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Abstract. The strongest standard security notion for digital signature schemes is unforgeability under
chosen message attacks. In practice, however, this notion can be insufficient due to “side-channel at-
tacks” which exploit leakage of information about the secret internal state of the scheme’s hardware im-
plementation. In this work we put forward the notion of “leakage-resilient signatures,” which strengthens
the standard security notion by giving the adversary the additional power to learn a bounded amount
of arbitrary information about the secret state that was accessed during every signature generation.
This notion naturally implies security against all possible side-channel attacks as long as the amount
of information leaked on each invocation is bounded and “only computation leaks information.”
The main result of this paper is a construction which gives a (tree-based, stateful) leakage-resilient
signature scheme based on any 3-time signature scheme. The amount of information that our scheme
can safely leak per signature generation is 1/3 of the information the underlying 3-time signature scheme
can leak in total. Based on recent works by Alwen, Dodis, Wichs and by Katz we give several efficient
instantiations of 3-time signature schemes with the required security properties, hence yielding the first
constructions of provably secure leakage-resilient signature schemes.

1 Introduction

Traditionally, provable security treats cryptographic algorithms as black-boxes. An adversary may
have access to inputs and outputs, but the computation within the box stays secret. In particular,
the standard security notion of digital signatures is existential unforgeability under chosen message
attacks [18] (UF-CMA), where one requires than an adversary cannot forge a valid signature even
when given access to a signing oracle.

Unfortunately, this traditional security model often does not match reality where an adversary
can attack the algorithm’s implementation with more powerful attacks. An important example in
this context are side-channel attacks, which provide an adversary with a partial view on the inner
secret state (e.g., a secret signing key) of an algorithm’s execution due to physical leakage during
computation.

In the last two decades a vast number of ingenious side-channel attacks have been invented and
used to break (implementations of) schemes which were provably secure in the traditional model.
Examples of side-channels include information derived from running-time [26], electromagnetic
radiation [38, 17], power consumption [27], fault detection [7, 6], and many more (see, e.g., [39, 34]).

1.1 Leakage-Resilient Cryptography

Classical research in side-channel attacks sometimes resembles a cat-and-mouse game. New side-
channel attacks are discovered, and then heuristic countermeasures are proposed to prevent the
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specific new attack. Their inherent limitation, however, is that they must be tailored specifically
for the class of attacks they intend to defeat. Not very surprisingly, these countermeasures often were
later found to be insufficient. This is fundamentally different from the design principles of “modern
cryptography,” where one usually requires that the system is secure against all adversaries from
some well defined resource bounded class4 and for a broad and well-defined attack scenario. (E.g.,
existential unforgeability for signature schemes or IND-CCA2 security for encryption.)

A formal security definition. Recently, a notion of leakage-resilience was proposed that adapts
the methodology of modern cryptography to the scenario of side-channel attacks [15]. A crypto-
graphic primitive (or protocol) is said to be leakage-resilient, if it is secure in the traditional (black-
box) sense but now the adversary may additionally obtain arbitrary side-channel information (also
called leakage) during the execution of the security experiment. The side-channel information given
to the adversary only has to satisfy the following two “leakage restrictions”:

LR1 (bounded leakage): the amount of leakage in each invocation is bounded (but overall
can be arbitrary large).

LR2 (only computation leaks information): the internal state that is not accessed during
an invocation (“passive state”) does not leak.

At a technical level this is modeled by considering adversaries that, when attacking the primitive,
additionally to the regular input specify a leakage function f with bounded range {0, 1}λ and then
(besides the regular output) also obtain Λ = f(s+, r), where s+ denotes the part of the internal
secret state that has been accessed during this invocation (“active state”) and r are the internal
coin tosses that were made by the cryptosystem during the invocation.

Motivation of the leakage restrictions. It is clear that one has to restrict the class of
leakage functions, as if we would allow the identity function f(s) = s, no security whatsoever
can be achieved. We chose to bound the output length of the leakage functions as it is a natural
resource bound and allows to model many side-channel attacks (e.g. timing or hamming-weight
attacks, which exploit only a polylogarithmic amount of information on each invocation, which is
far below the constant fraction for which we can still prove security.) Let us mention that technically,
the restriction we must make on the leakage functions is much weaker than a bound on the leakage
function,5 but we will stick to bounded leakage (LR1) which is more intuitive and simpler to work
with.

Unfortunately bounded leakage alone is not sufficient,6 thus one has to restrict the leakage
functions further. The additional restriction should be such that it has a natural interpretation on
the implementation level which seem realistic to satisfy, and of course should be strong enough as
to admit provably secure leakage-resilient primitives. Following [15], we use LR2 (“only computa-
tion leaks information”), originally put forward as one of the “axioms” of “physically observable
cryptography” by Micali and Reyzin [31]. On the implementation level, it states that if a prim-

4 In complexity based cryptography one always bounds the running time. Other bounds that often are used include
the size of the memory an adversary can use or the number of queries the adversary can make to some oracle.

5 In particular, we can consider the class F of leakage functions such that the degradation of the HILL-pseudoentropy
of the internal state S due to leakage of f(S) (where f ∈ F) is sufficiently bounded.

6 To see this, let si denote the state of the primitive (say a signature scheme) after the ith invocation. We could
have leakage functions f1, f2, . . . , ft where each fi(si) first computes the future state st and output a few bits of
it. If we choose t large enough, we can learn the entire state st even if each fi leaks only one bit. Note that the
above argument only works if we assume that one cannot sample randomness, as otherwise the state update could
be probabilistic. We don’t have such an impossibility result for the setting where true randomness is available, but
it seems extremly hard to achieve anything assuming only bounded leakage.



itive with secret internal state s is invoked, then on this particular invocation, only the parts of
the memory leak, which are accessed during this invocation. We refer the reader to [31, 15, 37] for
further discussion and motivation on this axiom.

1.2 Leakage-Resilient Signatures

The only primitives known to date that are provably leakage-resilient in the standard model are
symmetric stream-ciphers [15, 37]. Very recently, a leakage-resilient public-key encryption scheme
[25] was proposed which has a security proof in the generic group model. In this paper we con-
struct the first leakage-resilient public-key primitive in the plain model, a signature-scheme. The
techniques we use are completely different from the construction in [25], informally, in [25] leakage-
resilience is achieved by sharing the secret key, whereas we achieve leakage-resilience by evolving
the key. Digital signatures are one of the most fundamental cryptographic primitives that are often
implemented on devices that are potentially exposed to side-channel attacks (such as smart cards).
Starting with the seminal work by Kocher [26], there have been a great number of theoretical and
practical side-channel attacks on signature schemes (e.g., [26, 27, 41, 16]).

Security Definition. The standard notion for secure signatures schemes is that of unforgeability
under adaptive chosen-message attacks [18]. Here one requires that an adversary cannot forge a
signature of any message m, even when given access to a signing oracle.

We strengthen this notion by giving the adversary access to a more powerful oracle, which not
only outputs signatures for chosen messages, but as an additional input takes a leakage function
f : {0, 1}∗ → {0, 1}λ and outputs f(s+, r) where s+ is the state that has been accessed during
computation of the signature and (if the scheme is probabilistic) r is the randomness that was
sampled. We call this notion λ-leakage resilience or unforgeability under chosen-message and leakage
attacks. Note that if we want the signature scheme to sign a large number of messages (i.e., more
than the state length), then this security definition inherently requires the signature scheme to
update its internal state. We call signature schemes which are secure in the above sense UF-CMLA
(unforgeable under chosen messag/leakage attacks) or simply leakage resilient. We also define a
notion called UF-CMTLA (unforgeability under chosen message total leakage attacks), which is
defined similarly to UF-CMLA but is significantly weaker as here the total amount of leakage (and
not the leakage per invocation) is bounded.

Overview of our construction. Our construction of leakage resilient signature schemes is done
in two steps. First, we give a number of instantiations of 3-time UF-CMTLA signature schemes
offering different trade-offs. Then, we present a generic tree-based transformation from any UF-
CMTLA secure 3-time signature scheme (i.e., a signature scheme that can securely sign up to 3
messages) to a UF-CMLA signature scheme.

From UF-CMTLA to UF-CMLA Security. Based on the ideas of Lamport [28] and Merkle [30],
we propose a simple tree-based leakage-resilient signature scheme SIG∗ that is constructed from any
leakage resilient 3-time signature scheme SIG. The scheme we propose strongly resembles the con-
struction of a forward-secure signature scheme [3] from [5], but let us stress that leakage-resilience
and forward-security are orthogonal concepts. In particular, our construction is not forward-secure,
but could be made so in a straight forward way, at the cost of having a more complicated description.

For any a-priori fixed d ∈ N, our construction can sign up to 2d+1 − 2 messages and one can
think of the (stateful) signing algorithm as traversing the 2d+1 − 1 nodes of a binary tree of depth
d in a depth-first manner. Suppose the signing algorithm of SIG∗ wants to sign the i-th message m



and its state points to the i-th node w̃ in a depth-first traversal of the tree. It first computes a fresh
public/secret-key pair (pk w̃, sk w̃) of SIG for this node. Next, the signature (σ, Γ ) for m is computed,
where σ is a signature on m according to the 3-time signature scheme SIG using the secret key sk w̃

of the current node w̃, and Γ contains a signature path from the root of the tree to the node w̃: for
each node w on the path it contains a signature on pkw using the secret key skpar(w), where par(w)
denotes the parent of w in the tree. The public-key of SIG∗ is the public-key associated to the root
node and verification of a signature of SIG∗ is done by verifying all the 3-time signatures on the
path from w̃ to the root.

The crucial observation that will allow us to prove leakage-resilience of our construction, is that
for each node w in the tree, the secret key skw associated to this node is only accessed a constant
number of times (at most three times). The security we prove roughly states that if SIG is a UF-
CMTLA secure 3-time signature scheme which is secure even after leaking a total of λtotal bits,
then SIG∗ is a UF-CMLA secure signature scheme that can tolerate λ = λtotal/3 bits of leakage per
signature query. The loss in security is a factor of q.

Instantiations UF-CMTLA secure 3-time signature schemes. It is not hard to see that
every signature scheme looses at most an exponential factor 2λtotal in security (compared to the
standard UF-CMA security) when λtotal bits about the secret key are leaked (as the UF-CMA
adversary can simply guess the leakage, and a random guess will be correct with probability 2−λtotal).
Recently, much better constructions have been proposed. Alwen, Dodis, and Wichs [2] show that
the Okamoto-Schnorr signature-scheme [35, 42] remains secure even if almost n/2 bits (where n
is the length of the secret key) of information about the secret-key are leaked. Instantiating our
construction with Okamoto-Schnorr signatures thus gives a leakage resilient signature scheme which
can leak a constant fraction (almost 1/6) of the accessed state on each invocation. Due to the Fiat-
Shamir heuristic used in the Okamoto-Schnorr signature scheme, this scheme can only be proven
secure in the random-oracle model. Recently, Katz [24] showed how to construct signature schemes
in the standard model (and under standard assumptions) which can tolerate leakage of as much as
λtotal = n − nǫ bits (ǫ > 0). With this construction we get a leakage resilient signature scheme in
the standard model. Unfortunately it is not practical due to the use of general NIZK proofs.

In the same paper [24], Katz also constructs an efficient one-time signature scheme that tolerates
leakage of λtotal = (1/4 − ǫ)n bits (for any ǫ > 0). This scheme is easily generalized to a (stateful)
3-time signature schemes where one can leak λtotal = (1/12− ǫ)n bits.7 This construction is prefect
for our purpose and gives a UF-CMLA secure scheme where one can leak λtotal = (1/36 − ǫ)n bits
(here n is the size of the accessed state on each invocation) on each invocation. As the construction
only assumes universal one-way hash functions (UOWHF), we get a security proof in the standard
model under the minimal [33] assumption that one-way functions exist.

1.3 Deterministic Leakage-Resilient Signatures

In the construction of SIG∗ we silently assumed that the key-generation and signing algorithms of
SIG can sample uniform random bits. However, for this one requires some special hardware like
noise generating gates. Normally, one can easily avoid the necessity for such special hardware by
using pseudorandomness instead of truly random bits by generating the randomness using a stream

7 Katz proposes a general transformation to t-time schemes using cover free sets which can leak λtotal = Ω(n/t2)
bits (which for t = 3 is Ω(n/12)). The bound of [24] is worse as it aims for a stateless scheme, whereas we do not
care about state, as our construction is stateful anyway.



cipher. In our leakage setting, however, it is not obvious if this approach does not compromise
security. In particular, using a standard stream-cipher could make our signature scheme insecure
against UF-CMLA attacks.8

The “obvious” solution here seems to be using a leakage-resilient stream cipher [15, 37], but it’s
not clear how to prove this. Roughly, the problem is that the output of a leakage-resilient stream
cipher is indistinguishable from some distribution with high min-entropy (when given the leakage).
Unfortunately a signature scheme which is UF-CMTLA secure with λtotal bits of leakage does not
imply that the scheme will still be secure if the radomness R used in the scheme is sampled from
some distribution with min-entropy |R| − λtotal.

9 Thus, to achieve UF-CMLA security for SIG∗

where we generate all the randomness using a leakage-resilient stream-cipher (we’ll refer to this
construction as SIG∗∗), UF-CMTLA of the underlying 3-times signature scheme SIG is not enough.

Random Oracle Model. In the random-oracle model, this problem can be trivially solved by
applying a random oracle H to the outputs X1,X2, . . . of the leakage-resilient stream cipher. That
is, one uses Yi ← H(Xi) as randomness for the ith signature query. The reason this works follows
from the simple fact that if Xi is unpredicteable, then H(Xi) is uniformly random (and not only
pseudorandom) given the view of the adversary.

2-Source Extractors. An approach which looks promising (but which we did not work out)
to achieve a deterministic instantiation in the standard model is to use a 2-source extractor ext

(cf.[40] and references therein) as follows: for each invocation of the signature scheme one invokes the
leakage-resilien stream cipher twice to get X and X ′, and then extract randomness Y ← ext(X,X ′).
By definition, ext(A,B) is uniformly random whenever A and B have sufficiently high min-entropy
and are independent.

Generic Result loosing an Exponential Factor. In Appendix A we prove that SIG∗∗ is
UF-CMLA secure for any underlying 3-times signature scheme SIG, but the loss in security is
exponential in the leakage λ. Thus, if we only assume security of SIG against poly-size adversaries,
we can only tolerate leakage which is logarithmic in the length of the accessed state. To leak a
constant fraction, we’d have to make exponential hardness assumptions.

Let us remark that the known constructions of leakage-resilient stream ciphers [15, 37] need
exponential hardness assumptions to tolerate a constant fraction of leakage, so why not make
such assumptions on SIG also. The reason is that stream-ciphers are constructed from symmetric
primitiev (e.g., [37] can be directly instantited with any block-cipher like AES), and it is generally
believed that we can construct symmetric primites which are efficient and exponentially hard to
break (e.g., no attacks faster than brute force-key search against AES are known). On the other
hand, efficient constructions of signature schemes rely on very special assumptios, e.g., Okamoto-
Schnorr relies on the hardness of the discrete logarithm problem, which are either known not to
have exponential hardness, or such an assumption seems pretty strong.

1.4 Related Work

Most algorithmic countermeasures for side-channel attacks only consider some particular side-
channels. For example Ishai et al. [22, 21] show how to securely implement any function if the

8 E.g. using a block-cipher in CBC mode is trivially insecure, as here the block-cipher key is fixed and thus can be
completely leaked.

9 Only the other direction is true: if X is uniform, then for any function f with range {0, 1}λtotal , X has (expected)
min-entropy |X| − λtotal given f(X).



attacker can probe a bounded number of wires. This work is remarkable as it was the first to show
how to implement any algorithm in a way that is provably secure against an interesting side-channel
(i.e., probing attacks).

Micali and Reyzin [31] in their work on “physically observable cryptography” proposed an influ-
ential theoretical framework to model side-channel attacks. In particular, they state and motivate
the “only computation leaks information” axiom used in leakage-resilient cryptography [15, 37, 25].
Standaert et al. [43] consider a restricted version of the [31] model which still captures reasonable
adversaries and leakage functions that have been successfully used in practice to break systems. In
this model Petit et al. [36] analyze a block-cipher based construction for a PRNG (cf. [37] on how
this notion compares to the leakage-resilient notion).

The other restriction (besides “only computation leaks information”) that is used in the leakage-
resilient framework is a bound on the output length of the leakage functions, this is inspired by
the bounded-retrieval model [9, 12, 11, 8, 14, 23] which in turn was inspired by the bounded-storage
model [29, 13, 44, 19].

Several recent works [1, 32, 24, 10] achieve constructions which are leakage-resilient against gen-
eral leakage functions without relying on the “only computation leaks information” axiom. All this
constructions are stateless, and thus cannot tolerate any kind of continuous leakage. In particular,
Akavia et. al [1] and Naor and Segev [32] construct public-key encryption schemes that remain
secure even if a function f(sk) of the secret key is leaked. The function f(·) can be arbitrary, but
must have bounded range of λ bits (where λ ≪ |sk |). We already discussed the work of Katz [24]
who constructs digital signatures in this setting. This setting can be seen as a restricted version of
intrusion-resilience as discussed in the work of Alwen et al. [23], who construct intrusion-resilient
identification protocols. Dodis et al. [10] consider the case where the range of f(·) is not necessarily
bounded, but instead one only requires that it is (exponentilly) hard to recover sk from f(sk).

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N

then 1k denotes the string of k ones. For n ∈ N, we write [n] shorthand for {1, . . . , n}. If S is a set

then s
$← S denotes the operation of picking an element s of S uniformly at random. With PPT

we denote probabilistic polynomial time.

2.2 Algorithms

We write y ← A(x) to indicate that A is an algorithm which runs on input x and outputs y. If A
is probabilistic, y

$← A(x) denotes runnig the algorithms using fresh randomness.
To model stateful algorithms we will in particular consider algorithms with a special input/output

syntax. We split the input into three disjoint syntactic parts: a query x, the state s, and (in case
the algorithm is probabilistic) randomness r. Similarly, the output is split into the output y and
the new state s′. We write (y, s′)← B(x, s, r) to make this explicit. Here one can think of the query
x as being chosen (or at least known) to the adversary. The state s and s′ is the secret internal
state of the primitive before and after exectution of the algorithm on input x, respectively.

If we consider the execution (y, s′) ← B(x, s, r) of an algorithm, we can split the state in two
parts s = s+ ∪ s−. The active state, s+, denotes the part that is accessed by B in order to compute



y and update its state.10 The passive state, s− = s \ s+, is the part of the state that is not accessed
(i.e., read and/or overwritten) during the current execution. We use the notation

(y, s′)
s+

←֓ B(x, s, r) .

to make explicit that s+ is the active state of the execution of B with inputs x, s, r. This is illustrated
in Figure 1. Note that the passive state s− is completely contained in s′, i.e., state information that
is never accessed is contained entirely in the next state s′.

r

x

y

s−

s+
B

Fig. 1. Illustration of the execution of a stateful algorithm (y, s′)
s+

←֓ B(x, s, r). The secret state s splits into the active
state s+ (that is accessed during the execurition of B) and the passive state s−.

3 Leakage resilient signatures

3.1 Standard signatures

A (stateful) digital signature scheme SIG = (Kg,Sign,Vfy) consists of three PPT algorithms. The
key generation algorithm Kg generates a secret signing key sk and a public verification key pk . The
signing algorithm Sign get as input the signing key sk and a message m and returns a signature
and a new state sk ′ which replaces the old signing key. The deterministic verification algorithm Vfy

inputs the verification key and returns 1 (accept) or 0 (reject). We demand the usual correctness
properties.

We recall the definition for unforgeability against chosen-message attacks (UF-CMA) for stateful
signatures. To an adversary F and a signature scheme SIG = (Kg,Sign,Vfy) we assign the following
experiment.

Experiment Expuf-cma
SIG (F , k)

(pk , sk0)
$← Kg(1k) ; i← 1

(m∗, σ∗)
$← FOski−1 (pk )

If Vfy(pk ,m∗, σ∗) = 1 and m∗ 6∈ {m1, . . . mi}
then return 1 else return 0.

Oracle Osk i−1
(mi)

(σi, sk i)
$← Sign(sk i−1,mi)

Return σi and set i← i + 1

10 For this to be well defined, we really need that B is given as an algorithm, e.g. in pseudocode, and not just as a
function.



We remark that for the special case where the signature scheme is stateless (i.e., sk i+1 = sk i),
we can consider a simpler experiment where the signing oracle Osk i

(·) is replaced by Sign(sk , ·).
With Advuf-cma

SIG (F , k) we denote the probability that the above experiment returns 1. Forger F
(t, q, ǫ)-breaks the UF-CMA security of SIG if Advuf-cma

SIG (F , k) ≥ ǫ, its running time is bounded by
t = t(k), and it makes at most q = q(k) signing queries. We call SIG UF-CMA secure (or simply
secure) if no forger can (t, q, ǫ)-break the UF-CMA security of SIG for polynomial t and q and
non-negligible ǫ.

3.2 Leakage resilient signatures

We now define the notion of unforgeability against chosen-message/leakage attacks (UF-CMLA) for
stateful signatures. This extends the UF-CMA security notion as now the adversary can learn λ bits
of leakage with every signature query. With the ith signature query, the adversary can adaptively
choose any leakage function fi (given by a circuit) with range {0, 1}λ and then learns the output
Λi of fi which as input gets everything the signing algorithm gets, that is the active state S+

i−1 and
the random coins ri. To an adversary F and a signature scheme SIG = (Kg,Sign,Vfy) we assign the
following experiment.

Experiment Expuf-cmla
SIG (F , k, λ)

(PK ,SK 0)
$← Kg(1k) ; i← 1

(m∗, σ∗)
$← FOSK i−1 (PK )

If Vfy(PK ,m∗, σ∗) = 1 and m∗ 6∈ {m1, . . . mi}
then return 1 else return 0.

Oracle OSK i−1
(mi, fi)

Sample fresh randomness ri

(σi,SK i)
SK

+
i−1←֓ Sign(SK i−1,mi, ri)

Λi ← fi(SK +
i−1, ri)

if |Λi| 6= λ then Λi ← 0λ

Return (σi, Λi) and set i← i + 1

With Advuf-cmla
SIG (F , k, λ) we denote the probability that the above experiment returns 1. Forger

F (t, q, ǫ, λ)-breaks the UF-CMLA security of SIG if its running time is bounded by t = t(k), it
makes at most q = q(k) signing queries and Advuf-cmla

SIG (F , k, λ) ≥ ǫ(k). We call SIG UF-CMLA
secure with λ leakage (or simply λ-leakage resilient) if no forger can (t, q, ǫ, λ)-break the UF-CMLA
security of SIG for polynomial t and q and non-negligible ǫ.

3.3 Signatures with bounded total leakage

In the previous section we defined signatures that remain secure even if λ bits leak on each invo-
cation. We will construct such signatures using as building block signature schemes that can only
sign a constant number (we will need 3) of messages, and are unforgeable assuming that a total of
λtotal bits are leaked (including from the randomness r0 that was used at key-generation). Following
[24], we augment the standard UF-CMA experiment with an oracle Oleak which the adversary can
use to learn up to λtotal arbitrary bits about the randomness used in the entire key generation and
signing process. This oracle will use a random variable state that contains all the random coins
used by the signature scheme so far and a counter λcnt to keep track how much has already been
leaked. Note that we do not explicitly give the leakage functions access to the key sk i, as those can
be efficiently computed given r0 ∈ state.



Experiment Expuf−cmtla
SIG (F , k, λtotal)

(pk , sk0)
r0←Kg(1k); i← 1; λcnt ← 0; state← r0

(m∗, σ∗)
$← FOski−1

,Oleak(pk )
If Vfy(pk ,m∗, σ∗) = 1 and m∗ 6∈ {m1, . . . mi}

then return 1 else return 0.

Oracle Osk i−1
(mi)

Sample fresh randomness ri

state← state ∪ ri

(σi, sk i)← Sign(sk i−1,mi, ri)
Return σi and set i← i + 1

Oracle Oleak(f)
Λ← f(state)
If λcnt + |Λ| > λtotal Return ⊥
λcnt ← λcnt + |Λ|
Return Λ

With Advuf-cmtla
SIG (F , k, λtotal) we denote the probability that the above experiment returns 1. Forger

F (t, d, ǫ, λtotal)-breaks the UF-CMTLA security of SIG if its running time is bounded by t = t(k),
it makes at most d = d(k) signing queries and Advuf-cmtla

SIG (F , k, λtotal) ≥ ǫ(k). We call SIG UF-
CMTLA secure with λtotal leakage if no forger can (t, d, ǫ, λtotal)-break the UF-CMTLA security of
SIG for polynomial t and non-negligible ǫ.

4 Construction of leakage resilient signature schemes

We first discuss three constructions of UF-CMTLA secure 3-time signature schemes. We then prove
our main result which shows how to get a leakage-resilient signature scheme from any UF-CMTLA
3-time signatures scheme using a tree based construction.

4.1 Signatures with bounded leakage resilience

Generic construction with exponential loss. We first present a simple lemma showing
that every d-time UF-CMA secure signature scheme is also a d-time UF-CMTLA secure signature
scheme, where the security loss is exponential in λtotal.

Lemma 1. For any security parameter k, t = t(k), ǫ = ǫ(k), d = d(k), and λtotal, if SIG is (t, d, ǫ)
UF-CMA secure, then SIG is (t′, d, 2λtotalǫ, λtotal) UF-CMTLA secure where t′ ≈ t.

Proof. Suppose there exists an adversary Fλtotal
who breaks the (t′, d, 2λtotal ǫ, λtotal) UF-CMTLA

security. We will show how to construct an adversary F which on input a public-key pk breaks the

(t, d, ǫ) UF-CMA security of SIG in a chosen message attack. FOski−1 (pk) simply runsFOski−1
,Oleak

λtotal
(pk ),

where it randomly guesses the output of the leakage oracle Oleak. As Oleak outputs at most λtotal

bits, F will guess all the leakage correctly with probability 2−λtotal . Conditionned on F guessing
correctly, Fλtotal

will output a forgery with probability at least ǫ, thus F will output a forgery with
probability at least ǫ · 2−λtotal .

An efficient scheme in the random oracle model. The security loss in the above reduction is
exponential in λtotal. Recently, Alwen, Dodis and Wichs [2] proposed a signature scheme which can
leak a substantial bounded amount λtotal of information without suffering an exponential decrease
in security. More precisely, [2, 24] show that in the random oracle model (a variant of) the Okamoto-
Schnorr signature scheme [35, 42] is still secure even if a constant fraction λtotal of the total secret key



is leaked to the adversary. For concreteness we now recall the variant SIGOS
ℓ = (KgOS

ℓ ,SignOS
ℓ ,VfyOS

ℓ )
of the Okamoto-Schnorr signature scheme.

Let G(1k) be a group sampling algorithm which outputs a tuple (p, G), where p is a prime of
size log p = 2k and G is a group of order p in which the discrete logarithm problem is hard.11 Let
H : {0, 1}∗ → Zp be a hash function that will be modeled as a random oracle. The scheme is given
in Figure 2.

Algorithm KgOS
ℓ (1k)

(G, p)
$
← G(1k)

(g1, . . . , gℓ)
$
← G

ℓ; (x1, . . . , xℓ)
$
← Z

ℓ
p

h←
∏

i
gxi

i

return (pk , sk) = ((G, p, g1, . . . , gℓ, h), (x1, . . . , xℓ))

Algorithm SignOS
ℓ (sk , m)

(r1, . . . , rℓ)
$
← Z

ℓ
q

A←
∏

i
gri

i

c← H(A,m)
return σ = (A, cx1 + r1, . . . , cxℓ + rℓ)

Algorithm VfyOS
ℓ (pk , σ, m)

Parse σ as (A,α1, . . . , αℓ)
c← H(A,m)

Iff
∏

gαi

i

?
= Ahc return 1; else return 0

Fig. 2. SIGOS
ℓ = (KgOS

ℓ , SignOS
ℓ , VfyOS

ℓ ).

We now state the hardness assumptions. We say that the DL problem is (t, ǫ)-hard if for every

adversary A running in time at most t the probability Pr[x
$← A(G, p, gx, ω) | (G, p)

$← G(1k), x
$←

Zp] is negligible in k, where ω are the random coins used to generate A’s input.
In order to give a concrete security result we also need to introduce the ℓ-representation problem.

We say that the ℓ-representation problem is (t, ǫ)-hard for G if for every adversary A running in
time at most t the probability

Pr

[

∏

gxi

i =
∏

g
x′

i

i ∧ (x1, . . . , xℓ) 6= (x′
1, . . . x

′
ℓ)

∣

∣

∣

∣

(G, p)
$← G(1k); g1, . . . , gℓ

$← G;

(x1, . . . , xℓ, x
′
1, . . . x

′
ℓ)

$← A(G, p, g1, . . . , gℓ, ω)

]

is negligible in k, where ω is the randomness used to sample A’s input. Hardness of the discrete
logarithm problem for G implies hardness of the ℓ-representation problem (for any polynomial ℓ).

In [2, 24] the following lemma is proved.

Lemma 2. For any δ > 0 and ℓ ∈ N, security parameter k, t = t(k), ǫ = ǫ(k), d = d(k),
λtotal = (1/2 − 1/2ℓ − δ)n where n = 2kℓ is the length of the secret key, if the ℓ-representation
problem is (t, ǫ)-hard then the signature scheme SIGOS

ℓ from Figure 2 is (t′, d, ǫ′, λtotal) UF-CMTLA
secure in the random oracle model, where t′ ≈ t and ǫ′ = (qH · (2 · ǫ + 1/p + qH/p2δℓ))1/2, where qH

is the number of random oracle queries made by the adversary.

We remark that [24] also discusses efficient schemes based on the RSA or factoring assumptions
in the random oracel model.

A scheme in the standard model. From a universal one-way hash function (UOWHF) H, Katz
constructs an efficient one-time signature scheme that tolerates leakage of a (1 − δ)/4 fraction of

11 For technical reasons we assume that elements of G can be sampled “obliviously”, this means, there exists an
efficient algorithm sampG that outputs random elements of G with the property that, given g ∈ G, one can sample
uniformly from the set of coins ω for which g := samp

G
(ω). See [24] for more details.



the secret key. Using sequential composition this scheme is easily generalized to a stateful d-time
signature schemes SIGK

δ which can leak up to a (1− δ)/4d fraction of the secret-key.

Lemma 3. For any δ > 0, security parameter k, t = t(k), ǫ = ǫ(k), d = d(k), if H is a (t, ǫ)-secure
UOWHF, then SIGK

δ is (t′, d, ǫ′, λtotal) UF-CMTLA secure, where ǫ′ = dǫ, t′ ≈ t and λtotal = n · 1−δ
4d

where n = O(dk2/δ) is the length of the secret key.

4.2 Construction of leakage resilient signature schemes

In this section we show how to construct a UF-CMLA secure signature scheme SIG∗ = (Kg∗,Sign∗,Vfy∗)
from any UF-CMTLA 3-time signature scheme SIG = (Kg,Sign,Vfy).

We first introduce some notation related to binary trees that will be useful for the description of
our signature scheme. For d ∈ N, we denote with {0, 1}≤d =

⋃d
i=0{0, 1}i ∪ ε the set of size 2d+1 − 1

containing all binary bitstrings of length at most d including the empty string ε. We will think
of {0, 1}≤d as the labels of a binary tree of depth d. The left and right child of an internal node
w ∈ {0, 1}≤d−1 are w0 and w1, respectively. For a node w ∈ {0, 1}≤d \ 1d, we denote with DF(w)
the node visited after w in a depth-first traversal.

DF(w) :=

{

w0 if |w| < d (w is an internal node)
ŵ1 if |w| = d, where w = ŵ01t (w is the root)

We define the mapping ϕ : {0, 1}≤d → [2d−1 − 1] where ϕ(w) = i if w is the i-th node to be visited
in a depth first traversal, i.e. ϕ(ε) = 1, ϕ(0) = 2, ϕ(00) = 3, . . ..

We now give the construction of our leakage resilient signature scheme. To simplify the exposi-
tion, we will assume that SIG is a stateless signature scheme, but this is not required. We fix some
d ∈ N such that q = 2d+1− 2 is an upper bound on the number of messages that SIG can sign. The
signing algorithm Sign∗ traverses a tree (depth first), “visiting” the node w and associating to it a
key-pair (pkw, skw) generated from the underlying signature scheme SIG. We will use the following
notational conventions for a node w = w1w2 . . . wt.

– Γw = [(pkw1
, φw1), (pkw1w2

, φw1w2), . . . , (pkw, φw)] is a “signature path” from w to the root,
where φw′ always denotes the signature of pkw′ with its parent secret key skpar(w′).

– Sw = {skw1w2...wi
: wi+1 = 0} denotes a subset of the secret keys on the path from the root ε

to w. Sw contains skw′ , if the path goes to the left child w′0 at some node w′ on the path. (The
reason is, that in this case the right child w′1 will be visited after w in a depth first search, and
we will then need skw′ to sign the public key pkw′1 of that child.)

The secret key of SIG∗ will always be of the form (w,Sw, Γw), and we will use stacks S and Γ
to keep track of the state. We denote an empty stack with ∅. For a stack A, push(A, a) denotes
putting element a on the stack A, a← pop(A) denotes removing the topmost element from A and
assigning it to a, and trash(A) denotes removing the topmost element from A (without assigning
it). To avoid confusion we will always use upper case letters (PK ,SK ) for keys of SIG∗ and lower
case letters (pk , sk) for keys used by the underlying signature scheme SIG. To ease exposition, we
use the secret key of the node 0, and not the root to sign the first message. The scheme SIG∗ is
defined in Figure 3.

Theorem 1. For any security parameter k, t = t(k), ǫ = ǫ(k), q = q(k), λ = λ(k), if SIG is
(t, 3, ǫ, λtotal) UF-CMTLA secure, then SIG∗ is (t′, q − 1, qǫ, λ) UF-CMLA secure where t′ ≈ t and
λ = λtotal/3.



Algorithm Kg∗(1k)

(pk , sk)
$
← Kg(1k)

S ← ∅; push(S , sk); Γ ← ∅
SK 0 ← (wε,S , Γ ); PK ← pk
return (PK ,SK 0)

Algorithm Vfy∗(PK , m, Σ)
parse Σ as (σ, Γw1w2...wt

)
pk ǫ ← PK
for i = 1 to t do

if Vfy(pkw1...wi−1
, 0pkw1...wi

, φw1...wi
) = 0 return 0

return Vfy(pkw1w2...wt
, 1m, σ)

Algorithm Sign∗(SK i, m)
parse SK i as (w,S , Γ ) % then S = Sw and Γ = Γw

if w = 1d return ⊥ % stop if last node reached
ŵ← DF(w) % compute next node to be visited

(sk ŵ, pk ŵ)
$
← Kg(1n) % generate secret key for the current node

σ
$
← Sign(sk ŵ, 1m) % sign m with secret key of current node

skpar(ŵ) ← pop(S) % get secret key of parent (which is on top of S)

φŵ
$
← Sign(skpar(ŵ), 0pkŵ) % sign new pk with sk of its parent

if ŵ|ŵ| = 0 then push(S , skpar(ŵ)) % put sk par(ŵ) back if ŵ is a left child
if |ŵ| < d then push(S , sk ŵ) % put sk ŵ on S if it is not a leaf, now S = Sŵ

if |w| = d % if previous node was a leaf then clean signature chain
parse w as w′01j

for i = 1, . . . , j + 1 do trash(Γ );
push(Γ, (pk ŵ, φŵ)) % Now Γ = Γŵ

Σ ← (σ, Γ )
SK i+1 ← (ŵ,S , Γ ) % store key for next signature
return (Σ,SK i+1)

Fig. 3. The leakage resilient signature scheme SIG∗.

Proof. We will show how to construct an adversary F which breaks the UF-CMTLA security of
SIG (with λtotal = 3 ·λ bits of total leakage) using as a subroutine the adversary Fλ who breaks the
UF-CMLA security of SIG∗ (with λ bits of leakage in each of the q observations) with advantage at
least

Advuf-cmtla
SIG (F , k, λtotal) ≥

1

q
·Advuf-cmla

SIG∗ (Fλ, k, λ) . (1)

The adversary F(pk ) (attacking the UF-CMTLA security of SIG) simulates Fλ(PK ) attacking the
UF-CMLA security of SIG∗, embedding its challange public-key pk into one of the nodes of SIG∗.
That is, F(pk ) simulates the following experiment (as defined in Section 3.2, cf. also Figure 5 for
a graphical illustration.)

Experiment Expuf-cmla
SIG∗ (Fλ, k, λ)

(PK ,SK 0)
$← Kg∗(1k) ; i← 1

(m,Σ)
$← FOSK i−1

(·,·)

λ (PK )
If Vfy∗(PK ,m,Σ) = 1 and m 6∈ {m1, . . . mi}

then return 1 else return 0.

Oracle OSK i−1(mi, fi)
Sample fresh randomness ri

(Σi,SK i)
SK

+
i−1←֓ Sign∗(SK i−1,mi, ri)

Λi ← fi(SK +
i−1, ri)

if |Λi| 6= λ then Λi ← 0λ

Return (Σi, Λi) and set i← i + 1

Simulation of PK . On input pk , F samples a node w̃ at random from the first q nodes (i.e.,

ĩ
$← {1, . . . , q} and w̃ ← ϕ−1(̃i)). The key (pk w̃, sk w̃) used by Sign will be the challenge key

(pk , sk). Note that sk = sk w̃ is unknown to F . Next, F generates the other keys (pkw, skw), w ∈
{0, 1}≤d \ w̃ by calling Kg(1k) using fresh randomness for each call. (Of course, these keys will



only be computed when needed during the simulation of the signing oracle.) F defines PK = pk ε

and runs Fλ on PK .

Simulation of the signing oracle. Let (mi, fi) be the i-th query to oracle OSK i−1(mi, fi) and
let SK+

i−1 be the active state information in an execution of the real signing algorithm (i.e.,

(Σi,SK i)
SK

+
i−1←֓ Sign∗(SK i−1,mi, ri)). Depending if sk w̃ ∈ SK +

i−1 or not, adversary F distin-
guishes the two cases.

Case 1: sk w̃ 6∈ SK+
i−1 (Sign(SK i−1,mi, ri) does not access sk w̃.) In this case the adversary F

computes σi
$← Sign(SK i−1,mi, ri) and Λi = fi(SK+

i−1, ri) itself and outputs (σi, Λi).

Case 2: sk w̃ ∈ SK+
i−1 (Sign(SK i−1,mi, ri) does access sk w̃ ∈ SK+

i−1.) In this case F can com-
pute (σi, Λi) without knowing sk w̃ = sk as it has access to the signing oracle Osk w̃

and
the leakage oracle Oleak as defined in the CMTLA attack game. As sk w̃ ∈ SK+

i−1 for at
most three different i, and on for each i the range of fi is λ bits, the total leakage will be
λtotal = 3 · λ bits, which is what we assume F can get from Oleak.

The simulation of the UF-CMLA experiment by F is perfect (i.e. has the right distribution). As
F perfectly simulates the UF-CMLA experiment, by assumption, Fλ does output a forgery with
probability Advuf-cmla

SIG (Fλ, k, λ). We now show that from F ’s forgery one can extract a forgery for
at least one of the keys (pkw, skw) of the underlying signature scheme SIG.

Claim. If Fλ outputs a forgery (σ,Σ) in the UF-CMLA experiment, then one can extract a forgery
for SIG with respect to at least one of the public-keys (pkw, skw), w ∈ {ϕ−1

d (1), . . . , ϕ−1
d (q)}.

Proof. Let W = {ϕ−1
d (0), . . . , ϕ−1

d (q)} be the set of nodes that have been visited during the query
phase of the UF-CMLA experiment. Further, let U := {Γw}w∈W be the set of all signature chains
that have been generated during the experiment. We distinguish two cases.

Case 1: Γ ∈ U . Then Γ = Γw for one w ∈ W . If Σ = (σ, Γ ) is a valid forgery, then σ ∈
Sign(skw, 1m), where m 6= mϕ−1

d
(w). Thus, (1m,σ) is a valid forgery of SIG for public key pkw.

Case 2: Γ 6∈ U . Then there must exist a node w ∈W such that φ ∈ Γ with φ ∈ Sign(skw, 0pkw∗),
where pkw∗ 6= pkw0 and pkw∗ 6= pkw1.

12 It follows that φ is a valid signature for key pkw and
message 0pkw∗ that has not been queried before.

The claim follows. △

With this claim and the fact that the simulation is perfect, it follows that we can extract a forgery
for SIG with respect to the challenge public-key pk with probability Advuf-cmla

SIG∗ (Fλ, k, λ)/q (namely
when the w from the claim is w̃). This proves (1) and completes the proof. ⊓⊔

4.3 Efficiency and Tradeoffs

We analyze the performance of our basic leakage resilient signature scheme and provide some
efficiency tradeoffs. For d ∈ N let D = 2d+1 − 2 be the upper bound on the number of messages
that can be signed.

For simplicity, we assume that for SIG key generation, signing and verification all take approx-
imately the same time, and further that public keys, secret keys and signatures are all of the same

12 Wlog assume that w0 and w1 are both in W .



length. Let us now analyze the efficiency of SIG∗. Public key size and key generation are as in the
underlying scheme.

In the signing process, Sign∗ has to run at most two instances of Sign (i.e., to sign the message
and to certify the next public key) and one run of the underlying key generation algorithm Kg. This
adds up to an overhead of 3 compared to SIG. In our scheme, a signature consists of the signature
of the actual message together with a signature chain from the current signing node to the root.
Thus, the size of a signature increases in the worst case (if we sign with a leaf node) by a factor
of ≈ 2d. For the verification of a signature, in Vfy∗ we have to first verify the signature chain, and
only if all those verifications pass, we check the signature on the actual message. This results in
an overhead of d compared to the the underlying verification algorithm Vfy. Finally, in contrast to
SIG our scheme requires storage of ≈ d secret keys, ≈ d public keys and ≈ d signatures, whereas in
a standard signature scheme one only has to store a single secret key. Note however that only the
storage for the secret keys needs to be kept secret.

In the special case, when we instantiate SIG∗ with SIGOS and set δ = 1/2 (thus, ℓ = 3), then SIG∗

is quite efficient13: signing requires only 9 exponentiations and 2 evaluations of a hash function.
Verification is slightly less efficient and needs in the worst case 4d exponentiations and d evaluations
of the underlying hash function. Finally, in the worst case a signature contains 18d group elements.
Notice that our construction instantiated with SIGOS allows us to leak a 1/36th fraction of the
secret key in each observation. It is easy to increase this to a 1/24th fraction by only using the leafs
of SIG∗ to sign actual messages.
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Christof Paar, editors, CHES 2000, volume 1965 of LNCS, pages 109–124. Springer-Verlag, Berlin, Germany,
August 2000.

42. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer-Verlag, Berlin, Germany, August 1990.

43. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for the analysis of side-channel key
recovery attacks. In EUROCRYPT, pages 443–461, 2009.

44. Salil P. Vadhan. On constructing locally computable extractors and cryptosystems in the bounded storage model.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 61–77. Springer-Verlag, Berlin, Germany,
August 2003.

A Deterministic Instantiation

SIG∗ assumes that its implementation has some means of sampling uniformly random bits. As
discussed in Section 1.3, in this section we prove that one can use a leakage-resilient stream cipher
to generate this randomness. This makes our construction deterministic and, in particular avoids
the necessity for special randomness generating hardware.

A.1 Leakage-Resilient Stream-Ciphers

We will need the following notions of entropy.

Definition 1. A random variable X has min-entropy k, denoted H∞(X) ≥ k, if maxx Pr[X = x] ≤
2−k.

Next, we define HILL-pseudoentropy, which can be viewed as a “computational version” of min-
entropy.

Definition 2 (HILL-pseudoentropy[20, 4]). A random variable X has HILL pseudoentropy k,
denoted by HHILL

ǫ,s (X) ≥ k, if there exists a random variable Y with min-entropy H∞(Y ) = k where
for any distinguisher D of size s

|Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ ǫ

In [15], a stream-cipher SC was constructed, which on input a secret initial key K0 ∈ {0, 1}κ,
generates a stream X1,X2, . . . of pseudorandom blocks Xi ∈ {0, 1}r . We write (Ki+1,Xi)← SC(Ki).
(Here r is a parameter; in our case we need the output length r to be large enough for the key
generation algorithm Kg.) The standard property of a stream-cipher is that for any i, the output
Xi is pseudorandom given X1, . . . ,Xi−1. A leakage-resilient stream-cipher satisfies a much stronger
notion as we will explain now.

Let Ki−1 denote the internal state of SC in round i (right before Xi is computed). Let K+
i−1

denote the active state that is accessed by SC in round i to compute Xi. In [15, 37] adversaries are
considered which can adaptively sample a leakage function fi with range {0, 1}λ before round i,
and then obtain Λi = fi(K

+
i−1), the output of the leakage function fi applied to the entire state

that is touched by SC in this round.
It is proven that as long as λ is not too big14 the output Xi is pseudorandom given the normal

output X1, . . . ,Xi−1 and the leakage Λ1, . . . , Λi−1. (One can even give the entire state Ki of SC

14 How large λ can be depends on the security of the underlying pseudorandom generator [15] or function [37].



after Xi was computed, i.e. the cipher is forward secure, but we will not need this.) We will say SC

is (s′, ǫ′, i) secure, if every adversary of size s′ has advantage at most ǫ′ in distinguishing Xi from
random, given X1, . . . ,Xi−1 and the leakage Λ1, . . . , Λi−1.

If one is also given the leakage Λi, then Xi cannot be pseudorandom any more, as Λi could,
e.g., be the λ first bits of Xi. But even in this case one can prove [15, Lemma 3] that Xi has high
HILL pseudoentropy. In particular, let

viewq,i = {X1, . . . ,Xi−1, Λ1, . . . , Λi}

Then if SC is (s′, ǫ′, i) secure, we get for any ǫH ≥
√

2λǫ′,

Pr
v:=viewq,i

[HHILL
ǫH ,sH

(Xi|v) = |Xi| − λ− 2 log(ǫ−1
H )− 1] ≥ 1− ǫH (2)

where sH ≈ s′ · ǫ2
H/8 · |Xi|.

A.2 SIG
∗∗: a Deterministic, Leakage-Resilient Signature-Scheme

Consider the signature scheme SIG∗, but where the randomness for the underlying Kg and Sign

queries is generated by a leakage resilient stream cipher SC. We define the signature scheme SIG∗∗

almost exactly like SIG∗, except that the randomness for the calls to Kg comes from SC, and thus
the entire signing process is deterministic. The scheme is defined in Figure 4. To simplify exposition,
we assume that the underlying signature scheme SIG is sateless, and its signing algorithm Sign is
deterministic (to achieve this, one can just use any signature scheme, and put the randomness
needed to sign three messages into the secret key). In the proof we will also assume, that the entire

randomness used to sample (pk , sk)
$← Kg(1k) is part of sk . Let us stress that all this is just for

exposition, the proof goes through if none of the above holds.

Theorem 2. Let k be a security parameter, t = t(k),ǫ = ǫ(k) > 0, and d, q, λ = λ(k) ∈ N (where
q ≤ 2d+1 − 2) and δ := q · 2λ+2 3

√
ǫ. Further assume the stream cipher SC used in the construction

of SIG∗∗ is used with a security parameter such that (2) holds with sH := t and ǫH := δ/2q for any
i ≤ q. Then if SIG is (t, 3, ǫ) UF-CMA secure, then SIG∗∗ is (t′, q− 1, δ, λ) UF-CMLA secure where
t′ ≈ t.

Proof. Similar to the proof of Theorem 1, we construct an adversary F which successfully attacks
a (t, 3, ǫ) UF-CMA secure signature scheme SIG using as a subroutine the adversary Fλ who breaks
the UF-CMLA security with leakage λ of SIG∗∗. In the reduction we will loose a factor of at most
q3 · 23λ+4/δ2, i.e.,

Advuf-cma
SIG (F , k) ≥ δ3

q3 · 23λ+4
, where δ = Advuf-cmla

SIG∗∗ (Fλ, k). (3)

This loss has three reasons: fist, as in Theorem 1, we need to guess the node for which Fλ is going
to do a forgery. Second, since we prove the security generically from any standard signature scheme
we need to guess the leakage (as in Lemma 1). And, finally (and that will be the crucial part)
in the real experiment the randomness to sample the keys is output by a stream cipher SC, and
thus will only have high HILL-pseudoentropy, whereas in the simulation the target key is sampled
uniformly-and-independently. Let us now analyze this more precisely.



Algorithm Kg∗∗(1k)

K−1
$
← {0, 1}κ; (X0, K0)← SC(K−1)

(pk , sk)← Kg(1k, X0)
S ← ∅; push(S , sk); Γ ← ∅
SK 0 ← (wε,S , Γ, K0); PK ← pk
return (PK ,SK 0)

Algorithm Vfy∗∗(PK , m, Σ)
parse Σ as (σ, Γw1w2...wt

)
pk ǫ ← PK
for i = 1 to t do

if Vfy(pkw1...wi−1
, 0pkw1...wi

, φw1...wi
) = 0 return 0

return Vfy(pkw1w2...wt
, 1m, σ)

Algorithm Sign∗∗(SK i, m)
parse SK i as (w,S , Γ, Ki) % then S = Sw and Γ = Γw

if w = 1d return ⊥ % stop if last node reached
ŵ← DF(w) % compute next node to be visited
(Xi+1, Ki+1)← SC(Ki) % compute pseudorandom Xi

(sk ŵ, pk ŵ)← Kg(1n, Xi+1) % generate secret key for the current node using Xi

σ ← Sign(sk ŵ, 1m) % sign m with secret key of current node
sk par(ŵ) ← pop(S) % get secret key of parent (which is on top of S)
φŵ ← Sign(sk par(ŵ), 0pkŵ) % sign new pk with sk of its parent
if ŵ|ŵ| = 0 then push(S , sk par(ŵ)) % put sk par(ŵ) back if ŵ is a left child
if |ŵ| < d then push(S , sk ŵ) % put sk ŵ on S if it is not a leaf, now S = Sŵ

if |w| = d % if previous node was a leaf then clean signature chain
parse w as w′01j

for i = 1, . . . , j + 1 do trash(Γ );
push(Γ, (pk ŵ, φŵ)) % Now Γ = Γŵ

Σ ← (σ, Γ )
SK i+1 ← (ŵ,S , Γ, Ki+1) % store key for next signature
return (Σ,SK i+1)

Fig. 4. The deterministic leakage resilient signature scheme SIG∗∗.

In the attack of SIG, adversary F(pk ) samples an initial key K−1, and then simulates the UF-
CMA experiment, where Fλ attacks SIG∗∗ instantiated with K−1 and is allowed to query for q
signatures (and observes their generation). This basically means attacking SIG∗, but where the
public/secret key pairs for each node w are sampled as

(pkw, skw)← Kg(1k,Xϕ(w)−1) ,

X0,X1, . . . are the output of SC(K0).

As in the proof of Theorem 1, F(pk ) makes one exception: for a w̃ sampled at random from

the q first nodes (i.e., î
$← {0, . . . , q} and w̃ ← ϕ−1(̂i)), F(pk ) uses its challenge key (pk , sk) as

(pk w̃, sk w̃) instead of sampling it as (pk w̃, sk w̃)← Kg(1k,Xϕ(w̃)−1). As in Theorem 1 F can use its

oracle Sign(sk , ·) to compute the signatures, and will guess the leakage Λi = fi(SK+
i ) for queries

where sk w̃ ∈ SK +
i (as in Lemma 1).

We have to lower bound the probability that Fλ will output a forgery for sk w̃ = sk . First,
as in the proof of Theorem 1, the probability that F(pk ) will correctly guess w̃ (i.e., which of
the q keys of SIG adversary Fλ will attack) results in a loss of a factor q. Additionally, when Fλ

asks for signatures at nodes w̃0 and w̃1, we loose a factor of 22λ for guessing Λφ(w̃0) and Λφ(w̃1).
The loss for visiting w̃ is more subtle. This is because unlike in Theorem 1, in the simulation the
randomness X used to sample the challenge key (pk , sk )← Kg(1k,X) is uniformly random, whereas
the replaced key (pk w̃, sk w̃) ← Kg(1k,Xi+1) in the real attack is sampled using a pseudorandom
(Xi+1,Ki+1) ← SC(Ki). As a pseudorandom Xi+1 is indistinguishable from a uniformly random
X, this seems not to make much of a difference, but the difficulty is, that the leakage Λi = fi(SK +

i )



is not only a function of Xi+1, but also of the input K+
i ∈ SK+

i used by SC to compute the
pseudorandom Xi+1.

We next prove, that if SC is a sufficiently strong leakage-resilient stream cipher (as required in
the statement of the theorem), then we will only loose a factor of 2λ+2/ǫ2

H (where ǫH := δ/2q).
This, and the loss of q · 22λ for guessing w̃, Λφ(w̃0), Λφ(w̃1), will give a total loss of q3 · 23λ+4/δ2 as
claimed in (3).

By assumption (2) is satisfied, thus each Xi has HILL-pseudoentropy |Xi| −λ− 2 log(ǫ−1
H ) with

probability at least 1 − ǫH even given X1, . . . ,Xi−1 and all leakages Λ1, . . . , Λi. Taking the union
bound over all i ∈ [q], this will be the case for every Xi, i ∈ [q] with probability at least

Pr
[

∀i ∈ [q] : HHILL
sH ,ǫH

(Xi|X1, . . . ,Xi−1, Λ1, . . . , Λi] ≥ |Xi| − λ− 2 log(ǫ−1
H )

]

≥ 1− δ/2 . (4)

We say that Fλ in an UF-CMLA attack against SIG∗∗ outputs a “good” forgery, if it outputs a
forgery, and moreover all Xi have high pseudoentropy as required by (4). As Fλ outputs a (normal)
forgery with probability δ, and (4) holds with probability 1 − δ/2, Fλ finds a good forgery with
probability at least δ/2. By only considering good forgeries, we loose a factor of 2 (notice, that if
would not only consider good forgeries, then the adversary could also always attack keys, where
the HILL-pseudoentropy of the used randomness was not high).

Now assume that we change the UF-CMLA attack slightly, where we replace the real Xi with
an X̃i which has min-entropy

H∞(X̃i|X1, . . . ,Xi−1, Λ1, . . . , Λi) ≥ |Xi| − λ− 2 log(ǫ−1
H ) . (5)

By definition of HILL entropy, if (4) holds (and we do not care what happens if not), then there
exists such an X̃i which cannot be distinguished from Xi with advantage more than ǫH . By doing
this transition we loose a factor of 1/(1 − ǫH) < 2.

Consider any random variable X̃ where H∞(X̃) = |X̃ |−α. By Lemma 4 in Appendix A.3, there
exists an event E , having probability at least 2−α, such that a uniformly random X conditioned
on E has the same distribution as X̃ . In particular, with (5) this implies that we can define an
event E where Pr[E ] ≥ 2−λǫ2

H , such that conditioned on that event, the uniformly random X used
to sample the challenge key (pk , sk) has the same distribution as X̃i, and thus conditioned on this
event, we have perfectly simulated the i-th query in the UF-CMLA attack (with X̃i instead of Xi as
considered above). Here we loose a factor of 2λ/ǫ2

H . Putting the factors together we get the claimed
bound. ⊓⊔

A.3 A technical lemma

Lemma 4. Consider any random variable X̃ ∈ {0, 1}r where H∞(X̃) = r−α, and let X be uniform
over {0, 1}r. Then there exists an event E such that

Pr[E ] = 2−α and ∀x : Pr[X = x|E ] = Pr[X̃ = x] .

Proof. We define the event E (depending on X) as

Pr[E|X = x] = Pr[X̃ = x]/2α−r .



The probability of E is

Pr[E ] =
∑

x∈{0,1}r

Pr[X = x] · Pr[E|X = x] (6)

=
∑

x∈{0,1}r

2−r · Pr[X̃ = x]/2α−r = 2−α . (7)

Further, conditioned on E , X has the same distribution as X̃:

Pr[X = x|E ] =
Pr[X = x ∧ E ]

Pr[E ] =
Pr[X = x] · Pr[E|X = x]

Pr[E ] = Pr[X̃ = x] .



B Illustration of the leakage resilient signature scheme SIG
∗
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Fig. 5. Illustration of the execution of SIG∗ in the UF-CMLA experiment. This figure shows the first 4 rounds of
interaction between the adversary F and Sign. The dotted edges associate a public/secret key to each node. The
dashed arrows represent F ’s oracle queries. We omit some technical details. F queries for a message mi and a leakage
function fi, and obtains the signature Σmi

. Additionally, it obtains the leakage function fi evaluated on the active
state S+

i , which, for instance for i = 1, includes the keys skε, sk0.


