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Abstract. We show a method for compressing the ciphertext and reducing the computational cost of the
Dolev-Dwork-Naor cryptosystem and related schemes without changing their other parameters nor reducing
the original security levels.

1 Introduction

Indistinguishability of messages under adaptive chosen ciphertext attacks [11] is the strongest known notion of
security for public key encryption schemes (PKE). In this notion of security, the adversary is given access to a
decryption oracle. Many computational assumptions have been used in the literature for obtaining cryptosystems
meeting such a strong security requirements and the study of generic constructions of public key encryption schemes
meeting this security notion based on weak primitives is an interesting topic. Given enhanced one-way trapdoor
permutations, we know how to obtain CCA2 security from any semantically secure public key cryptosystem [8, 1,
13, 7]. It is also possible to obtain CCA2 secure PKE based on correlated products [12] (which can be constructed
based on certain lossy trapdoor functions [10]).

In this short note, we show a method for compressing a ciphertext of the Dolev-Dwork-Naor (DDN) [1] cryp-
tosystem to half of its size. Our scheme also reduces the computational cost of the cryptosystem.

1.1 Extensions

Even tough we present proofs of security just for the original DDN scheme, our ideas can be straightforwardly
applied to other CCA2 secure constructions which use many pairs of public/private keys. For instance, we can
also short en the ciphertext and computational costs of the following schemes: the Rosen-Segev construction [12];
the Pass-Shelat-Vaikuntanathan construction [9]; the Dowsley-Müller-Quade-Nascimento construction [2] and the
Hanaoka-Imai-Ogawa-Watanabe construction [4].

1.2 Post-Quantum Schemes

Reducing the ciphertext size of the original DDN construction is a rather theoretical contribution, as practical
schemes are usually not based on this general reduction. However, in the case of post-quantum schemes, all the
known protocols achieving CCA2 security in the standard model are based on general reduction techniques [12,
9, 2]. Thus, reducing their communication and computational complexities is indeed an important issue towards
obtaining close to practical post-quantum public key schemes with CCA2 security in the standard model.

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while |S| represents the cardinality of a set S. If k ∈ N, then 1k

denotes the string of k ones. s � S denotes the operation of choosing an element s of a set S uniformly at random.
w � A(x, y, . . .) represents the act of running the algorithm A with inputs x, y, . . . and producing output w. We
write w � AO(x, y, . . .) for representing an algorithm A having access to an oracle O. We denote by Pr[E] the
probability that the event E occurs.



2.2 Public-Key Encryption Schemes

A Public Key Encryption Scheme (PKE) is defined as follows:

Definition 1 (Public-Key Encryption). A public-key encryption scheme is a triplet of algorithms (Gen, Enc, Dec)
such that:

– Gen is a probabilistic polynomial-time key generation algorithm which takes as input a security parameter 1k

and outputs a public key PK and a secret key DK. The public key specifies the message space M and the
ciphertext space C.

– Enc is a (possibly) probabilistic polynomial-time encryption algorithm which receives as input a public key PK
and a message m ∈M, and outputs a ciphertext C ∈ C.

– Dec is a deterministic polynomial-time decryption algorithm which takes as input a secret key DK and a
ciphertext C, and outputs either a message m ∈M or an error symbol ⊥.

– (Soundness) For any pair of public and private keys generated by Gen and any message m ∈ M it holds that
Dec(DK,Enc(PK,m)) = m with overwhelming probability over the randomness used by Gen and Enc.

Below we define indistinguishability against chosen-plaintext attacks (IND-CPA) [3] and against adaptive
chosen-ciphertext attacks (IND-CCA2) [11]. Our game definition follows the approach of [5].

Definition 2 (IND-CPA security). To a two-stage adversary A = (A1,A2) against a PKE Π we associate the
following experiment ExpcpaΠ,A(k):

(PK,DK) � Gen(1k)
(m0,m1, state) � A1(PK) s.t. |m0| = |m1|
b � {0, 1}
C∗ � Enc(PK,mb)
b′ � A2(C∗, state)
If b = b′ return 1 else return 0

We define the advantage of A in the experiment as

AdvcpaΠ,A(k) = |Pr[ExpcpaΠ,A(k) = 1]− 1
2 |

We say that Π is indistinguishable against chosen-plaintext attacks (IND-CPA) if for all probabilistic polynomial
time (PPT) adversaries A = (A1,A2) the advantage of A in the experiment is a negligible function of k.

Definition 3 (IND-CCA2 security). To a two-stage adversary A = (A1,A2) against a PKE Π we associate the
following experiment Expcca2Π,A(k):

(PK,DK) � Gen(1k)
(m0,m1, state) � ADec(DK,·)

1 (PK) s.t. |m0| = |m1|
b � {0, 1}
C∗ � Enc(PK,mb)
b′ � ADec(DK,·)

2 (C∗, state)
If b = b′ return 1 else return 0

The decryption oracle knows the secret key DK and for each valid ciphertext submitted by the adversary as a
query it sends the corresponding plaintext to the adversary. The adversary A2 is not allowed to query Dec(DK, · )
with C∗. We define the advantage of A in the experiment as

Advcca2Π,A(k) = |Pr[Expcca2Π,A(k) = 1]− 1
2 |

We say that Π is indistinguishable against adaptive chosen-ciphertext attacks (IND-CCA2) if for all probabilistic
polynomial time (PPT) adversaries A = (A1,A2) that makes a polynomial number of oracle queries the advantage
of A in the experiment is a negligible function of k.



2.3 Signature Schemes

Below we explain signature schemes and define one-time strong unforgeability.

Definition 4 (Signature Scheme). A signature scheme is a triplet of algorithms (Gen, Sig, Ver) such that:

– Gen is a probabilistic polynomial-time key generation algorithm which takes as input a security parameter 1k

and outputs a verification key vk and a signing key sk. The verification key specifies the message space M and
the signature space S.

– Sig is a (possibly) probabilistic polynomial-time signing algorithm which receives as input a signing key sk and
a message m ∈M, and outputs a signature σ ∈ S.

– Ver is a deterministic polynomial-time verification algorithm which takes as input a verification key vk, a
message m ∈ M and a signature σ ∈ S, and outputs a bit indicating whether σ is a valid signature for m or
not (i.e., the algorithm outputs 1 if it is a valid signature and outputs 0 otherwise).

– For any pair of signing and verification keys generated by Gen and any message m ∈ M it holds that
Ver(vk,m,Sig(sk,m)) = 1 with overwhelming probability over the randomness used by Gen and Sig.

Definition 5 (One-Time Strong Unforgeability). To a two-stage adversary A = (A1,A2) against a signature
scheme Σ we associate the following experiment ExpotsuΣ,A(k):

(vk, sk) � Gen(1k)
(m, state) � A1(vk)
σ � Sig(sk,m)
(m∗, σ∗) � A2(m,σ, state)
If Ver(vk,m∗, σ∗) = 1 and (m∗, σ∗) 6= (m,σ) return 1, else return 0

We say that a signature scheme Σ is one-time strongly unforgeable if for all probabilist polynomial time (PPT)
adversaries A = (A1,A2) the probability that ExpotsuΣ,A(k) outputs 1 is a negligible function of k.

2.4 Non-Interactive Zero-Knowledge

Now we define the notion of Adaptively-Secure Non-Interactive Zero-Knowledge. This definition is from [6].

Definition 6 (Adaptively-Secure Non-Interactive Zero-Knowledge). A pair of probabilistic polynomial-time algo-
rithms (P,V) is an adaptive, non-interactive zero-knowledge proof system for a language L ∈ NP if there exists a
polynomial poly such that:

Completeness: For all x ∈ L ∩ {0, 1}k and all witnesses w for x,

Pr[r ← {0, 1}poly(k);π ← P(r, x, w) : V(r, x, π) = 1] = 1

Soundness: For all (possibly unbounded) algorithms P∗, the following is negligible in k:

Pr[r ← {0, 1}poly(k); (x, π)← P∗(r) : V(r, x, π) = 1 ∧ x ∈ {0, 1}k \ L].

Zero-Knowledge: Let (S1,S2) and (A1,A2) be a pair of two-staged algorithms. Consider the following experiments
where x ∈ L ∩ {0, 1}k:

Game ZKreal Game ZKsim

r ← {0, 1}poly(k) (r, state′)← S1(1k)
(x,w, state)← A1(r) (x,w, state)← A1(r)
π ← P(r, x, w) π ← S2(x, state′)
b← A2(r, x, π, state) b← A2(r, x, π, state)

We require that there exist a probabilistic polynomial-time simulator (S1,S2) such that for any probabilistic
polynomial-time algorithm (A1,A2) the following is negligible in k:

|PrZKreal [A2 outputs 0]− PrZKsim [A2 outputs 0]|.



2.5 The DDN Cryptosystem

In this section, we briefly review the DDN cryptosystem. The DDN cryptosystem is constructed as follows. Let
Π = (CPA.Gen,CPA.Enc,CPA.Dec) be an IND-CPA secure PKE scheme and Σ = (OT.Gen,OT.Sig,OT.Ver) be an
one-time strongly unforgeable signature scheme. For simplicity, we assume that the size of signature of Σ is k where
k is the security parameter. Then, we construct another PKE scheme as follows.

Key Generation. For security parameter k, run CPA.Gen(1k) for 2k times to obtain

DK = (dk0,1, ..., dk0,k, dk1,1, ..., dk1,k)

and
PK ′ = (pk0,1, ..., pk0,k, pk1,1, ..., pk1,k).

Pick a random string R (this will be used by the sender for generating a non-interactive zero-knowledge (NIZK)
proof). The decryption key is DK and the public key is PK = (PK ′, R).

Encryption. For encrypting m, run OT.Gen(1k) to obtain a verification key vk and a signing key sk. Let vki be
i-th bit of vk (assuming that vk is expressed as a k-bit binary string). Then, run Ci ← CPA.Enc(pkvki,i,m) for
1 ≤ i ≤ k. Generate a NIZK proof π which guarantees that the plaintexts of all Ci are identical.3 Finally, run
σ ← OT.Sig((C1, ..., Ck, π), sk). The ciphertext is C = (C1, ..., Ck, π, vk, σ).

Decryption. For decrypting a given ciphertext C = (C1, ..., Ck, π, vk, σ), run Ver((C1, ..., Ck, π), σ, vk) to check
the validity of the signature. Also, test the validity of π. If invalid (for any of these tests), output ⊥. Otherwise,
run m← CPA.Dec(C1, dkvk1,1).

3 Our Improved Construction

3.1 The Scheme

Here, we present our improved version of the DDN cryptosystem.

Key Generation. For security parameter k, run CPA.Gen(1k) for 2k times to obtain

DK = (dk00,1, ..., dk00,k/2, dk01,1, ..., dk01,k/2, dk10,1, ..., dk10,k/2, dk11,1, ..., dk11,k/2)

and
PK ′ = (pk00,1, ..., pk00,k/2, pk01,1, ..., pk01,k/2, pk10,1, ..., pk10,k/2, pk11,1, ..., pk11,k/2).

Pick a random string R. The decryption key is DK and the public key is PK = (PK ′, R).
Encryption. For encrypting m, run OT.Gen(1k) to obtain a verification key vk and a signing key sk. Let vki be i-

th bit of vk (assuming that vk is expressed as a k-bit binary string). Then, run Ci ← CPA.Enc(pkvk2j−1vk2j ,j ,m)
for 1 ≤ j ≤ k/2. Generate a NIZK proof π which guarantees that the plaintexts of all Ci are identical.4 Finally,
run σ ← OT.Sig((C1, ..., Ck/2, π), sk). The ciphertext is C = (C1, ..., Ck/2, π, vk, σ).

Decryption. For decrypting a given ciphertext C = (C1, ..., Ck/2, π, vk, σ), run Ver((C1, ..., Ck/2, π), σ, vk) to check
the validity of the signature. Also, test the validity of π. If invalid (for any of these tests), output ⊥. Otherwise,
run m← CPA.Dec(C1, dkvk1vk2,1).

3.2 Security Proof

Our scheme in the previous section is as secure as the original DDN scheme. Namely, it is IND-CCA2 secure
assuming that Π is IND-CPA secure, Σ is one-time strongly unforgeable and that the NIZK proof system used is
Adaptively-Secure.

Theorem 1 The scheme presented in the previous section is an IND-CCA2 secure assuming that Π is an IND-
CPA secure PKE, Σ is an one-time strongly unforgeable signature scheme and the Non-Interactive Zero-Knowledge
proof system is Adaptively-Secure.
3 Since this is an NP language, NIZK proofs can be generated.
4 Since this is an NP language, NIZK proofs can be generated.



Here, we give the proof of security of the proposed scheme. For proving the security, by using an algorithm
A which breaks IND-CCA2 security of the proposed scheme, we construct another algorithm B which breaks
IND-CPA security of a PKE scheme Π ′ which is as follows.

Key Generation. For security parameter k, run CPA.Gen(1k) for k/2 times to obtain

D̃K = (dk1, ..., dkk/2)

and
˜PK = (pk1, ..., pkk/2).

The decryption key is D̃K and the public key is ˜PK.
Encryption. For encrypting m, run Ci ← CPA.Enc(pkj ,m) for 1 ≤ j ≤ k/2.
Decryption. For decrypting a given ciphertext C = (C1, ..., Ck/2), run mj ← CPA.Dec(Cj , dkj) for 1 ≤ j ≤ k/2.

If m1 = ... = mk/2, output m1. Otherwise, output ⊥.

Due to the hybrid argument, it is clear that the above scheme Π ′ is IND-CPA secure if Π is IND-CPA secure.
For a given public key ˜PK = (pk1, ..., pkk/2), B works as follows.

Key Generation. B generates public key PK = (PK ′, R) which will be input to A where

PK ′ = (pk00,1, ..., pk00,k/2, pk01,1, ..., pk01,k/2, pk10,1, ..., pk10,k/2, pk11,1, ..., pk11,k/2)

is generated as
1. Run (vk?, sk?)← OT.Gen(1k). Let vk?i be i-th bit of vk?.
2. For 1 ≤ j ≤ k/2, for bβ ∈ {00, 01, 10, 11},

(a) If bβ = vk?2j−1vk
?
2j , then set pkbβ,j = pkj .

(b) If bβ 6= vk?2j−1vk
?
2j , then run (dk, pk)← CPA.Gen(1k) and set pkbβ,j = pk. Also, set dkbβ,j = dk.

R is also appropriately generated by B. B inputs PK to A as a public key of the proposed scheme.
Responding to Queries. When A submits a decryption query C = (C1, ..., Ck/2, π, vk, σ), B verifies the validity

of C, and if invalid, outputs ⊥. Otherwise, it selects j such that vk2j−1vk2j 6= vk?2j−1vk
?
2j (if vk 6= vk?, there

always exists such j), computes mj ← CPA.Dec(Cj , dkvk2j−1vk2j ,j), and returns mj to A. If vk = vk?, B halts.
Constructing the Challenge Ciphertext. When A submits the two messages m0 and m1 which will be chal-

lenged, B also submits m0 and m1 to its own challenge oracle. Let (C?1 , ..., C
?
k/2) be the challenge cipher-

text for Π ′. Then, B generates an NIZK proof π? which guarantees that decryption results of C?1 , ..., C
?
k/2

are identical (notice that since R is generated by B, by using a certain trapdoor information B can gen-
erate such π? without knowing the plaintext nor internal coin for encryption). Finally, B computes σ? ←
OT.Sig((C?1 , ..., C

?
k/2, π

?), sk?), and sends C? = (C?1 , ..., C
?
k/2, π

?, vk?, σ?) to A as the challenge ciphertext for
the proposed scheme.

Output. When A outputs its guess b, B also outputs the same bit as its own guess.

Simulation fails only when A submits a valid query with vk = vk? or when A produces a NIZK proof of validity
of a ciphertext in which Ci and Cj (for some i, j ∈ {1, . . . , k/2}) are ciphertexts of different plaintexts. However,
the probability that the first event happens is negligible since Σ is strongly unforgeable and the probability that
the second event happens is also negligible since the used NIZK proof system is Adaptively-Secure (and so meets
the soundness requirement). Obviously, B’s advantage is the same as A’s (minus the probability that A produces
one of the two events above).

Let Forge be the event that for some decryption query made by A we have that Ver((C1, ..., Ck/2, π), σ, vk) = 1
and vk = vk∗.

Lemma 1. Pr[Forge] is negligible.

Proof. Assume that for a PPT adversary A against our scheme the forge probability (Pr[Forge]) is non-negligible,
then we construct an adversary B′ that forges a signature with the same probability. B′ simulates the IND-CCA2
interaction for A as follows:



Key Generation: B′ invokes the key generation algorithm of the signature scheme and obtains vk∗. It calls Π
key generation algorithm 2k times obtaining the public keys

pk00,1, ..., pk00,k/2, pk01,1, ..., pk01,k/2, pk10,1, ..., pk10,k/2, pk11,1, ..., pk11,k/2,

which constitute PK ′, and the secret keys

dk00,1, ..., dk00,k/2, dk01,1, ..., dk01,k/2, dk10,1, ..., dk10,k/2, dk11,1, ..., dk11,k/2,

which constitute DK. R is also appropriately generated by B′. B′ inputs PK = (PK ′, R) to A as a public key
of the proposed scheme.

Decryption Queries: Whenever A makes a decryption query, B′ proceeds as follows:
1. If for this ciphertext vk = vk∗ and Ver((C1, ..., Ck/2, π), σ, vk) = 1, B′ outputs ((C1, ..., Ck/2, π), σ) as the

forgery and halts.
2. Otherwise, B′ decrypts the ciphertext using the procedures of our scheme.

Challenging Query: Whenever A makes the challenging query with two messages m0,m1 ∈M such that |m0| =
|m1|, B′ proceeds as follows:
1. Chooses randomly b ∈ {0, 1}.
2. Encrypts the message mb using the procedures of our scheme. This is possible because B′ can ask the

signature oracle to sign one message, so it asks the oracle to sign the value (C1, ..., Ck/2, π) obtained during
the encryption process.

As long as the event Forge did not occur, the simulation is perfect, so the probability that B′ breaks the one-time
strongly unforgeable signature scheme is exactly Pr[Forge]. Since the signature scheme is strongly unforgeable by
assumption, Pr[Forge] is negligible for all PPT adversaries against our scheme.

Let VILL be the event that A produces a NIZK proof of validity of a ciphertext in which Ci and Cj are ciphertexts
of different plaintexts for some i, j ∈ {1, . . . , k/2}.

Lemma 2. Pr[VILL] is negligible.

Proof. Assume that for a PPT adversary A against our scheme Pr[VILL] is non-negligible, then we construct an
adversary B′′ that violates the soundness of the NIZK proof system with the same probability. B′′ simulates the
IND-CCA2 interaction for A as follows:

Key Generation: B′′ receives R as input. It calls Π key generation algorithm 2k times obtaining the public keys

pk00,1, ..., pk00,k/2, pk01,1, ..., pk01,k/2, pk10,1, ..., pk10,k/2, pk11,1, ..., pk11,k/2,

which constitute PK ′, and the secret keys

dk00,1, ..., dk00,k/2, dk01,1, ..., dk01,k/2, dk10,1, ..., dk10,k/2, dk11,1, ..., dk11,k/2,

which constitute DK. B′′ inputs PK = (PK ′, R) to A as a public key of the proposed scheme.
Decryption Queries: Whenever A makes a decryption query, B′′ proceeds as follows:

1. If for this ciphertext π is valid and Ci and Cj are ciphertexts of different plaintexts for some i, j ∈
{1, . . . , k/2}, B′′ outputs ((C1, ..., Ck/2), π) and halts.

2. Otherwise, B′′ decrypts the ciphertext using the procedures of our scheme.
Challenging Query: Whenever A makes the challenging query with two messages m0,m1 ∈M such that |m0| =
|m1|, B′′ proceeds as follows:
1. Chooses randomly b ∈ {0, 1}.
2. Encrypts the message mb using the procedures of our scheme.

As long as the event VILL did not occur, the simulation is perfect, so the probability that B′′ breaks the soundness
of the NIZK proof system is exactly Pr[VILL]. Since the NIZK proof system is Adaptively-Secure by assumption,
Pr[VILL] is negligible for all PPT adversaries against our scheme.



3.3 Performance: Comparison with the Original DDN

The most remarkable advantage of our construction to the original DDN is that its ciphertext length and compu-
tational cost are significantly reduced without sacrificing anything. More specifically, in our scheme the number of
component ciphertexts (i.e. (C1, ..., Ck/2)) is reduced to be a half of that of the original scheme (i.e. (C1, ..., Ck))
without increasing the key size. Furthermore, since the NIZK proof for guaranteeing that decryption results of
C1, ..., Ck/2 are identical can also be significantly simpler than that of C1, ..., Ck, the component for the NIZK
proof can also be reduced. In summary, performance of our construction is equivalent or superior to that of the
original DDN in all aspects. We summarize below the properties of our construction in comparison to the original
DDN.

Ciphertext Size nearly half
Public Key Size same
Secret Key Size same
Encryption Computational Cost nearly half
Decryption Computational Cost nearly same

4 An Intuitive Explanation of Our Trick

Here, we give a high level overview of our trick for the improvement. For explaining it, we start with the following
observation. By carefully looking into the security proof of the original DDN, we notice that it may be still valid
and actually works for the following generalized construction:

Key Generation. For security parameter k, run CPA.Gen(1k) for nN times to obtain

DK = (dk1,1, ..., dk1,N , dk2,1, ..., dk2,N , ..., dkn,1..., dkn,N )

and
PK ′ = (pk1,1, ..., pk1,N , pk2,1, ..., pk2,N , ..., pkn,1..., pkn,N ).

Pick a random string R. The decryption key is DK and the public key is PK = (PK ′, R).
Encryption. For encrypting m, run OT.Gen(1k) to obtain a verification key vk and a signing key sk. Assume that

vk can be expressed as (vk1, vk2, ..., vkN ) ∈ {1, ..., n}N such that for all i ∈ {1, ..., N}, vki ∈ {1, ..., n}. Then,
run Ci ← CPA.Enc(pkvkj ,j ,m) for 1 ≤ j ≤ N . Generate a NIZK proof π which guarantees that the plaintexts
of all Ci are identical. Finally, run σ ← OT.Sig((C1, ..., CN , π), sk). The ciphertext is C = (C1, ..., CN , π, vk, σ).

Decryption. For decrypting a given ciphertext C = (C1, ..., CN , π, vk, σ), run Ver((C1, ..., CN , π), σ, vk) to check
the validity of the signature. Also, test the validity of π. If invalid (for any of these tests), output ⊥. Otherwise,
run m← CPA.Dec(C1, dkvk1,1).

The above scheme is provably IND-CCA2 secure if nN ≥ 2k. The proof can be trivially obtained from that presented
in the previous sections of this paper.

From this observation, we see that there asymptotically exists a trade-off between N and n × N , and this
implies that if we reduce the ciphertext size (in other words, decrease N), then we have to increase the key size (in
other words, increase n × N). Let |KEY | and |CTXT | be nN and N , respectively. Then, we have the following
inequality:

|KEY | ≥ |CTXT | · 2k|CTXT |
−1
.

This inequality implies that if |CTXT | decreases, then |KEY | exponentially increases. Hence, the above generalized
DDN is not very useful in a general sense. However, this is an asymptotic observation and does not always hold.
Especially, the righthand side of the above inequality is not monotonic in |CTXT | (it has a local minimum at
|CTXT | = k/(log2 e)), and therefore, there exist some interesting parameter settings for k/2 ≤ |CTXT | ≤ k

Based on this observation, we can construct some interesting variants of the DDN as well. For example, if we set
|CTXT | = k/2, then |KEY | becomes the same value as that for |CTXT | = k. This means that we can compress
the ciphertext length without increasing the key size. (This example is what we presented in the previous sections).
Another interesting example is that by setting |CTXT | ' k/(log2 e), we can simultaneously reduce both |CTXT |
and |KEY |. Many other interesting variations seem also be possible.



5 Conclusions

We have modified the DDN cryptosystem and obtained a cryptosystem that reduces almost by half the ciphertext
size without changing either the cryptosystem security or its keys sizes. Our improvement is based on a trick that
asymptotically allows a trade-off between the ciphertext size and the keys sizes, but for our specific parameters
allows a reduction of the ciphertext size without changing the other parameters of the cryptosystem.
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