
A New and Collision-resistance Hash Function DIHA2

Xigen Yao
Wuxi Hengqi Electromechanical Device Co.Ltd.China

email : dihuo377@163.com

Abstract The new hash function DIHA2 (Dynamic Input Hash Algorithm)is
with the structure of Merkle-Damgard and is based on 64-bit computing.It oper-
ates each 1024-bit block and outputts a 256-bit hash-value. For a 64-bit sub-block
X[j](0 ≤ j ≤ 15) of each step, DIHA2 gets a dynamic mapping value of TLU
(table look up,The table was 256-Byte only)and add it to operation of variables
a, b, c, d,so as to eliminate the differential effect.At the same time DIHA2 sets
3 assistant register variables r1, r2, r3 to store the mapping value and resume
loading 3 steps later, so as to be interleaving. DIHA2 therefore obtained strong
avalanche effect than the others and can resist the sharp and serious attack of
differential.
keywords: hash function , dynamic mapping, avalanche , differential

1 Introduction:

Hash function is very important in information security and data integrity.
Since 2005-2006 , the primary hash functions have been proved nolonger safe.We
can see many recent attacks on collision resistance of existing hash functions
[BC04,RO05,Kli05,WLF+05,WY05,BCJ+05,WYY05b,WYY05a] , it is that the
most effectual attacks use differential method to find collisions.

Now SHA2, which we depends on comes from MD4 and have the same struc-
ture(the Merkle-Damgard[Dam89,Mer89]construction hash functions). It is now
hot necessitous pressing and so difficult to creat a new and secure hash function.
DIHA2 was a new hash function which based on the Merkle-Damgard construc-
tion.By using dynamic mapping input,DIHA2 is able to resist those who are sharp
and serious differential attacks on collision resistance .

The new hash function DIHA2(Dynamic Input Hash Algorithm) was 64-bit
computing.It operated each 1024-bit block for 16 steps with 4 rounds,and out-
putted a 256-bit hash-value.It added 2 settings into the computing:

* dynamic mapping input of each sub-block

* 3 assistant register variables r1, r2, r3.

1

In DIHA2 ,the dynamic mapping value of addition was with 264 types in a step
.It was inputted to computing and feeded back .That gave DIHA2 the effects of
stronger avalanche and eliminating the fixed differential. DIHA2 set 3 assistant
register variables r1, r2, r3 , which would resume loading the mapping value 3
steps later so as to be interleaving.This was helpful for one-way effect.

There were more register variables in DIHA2. It is well known that a main-
stream chip had 16 64-bit general registers already. Even though the time each
step cost was as 3 times as MD5 , DIHA2 operated 1024 bits of a block with 4
rounds,so the whole speed of DIHA2 would not be too slow.

This paper is organized as follows: Section 2,is the explanation of DIHA2
algorithm,Section3 is the explanation of attack on MD5 by WANG’s differen-
tial method,Section4,is the explanation of how DIHA2 overcome the differential
attack.Finally, Section 5 is the summarizing of the paper.

2 Dynamic Input Hash Algorithm:

Input : a message x with the length L bits, L < 2128

Output: a 256-bit message digest:H(x)

2.1 Pretreatment 1

Build a fixed array p[256] , Take 256 different single bytes as basic units.Put
Array p[256] into buffer.See the table of the Array p[256].

2.2 Pretreatment 2

Set 4 64-bit register variables a, b, c, d as working variables , Set 3 64-bit
register variables r1, r2, r3 as assistant variables.

2.3 Pretreatment 3

(as the same of SHA512) [1]
Append padding bits:

The message is padded so that its length Lp congruent to 896 modulo1024
[Lp ≡ 896(mod1024)].Padding is always added,even if the message is already of
the desired length .The number of padding bits is in the range of 1 to 1024.The
padding consists of single 1-bit followed by the necessary number of 0-bits.
Append length: A block of 128 bits is appended to the message.This block
is treated as an unsigned 128-bit integer(most significant byte first)and contains
the length of the original message (before the padding). The final length Lf

of the message is an integer multiple of 1024 .We can write : Lf ≡ 1024 × m
1024m ≡ 16m× 64

2

The formative input is made up of 16m 64-bit words: x0, x1, x2, ..., x16m−1

the Table of the Array p[256]

S P[S] S P[S] S P[S] S P[S] S P[S] S P[S] S P[S] S P[S]
0 147 32 230 64 108 96 120 128 72 160 249 192 0 224 156
1 227 33 47 65 162 97 200 129 1 161 250 193 56 225 114
2 44 34 111 66 59 98 25 130 12 162 179 194 209 226 65
3 116 35 191 67 131 99 213 131 92 163 196 195 50 227 153
4 188 36 8 68 211 100 64 132 172 164 23 196 35 228 68
5 5 37 80 69 37 101 144 133 199 165 16 197 60 229 126
6 77 38 152 70 117 102 102 134 30 166 104 198 148 230 175
7 149 39 224 71 197 103 177 135 63 167 140 199 236 231 161
8 221 40 41 72 14 104 2 136 146 168 228 200 118 232 95
9 38 41 121 73 94 105 100 137 13 169 53 201 79 233 243
10 110 42 193 74 166 106 252 138 93 170 206 202 167 234 133
11 182 43 10 75 246 107 26 139 173 171 98 203 34 235 7
12 254 44 83 76 143 108 106 140 141 172 163 204 122 236 170
13 71 45 155 77 223 109 186 141 229 173 251 205 210 237 137
14 135 46 235 78 48 110 124 142 54 174 88 206 61 238 212
15 207 47 52 79 128 111 21 143 134 175 176 207 232 239 85
16 24 48 132 80 208 112 101 144 214 176 9 208 73 240 15
17 96 49 204 81 33 113 62 145 39 177 89 209 231 241 27
18 168 50 29 82 113 114 142 146 127 178 189 210 76 242 217
19 240 51 109 83 139 115 222 147 58 179 22 211 136 243 187
20 57 52 181 84 219 116 32 148 138 180 42 212 145 244 165
21 129 53 6 85 245 117 112 149 218 181 130 213 241 245 66
22 201 54 78 86 174 118 192 150 4 182 43 214 103 246 45
23 18 55 119 87 105 119 17 151 84 183 159 215 160 247 31
24 90 56 49 88 185 120 97 152 164 184 247 216 248 248 194
25 178 57 82 89 74 121 55 153 244 185 225 217 81 249 19
26 11 58 154 90 226 122 242 154 69 186 220 218 216 250 125
27 99 59 234 91 20 123 67 155 157 187 238 219 205 251 233
28 195 60 51 92 180 124 36 156 237 188 3 220 46 252 190
29 253 61 123 93 150 125 70 157 183 189 91 221 184 253 87
30 86 62 203 94 215 126 151 158 147 190 75 222 202 254 107
31 158 63 28 95 40 127 239 159 169 191 171 223 115 255 198

For example :p[0] = 147 , p[8] = 221

2.4 The Symbols:

′′ ←′′ — assignment or simultaneous assignment
′′ ‖′′ — cascading
′′ <<< n ′′ — Rotate Left for n bits
′′ >>> n′′ — Rotate Right for n bits
′′+′′ — addition modulo 264

′′ Map(b, x[j])→ r1
′′ — split value t = (b + x[j]) to 8-bit byte stream:

s1, s2, s3, s4, s5, s6, s7, s8 ,(most significant byte first) then cascade the 8-bit
byte stream of TLU(table look up) to be a 64-bit word:

3

p[s1] ‖ p[s2] ‖ p[s3] ‖ p[s4] ‖ p[s5] ‖ p[s6] ‖ p[s7] ‖ p[s8] (most significant byte
first)

finally assign the 64-bit word value to r1

The whole process is concise to express with the 64-bit registers ,For example: t

and r1 are taken as Register RBX ,and RDX; BL, DL are the lowest bytes of RBX and
RDX ;

DL← p[BL] ; RBX>>> 8; RDX>>> 8 ,Repeat the process for 7 times.

2.5 Initialization Setting

Define 7 64-bit initial chaining values :

h1 = 0x6a09e667f3bcc908; h2 = 0xbb67ae8584caa73b ; h3 = 0x3c6ef372fe94f82b

h4 = 0xa54ff53a5f1d36f1;h5 = 0x510e537fade682d1; h6 = 0x9b05688c2b3e6c1f

h7 = 0x1f83d9abfb41bd6b

(These values are come from SHA-512.)

Define 7 64-bit chaining variables and initialize them :

H1,H2,H3,H4,H5,H6,H7

(H1,H2,H3,H4,H5,H6,H7)← (h1, h2, h3, h4, h5, h6, h7)

Define 4 64-bit constants :

W1 = 0xcdaa8b436ed9eba1,W2 = 0x6ed9eba18f1bbcdc,W3 = 0x15b49ce581535a99
W4 = 0xf9cf311393b27d54 (These values were obtained by taking the first sixty-four bits

of the fractional parts of the square roots of the prime numbers.)

2.6 Operation :

For i from 0 to m-1 ,(The formative input is made up of 16m 64-bit words:
x0, x1, x2, ..., xi, ..., x16m−1.) Copy the ith block of 16 64-bit words to Buffer:
X[j] ←x16i+j , 0 ≤ j ≤ 15, Operate 16 steps with 4 rounds before the chaining
value updated.

Initialize variables :
(a, b, c, d)← (H1,H2,H3,H4)
(r1, r2, r3)← (H5,H6,H7)

The each step of the 4 rounds:for j from 0 to 15 , for n from 1 to 4:
1) a← (a + r1) ; t← (b + X[j])

4

2) Map(b, X[j])→ r1

3) t← (a + φn(r1, c, d) + Wn + b <<< 1) <<< 5
4) (a, b, c, d)← (d + r1 <<< j, t <<< 30, b, c) ;

t← r1;
(r1, r2, r3)← (r2, r3, t >>> 12)

Where φn ,are the boolean functions from MD5:

φ1(X, Y, Z) = (XandY)or((notX)and(Z))
φ2(X, Y, Z) = XandZor(Y and(notZ)
φ3(X, Y, Z) = XxorY xorZ
φ4(X, Y, Z) = Y xor(Xor(not)Z)

After finished the 4th round, Update the chaining values
(H1,H2,H3,H4)← (H1 + a,H2 + b, H3 + c,H4 + d)
(H5,H6,H7)← (H5 + r1,H6 + r2,H7 + r3)

The final result H(x):
(H1 + H5) ‖ H2 ‖ (H3 + H6) ‖ (H4 + H7) (most significant byte first)

2.7 The Step Function

In each step (Step j),The first pass :a = a + r1 the previous value of r1 was
added into the computing,

then the second pass :Map(b, X[j]) → r1 , r1 was updated by the mapping
and was added into the computing also.The mapping value we mark it as Qj

Finally,the fourth pass : t ← r1;(r1, r2, r3) ← (r2, r3, t >>> 12); r1 was as-
signed to r3 , it would be taken as the ′′previous value of r1

′′ of Step (j + 3) ,
and this made the computing interleaving .
For 1 ≤ i ≤ 64 ,1 ≤ n ≤ 4 ,the step function can be described as follows:
bi = (ai−1 + Qi−3 >>> 12 + φn(Qi, ci−1, di−1) + Wn + (bi−1) <<< 1) <<< 35
ai = di−1 + Qi <<< j
ci = bi−1

di = ci−1

Qi = r1 = Map(bi−1,mi),where m(i−1)mod16 = x[j].
if 1 ≤ i ≤ 16 , then n = 1 ;
if 17 ≤ i ≤ 32 , then n = 2 ;
if 33 ≤ i ≤ 48 , then n = 3 ;
if 49 ≤ i ≤ 64 , then n = 4

The values of Q0 ,Q−1 ,Q−2 ,are separately equal to the input values of the chain-
ing variables H7,H6,H5.

And for a hash function of H(x) with the M-D structure ,the compression

5

function f , (m blocks of message x,(0 ≤ i < m))
CVi = Chaining variable ,
IV0 = Initial Value ,xi = the ith block
CV0 = IV0

CVi = f(CVi−1, xi)
H(x) = CVm The hash code of length in DIHA2 is 256.

3 MD5 And The Attack of WANG’S

MD5 was the most widely used cryptographic hash function. It was designed
as an improvement version of MD4.Now, its weaknesses has been found,In 2005
WANG present a new powerful attack that can efficiently find a collision of MD5
with differential attack.As the attacks on other functions are similar,we observe
the attack on MD5 only.

The following are selected and summarized from WANG’s paper [2]:
To describe the compression function for MD5. For each 512-bit block Mi of

the padded message M, divide Mi into 32-bit words, Mi = (m0,m1,,m15). The
compression algorithm for Mi has four rounds, and each round has 16 operations.
Four successive step operations are as follows:

a = b + ((a + φi(b, c, d) + wi + ti) ≪ si)
d = a + ((d + φi+1(a, b, c) + wi+1 + ti+1) ≪ si+1)
c = d + ((c + φi+2(d, a, b) + wi+2 + ti+2) ≪ si+2)
b = c + ((b + φi+3(c, d, a) + wi+3 + ti+3) ≪ si+3)
Where the operation + means ADD modulo 232 . ti+jandsi+j(j = 0, 1, 2, 3)

are step-dependent constants. wi+j is a message word.≪ si+j is circularly left-
shift by si+jbit positions.

The differential definition is a kind of precise differential which uses the differ-
ence in term of integer modular subtraction. The differential definition is a kind
of precise differential which uses the difference in term of integer modular subtrac-
tion. The difference for two parameters X and X ′ is defined as ∆X = X ′−X.any
two messages M and M ′ with l-bit multiples, M = (M0,M1, ...,Mk−1), a full dif-
ferential for a hash function is defined as follows:

4H0
(M0,M ′

0)
−−−−−→ 4H1

(M1,M ′
1)

−−−−−→ 4H2
(M2,M ′

2)
−−−−−→4Hk−1

(Mk−1,M ′
k−1)

−−−−−−−−−→ 4H
Consider a message with 2 blocks: where 4H0 is the initial value differ-

ence which equals to zero. 4H is the output difference for the two messages.
4Hi = 4IVi is the output difference for the i-th iteration, and also is the initial
difference for the next iteration.

It is clear that if 4H = 0, there is a collision for Mand M ′ . We call the differ-
ential that produces a collision a collision differential.
1. M = (m0,m1, ...,m15)and M ′ = (m′

0,m
′
1, ...,m

′
15) represent two 512-bit mes-

sages. 4M = (4m0,4m1, ...,4m15) denotes the difference of two message

6

blocks. That is, 4mi = 4m′
i −4mi is the i-th word difference.

Select a collision differential with two iterations as follows:
4H0

(M0,M ′
0)

−−−−−→ 4H1
(M1,M ′

1)
−−−−−→ 4H = 0

Where
4M0 = 4M ′

0 −4M0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)
4M1 = 4M ′

1 −4M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0)
4H1 = (231, 231 + 225, 231 + 225, 231 + 225)
Sufficient Conditions for the Characteristics to Hold

In what follows, we describe how to derive a set of sufficient conditions that guar-
antee the differential characteristic in Step 8 of MD5 (Table 3 of WANG’s paper)
to hold Other conditions can be derived similarly. The differential characteristic
in Step 8 of MD5 is:

(∆c2,∆d2,∆a2,∆b1)→ ∆b2. Each chaining variable satisfies one of the following
equations. b′1 = b1

a′2 = a2[7, ..., 22,−23]
d′2 = d2[−7, 24, 32]
c′2 = c2[7, 8, 9, 10, 11,−12,−24,−25,−26, 27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5,−6]
b′2 = b2[1, 16,−17, 18, 19, 20,−21,−24]

According to the operations in the 8-th step, we have
b2 = c2 + ((b1 + F (c2, d2, a2) + m7 + t7) ≪ 22
b′2 = c′2 + ((b1 + F (c′2, d

′
2, a

′
2) + m′

7 + t7) ≪ 22
φ7 = F (c2, d2, a2) = (c2

∧
d2)

∨
(¬c2

∧
a2)

In the above operations,c2 occurs twice in the right hand side of the equation. In
order to distinguish the two, let cF

2 denote the c2 inside F,and cF
2 denote thec2

outside F. The derivation is based on the following two facts:

1. Since ∆b1 = 0 and ∆m7 = 0, we know that ∆b2 = ∆cNF
2 + (∆7 ≪ 22)

2. Fix one or two of the variables in F so that F is reduced to a single variable.
Guarantee all the differential characteristics in the collision differential to hold:

By the similar method, we can derive a set of sufficient conditions (Table 4 and
Table 6 of WANG’s paper) which guarantee all the differential characteristics in
the collision differential to hold. then ,
1 Repeat the following steps until a first block is found.
(a) Select a random message M0.
(b) Modify M0 by the message modification techniques described in the previous
subsection.
(c) Then, M0 and M ′

0 = M0 +4M0 produce the first iteration differential.
∆M0 → (∆H1,∆M1)

2. Repeat the following steps until a collision is found (a) Select a random message
M1.

7

(b) Modify M1 by the message modification techniques described in the previous
subsection.
(c) Then, M1andM1 + ∆M1 generate the second iteration differential

(∆H1,∆M1)→ ∆H = 0

4 To Overcome The Differential Attack

We know ,the differential attack based on the techniques :
1 To find and built a set of conditions equation for differential .
2 The techniques of modification: Select messages and modify them so as to keep
and hold the differential characteristics.

4.1 The Avalanche In DIHA2

In DIHA2,where the Map(b, X[j]) → r1 , P[256]. P[256]is a mapping which is
corresponding to any probability array of bits.Let’s see the avalanche of one-bit
difference in DIHA2.

The tiny difference of one bite will be sent to the dynamic mapping
Map(b, X[i])→ r1 (0 ≤ i ≤ 15) ,and enlarge irregularly to 8-bit extent,then,the

Variable b is replaced by the mapping value (which we gained is marked as Qi =
r1) in the Boolean function ,and compution is nonlinearity further,the difference
is spread much more and then the Variable b:
bi = (ai−1 + Qi−3 >>> 12 + φn(Qi, ci−1, di−1) + Wn + bi−1 <<< 1) <<< 35

bi is gained and will be feeded back ,it will act on the next dynamic mapping
immediatly ... This process is a consecutive avalanche,we call this the ”first
avalanche”.The internal state Qi = r1 will be reinserted 3 step later, and this will
cause the ”second avalanche ”.

4.2 The Differential

We now discuss the attack in DIHA2, first, regard all the words ,variables as
single-bytes , so as to simplify the analysis.

For DIHA2,the difference of input ∆mi = m′
i − mi cause the intermediate

value Qi = r1 changed ,we write it: ∆Qi = Q′
i −Qi

∆mi → ∆Qi = Q′
i −Qi,

and then ,for more simplifying, let bi−1 = 0:
Q′

i = Map(bi−1,m
′
i) = Map(0,m′

i) = P [m′
i]

As the same , Qi = P [mi] ,so,
∆Qi = Q′

i −Qi = P [m′
i]− P [mi]

If the difference of input ∆mi = m′
i−mi keep a fixed value N0,e.g.let N0 = 3,we

can see the difference∆Qi:

8

e.g. , when m′
i = 18, mi = 15 , ∆mi = 18− 15 = 3;

∆Qi = Q′
i −Qi = P [m′

i]−P [mi] = P [18]−P [15] ,we can look up to the table to
see the value of TLU:
P [18] = 168 , P [15] = 207 ,so ∆Qi = 168− 207 = −39

and change the m′
i = 18, mi = 15 optionally,

let m′
i = 70, mi = 67

∆Qi = P [70]− P [67] = 117− 131 = −14 ; and more
......,
Then,we can know ,that the difference of input∆mi = m′

i − mi can’t cause
a regular output of the intermediate value∆Qi , for any determinate difference
value of input ∆mi = m′

i −mi ,∆Qi can be any possible value.
bi−1 is not be zero always. For Qi = Map(bi−1,mi) = P [bi−1 + mi],and

bi = (ai−1 + Qi−3 >>> 12 + φn(Qi, ci−1, di−1) + Wn + bi−1 <<< 1) <<< 35
in fact, The no regular value of ∆Qi was added into the Boolean function,this

can’t cause a regular value of ∆bi .
∆bi = b′i − bi = (φn(Q′

i, ci−1, di−1)) <<< 35− (φn(Qi, ci−1, di−1)) <<< 35
i.e.,the difference of output∆bi isn’t effectually depend on the difference of

input∆mi, we can’t build a set of conditions equation for the differential of sub-
block and not even for a message condition [3].

The first prerequisite of a differential attack ,is a set of sufficient conditions
for differential characteristics can be found .

Since it is no effectual relational for difference of input and difference of output,
to find a set of sufficient conditions for the differential characteristics is invalid
work.

For a assured values of output ,the input of M = (m0,m1,,m15) are
limited. If to be simple,to eliminate the dynamic mapping effect ,let Qi be
a constantCN ,which Qi = P [bi−1 + mi] = CN , bi−1 + mi = C−1

N , then the
M = (m0,m1,,m15) is limited,for:

If m0 is determined (a0, b0, c0, d0, Q0, Q−1, Q−2 are known),
then, b0 + m1 = C−1

N → m1 ,m1 is gotten;
b1 = (a0+Q−2 >>> 12+φ1(Q1, c0, d0)+W1+b0 <<< 1) <<< 35 ,b1is gotten;
and b1 + m2 = C−1

N → m2,m2 is gotten;
.....,
the each sub-block of mi = (m0,m1,,m15) can be determined.
So,in this case,we needn’t discuss how to keep the differential characteristics.

Although each assured value of the input determined the value of the output,it
is not regular.

4.3 About The Message Modification

The technology of message modification of WANF’s meets with difficulty in
DIHA2:

9

If modify a sub-block mi to mic so as to achieve a objective,then the map-
ping Qiof mi and the mapping Qic of mic are different,they will be reinserted
3steps later. To eliminate this change ,need modify the value of mi+3 again , and
this cause the next modification and so on,......(if not ,there will be ”the second
avalanche”),till the last sub-block ,this can’t last.

Since the differential characteristics for the conditions in DIHA2 are insignif-
icance ,and because of the strong avalanche ,to find and to hold the differential
Characteristics for 4 rounds is unpractical.By the way, Since the strong avalanche
and the dynamic mapping in DIHA2, any message modification leads to unex-
pected change ,even though with low Hamming weight messages.

5 Discussion And Summary

If Qi is regarded as a part of the ith input word ,then the ith input mi is
regarded as Qi + mi ,Compare with SHA :the input of SHA is expanded from
16 to 80 by the fixed way with Boolean function [4] ,and the DIHA2 each input
expanded with the internal state value .

Now,the serious attack ,such as the second Preimage attacks,is based on the
achievement of recent attacks on collision resistance of existing hash functions[5].

DIHA2 took the reference form MD5,SHA,etc.,used a table only 256 bytes, ob-
tained the 3properties(Preimage -resistance;Second Preimage -resistance and
Collision-resistance). By using dynamic mapping of TLU , inserting and rein-
serting intermediate value, achieves stronger avalanche to resist various attacks.
Anyways,for any other new hash function which with different structure from
Merkle-Damgard,it is very difficult to prove it’s security is higher than those of
actual applications. The Boolean functions DIHA2 used are from MD5,and the
other Boolean functions are also useful,but this is not decisive here.

6 References

[1] See also Cryptography and Network Security : Principles and Practices , Fourth Edition,
William Stallings, Published– PEARSON EDUCATION ASIA LIMITED and Publishing
House of Electronics Industry , 2005

[2] See also How to Break MD5 and Other Hash Functions, Xiaoyun Wang and Hongbo
Yu. http://www.paper.edu.cn

[3] See also Finding Collisions in the Full SHA-1,Xiaoyun Wang,YiqunLisaYin, and Hongbo
Yu.http://www.paper.edu.cn

10

[4] See also Cryptography and Network Security : Principles and Practices , Fourth Edition,
William Stallings,Published– PEARSON EDUCATION ASIA LIMITED and Publishing
House of Electronics Industry , 2005

[5] See also Second Preimage Attacks on Dithered Hash Functions ,Elena Andreeva1, Charles
Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John Kelsey, Adi Shamir, and Se-
bastien Zimmer

11

