overcome two main difficulties that arise from the restriction to ideal lattices. Firstly, the previous
cryptosystems based on unstructured matrices all make use of Regev’s wost-case to average-case
classical reduction [34] from a closest vector problem in a given lattice, to an LWE problem (this



is the classical step in the quantum reduction of [34] from SVP to LWE). This reduction seems to
heavily rely on the unstructured-ness of the considered lattices, and does not seem to carry over to
the structured lattices involved in Ideal-LWE. Secondly, the other ingredient used in previous cryp-
tosystems, namely Regev’s reduction [34] from the computational variant of LWE to its decisional
variant, also fails for Ideal-LWE. We also remark that, unlike in the case of arbitrary lattices, the
decisional variant of Poly(n)-Ideal-SVP can be trivially solved in polynomial time [31]. This implies
that Peikert’s recent classical reduction [29] from the decisional variant of SVP to LWE is unlikely
to be useful, even if it could be adapted to work for ideal lattices.

Our solution to the above difficulties avoids the classical step of the reduction from [34] alto-
gether. Instead, we focus on the quantum step of the reduction from [34] and use it to construct a
new quantum average case reduction from SIS (the unstructured variant of Ideal-SIS) to LWE. This
reduction also works from Ideal-SIS to Ideal-LWE. Combined with the known reduction from worst
case Ideal-SVP to average-case Ideal-SIS [19] (i.e., the proof of collision resistance for SWIFFT [7]),
we obtain a quantum reduction from Ideal-SVP to Ideal-LWE. This shows the hardness of the
computational variant of Ideal-LWE. Since we do not obtain the hardness of the decisional variant
of Ideal-LWE, we use the Goldreich-Levin hardcore function [13, Sec. 2.5] to derive pseudorandom
bits for encryption. But for decryption, we also need an Ideal-LWE inversion trapdoor. To this
end, we show how to adapt to ideal lattices the trapdoor generation algorithm of Ajtai [3], recently
improved by Alwen-Peikert [6].

The main idea of our new quantum reduction from Ideal-SIS to Ideal-LWE is a re-interpretation
of Regev’s quantum step in [34]. The latter was presented as a worst case quantum reduction
from sampling short lattice vectors in a lattice L to solving a closest vector problem in the dual
lattice L. Our first observation is that this reduction is actually stronger: it is an average case
reduction which works given an oracle for CVP in L with a normally distributed error vector. Our
second observation is that LWE can be seen as a closest vector problem with a normally distributed
error in a certain lattice whose dual is the SIS lattice (up to a scaling factor). Combining these
observations leads to our SIS to LWE reduction. Finally we show how to apply it to reduce Ideal-SIS
to Ideal-LWE — the main technical hurdle here involves a probabilistic lower bound for the minimum
of the Ideal-LWE lattice (Lemma 2.5). We believe our new SIS to LWE reduction is of independent
interest. For example, when choosing practical parameters for lattice-based encryption (see, e.g.,
[24]), it is impractical to rely on the worst case hardness of SVP. Instead, the practical average case
hardness of LWE is evaluated based on the best known attack which consists in solving SIS. Our
reduction justifies this heuristic in some sense by showing that it is indeed necessary to break SIS
in order to solve LWE. Our reduction can also be seen as a unification of the security proofs of all
lattice-based cryptography, since it allows to make all the worst case to average case reductions rely
solely on SIS.

WORK IN PROGRESS. Our encryption scheme is IND-CPA secure. It is very likely that it can be
modified to achieve IND-CCA2 security, by adapting the general techniques described in [29, 35].
Another question that we are currently investigating is how to choose practical parameters for our
scheme.

ROAD-MAP. In Section 2, we provide the background that is necessary to the understanding of our
results. Section 3 shows how to hide a trapdoor in the adaptation of SIS to ideal lattices. Section 4
contains the new reduction between SIS and LWE. Finally, in Section 5, we present our encryption
scheme and briefly describe other cryptographic constructions.



NOTATION. Vectors will be denoted in bold. Most of our vectors are column vectors. If @,y are
two vectors, we denote their inner product by (x,y). If © € R”, then ||x| (resp. ||z|«) denotes
the Euclidean (resp. infinity) norm of . We denote by ps(x) (resp. vs) the standard n-dimensional
Gaussian (resp. Gaussian distribution) with center 0 and variance s, i.e., ps(x) = exp(—7||z||?/s?)
(resp. vs(x) = ps(x)/s™). We make use of the standard Landau notations as well as the nota-
tions O(-) and £2(-) (which hide poly-logarithmic factors). If X is a random variable, the probability
of the event X = x is denoted by Pr[X = z]. If D; and Dy are two probability distributions over
a discrete domain F, their statistical distance is A(Dy, Do) = £ >, 5 |D1(x) — Da(z)]. If a func-
tion f over a countable domain E takes non-negative real values, its sum over an arbitrary F' C F
will be denoted by f(F). If ¢ is a prime number, we denote by Z, the field of integers modulo q.
We denote by ¥, the reduction modulo q of v,.

2 Reminders and Background Results on Lattices

For a detailed introduction to the computational aspects of lattices, we refer to [22]. In the present
section, we remind the reader very quickly some fundamental properties of lattices that we will
need. We then introduce the so-called ideal lattices, and finally formally define some computational
problems.

2.1 Euclidean lattices

An n-dimensional lattice L is the set of all integer linear relations of some linearly independent
vectors by,...,b, € R" ie., L = > 7Zb;. The b;’s are called a basis of L. The ith minimum \;(L) is
the smallest r such that L contains i linearly independent vectors of norms < r. We let A{°(L) denote
the first minimum of L with respect to the infinity norm. If B = (by,...,b,) is a basis, we define
its norm by ||B|| = max||b;|| and its fundamental parallelepiped by P(B) = {>_, ¢;b; : ¢ € [0,1)"}.
Given a basis B for lattice L and a vector ¢ € R", we define ¢ mod L as the unique vector in P(B)
such that ¢— (¢ mod L) € L (the basis being implicit). The Gram-Schmidt orthogonalization (GSO)
is the tuple (b],...,b) defined as follows: the vector b} is the component of b; which is orthogonal
to the linear span of by,...,b;—;. The GSO norm is ||B*|| = max ||b}||. For a given lattice L and
a given parameter s > 0, the sum pg(L) is finite. We define the lattice Gaussian distribution

by D s(b) = Z:((Z)), for any b € L. If L is a lattice, its dual lattice L is the set of vectors b in R"

such that <B, b) € Z for all b € L. For ¢ > 0, we define the smoothing parameter 7.(L) as the
smallest s > 0 such that py/5(L\ 0) < e. We have 7:(L) < /In(2n(1 4 1/e))/m/A°(L) (see [28,
Lemma 3.5]). We will use the following results.

Lemma 2.1 (|30, Lemma 2.11]). For any x in an n-dimensional lattice L, € € (0,1/3) and s >
2n=(L), we have Dy, s(z) <271

Lemma 2.2 ([23, Lemma 2.10]). Given an n-dimensional lattice L, we have Prgyp, [||z] >
sy/n] <27

2.2 Ideal lattices

Ideal lattices are a special subset of lattices that possess the computationally interesting property of
being related to structured matrices and polynomials. The n-dimensional matrix-matrix and vector-
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matrix products then respectively cost O(n?) and O(n) arithmetic operations instead of O(n?)
and O(n?).

Let f € Z[z] a monic degree n polynomial. For any g € Q[z], there is a unique pair (gq,r)
with deg(r) < n and g = ¢f + r. We denote r by g mod f and identify r with the vector » € Q™
of its coefficients. We define rots(r) € Q"*" as the matrix whose rows are the z'r(z) mod f(z)’s,
for i € [0,n — 1]. We extend that notation to the matrices A over Q[z]/f: by replacing each A; ;
by rot¢(A; ;), one obtains rots(A). Note that rot(gi)rots(g2) = rots(gig2) for any g1, 92 € Q[z]/f.
The strengths of our cryptographic constructions depend on the choice of f. Its quality is quantified
by its expansion factor (we adapt the definition of [19] to the Euclidean norm):

|lg mod f|
gl

where we identified the polynomial ¢ mod f (resp. g) with the coefficients vector. Note that if deg(g) <

EF(f, k) = max{ | g € Z[z]\ 0 and deg(g) < k (deg(f) — 1)} ,

n, then |rots(g)|| < EF(f,2) - ||g||. We will concentrate on the polynomials 22" + 1, although most
of our results are more general. We recall some basic properties of 22° + 1 (see [9] for the last one).

Lemma 2.3. Letk >0 and n = 2%. Then f(z) = 2" +1 is irreducible in Q[z]. Its ezpansion factor
EF(f,2) < V2. Also, for any g = >_,_, 92" € Q[z]/f, we have rot;(9)T = rots(g) where g =
90 — Do1<icn Gn—ix'. Furthermore, if q is a prime such that 2n|(q — 1), then f(x) has n degree 1
factors in Zg|z]. Finally, if k > 2 and q is a prime with ¢ = 3 mod 8, then f = fi1fo mod q where,
for any i € {1,2}, we have that f; is irreducible in Z,[x] and can be written f; = z™/? + t;a™/* — 1
with t; € Zq.

Let I be an ideal of the ring Z[z]/f, i.e., a subset of Z[z]/f that is closed under addition, and
multiplication by arbitrary elements of Z[x]/f. The ideal I corresponds to a sublattice of Z". An
f-ideal lattice is a sublattice of Z" that corresponds to an ideal I C Z[z]/f.

2.3 Hard lattice problems

The most famous lattice problem is SVP. Given a basis of a lattice L, it aims at finding a short-
est vector in L\ 0. Its decision version is NP-hard under randomized reductions [2]. SVP can be
relaxed by asking for a non-zero vector that is no longer than ~(n) times a solution to SVP, for a
prescribed function 7(-). The best polynomial time algorithm [5, 36] solves 7-SVP only for a slightly
subexponential v. When + is polynomial in n, then the most efficient algorithm [5] has an exponen-
tial worst-case complexity both in time and space. If we restrict the set of input lattices to ideal
lattices, we obtain the problem Ideal-SVP (resp. 7-Ideal-SVP), which is implicitly parameterized
by a sequence of polynomials f of growing degrees. The computational hardness of Ideal-SVP is
unknown, but to the best of our knowledge, no algorithm is known to perform non-negligibly better
for Ideal-SVP than for SVP. It is believed that no subexponential quantum algorithm solves the
computational variants of SVP or Ideal-SVP in the worst case. We are interested in the worst-case
instances of these problems. Their worst-case hardness can be reduced to the average-case hardness
of the following problems, introduced in [23] and [12].

Definition 2.1. The Small Integer Solution problem with parameters q(-), m(-), B(-) (SISqm.3)

15 as follows: Given n and a matric G sampled uniformly in ZZES;)ML, find e € 7™M \ 0 such

that e’ G = 0 mod q(n) (the modulus being taken component-wise) and |le| < B(n).



The Ideal Small Integer Solution problem with parameters q(-), m(-), 5(-) and f (Ideal—SIS(];mﬂ)
is as follows: Given n and m polynomials g1, . .., gm chosen uniformly and independently in Z,[z|/ f,
find eq, ..., em € Zlx] not all zero such that >, e;g; =0 in Zy[z]/f and ||e| < B, where e is the
vector obtained by concatenating the coefficients of the e;’s.

These two average-case problems can be interpreted as lattice problems. Indeed, consider a
matrix G € Zy"*". The set G+ ={becZ™:b"G =0 mod ¢} is an m-dimensional lattice. Solving
SIS corresponds to finding a short non-zero vector in G-. Similarly, Ideal-SIS corresponds to finding
a small non-zero element in the Z[z]/f-module M*(g) = {b € (Z[z]/f)™, (b,g) = 0 mod g},
where g = (g1, ..., 9m)- Ideal-SIS can be seen as a lattice problem by applying the rot; operator to
the latter description. Note that the m of SIS is n times larger than the m of Ideal-SIS.

Lyubashevsky and Micciancio [19] gave a reduction from the worst-case y-Ideal-SVP to the
average-case problem 7-Ideal-SIS. The approximation factors (and the problems) in [19] are given
in terms of the infinity norm. For our purposes, it is more natural use the Euclidean norm. To
avoid losing a /n factor by simply applying the norm equivalence formula, we modify the proof
of [19]. We also adapt it to handle the case where the given SIS{;my 5 algorithm has a subexponential

success probability, at the cost of an additional factor of 6(\/5) in the SVP approximation factor -y
(this involves using a larger Gaussian scaling parameter to improve the ‘smoothing’ precision). The
details will be given in the full version.

Theorem 2.1. Suppose that f is irreducible over Q. We consider an integer m = Poly(n) and
a prime ¢ = 2(EF(f,3)3m?n). A polynomial-time (resp. subezponential-time) algorithm solv-
ing Ideal—SISf;mﬂ with probability 1/Poly(n) (resp. 2=°)) can be used to solve v-Ideal-SVP in
polynomial-time (resp. subezponential-time) with v = O(EF2(f,2)Bmn!/2) (resp. v = O(EF%(f,2)8mn)).

The LWE problem is dual to SIS in the sense that if G € Z;**" is the SIS-matrix, it involves the
dual of the lattice G*. We have G+ = %L(G) where L(G) = {b € Z™ : 3s € Zj,Gs = b mod ¢}.

Definition 2.2. The Learning With Errors problem with parameters q(-),m(-) and a distribu-
tion x(-) on R/[1,q(:)] (LWEg ) is as follows: Given n, a matriz G € Z;n n)xn sampled uniformly

(n)
at random and Gs + e € (R/[1,q(n)])", where s € Ziy(yy 15 chosen uniformly at random and the
coordinates of e € (R/q(n))™™ are independently sampled from x(n), find s.
The Ideal Learning With Errors problem with parameters q(-), m(-), a distribution x(-) on R/[1,q(-)]
and f (Ideal—LWEg%q;X) is the same as above, except that G is of the form G = rot¢(g) with g chosen
uniformly in (Zy[z]/f)™.

Contrary to Ideal-SIS, problem Ideal-LWE does not have a natural polynomial interpretation
for a general f, as we are multiplying rot¢(g) on the right. However, if one uses f = 2™ + 1, then
Lemma 2.3 allows to interpret Ideal-LWE as m polynomial multiplications. We will use the following
results to bound the smoothing parameters of lattices G. The second one is proved in appendix.

Lemma 2.4 ([12, Lemma 5.3]). Let n,m and q be integers with q prime and m > 2nlogq. Then
for all but a fraction < ¢~" of the G'’s in Zy"*", we have A\3°(L(G)) > q/4.

Lemma 2.5. Let n,m and q be integers with ¢ = 3 mod 4 prime and m > 9logq and n = 2 for
some k > 2. Then for all but a fraction < g~ of the g’s in (Zg[x]/f)™, we have A\}°(L(rots(g))) >
q/4.



3 Hiding a Trapdoor in Ideal-SIS

The purpose of the present section is to demonstrate how to hide a trapdoor in the problem Ideal-SIS.
Ajtai [3] showed how to simultaneously generate a (SIS) matrix G € Z;"*" and a (trapdoor) ba-
sis B = (by,...,by) € Z™™ of the lattice G- = {b € Z™ : b G = 0 mod ¢}, with the following
properties:

1. The distribution of G is statistically close to the uniform distribution over Zi**".
2. The basis vectors by, ..., b, are small.

Recently, Alwen and Peikert [6] improved Ajtai’s construction in the sense that the created basis
has shorter vectors: || B|| = O(y/m), where m = (2(n). We modify Ajtai’s construction to obtain a
trapdoor generation algorithm for the problem Ideal-SIS, with a resulting full-rank set of linearly
independent lattice vectors whose lengths are as small as those of the basis vectors of Alwen and
Peikert. By using a standard technique [22, Lemma 7.1], these vectors can be transformed into a
basis whose GSO norm is bounded by the same quantity and whose length is O(y/mn) longer. This
is thus weaker than [6], but for our applications only the GSO norm and the length of the linearly
independent lattice vectors matter. We do not know how to adapt the construction of [6] from SIS
to Ideal-SIS, the difficulty stemming from the lack of a Hermite Normal Form for the considered
rings.

Theorem 3.1. There exists a probabilistic polynomial time algorithm with the following properties.
It takes as inputs n,o,r > 0, an odd prime q, and an integer m > ([logq| + 1)(o + r). It also
takes as input a degree n polynomial f € Z[x]. We let f = [[,-, fi be its factorization over Z,.
The algorithm succeeds with probability > 1 —p withp =1 — HZ.<:(1 — g~ 49°8fi:7) When it does, it
returns g € (Zg[z]/f)™ and a full-rank set S of linearly z'ndepend_ent vectors in the lattice rotf(g)L,
such that:

A 1/2
1. The distance to uniformity of g is at most p + 5 (Higt (1 + (i)degfz) — 1) .

37‘
2. We have ||S|| < EF(f,2) /(97 +0) - /n.

3.1 Regularity

In the Ajtai and Alwen-Peikert constructions, a few uniformly distributed random vectors (g;)i<o
are first generated and then are used as a seed to produce other random vectors (g;);~, that are
seemingly uniformly distributed. The derived vectors are small random integer combinations of the
seed vectors, thus creating short vectors in the lattice G+ as by-products. The soundness of the
procedure is guaranteed by a so-called regularity lemma. In the case of ring elements instead of
vectors, such a regularity lemma was given by Micciancio in [21]. The precise result dealt with the
particular ring Zg[x]/(z"™ — 1) but its proof can be easily adapted to obtain the following.

Theorem 3.2 (Adapted from [21, Th. 4.2]). Let F be a finite field and f € F[z]| be monic and
of degree n > 0. Let R be the ring Flx]/f. Let D C F and r > 0. For ¢1,...,9, € R, we denote
by H(g1,...,9r) the random variable ) ., b;g; € R where the b;’s are degree < n polynomials with
coefficients chosen independently and uniformly in D. If Uy, ... U, are independent uniform random



variables in R, then the statistical distance to uniformity of (Uy,...,U,, H(Uy,...,U,)) is below:

1 |IF| deg fi

— 1 -1

2 H( +(|D|T> /
i<t

where [ = Hz‘gt fi is the factorization of f over IF.

From now on, we will choose F = Z, with ¢ an odd prime, and D = {—1,0,1}. Let us comment
on two opposite situations. If the polynomial f splits completely over F, then the distance to
uniformity can be made negligible with respect to n by taking r = w(log(nq)). However, to ensure
that it is exponentially small, one needs to take r = 2(n+1log q). Now, if f is irreducible over I, then
choosing r > 1 + log; ¢ suffices to provide an exponentially small statistical distance to uniformity.

3.2 A trapdoor for Ideal-SIS

We now construct the trapdoor for Ideal-SIS. More precisely, we want to simultaneously construct
a uniform g € R™ with R = Z,[z]/f, and a full-rank set S of small linearly independent vectors
belonging to the lattice G- where G = rot ¢(g). For this, it suffices to find a rank m set of Ro-linearly
independent short vectors in the module M+ (g) = {a € R} | (a,g) = 0 mod ¢}, with Ry = Z[z]/f.

Suppose first that we generate (uniformly and independently) k elements in R. Using Theo-
rem 3.2, they can be used to sample k&’ other elements of R which are (almost) uniformly distributed.
In total, we get k + k' elements in R, but we only have k' small relations between them. However,
we need k + k' linearly independent small relations, and it is not clear how to find another k. Also,
notice that our relations hold over Ry, i.e., they do not make use of the modulus ¢. Ajtai’s work-
around in [3]| consists in using an intermediate set of ring elements (or rather, in his case, vectors).
The principle is the following:

— First generate some seed elements g1, ..., g, in R. They will be the first elements of the Ideal-SIS
instantiation. They need sufficient yield so that arbitrary elements of R can be written up as
linear combinations of them.

— From the seed, derive some intermediate ring elements hy41, ..., Ap. Among them, there should
be sufficiently many (say the last r ones) that are uniformly distributed in R, so that we may
use Theorem 3.2. The first h;’s have the technical purpose of allowing to have small relations
between g1,...,90, hot1,-- -, Am. More precisely, we will have:

[A|B](g17 i )gd7h0'+17‘ e ’hm)T = (07 cee 7O)T7 (1)

where A € Rémia)xa and B € Rgm*")x(m*") have small entries and B is lower triangular
with 1’s on the diagonal.

— Finally, since the last r of polynomials h;,—p41,. .., by are uniformly distributed in R, we take
them as the last g;’s, and we construct the missing g;’s by:

‘:{hi—i_H(hmrJrl,...?hm), Vi6[0+1,m—7’], (2)

hi, Vie[m—r+1,m].

Thanks to Theorem 3.2, we see that whatever were the first h;’s, the uniformity of the last ones
provides a close to uniform distribution of (g1,..., gm). We have that, for all i € [0 + 1,m — 7],



gi = h; + E;-n:mfr 41Yi,jh;, where each y; ; is a degree < n polynomial with coefficients chosen
(m—0o)x(m—o)

independently and uniformly in D. We define C € R as follows:

_ Idpy—o—r (yi,j)
¢ = [ 0 Id, |-

Equation (2) implies that
C-(ha+1,...,hm)T = (ga+1,...,gm)T and [A]| B-C]- (gl,...,gm)T = (0,...,0)T.

So far, we have showed how to create the g;’s. What is less clear is that we can have m linearly
independent short vectors in M. Thanks to Equations (1) and (2), we have m—o linearly independent
small relations. Again, as in the first attempt, some relations are missing and all those we have do
not involve the modulus ¢. But the shape of the m — o relations we have allows us do build extra-
relations that we can prove linearly independent. For instance, among the h;’s, say the o before the
regularity ones (i.e., hy—r—gt1,- -, hm—r), we create traps. Recall that we can have arbitrary h;’s as
long as the last ones are uniformly distributed and Equation (1) holds. In the same spirit as [3], we
define h,,_,_,4i = 27 1g;, for i < o, where the inverse is taken modulo ¢. This gives us o additional
relations, since (for i < o):

29mfrfo'+i = thfrfaJri + QH(hmfrJrlu s 7hm) =g+ 2H(gmfr+17 s ’gm) mod q. (3)

Let 2gm—r—ot+i = gi +2 Z?:mfr 417,795 over Z, where each z; ; is a degree < n polynomial which
has coefficients chosen uniformly and independently from D. We define the o x (m — ¢) matrix K:

K = [0|—2Id|2(z) ] -

From Equation (3), we have that [Id, | K] - (g1,..,9m)" = (0,...,0)T mod q. Overall, we obtain
(close to) uniformly distributed g;’s and relations of the type (over R):

0
{ A B~C] s
ld,| K IR
i Im 0
where A and B are those of Equation (1), C € R(()m_a)x(m_a) is upper triangular with 1’s on its

diagonal, and K € Rgx(m_a) is divisible by 2. All these matrices have small entries. To see that the
relations are linearly independent over R, notice that the determinant of the above block-matrix
modulo 2 is 1: the determinant of B and C are both 1, and K = 0 mod 2.

It only remains to explain how the matrices A and B are built. We start by generating Ay—rt1,- .-, Am
uniformly and independently in R. Additionally, we set h,,_,_o4i = 27 1g; for i < o. If we need
other h;’s, these can be arbitrarily chosen. For any i € [m —r — o + 1,m], we write h; as a linear
combination (over R) of the seeds: h; = Y j<o %i,jgj- Remember that o is chosen so that this is
actually possible. The z; ;’s are polynomials with coefficients modulo g. We use the binary decom-
positions of these polynomials to write: h; = ZZ;(l) i<o xi,jﬁkngk, with x = [logq]. The z; ;’s
are polynomials with {0, 1}-coefficients.



We use the z; j;’s in A. The latter starts with k + o blocks of R{*“ (and then zeros). The ith
block is made of the x; ;1's (for j < s and 0 < k < k — 1) by decreasing value of k. The matrix B
is as follows:

where there are r + o blocks 7" and E[i, j| = —1if i = jx and 0 otherwise.

3.3 Analysis of the trapdoor construction and comments

The correctness of the construction has already been established. It can also be run in polynomial
time. What remains to be studied is the quality (in terms of dimension and norm) of the built
trapdoor.

We choose o large enough so that the seed generates R with high probability. The failure prob-
ability is bounded by 1 —[[,.,(1—¢~ deg fi-o) where f = [L;<; fi is the factorization of f modulo g.
Note that even in the totally splitting case, we can choose o = 1 and reject the randomly generated
seed element as long as it is not invertible. We do not get a uniformly distributed instantiation
of Ideal-SIS (since the distribution of g; is skewed). However, we get a non-negligible proportion
of Ideal-SIS instances, which suffices for Theorem 2.1 (in the reduction, run the sampling step until
the obtained Ideal-SIS instance has its first vector that is invertible). The parameter r is determined
by Theorem 3.2. The construction thus requires m > (r + 0)(1 + ). Note that the lower bound
on m can be further decreased by using a base 3 > 2 decomposition of the z; ;’s instead of a base 2
decomposition. However, this makes the norms of the module vectors grow. Finally, the largest pos-
sible vector norms come from the first m — o module vectors. The A part has norm < \/on while
the components of the right handside are degree < n polynomials with coefficients of magnitudes
below 3.

4 From LWE to SIS

We show that if an efficient algorithm solves LWE with some non-negligible probability, then it may
be used by a quantum machine to efficiently solve SIS with non-negligible probability. A crucial
property of the reduction is that the matrix underlying the SIS and LWE instances is preserved:
if the initial algorithm solves LWE for a given matrix G € Z;"*", then the resulting algorithm
solves SIS for the same matrix GG. That property allows the reduction to remain valid while working
on Ideal-SIS and Ideal-LWE.

1
16/m "
Suppose that there exists an algorithm that solves LWE, 4w, in time T = 2°(") and with probabil-

Theorem 4.1. Let q,m,n be integers, and o € (0,1) with Poly(n) > m > 2nlogq and o <

ity e = 27°0") . Then there exists a quantum algorithm that solves SIS~ ym in time Poly(T,n) and

4o

with probability i—; — O(e®). The result still holds when replacing LWE g0, by Ideal—LWEfn’q;%q
and SISm vm by Ideal-SISY s Jor f=a"+1 withn = 2% and ¢ = 3 mod 8.

4590, m,q; 54
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The reduction is made of two components. First, we argue that an algorithm solving LWE
provides an algorithm that solves a certain closest vector problem, where the difference to the
lattice is distributed according to an n-dimensional Gaussian. In a second step, we show that Regev’s
quantum algorithm [33, Lemma 3.14] can use such an algorithm to construct small solutions to SIS.

4.1 From LWE to CVP

An algorithm solving LWE allows us to solve, for certain lattices, a variation of the Closest Vector
Problem. In that variation of CVP, the error vector is sampled according to a specified distribution.

Definition 4.1. The problem CVP, with parameter distribution x(-) is as follows: Given an n-
dimensional lattice L and a vector t = b+ e where b € L and e is distributed according to x(n), the
goal is to find b.

We show that if we have an algorithm that solves LWE,, 4.y, then we can contruct an algorithm
solving CVP,,,  for some lattices.

Lemma 4.1. Let q,m,n be integers and « € (0,1), with m,log ¢ = Poly(n) and o < ﬁ. Suppose

that there exists an algorithm A that solves LWE,;, 4.5, in time T = 2°(") gnd with probability & =
270(") | Then there ezists S C Zyg**™ of proportion > €/2 and an algorithm A" such that if G € S,
algorithm A’ solves CVP,,_ for L(G) in time T + Poly(n) and with probability > /2 — 2=,

Vagq

Proof. If G € Zy"*" and s € Z; are sampled uniformly and if the coordinates of e are sampled
according to ¥,q, then A finds s with probability > ¢ over the choices of G, s and e and a string w
of internal random bits. This implies that there exists a subset S of the G’s of proportion > /2
such that for any G € S, algorithm A succeeds with probability > €/2 over the choices of s, e
and w. For any G € S:

lerw[.A(y,w) = s| > ¢/2, where y =Gs +e.

On input t = b + e, algorithm A’ works as follows: it samples s € Z™ such that it is uniformly
distributed modulo ¢; it computes ' = t+ As, which is of the form t' = Gs’+ ¢k +e, where k € Z™;
it calls A on ¢’ mod ¢ and finds s’ (with probability > £/2); it then computes €’ =t — G's’ mod ¢
and returns t — e’. Suppose that A succeeds, i.e., we have s = s’. Then €’ = e mod ¢. Using the
standard tail bound on the continuous Gaussian and the upper bound on o« we obtain that with
probability > 1 — exp(—7/(20)?) = 1 — 272" we have ||e| s < ¢/2. We thus have Pro[e/ = e|s’ =
s|>1—2"90), O

We now show that an algorithm solving CVP,,,, can be used to solve a quantized version of the
latter. This quantization is required for the quantum part of our reduction. The intuition of the
proof is that the discretization grid is so fine (the parameter R can chosen extremely large) that at
the level of the grid the distribution v, looks constant. The proof is given in appendix.

Lemma 4.2. Suppose that there exists an algorithm A, a parameter s > 0 and an n-dimensional

lattice L such that A solves CVP,, for L within time T = 2°(") and with probability e = 27°),

Then there exists an R, whose bit-length is polynomial in T,n,logs and the bit-size of the given

basis of L, and an algorithm A’ that solves CVPp,  with probability > ¢ — 2= and within a
L,

E]

time polynomial in log R.

11



At this point, we have an R of subexponential bit-length and a subexponential time algorithm B

that solves CVPp ua, , for any G in a subset S C Z;"" of proportion > ¢/2, with probabil-

ity > e/2 — 27 20) ¢ over the random choices of e and the internal randomness w. We implement
algorithm B quantumly as follows: the quantum algorithm By maps the state |b) |b + e) |w) to the
state |b— B(b+ e, w)) |b+ e) |w).

4.2 A new interpretation of Regev’s quantum reduction

We first recall Regev’s quantum reduction [33, Lemma 3.14]. It uses an oracle that solves CVP on a

)\1(L)

given lattice L as long as the target vector is within a prescribed distance d < of L. It returns

a sample from the distribution DZ
7@
1. Set R to be a large constant and build a quantum state which is within ¢ distance 27 of
the normalized state corresponding to Zwe%,llwlkd P%(if) |z, mod L).

2. Using the CVP oracle, remove the entanglement to obtain a state which is within f dis-
tance 27(") of the normalized state corresponding to Y oweL ]l <d p%(ac) |z mod L).
R’ n

3. Apply the quantum Fourier transform over Z'; to obtain a state that is within /5 distance 2—12(n)

of the normalized state corresponding to ZmeL lli< pf( ) |2 mod (R - E)>

4. Measure the latter to obtain a vector b mod R - L. Usmg Babai’s algorithm [8], recover b and
output it. Its distribution is within statistical distance 2~ Q(n) of DE N

: ﬁd

First, one should notice that Regev’s CVP oracle in [33] is in fact a randomized algorithm,

so at Step 2 the quantum oracle is also given a string |w) of random qubits. The oracle succeeds
with probability that is exponentially close to 1 (over the choice of w). Furthermore, one can
notice that Regev’s algorithm does not require a worst-case CVP solver: it suffices that the oracle

solves CVPp L Finally, we show below that the CVPp L solver does not even need to

_d_" L

kA
succeed with overwhelming probability, but only with non- neghglble probability.

Lemma 4.3. Suppose that we are given an n-dimensional lattice L, a parameter R > 22"\, (L), a

parameter s < /\i/(2_73 and a probabilistic oracle that solves CVPDL s with probability ¢ = 2—o(n), If

one replaces the worst-case CVP solver by latter probabilistic omcle then Regev’s algorithm (wzth
parameter d = \/2ns) outputs a vector b € L whose distribution is within distance 1 — £2/2 4 0(%)
of Df,%- It finishes in time polynomial in log R.

Proof. We just saw that if the CVPp g oracle was succeeding with probability 1 — 27" then

the output vector b would follow a dlstrlbutlon whose statistical distance to DA 1 would be 27

To work around the requirement that the oracle succeeds with overwhelmmg probablhty, we use
the notion of trace distance between two quantum states, which is an adaptation of the statisti-
cal distance (see [26, Ch. 9]). The trace distance between two (pure) quantum states |t;) and |¢2)
is 6(|t1), |t2)) = /1 — | (t1]t2) |*. ITts most important property is that for any generalized measure-
ment (POVM), if Dy (resp. D3) is the resulting probability distribution when starting from |¢1)
(resp. |t2)) then A(Dy, Dy) < 6(|t1),]|t2)). Now, if we call |t1) the ideal state at the end of Step 2
of Regev’s algorithm, and if |t2) is the state that we obtain by using our imperfect oracle, then we

12



have | (t1[t2) | > & — 279, Therefore, we have that the output distribution is within statistical
distance \/1 — &2 + 2-2(n) of D; 1. O

25

To prove Theorem 4.1, we apply Lemma 4.3 to the lattices L(G) for G € S, with algorithm B.
M (L(G))
2v2m
Lemma 2.5 in the case of Ideal-LWE), we know that with probability 1 — 27(") over the choice

of G in Z;*", we have \{°(L(G)) > %. We consider the set S’ of the G’s in S for which that
condition is satisfied. The set S’ represents a proportion > /2 — 2—2(n) of Zg**". Suppose now

that G € S’. Lemma 4.3 shows that we can find a vector s € G+ = qL/(C?) that follows a distribution
whose distance to D. 1 is 1 —&%/8 + O(e?). Thanks to Lemmas 2.1 and 2.2 (since G € ', we
2«

For that, we need to ensure that the hypothesis ag < is satisfied. From Lemma 2.4 (and

have % > 1y-n(G1)), we have that with probability 1 —27(") the returned s is a non-zero vector

of G+ whose norm is < %

5 Cryptographic Applications

We now use the results of Sections 3 and 4 to construct efficient cryptographic primitives based on
ideal lattices. This includes the first lattice-based public-key encryption scheme with asymptotically
optimal encryption and decryption computation costs of O(1) bit operations per message bit, as
well as trapdoor signatures and ID-based identification schemes.

5.1 Efficient public-key encryption scheme

Our public key encryption scheme is constructed in two steps. First, we use the LWE mapping
(s,e) = G- s+ emod q as an injective trapdoor one-way function, with the trapdoor being the
full-dimensional set of vectors in G from Section 3, and the one-wayness being as hard as Ideal-SIS
(and hence Ideal-SVP) by Theorem 4.1. This trapdoor function is an efficient ideal lattice analogue
of some trapdoor functions presented in [12,29] for arbitrary lattices. In the second step, we apply
the Goldreich-Levin hard core function based on Toeplitz matrices [13, Sec. 2.5| to our trapdoor
function, and XOR the message with the hard core bits to obtain a semantically secure encryption.

Our trapdoor function family Id — Trap is defined in Figure 1. For security parameter n = 2*,
we fix f(z) = 2™ + 1 and ¢ = O(Poly(n)) a prime satisfying ¢ = 3 mod 8. From Lemma 2.3, it
follows that f splits modulo ¢ into exactly two irreducible factors of degree n/2. We set o = 1,
r =141logzq = O(1) and m = ([logq| + 1)o +r = O(1). We let R denote the ring Z,[z]/f.
The following lemma (whose proof is in appendix) ensures the correctness of the scheme (this is
essentially identical to [29, Sec. 4.1]) and asserts that the evaluation and inversion functions can be
implemented efficiently.

Lemma 5.1. Let g > 2/mnL and a < m. Then for any s € R and for e sampled from @aq,

the inversion algorithm recovers (s, e) with probability 1 —n~ 1) over the choice of e. Furthermore,
the evaluation and inversion algorithms for hg can be implemented with run-time O(n).

w(

The one-wayness of Id — Trap is equivalent to LWE . Furthermore, an instance (G,y =

m)Q>§(¥q

Gs+e mod q) of LWE,, 4., can be efficiently converted by rounding to an instance of LWE
namely (G, [y]|) = (G,Gs + [e| mod ¢q). This proves Lemma 5.2.

m,q,¥aq’
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— Generating a function with trapdoor. Run the algorithm from Theorem 3.1, using f = " +1,n,q,7,0 and m
as inputs. Suppose it succeeds. It gives a vector g € (Z,[z]/f)™ (function index) and a trapdoor full-rank set S
of linearly independent vectors in rots(g)*~ C Zg™*™" with ||S|| < 21/(97 + o) -/n =: L (we have L = O(y/n)).

— Function evaluation. Given function index g, we define the trapdoor function hg : Zg x Zg"™ as follows. On
input s uniformly random in Zj and e € Zg'" sampled from ¥, (defined as ¥, after rounding to the closest
integer vector), we compute and return:

c = hg(s,e) :=rots(g) s+ emod gq.

— Function inversion. Given ¢ = hy(s, e) and trapdoor S, compute d = ST - ¢ mod g and &’ = ST - d (in Q).
Compute u = ¢ — €' mod ¢ and s’ = (rot;(g1)) ™" - u1 mod g, where u; consists of the first n coordinates of u.
Return (s',€’).

Fig. 1. The trapdoor function family Id — Trap.

Lemma 5.2. Suppose that there exists an attacker against the one-wayness of |d — Trap (with pa-
rameters m, «,q) with run-time T and success probability €. Then there exists an algorithm that
solves LWEy, gy, with run-time T and success probability €.

By combining our trapdoor function with the GL hard core function [13, Sec. 2.5] we get the
encryption scheme of Figure 2. The semantic security (in the sense of IND-CPA) follows from the
one-wayness of Ild — Trap (i.e., from the hardness of Ideal-LWE) and from the GL hard core function.

— Key generation. For security parameter n, run the key generation algorithm of Id — Trap to get an index g for
hg : Zg x (Zq)"™ and a trapdoor S. We can view the domain of hy as a subset of 75 for £; = O((n+1)mlog q) =

O(n). The public key is g and the secret key is S.

— Encryption. Given /,,-bit message m and public key g, sample (s,e) with s uniform in Z; and e sampled

from ¥,,, and evaluate c; = hy(s,e). Generate a uniformly random vector r € Zé’"’“’i. Compute c2 = m @

(Mgr - (s, €)), where the product Mgy, - (s, €) is computed over Zs, and (s, e) is viewed as a string over Z5 . The
GL matrix Mgy, € Zy™*" is Toeplitz (thus allowing fast multiplication [27]) and its ith row is [ri,...,7e,+i_1]-
Return the ciphertext (c1, c2, 7).

— Decryption. Given ciphertext (c1,cz2,r) and secret key S, invert ¢1 to compute (s, e) such that hy(s,e) = ci,
and return m = c2 ® (Mgr - (s, €)).

Fig. 2. The semantically secure encryption scheme Id — Enc.

Theorem 5.1. Suppose that there exists an IND-CPA attacker against |d — Enc running in time T
and having success probability 1/2 + €. Then there ezists an algorithm for Ideal-LWE/ with

m#];‘l'aq
run-time T' = O(23mn3=3 . T) and success probability ¢ = 2(27‘mn~1 . ¢).

Proof. The given IND-CPA attacker can be converted to a GL hard core function distinguisher that,
given ¢; = hgy(s,e), My, and £y, bit string z, for s sampled uniformly in Zg, e sampled from (1298
and Mgy, constructed as in the key generation procedure, distinguishes whether z is uniformly
random (independent of s and e) or z = Mgy, - (s, e). It has run-time 7 and advantage €. The result
follows by applying to the function hg the Lemma 2.5.8, Proposition 2.5.7 and Proposition 2.5.3
in [13]. O

By using Lemma 5.1 and Theorems 5.1, 4.1, and 2.1, we get our main result.
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Corollary 5.1. Suppose that there exists an IND-CPA attacker against the encryption scheme ld — Enc
with message length ¢, = n/logn = o(n), running in time ~20(”) and having success probabil-
ity 1/2 + 27°0) Then there exists a quantum algorithm for O(n?)-1deal-SVP with f = z™ + 1
and n = 2%. It has run-time 2°0") and overwhelming success probability. Furthermore, the scheme

Id — Enc_has encryption and decryption costs 6(1) bit operations per encrypted message bit, and
keys of O(n) bits.

5.2 Trapdoor signature scheme

Gentry et. al. [12] showed how to derive a probabilistic full domain hash trapdoor signature construc-
tion PFDHS with key generation, signing and verification algorithms, from any Trapdoor Collision
Resistant Hash Family with Preimage Sampling (TCRPS). Informally, a TCRPS f, is a collision
resistant function (family) for which there is a (secret) trapdoor ¢ that allows to efficiently sample
a ‘random’ preimage under f, of a given target y. The trapdoor t is the signer’s secret key, and
the signature on a message m has the form (f, *(H(m,r)),r), for a hash function H and random
‘salt’ r. It is shown in [12] how to perform such preimage sampling for the function fg(z) = 7 G,
where G € Z;**", using a trapdoor basis of G+ with small GSO norm. By applying this preimage
sampling algorithm to a structured G = rots(g) and using the trapdoor generation algorithm from
Section 3, we obtain a TCRPS (whose collision resistance relies on Ideal-SIS and hence Ideal-SVP)
and thus a structured variant of the trapdoor signature scheme of [12], with O(n) verification time
and signature length. More details will be given in the full version.

5.3 Identity-based identification schemes

From lattice-based signatures, we derive ID-based identification (IBI) and ID-based signature (IBS)
schemes based on lattice problems. We first observe that the Micciancio-Vadhan (MV) protocol [25]
for O(y/n)-CVP together with the lattice-based hash functions [1,19] yield concurrently secure
identification schemes. Briefly speaking, in the schemes, the secret key is a short vector e € Z™ and
the public key is a tuple of G € Z;"*" and y = e’ G mod ¢. The public key is interpreted by both
the verifier and the prover as a pair of a lattice G and a vector ¢ such that y =t G mod ¢. The
prover shows that it has the lattice vector s = ¢ — e € G*. The hardness of SIS (resp. Ideal-SIS)
yields the concurrent security.

Applying the standard strategy, we construct lattice-based IBI schemes as follows: The master
generates a key pair of a lattice-based signature scheme, say (G,S); Each user obtains from the
master a short vector e such that e’ G = H(id), where H is a random oracle; The prover proves
to the verifier that he/she has a short vector e through the MV protocol. This combination yields
concurrently secure IBI schemes based on O(n?)-SVP and O(n2)-Ideal-SVP in the random oracle
model. As the MV protocol is witness indistinguishable, we can use the Fiat-Shamir heuristic [11]
and obtain IBS schemes based on lattice problems. The details and rigorous proofs will appear in
the full paper.
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Proof of Lemma 2.5. By using Lemma 2.3, we know that f = fifo mod ¢ where, for each ¢ €
{1,2}, the polynomial f; is irreducible in Z,[z] and can be written f; = 2 4 tig/* — 1 for
some t; € Zyq.

Let s € Zy and v € Z;". We want to bound the probability that roty(g)s = v when g is
taken uniformly in (Z4[z]/f)™. We write g = (g1,...,9m)’, and we call s,vy,...,v,, the elements
of Zq[x]/ f that correspond to s and v (identifying vector coordinates and polynomial coefficients).
We define the map ¢, from Z,[z]/ f to itself that maps ¢ to g-s. Using the g — g isomorphism (see
Lemma 2.3), we see that our goal is exactly the same as bounding [[;,, Pre[és(g) = v;l.

We consider two cases, depending whether s and f are coprime or not. If s and f are coprime,
then ¢, is a bijection, and Pry¢s(g) = v;] = ¢~ ™. Suppose now that s = f;s’ for some i € {1,2}
and s" € Zy[x] of degree < n/2. If v; is not of the form f;v for some v € Zy[z] of degree < n/2,
then Pry[¢s(g) = v;] = 0. Otherwise, since the kernel of ¢, is of cardinality ¢"/2, we have Pry(és(g) =
vl = ¢ /2

We now take a union bound over all the vectors s € Zj \ 0 and the vectors v € Zj' such
that [|v||oc < ¢/4. The probability (over the g) that we have A}°(L(rots(g))) < ¢/4 is upper
bounded by:

Z Z HPY¢5 = v +2 Z Z Hpr¢s ) = .

se Ly vezZyr Jj<m seZy welp j<m
ng(&f) =1 [v]les < Q/4 f1\$ lvlloo < Q/4

The first term is < ¢"(¢/2)"™"¢~™". The second term is < 2¢"/2N™q~""/2 where N is the number
of v € Zy[x]/ f such that ||v|| < ¢/4 and v = f10' for some v' € Zy[z] of degree < n/2. Thanks to the
shape of f1, the latter conditions imply that |[v”[|o < ¢/4 where v" € Z,[x] is the vector made of
the n/4 lower degree coefficients of v'. As a consequence, we have N < q"/? / on/4 A straightforward
computation provides the result. O

Proof of Lemma 4.2. Since A runs in time 7', it cannot look at more than B < T bits of the
samples from v,. So it actually solves CVPp, with D; = 278|2By,|. We have, for any x € Z":
Dy(27Bz) = Jico-5 (-+[0,1 t)dt. We choose R = 16 - 22nB+2np3n . max(s™ 1/s") - max; ||b}]],
where the b]’s are the é 8) of the given basis.
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Algorithm A" works as follows: it takes t = b+e as input, where b € L and e is distributed accord-
ing to DL s it rounds ¢ to 27 Bz and calls algorithm A; it returns the output of A. For the result to

hold, it sufﬁces to show that A(Dy, Dy) = 277 where Dy = 278 L2BD%’SJ. From [33, Lemma 3.2,
we know that A(D%,s, vs — (vs mod f—%)) = 279(") Tt thus suffices to show that A(Dy, D3) = 2=
where D3 = 272 |28(v5 — (v, mod %))J We have, for all x € Z™:

D3(27Bx) = Z / ve(t)dt —/ v(t)dt,
€L (b+P(L)) teT(x)

ﬁeRm B (z+[0,1]")
where T'(x) = {t : t — (t mod }—%) € 27B(x +1[0,1]")}. As a consequence, the quantity |D; (2~ Px) —
D3(27Bx)| is smaller than s~ times the volume of the difference between the sets 277 (x 4 [0, 1]™)
and T(z). A standard argument shows that 2=5(z + [0,1]") contains T'(z) (resp. is contained

in T'(x)) once the latter has been shrinked (resp. enlarged) by a factor 1+ M. Therefore,
* n * -n
we have | Dy (2-Ba)— Dy(2-Ba)| < 528 [(1 I (LY } —.C.

Notice now that for both Dy and D3, we have Pr[||2 Bz > 2sy/n] = 270", As a consequence:

ADLD) <2+ S D2 Fa) - Dy(2Fa)| < 270 4 (2842 /)C < 2720,
x, ||2-Bx||<2sy/n

This completes the proof. O

Proof of Lemma 5.1. Let G = rots(g). By definition of the trapdoor S, we have sT.aq =o.
It follows that d = STe mod q. Hence if we show that each entry of STe (computed over Z[z]/f
without reduction modulo ¢) has magnitude < ¢/2, then we will have STe = STe mod ¢. But each
entry of STe is an inner product (over R) of the form (s;, e), where s; is the ith column of S. Now,
by construction, we have e = e. + w, where e, is sampled from the continuous Gaussian v,, and w
is the rounding error, with |w|/s < 1/2. The inner product (s;, e.) is distributed according to v,
with r = ||s;|| - «¢ < Lag, so, by the Gaussian tail inequality, we have |(s;, e.)| < w(y/logn) - Lag,
with probability 1 —n~“(). Also, by the Schwarz inequality, we have |(s;, w)| < Ly/mn/2. Thanks
to the assumptions on ¢ and «, it follows that |(s;,e)| < ¢/2 and hence d = S!- e (using the
union bound) with probability 1 — n~“() As a consequence, we have that € = e, u = G - s mod ¢
and s’ = s, with probability 1 —n (1), We just used the fact that rot #(g1) is full rank over Z, with
probability > (1— g/ 22> 11— 2¢~"™/2 over the choice of g1 € R, since f splits into two irreducible
factors modulo ¢ of degree n/2 each. N

For the evaluation of hg, the matrix-vector product G - s involves m = O(1) multiplications
gi - s mod ¢q in R. We compute g; - s € R by first computing g; - s in Z[z]/f (without reduction
modulo ¢) and then reducing modulo g. The computation of g; - s can be done in O(n) time by using
a fast Fourier transform over Zg for some prime g such that 2n|g—1 (see Lemma 2.3) and ¢ > 2ng?
(so that [|g; - s|lc < @/2 and hence g; - s mod ¢ = g; - s). Since ¢ = Poly(n), it follows that the
computation takes O(n) bit operations, as required. We also need to be able to sample efficiently
from the one-dimensional distribution ¥,, in time O(1). Since ag = O(n), this can be done with
standard techniques [10].

For the inversion of hg, we recall that the matrix S consists of m? blocks rots(s; ;) with s;; €
Z[z]/f. Hence the matrix ST consists of m? blocks rot(5;;) (see Lemma 2.3). Therefore, the
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multiplication ST - ¢ mod ¢ reduces to m? = 6(1) polynomial multiplications in R, which can
be done in time 6(n), as explained above. For the multiplication S~7 - d in Q we proceed as
follows. We have S~ = rot;(S~1), where S = (3;;);; and the inverse is over the field Q[z]/f. We
precompute (during the key generation) the matrix S~! over Q. During the key generation, we also
choose a prime ¢’ which is (pairwise) coprime with all the denominators appearing in the rational
matrix S~7, and larger than the entries of e (the result of S~7 - d), which has entries < ¢ with
probability 1 — n~*M) . We compute (and store as part of the trapdoor) the matrix 7' = S~ mod ¢'.
During the inversion of hg, we implement the product S~T.d over Q by computing S~ -d mod ¢ =
rot¢(T)-d mod ¢'. The product rot ¢(T')-d mod ¢’ can be computed using m? = O(1) multiplications
in Zy[z]/ f. Each of the latter polynomial multiplications takes time 5(71), by using an FFT method
as above, as long as ¢’ = Poly(n).

It remains to show that we can find a ¢’ = Poly(n) which is (pairwise) coprime with all the
denominators in S~7. For this we note that, thanks to Cramer’s rule and Hadamard’s inequality, the
denominators of the rational entries of S *TNhave absolute values < L™ (using the fact that ||S| <
L). Hence there are < (nm)? -log(L™") = O(n?) distinct primes dividing the denominators of S—7

and we can take ¢’ = O(n?), as required. O
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