
Simulation based security in the applied pi calculus

Stéphanie Delaune1, Steve Kremer1, and Olivier Pereira2

1 LSV, ENS Cachan & CNRS & INRIA, France
2 UCL Crypto group, Belgium

Abstract. We present a symbolic framework for refinement and composition of
security protocols. The framework uses the notion of ideal functionalities. These
are abstract systems which are secure by construction and which can be combined
into larger systems. They can be separately refined in order to obtain concrete pro-
tocols implementing them. Our work builds on ideas from computational models
such as the universally composable security and reactive simulatability frame-
works. The underlying language we use is the applied pi calculus which is a
general language for specifying security protocols. In ourframework we can ex-
press the different standard flavours of simulation-based security which happen
to all coincide. We illustrate our framework on an authentication functionality
which can be realized using the Needham-Schroeder-Lowe protocol. For this we
need to define an ideal functionality for asymmetric encryption and its realization.
We also show a joint state result for this functionality which allows composition
(even though the same key material is reused) using a taggingmechanism.

1 Introduction

Symbolic techniques showed to be a very useful approach for the modeling and analysis
of security protocols: for twenty years, they improved our understanding of security pro-
tocols, allowed discovering flaws [18], and provided support for protocol design [11].
These techniques also resulted in the creation of powerful automated analysis tools [5,
10, 3], and impacted on several protocol standards used every day, e.g., [9].

Until now, symbolic techniques mostly concentrated on specifying and proving con-
fidentiality and correspondence properties, i.e., showingwhich symbols are kept secret,
and on which session parameters participants agree when a protocol session completes.
However, such specifications do not provide any informationabout the behavior of pro-
tocols when they are used in composition with other protocols, and surprising behaviors
are well know to happen in such contexts [8]. Moreover, protocols are often expected to
provide more sophisticated security guarantees: we can think of privacy-type properties
for voting protocols, or input independence for auction protocols.

In this paper, we present a symbolic framework for refinementand composition
of security protocols, in which protocols are defined in terms of the behavior of ideal
functionalities, following the general outline of simulation-based security [6, 13, 4]. A
lower-level protocol is said to securely emulate a higher-level protocol, or ideal func-
tionality, if any behavior that can be observed from the interaction of an adversary with
the lower-level protocol can also be observed from the interaction of another adversary
(called the simulator) with the higher-level protocol. As aresult, ideal functionalities

can be successively refined into more concrete protocols, but also composed to build
more complex protocols. Functionalities have been proposed for a wide range of proto-
col tasks, including general secure multi-party computation [6]. In the spi-calculus [2],
Abadi and Gordon also present the idea of a protocol being equivalent to an idealized
version. This is however more restrictive as they do not havethe notion of a simulator.

Simulation-based security frameworks can typically be decomposed into two “lay-
ers”: (i) a foundational layer that provides a general modelfor concurrent computation,
and (ii) a security layer that provides general security definitions, most importantly the
notion of secure protocol emulation to be used. While the security layer is essentially
common to all frameworks [4, 6, 7, 15, 19], including this paper, the foundational layer
varies widely. Those variations typically lie in the concurrency model (from the most
common token-passing mechanism to the use of scheduler withvarious powers) and in
the definition of computational bounds. These differences typically result in incompa-
rable security notions.

Defining simulation-based security while choosing the applied pi calculus [1] as the
foundational layer brings the main benefits of this approachinto the symbolic world:

– it provides a powerful machinery that can be used to specify awide range of so-
phisticated protocol tasks in terms of the behavior of functionalities, and

– general composition theorems guarantee that protocols keep behaving as expected
when executed in arbitrary contexts.

While we tried to stick to the common definitions from the security layer of simulation-
based security frameworks, the use of the applied pi calculus as foundational layer
raised interesting challenges.

First, at the most foundational level, one has to adopt a notion of indistinguishabil-
ity of processes. While the symmetric notions of computational indistinguishability and
observational equivalence are most commonly used in the cryptographic and symbolic
worlds respectively, the symmetry of such relations appeared to be too restrictive for
our purpose. For instance, requiring a symmetric equivalence relation makes visible the
addition of an adversary that simply acts as a relay. Such undesired behaviors moti-
vate the introduction of new notions of observational preorder and labelled simulation
relations in the applied pi calculus.

Next, our attempts at translating ideal functionalities from the computational world
into the symbolic world showed to be a non immediate task. Forinstance, traditional
ideal functionalities for asymmetric encryption produce ciphertexts by encrypting ran-
dom strings unrelated to the original messages. In our setting we use a technique of
double-encrypting messages such that a plaintext corresponding to a given ciphertext
can only be retrieved through the decryption services offered by the functionalities.

Eventually, we investigate the statement of general composition theorems, and of
a specific joint state composition theorem for our asymmetric encryption functionality,
as this functionality is typically expected to be used in several protocol sessions. While
these theorems appear to be the natural counterpart of theircomputational versions [4,
6, 7, 17], the joint state composition theorem brings message tagging constraints that
are consistent with those obtained by using a completely different symbolic approach
(e.g. [14]).

2

2 The applied pi calculus

The applied pi calculus [1] is a language for describing concurrent processes and their
interactions.

2.1 Syntax and informal semantics

To describe processes, one starts with a set ofnames(which are used to name com-
munication channels or other atomic data), a set ofvariables, and asignatureΣ which
consists of thefunction symbolswhich will be used to defineterms. In the case of se-
curity protocols, typical function symbols will includeenc for encryption, which takes
plaintext and a key and returns the corresponding ciphertext, anddec for decryption,
taking ciphertext and a key and returning the plaintext. Terms are defined as names,
variables, and function symbols applied to other terms. Terms and function symbols are
sorted, and of course function symbol application must respect sorts and arities. By the
means of an equational theoryE we describe the equations which hold on terms built
from the signature. We denote=E the equivalence relation induced byE. Two terms are
related by=E only if that fact can be derived from the equations inE. When the set of
variables occurring in a termT is empty, we say thatT is ground.
Example 1.Let Eenc be the theory made up of the equationsdec(enc(x, k), k) = x and
test(enc(x, y), y) = ok. We have thattest(dec(enc(enc(n, k1), k2), k2), k1) =E ok.

In the applied pi calculus, one hasplain processesandextended processes. Plain
processes are built up in a similar way to processes in the pi calculus, except that mes-
sages can contain terms (rather than just names). Below,M andN are terms,n is a
name,x a variable andu is a metavariable, standing either for a name or a variable.
Extended processes addactive substitutionsand restriction on variables.

P, Q, R := plain processes
0
P | Q
νn.P
if M = N thenP elseQ
in(u, x).P
out(u, N).P

A, B, C := extended processes
P
A | B
νn.A
νx.A
{M/x}

{M/x} is the substitution that replaces the variablex with the termM . Active sub-
stitutions generalise “let”. The processνx.({M/x} | P) corresponds exactly to the
process “letx = M in P ”. As usual, names and variables have scopes, which are de-
limited by restrictions and by inputs. We writefv(A), bv(A), fn(A) andbn(A) for the
sets of free and bound variables and free and bound names ofA, respectively. We also
assume that, in an extended process, there is at most one substitution for each variable,
and there is exactly one when the variable is restricted. We say that an extended process
is closedif all its variables are either bound or defined by an active substitution.

Active substitutions are useful because they allow us to mapan extended processA
to its frameφ(A) by replacing every plain process inA with 0. A frame is an extended
process built up from0 and active substitutions by parallel composition and restriction.
The frameφ(A) can be viewed as an approximation ofA that accounts for the static
knowledgeA exposes to its environment, but notA’s dynamic behaviour. The domain of

3

a frameϕ, denoted bydom(ϕ), is the set of variables for whichϕ defines a substitution
(those variablesx for which ϕ contains a substitution{M/x} not under a restriction
on x). An evaluation contextC[] is an extended process with a hole instead of an
extended process.
Example 2.Consider the following processP :

νk. (in(io1, x).out(net , enc(x, k))
| in(net , y). if test(y, k) = ok thenout(io2, dec(y, k)) else0).

The first component receives a messagex on the channelio1 and sends its encryp-
tion with the keyk on the channelnet . The second is waiting for an inputy onnet , uses
the secret keyk to decrypt it. If the decryption succeeds, then it forwards the resulting
plaintext onio2.

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined by structural
rules defining two relations:structural equivalence(briefly described in Section 2.1)
andinternal reduction, noted→. Structural equivalence, noted≡, is the smallest equiv-
alence relation on extended processes that is closed underα-conversion on names and
variables, application of evaluation contexts, and some other standard rules such as
associativity and commutativity of the parallel operator and commutativity of the bind-
ings. In addition the following three rules are related to active substitutions and equa-
tional theories:

νx.{M/x} ≡ 0, {M/x} | A ≡ {M/x} | A{M/x}, and{M/x} ≡ {N/x} if M =E N

Internal reduction→ is the smallest relation on extended processes closed under
structural equivalence and application of evaluation contexts such that

COMM out(a, M).P | in(a, x).Q → P | Q{M/x}
THEN if M = N thenP elseQ → P whereM =E N
ELSE if M = N thenP elseQ → Q

for any ground termsM andN such thatM 6=E N

The operational semantics is extended by alabelledoperational semantics enabling
us to reason about processes that interact with their environment. Labelled operational
semantics defines the relation

α
−→ whereα is either an inputin(a, M) (a is a channel

name andM is a term that can contain names and variables), orνx.out(a, x) (x is
variable of base type), orout(a, c) or νc.out(a, c) (c is a channel name). We adopt the
following rules in addition to the internal reduction rules:

IN in(a, x).P
in(a,M)
−−−−−→ P{M/x}

OUT-CH out(a, c).P
out(a,c)
−−−−−→ P

OPEN-CH
A

out(a,c)
−−−−−→ A′ c 6= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

OUT-T out(a, M).P
νx.out(a,x)
−−−−−−−→ P | {M/x}

x 6∈ fv(P) ∪ fv(M)

SCOPE
A

α
−→ A′ u does not occur inα

νu.A
α
−→ νu.A′

bn(α) ∩ fn(B) = ∅

PAR
A

α
−→ A′ bv(α) ∩ fv(B) = ∅

A | B
α
−→ A′ | B

STRUCT
A ≡ B B

α
−→ B′ A′ ≡ B′

A
α
−→ A′

4

Our rules differ slightly from those described in [1], although we prove in [12] that
labelled bisimulation in our system coincides with labelled bisimulation in [1].

Example 3.Consider the processP defined in Example 2. We have that:

P
in(io1,s)
−−−−−→ νk.(out(net , enc(s, k))

| in(net , y). if test(y, k) = ok thenout(io2, dec(y, k)) else0)
−→ νk. if test(enc(s, k), k) = ok thenout(io2, dec(enc(s, k), k)) else0)
−→ νk.out(io2, s)
νx.out(io2,x)
−−−−−−−−→ νk.{s/x}

Let A be the resulting process. We have thatφ(A) ≡ νk.{s/x}.

2.3 Equivalences

In [1], it is shown that observational equivalence coincides with labelled bisimilarity.
This relation is like the usual definition of bisimilarity, except that at each step one
additionally requires that the processes are statically equivalent.

Definition 1 (static equivalence (≈s)). Two termsM andN are equal in the frame
φ, written (M =E N)φ, if, and only if there exists̃n and a substitutionσ such that
φ ≡ νñ.σ, Mσ =E Nσ, andñ ∩ (fn(M) ∪ fn(N)) = ∅. Two framesφ1 andφ2 are
statically equivalent, φ1 ≈s φ2, whendom(φ1) = dom(φ2), and for all termsM, N
we have that(M =E N)φ1 if and only if(M =E N)φ2.

Example 4.Let ϕ0 = νs.{enc(s,k)/x} andϕ1 = νr.{r/x} wherek, s andr are names
and E be the theory given in Example 1. We have(test(x, k) =E ok)ϕ0 but not
(test(x, k) =E ok)ϕ1, thusϕ0 6≈s ϕ1. However, we haveνk.ϕ0 ≈s ϕ1.

We are now defining observational equivalence and observational preorder. For this
we introduce the notion of abarb. Given an extended processA and a channel namea,
we writeA ⇓ a whenA →∗ C[out(a, M).P] for some termM , plain processP , and
evaluation contextC[] that does not binda.

Definition 2 (observational preorder, equivalence).Observational preorder(�) (resp.
equivalence(≈)) is the largest (resp. largest symmetric) relation on extended processes
having same domain such thatA R B implies

1. if A ⇓ a thenB ⇓ a;
2. if A →∗ A′, thenB →∗ B′ andA′ R B′ for someB′;
3. C[A] R C[B] for all closing evaluation contextsC[].

Definition 3 (labelled (bi)similarity). A relationR on closed extended processes is a
simulation relation ifA R B implies

1. φ(A) ≈s φ(B),
2. if A → A′, thenB →∗ B′ andA′ R B′ for someB′,
3. if A

α
→ A′ and fv(α) ⊆ dom(A) andbn(α) ∩ fn(B) = ∅, thenB →∗ α

→→∗ B′

andA′ R B′ for someB′.

5

If R andR−1 are both simulation relations we say thatR is a bisimulation relation.
Labelled similarity(�ℓ), resp.labelled bisimilarity(≈ℓ), is the largest simulation, resp.
bisimulation relation.

Observational preorder and similarity were not introducedin [1]. However, these
definitions seem natural for our purposes. Obviously we havethat≈ ⊂ � and≈ℓ ⊂ �ℓ.
We now show that labelled bisimilarity is a precongruence.

Proposition 1. Let A andB be two extended processes such thatA �ℓ B. We have
thatC[A] �ℓ C[B] for all closing evaluation contextC[].

From this proposition it follows that�ℓ ⊆ �. Hence, we can use labelled similarity
as a convenient proof technique for observational preorder. We actually expect the two
relations to coincide but did not prove it as we did not need it. Moreover, the relation�ℓ

is stable under application of replication and replicationdistributes over parallel.

Lemma 1. Let P andQ be two closed plain processes. We have that: (i) ifP �ℓ Q
then!P �ℓ !Q; (ii) !(P | Q) �ℓ !P |!Q and!P |!Q �ℓ !(P | Q).

3 Simulation based security

3.1 Basic definitions

The simulation-based security approach classically distinguishes betweeninput-output
channels, which yield the internal interface of a protocol orfunctionalityto its environ-
ment andnetwork channels, which allow the adversary to interact with the functionality.
We suppose that all channels are of one of these two sorts:IO or NET. Moreover the
sort system ensures that names of sortNET can never be conveyed as data on a channel,
i.e. these channels can never be transmitted. We writefnet(P) for fn(P) ∩ NET.

Definition 4 (functionality, adversary). A functionalityF is a closed plain process.
Anadversaryfor F is an evaluation contextA[] of the form:

νñet1.(A1 | νñet2.(A2 | . . . |νñetk.(Ak |) . . .)) with fnet(F) ⊆
⋃

1≤i≤k ñet i ⊆ NET

where eachAi (1 ≤ i ≤ k) is a closed plain process, andfn(A[]) ∩ IO = ∅.

We may note that ifA[] is an adversary forF thenfnet(A[]) = fnet(A[F]).

Lemma 2. Let F be a functionality andA1[] be an adversary forF . ThenA1[F]
is a functionality. Besides, ifA2[] is an adversary forA1[F], thenA2[A1[]] is an
adversary forF .

While adversaries can control the communications of functionalities onNET chan-
nels,IO contextsmodel the environment of those functionalities, providingthem with
their inputs and collecting their outputs.

Definition 5 (IO context). An IO contextis an evaluation contextCio [] of the form
ν ĩo1.(C1 | ν ĩo2.(C2 | . . . |ν ĩok.(Ck |) . . .)) with

⋃
1≤i≤k ĩoi ⊆ IO where eachCi

(1 ≤ i ≤ k) is a closed plain process.

Note that ifF is a functionality andC[] is an IO context, thenCio [F] is a functionality.

6

3.2 Strong simulatability

The notion of strong simulatability [16], which is probablythe simplest secure emula-
tion notion used in simulation-based security, can be formulated in our setting.

Definition 6 (strong simulatability). Let F1 andF2 be two functionalities.F1 emu-
latesF2 in the sense ofstrong simulatability, written F1 ≤SS F2, if there exists an
adversaryS for F2 (the simulator) such thatfnet(F1) = fnet(S[F2]) andF1 � S[F2].

The definition ensures that any behavior ofF1 can be matched byF2 executed in
the presence of a specific adversaryS. Hence, there are no more attacks onF1 than
attacks onF2. Moreover, the presence ofS allows abstract definitions of higher-level
functionalities, which are independent of a specific realization.

Example 5.LetFcc = in(io1, s).out(netcc, ok).in(netcc, x). if x = ok thenout(io2, s).
The functionality models a confidential channel and takes a potentially secret values as
input on channelio1. The adversary is notified via channelnetcc that this value is to be
transmitted. If the adversary agrees the value is output on channelio2. This functional-
ity can be realized by the processP introduced in Example 2.
LetS = νnetcc.in(net cc, x).νr.out(net , r).in(net , x). if x = r thenout(net cc, ok) |).
We indeed have thatP �ℓ S[Fcc] andfnet(P) = fnet(S[Fcc]).

In order to examine the properties of strong simulatabilityin our specific setting,
we now define a particular adversary which is called adummy adversary.

Definition 7 (dummy adversary). Let F be a functionality. Thedummy adversary
for F is the adversaryD[] = νs̃im .(D1 | νñet .(D2 |)) where:

– ñet = fnet(F) = {net1, . . . ,netn};
– s̃im = {simi

1, . . . , sim
i
n, simo

1, . . . , sim
o
n} ⊆ NET;

– D1 = !in(net1, x).out(sim i
1, x) | . . . |!in(netn, x).out(sim i

n, x) |
!in(simo

1, x).out(net1, x) | . . . |!in(simo
n, x).out(netn, x);

– D2 = !in(sim i
1, x).out(net1, x) | . . . |!in(sim i

n, x).out(netn, x) |
!in(net1, x).out(simo

1, x) | . . . |!in(netn, x).out(simo
n, x);

By construction we have thatfnet(D[F]) = fnet(F).

Lemma 3. LetF be a functionality andD[] the dummy adversary forF : F � D[F].

However, we do not have thatF ≈ D[F], sinceD[F] has more non-determinism
thanF . A direct consequence of this lemma is thatF1 � F2 andfnet(F1) = fnet(F2)
implies thatF1 ≤SS F2: it is sufficient to observe thatF2 � D[F2] and hence by
transitivityF1 � D[F2]. We use these observations to show that≤SS is a preorder.

Lemma 4. The relation≤SS is a preorder, that is the following hold: (i)reflexivity:
F1 ≤SS F1; (ii) transitivity:F1 ≤SS F2 andF2 ≤SS F3 ⇒ F1 ≤SS F3.

Moreover, we show that≤SS is closed under application of IO contexts and parallel
composition of functionalities.

7

Proposition 2. LetF1, F2 be functionalities andCio be an IO context.

F1 ≤SS F2 =⇒ Cio [F1] ≤SS Cio [F2].

Now, we prove the following composition results. Actually,closure under parallel
composition of functionalities is a direct consequence of the previous proposition by
noticing that whenF is a functionality then | F is an IO-context. The proof of the
closure under replication is more involved and given in Appendix.

Proposition 3. LetF1, F2 andF3 be three functionalities. We have that:
(i) F1 ≤SS F2 ⇒ F1 | F3 ≤SS F2 | F3; and (ii) F1 ≤SS F2 ⇒ !F1 ≤SS !F2.

3.3 Other notions of simulation based security

Several other notions of simulation based security appear in the literature. We present
these notions, and show that they all coincide in our setting. This coincidence is typi-
cally regarded as highly desirable [16, 15], while it does not hold in most simulation-
based security frameworks [6, 4].

Definition 8. LetF1 andF2 be two functionalities andA be any adversary forF1.

– F1 emulatesF2 in the sense ofblack box simulatability, writtenF1 ≤BB F2, iff
∃S. ∀A.A[F1] � A[S[F2]] whereS is an adversary forF2 with fnet(S[F2]) = fnet(F1).

– F1 emulatesF2 in the sense ofuniversally composable simulatability, written
F1 ≤UC F2, iff ∀A. ∃S. A[F1] � S[F2] whereS is an adversary forF2 such
that fnet(A[F1]) = fnet(S[F2]).

– F1 emulatesF2 in the sense ofuniversally composable simulatability with dummy
adversary, writtenF1 ≤UCDA F2, iff ∃S. D[F1] � S[F2] whereD is the dummy
adversary forF1 andS is an adversary forF2 such thatfnet(S[F2]) = fnet(D[F1]).

Theorem 1. We have that≤SS = ≤BB = ≤UC = ≤UCDA.

The above security notions can also be defined replacing observational preorder by
observational equivalence. We denote the corresponding relations by≤SS

≈ ,≤BB
≈ ,≤UC

≈

and≤UCDA
≈ . Surprisingly, the use of observational equivalence turnsout to be too strong,

ruling out natural secure emulation cases: for instance, the≤SS
≈ relation is not reflexive.

4 Applications

We illustrate our framework by showing the secure emulationof a mutual authenti-
cation functionality by the Needham-Shroeder-Lowe (NSL) protocol [18].As the NSL
protocol uses public key encryption we first introduce in Section 4.1 functionalities
for asymmetric encryption: the ideal functionality and itsrealization together with a
joint state composition result. Then, in Section 4.2, we present the mutual authentica-
tion functionality and its realization through the NSL protocol. Finally we use the joint
state composition result in Section 4.3 to obtain a result for an unbounded number of
concurrent sessions.

8

We use the notationin(u, =M) to test whether the input onu is equal (moduloE)
to the termM (if not, the process blocks). We sometimes use tuples of terms, denoted
by 〈M1, . . . , Mn〉, while keeping the equational theory for these tuples implicit. Lastly,
we omit “elseQ” in a conditional whenQ = 0.

4.1 Asymmetric encryption with joint state

In this section we introduce a functionality for asymmetricencryption together with a
joint state composition resultwhich is crucial for composition of protocols that share
key material. Even though encryption in a Dolev-Yao model isalready idealized we
will see that we nevertheless need to introduce anideal functionalityfor encryption in
order to obtain the joint state composition result. Throughout this section we rely on the
following equational theory:

adec(aenc(x, pk(y), z), y) = x testdec(aenc(x, pk(y), z), y) = ok.

The first equation models randomized asymmetric encryptionwhereas the second
one allows testing whether decryption with a given key succeeds or not.

Real encryption.The real encryption functionality is described in Figure 1:

– Initialisation: the functionality receives a channel nameio1
pke, which will be used

for all sensitive information exchanges, i.e. when this functionality is used the chan-
nel io1

pke should be restricted. A fresh private keysk is generated and the corre-
sponding public key, i.e.pk(sk), is sent onio1

pke. Then the process is ready to re-
ceive encryption or decryption requests. Note that encryption requests can be sent
on the sensitive channelio1

pke or on the public channelio2
pke which is the channel

the environment will typically use. Decryption requests are only available through
the sensitive channelio1

pke and thus will not be used by the attacker.
– EncryptionPenc: each time this process receives a request on the channelio1

pke

(resp.io2
pke), it computes the corresponding ciphertext (probabilistic encryption)

and outputs the ciphertext on the channelio1
pke (resp.io2

pke).
– DecryptionPdec: each time this process receives a request on the channelio1

pke, it
tries to decrypt the ciphertext and checks whether the tag isTAG0. If so, it outputs
the plaintext on the channelio1

pke. Otherwise, it does nothing.

Ppke := in(iopke, io
1

pke).νsk.out(io1

pke, 〈KEY, pk(sk)〉).
(let ioi

pke = io1

pke in !Penc | let ioi

pke = io2

pke in !Penc | !Pdec)

Penc := in(ioi

pke, 〈= ENC, m〉).
νr2. let menc = aenc(〈TAG0, m〉,pk(sk), r2) in out(ioi

pke, 〈CIPHER, menc〉)

Pdec := in(io1

pke, 〈= DEC, m〉).
let 〈= TAG0, m1〉 = adec(m,sk) in out(io1

pke, 〈PLAIN, m〉)

Fig. 1: Real encryption functionality

9

Ideal functionality. We now propose, in Figure 2, an idealized versionFpke of the real
encryption functionality, which guarantees that the confidentiality of messages is pre-
served independently of any cryptanalytic effort that could be performed on ciphertexts
from the knowledge of public keys. In various cryptographicsettings [4, 6, 17], this is
achieved by computing ciphertexts as the encryption of random messages instead of the
actual plaintext. To be able to perform decryption, a table for plaintext/ciphertext asso-
ciations is maintained. The burden of this association table is avoided in our symbolic
specification by using two layers of encryption: messages are first encrypted using a
secure keypk(ssk), then tagged and encrypted with the public keypk(sk) that is pub-
lished during the initialization step. We stress that neither pk(ssk) nor ssk are ever
transmitted byFpke, guaranteeing that it is impossible to decrypt such a ciphertext out-
side the functionality, even if the keysk is adversarially chosen, which will be a crucial
feature for our joint state composition theorem.

The ideal functionality behaves as follows:

– Initialisation: the attacker chooses the secret keysk and the tag that will be added
in each encryption. Then a secure keyssk is generated and now the process is ready
to receive encryption or decryption requests.

– EncryptionFenc: each time the process receives a request on the channelio1
pke

(resp.io2
pke), it computes the corresponding ciphertext and outputs theciphertext on

the channelio1
pke (resp.io2

pke). As explained above, the plaintextm is first encrypted
usingpk(ssk) before being tagged and encrypted withpk(sk).

– DecryptionFdec: each time the process receives a request on the channelio1
pke, it

tries to decrypt the ciphertext and checks if the tag is the tag provided during the
initialization. Then, it checks if the resulting plaintextis encrypted underpk(ssk).
If so, this means that this ciphertext has been produced by the encryption func-
tionality and thus has to be decrypted twice. Otherwise, theciphertext has been
produced by the attacker and the plaintext is sent on the channel io1

pke.

Fpke := in(iopke, io
1

pke).out(net , INIT).in(net , 〈= ALGO, sk, tag〉).out(io1

pke, 〈KEY, pk(sk)〉).
νssk. (let ioi

pke = io1

pke in !Fenc | let ioi

pke = io2

pke in !Fenc | !Fdec)

Fenc := in(ioi

pke, 〈= ENC, m〉).νr1.νr2.

let alea = aenc(m, pk(ssk), r1) in let menc = aenc(〈tag, alea〉,pk(sk), r2) in
out(ioi

pke, 〈CIPHER, menc〉)

Fdec := in(io1

pke, 〈= DEC, m〉). let 〈= tag,m1〉 = adec(m,sk) in
if testdec(m1, ssk) = ok thenout(io1

pke, 〈PLAIN, adec(m1, ssk)〉)
elseout(io1

pke, 〈PLAIN, m1〉)

Fig. 2: Ideal encryption functionality

Realization. We indeed have that the real encryption functionality realizes the ideal
one, i.e.,Ppke ≤SS Fpke. This is witnessed by the adversary:

Apke = νnet .(in(net , = INIT). νsk. out(net , (ALGO, sk, TAG0)) |).

10

Composition with joint state. While ≤SS is stable under replication this is not al-
ways sufficient to obtain composition guarantees. Indeed replication of a process also
replicates all key generation operations. In order to obtain self-composition and inter-
protocol composition with common key material we need ajoint state functionalityPjs,
i.e. a functionality that realizes!Fpke while reusing the same key material. We actually
show such a functionality for the functionalityFpke, which is a variant ofFpke in which
each message is tagged. More precisely, the processFpke is defined asFpke, except that:

(i) the functionality begins with the instructionsin(iopke, io
1
pke).in(io1

pke, sid) instead of
in(iopke, io

1
pke), (ii) each input of the formin(c, m) is replaced byin(c, 〈= sid, m〉), and

(iii) each output of the formout(c, m) is replaced byout(c, 〈sid, m〉).
ThePjs functionality process launches one instance of theFpke functionality that

will be used in all protocol sessions. All the requests to thejoint state functionality
are received on the public channeliopke in processP1

js. They are then forwarded using
the private IO channelcont to P2

js. The processP2
js shares the private channeliopke

with Fpke and forwards all the requests after concatenating the session identifier to the

plaintext. Then the response is again forwarded to the processP1
js which outputs the

result on the public channeliopke.

Pjs := νcont.(P1

js | νiopke, io
2

pke.(P
2

js |))

P1

js := in(iopke, io
1

pke).in(io1, sid).out(cont, 〈sid, INIT〉).
in(cont , (= KEY, pk)).out(io1

pke, 〈sid, KEY, pk〉).
(let ioi

pke = io1

pke in !P1

js−enc | let ioi

pke = io2

pke in !P1

js−enc | !P1

js−dec |
!in(iopke, io

1

pke).in(io1, sid).out(io1

pke, 〈sid, KEY, pk〉).
(let ioi

pke = io1

pke in !P1

js−enc | let ioi

pke = io2

pke in !P1

js−enc | !P1

js−dec))

P1

js−enc := in(ioi

pke, 〈= sid, = ENC, m〉). out(cont , 〈sid, ENC, m〉).
in(cont , 〈= CIPHER, c〉). out(ioi

pke, 〈sid, CIPHER, c〉)
P1

js−dec := in(io1

pke, 〈= sid, = DEC, c〉). out(cont, 〈sid, dec, c〉).
in(cont , 〈= PLAIN, m〉). out(iopke, 〈sid, PLAIN, m〉)

P2

js := in(cont , 〈sid, = INIT〉).νio′

pke.out(iopke, io
′

pke).
in(io′

pke, 〈= KEY, pk〉).out(cont , 〈KEY, pk〉). (!P2

js−enc | !P2

js−dec)

P2

js−enc := in(cont , 〈= sid, = ENC, m〉). out(io′

pke, 〈ENC, 〈sid, m〉〉).
in(io′

pke, 〈= CIPHER, c〉). out(cont , 〈CIPHER, c〉)
P2

js−dec := in(cont , 〈= sid, = DEC, c〉). out(io′

pke, 〈DEC, c〉).
in(io′

pke, 〈= PLAIN, m〉). out(cont , 〈PLAIN, m〉)

Fig. 3: Joint state IO-context

We now observe that the following joint state composition result holds. One instance
of the encryption functionality can be used to emulate an unbounded number of such
instances using the joint state process:Pjs[Fpke] ≤SS !Fpke.

This relation is witnessed by the adversaryAjs described in Figure 4 as we have
that:Pjs[Fpke] � Ajs[!Fpke]. This adversary launches several functionalities with the

11

same keysk. However, note that the session identifiersid used to tag each encryption
associated could be different. The value of these session identifiers is selected by the
attacker.

Ajs := νcs.(A1

js | νnet .(A2

js |))

A1

js := in(cs, INIT).out(net , INIT).in(net , 〈= ALGO, sk, tag〉).out(cs, 〈ALGO, sk, tag〉)

A2

js := in(net , 〈sid, = INIT〉). out(cs, INIT).
in(cs, 〈= ALGO, sk, tag〉). out(net , 〈sid, ALGO, sk, 〈sid, tag〉〉).
!in(net , 〈sid′, = INIT〉).out(net , 〈sid′, ALGO, sk, 〈sid′, tag〉〉)

Fig. 4: Joint state adversary

Note that it is crucial to introduce the ideal functionality. We indeed have that
Pjs[Ppke] ≤SS Pjs[Fpke] ≤SS !Fpke as well as!Ppke ≤SS!Fpke (wherePpke is de-

fined fromPpke in the same way asFpke from Fpke). However,Pjs[Ppke] 6≤SS !Ppke.
In particular!Ppke will provide multiple public keys whilePjs[Ppke] only provides a
single one. Taking the more abstract ideal functionality allows this to be avoided by a
simulator that chooses the same secret key for each instanceof the functionality.

4.2 Mutual authentication

Ideal functionality for mutual authentication. TheFauth functionality is described in
Figure 5 and works as follows. Both the initiator (Finit) and the responder (Fresp) receive
a request for mutual authentication on theirio channel. They forward this request to the
adversary and, if both parties are honest, to a trusted hostFth which compares these
requests and authorizes going further if they match. Eventually, when the adversary
asks to finish the protocol, then both participants completethe protocol session.

Realization of mutual authentication. The realization ofFauth based on the Needham-
Schroeder-Lowe protocol is described in Figure 6. For simplicity we consider only two
honest identities (ID-A and ID-B) and one adversary identity (ID-I). We suppose that
these are the only terms of sortid and that the type system only allows these values for
the variablesidi. The public key infrastructure is modelled as local tables of the partic-
ipants which are used to retrieve the channel names associated to theFpke functionality
of a given identity. We defineFX

pke to beFX
pke[iopke 7→ ioX

pke] where[iopke 7→ ioX
pke]

denotes the replacement ofiopke by ioX
pke.

We have thatPnsl ≤SS Fauth by showing thatPnsl � S[Fauth] whereS = νnet .(|
νio2

pke.Pnsl[io1 7→ net][io2 7→ net]). Intuitively, whenFauth sends the initialization on
channelnet then thePnsl protocol is executed. If the protocol succeeds then it sendsthe
message〈FINISH, sid, id1, id2〉 on channelnet . The restriction onio2

pke is to avoid that
the environment uses the encryption functionality and it ensures thatfn(S) ∩ IO = ∅.

12

Fauth := νc1.νc2.(Finit | Fresp | Fth)

Finit := in(io1, 〈INIT , sid, id1, id2〉).out(net , 〈INIT , sid, id1, id2〉).
if id2 = ID-I thenin(net , 〈FINISH, = sid, = id1, = id2〉).

out(io1, 〈finish, sid, id1, id2〉)
elseout(c1, 〈COMPARE, sid, id1, id2〉).

in(c1, 〈= OK, = sid, = id1, = id2〉).
in(net , 〈FINISH, = sid, = id1, = id2〉).
out(io1, 〈FINISH, sid, id1, id2〉)

Fresp := in(io2, 〈INIT , sid, id1, id2〉).out(net , 〈INIT , sid, id1, id2〉).
if id1 = ID-I thenin(net , 〈FINISH, = sid, = id1, = id2〉).

out(io2, 〈FINISH, sid, id1, id2〉)
elseout(c2, 〈COMPARE, sid, id1, id2〉).

in(c2, 〈= OK, = sid, = id1, = id2〉).
in(net , 〈FINISH, = sid, = id1, = id2〉).
out(io2, 〈FINISH, sid, id1, id2〉)

Fth := in(c1, 〈= COMPARE, sid, id1, id2〉).in(c2, 〈= COMPARE, = sid, = id1, = id2〉).
out(c1, 〈OK, sid, id1, id2〉).out(c2, 〈OK, sid, id1, id2〉)

Fig. 5: Mutual authentication functionality

4.3 From one to many sessions

We have shown thatPnsl ≤
SS Fauth. This result only shows thatPnsl is as secure asFauth

for a single session of the protocol. By Proposition 3 we havethat !Pnsl ≤SS!Fauth but
this does not correspond to the expected security for an unbounded number of sessions,
as each session uses a different key. To show that!Fauth can be realized with shared
key material we use our joint state result. To apply this result we need the following
technical lemma.

Lemma 5. Letn be a name andc be a channel name such thatc 6∈ fn(P) ∪ fn(Q).

νc. ![νn.(out(c, n) | P) | in(c, x).Q] �ℓ ! νc.[νn.(out(c, n) | P) | in(c, x).Q].

Applying this lemma twice on!Pnsl we obtain that

νioA
pke, io

B
pke.! (FA

pke | F
B
pke | νioa

pke, io
b
pke.

(out(iopke, io
a
pke) | out(iopke, io

b
pke) | Pinit | Presp))

≤SS!Pnsl

Applying Lemma 1 we have that

νioA
pke, io

B
pke. (!FA

pke |!F
B
pke |!νioa

pke, io
b
pke.

(out(iopke, io
a
pke) | out(iopke, io

b
pke) | Pinit | Presp))

≤SS!Pnsl

Now we can use the joint state result to obtain that:

νioA
pke, io

B
pke. (PA

js [FA
pke] | P

B
js [FB

pke] |!νioa
pke, io

b
pke.

(out(iopke, io
a
pke) | out(iopke, io

b
pke) | Pinit | Presp))

≤SS!Pnsl

wherePX
js = Pjs[iopke 7→ ioX

pke]. This corresponds to a result for unbounded number
of sessions with shared key material. Note that the joint state context uses a tagging
mechanism and adds a tag to each encryption.

13

Pnsl := νioA

pke, io
B

pke, io
a

pke, io
b

pke.

(Fpke
A | Fpke

B | out(iopke, io
a

pke) | out(iopke, io
b

pke) | Pinit | Presp)

Pinit := in(io1, 〈INIT , sid, id1, id2〉).
if id1 = ID-A then letioinit

pke = ioa

pke in P1

init

else ifid1 = ID-B then letio init
pke = iob

pke in P1

init

P1

init := if id2 = ID-A then letioresp
pke = ioa

pke in P2

init

else ifid2 = ID-B then letioresp
pke = iob

pke in P2

init

else ifid2 = ID-I then letioresp
pke = ioi

pke in P2

init

P2

init := out(ioinit
pke, sid).

(*Msg 1*) νna.out(ioresp
pke , 〈sid, ENC, 〈na, id1〉〉). in(ioresp

pke , 〈= sid, = CIPHER, x1〉).

out(netnsl, x1).
(*Msg 2*) in(netnsl, x2).

out(ioinit
pke, 〈sid, DEC, x2〉). in(ioinit

pke, 〈= sid, = PLAIN, 〈= na, ynb, = id2〉〉).
(*Msg 3*) out(ioresp

pke , 〈sid, ENC, ynb〉).in(ioresp
pke , 〈= sid, = CIPHER, x3〉).

out(netnsl, x3).
out(io1, 〈FINISH, sid, id1, id2〉)

Presp := in(io2, 〈= INIT , sid, id1, id2〉).
if id1 = ID-A then letioinit

pke = ioa

pke in P1

resp

else ifid1 = ID-B then letio init
pke = iob

pke in P1

resp

else ifid1 = ID-I then letioi

pke = ioi

pke in P1

resp

P1

resp := if id2 = ID-A then letioresp
pke = ioa

pke in P2

resp

else ifid2 = ID-B then letioresp
pke = iob

pke in P2

resp

P2

resp := out(ioresp
pke , sid).

(*Msg 1*) in(netnsl, x1).out(ioresp
pke , 〈sid, DEC, x1〉).in(ioresp

pke , 〈= sid, = PLAIN, 〈xna, = id1〉〉).

(*Msg 2*) νnb.out(ioinit
pke, 〈sid, ENC, 〈xna, nb, id1〉〉).in(ioinit

pke, 〈= sid, = CIPHER, x2〉).
out(netnsl, x2).

(*Msg 3*) in(netnsl, x3).out(ioresp
pke , 〈sid, DEC, x3〉).in(ioresp

pke , 〈= sid, = PLAIN, ynb〉).

if ynb = nb thenout(io2, 〈FINISH, sid, id1, id2〉)

Fig. 6: Mutual authentication realization

5 Conclusions

This paper proposes a symbolic framework for the analysis ofsecurity protocols along
the lines of the simulation based security approach, while adopting the applied pi cal-
culus as basic layer. We state central definitions and security notions, show general
composition theorems and specific joint-state compositionresults for asymmetric en-
cryption, and illustrate their use in the analysis of a mutual authentication protocol.

This framework brings the benefits of the secure compositiontheorems associated
to simulation based security into the symbolic world, and opens the path to the analysis
of more sophisticated protocols that can naturally specified by the behavior of an ideal
functionality, e.g., electronic commerce or voting protocols. At a more fundamental
level, our framework makes use of preorder notions, which can be established by labeled
simulation. While the use of labeled bisimulations is quitecommon in the applied pi

14

calculus and has been integrated in automatic provers, the automation of proofs relying
on labeled simulation appears as an interesting challenge for future works.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. InProc.
28th ACM Symp. on Principles of Programming Languages (POPL’01). ACM, 2001.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Technical Report 149, SRC, 1998.

3. A. Armando et al. The AVISPA Tool for the automated validation of internet security
protocols and applications. InProc. 17th Int. Conference on Computer Aided Verification
(CAV’05), LNCS. Springer, 2005.

4. M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM) framework
for asynchronous systems.Information and Computation, 205(12):1685–1720, 2007.

5. B. Blanchet. An Efficient Cryptographic Protocol VerifierBased on Prolog Rules. InProc.
14th IEEE Computer Security Foundations Workshop (CSFW’01), 2001.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd IEEE Symp. on Foundations of Computer Science (FOCS’01), 2001.

7. R. Canetti, L. Cheung, D. Kaynar, N. Lynch, and O. Pereira.Compositional security for
Task-PIOAs. InProc. 20th Computer Security Foundations Symposium (CSF’07), 2007.

8. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentica-
tion and key exchange protocols. InProc. Theory of Cryptography Conference (TCC’06),
LNCS. Springer, 2006.

9. I. Cervesato, A. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and fixing public-
key kerberos.Information and Computation, 206(2-4):402–424, 2008.

10. C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security protocols.
In Proc. 20th Int. Conference on Computer Aided Verification (CAV’08), LNCS, 2008.

11. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Abstraction and refinement in protocol
derivation. InProc. 17th IEEE Computer Security Foundations Workshop (CSFW’04), 2004.

12. S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied pi-calculus.
In Proc. 27th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’07), LNCS. Springer, 2007.

13. O. Goldreich, S. Micali, and A. Wigderson. How to play anymental game: A completeness
theorem for protocols with honest majority. InProc. 19th ACM Symposium on the Theory of
Computing (STOC’87). ACM Press, 1987.

14. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption. InProc.
13th IEEE Computer Security Foundations Workshop (CSFW’00), 2000.

15. R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In
Proc. 19th IEEE Computer Security Foundations Workshop (CSFW’06), 2006.

16. R. Küsters, A. Datta, J. C. Mitchell, and A. Ramanathan.On the relationships between
notions of simulation-based security.Journal of Cryptology, 21(4):492–546, 2008.

17. R. Küsters and M. Tuengerthal. Joint State Theorems forPublic-Key Encryption and Digitial
Signature Functionalities with Local Computation. InProc. 21st IEEE Computer Security
Foundations Symposium (CSF’08), 2008.

18. G. Lowe. An attack on the Needham-Schroeder public key authentication protocol.Infor-
mation Processing Letters, 56(3):131–133, 1995.

19. P. Mateus, J. Mitchell, and A. Scedrov. Composition of cryptographic protocols in a proba-
bilistic polynomial-time calculus. InProc. 14th Conference on Concurrency Theory (CON-
CUR’03), LNCS. Springer, 2003.

15

A Proof of Proposition 1

The proof relies on the following two lemmas.

Lemma 6. LetR be the relation on closed extended processes defined as follows:

R = �ℓ ∪ {(A, B) | A ≡ Ã | {M/x}, B ≡ B̃ | {M/x}, andÃ �ℓ B̃}.

We have thatR is a labelled simulation.

Proof. Let A andB be two closed extended processes such thatA R B. EitherA �ℓ

B and we easily conclude. Otherwise, we have that there exist two closed extended
processes̃A, B̃, an active substitution{M/x} such that:

A ≡ Ã | {M/x}, B ≡ B̃ | {M/x}, andÃ �ℓ B̃.

We show that the 3 points of the definition of labelled simulation hold.

1. A ≈s B. Indeed, we have that̃A ≈s B̃, thusÃ | {M/x} ≈s B̃ | {M/x}. The
result easily follows.

2. If A → A′ thenB →∗ B′ for someB′ such thatA′ R B′.
SinceA ≡ Ã | {M/x}, we have thatA′ ≡ Ã′ | {M/x} for some closed extended
processÃ′ such thatÃ → Ã′. SinceÃ �ℓ B̃, we know that there exists a closed
extended process̃B′ such thatB̃ →∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = B̃′ | {M/x}.

We have thatB ≡ B̃ | {M/x} →∗ B̃′ | {M/x}
def
= B′ andA′ R B′ by definition

of R.

3. If A
α
−→ A′ with fv (α) ⊆ dom(A) andbn(α) ∩ fn(B) = ∅, thenB →∗ α

−→→∗ B′

for someB′ such thatA′ R B′.
SinceA ≡ Ã | {M/x}, we have thatA′ ≡ Ã′ | {M/x} for some closed extended

processÃ′ such thatÃ
α′

−→ Ã′ with α′ = α[x 7→ M]. Note thatfv (α′) ⊆ dom(Ã)
and we can assume thatbn(α′) ∩ fn(B̃) = ∅. SinceÃ �ℓ B̃, we know that there

exists a closed extended processB̃′ such thatB̃ →∗ α′

−→→∗ B̃′ andÃ′ �ℓ B̃′. Let

B′ = B̃′ | {M/x}. We have thatB ≡ B̃ | {M/x} →∗ α
−→→∗ B̃′ | {M/x}

def
= B′

andA′ R B′ by definition ofR. This allows us to conclude. ⊓⊔

Lemma 7. LetR be the relation on closed extended processes defined as follows:

R = �ℓ ∪ {(A, B) | A ≡ νũ.(Ã | P), νũ.(B̃ | P), andÃ �ℓ B̃}.

We have thatR is a labelled simulation.

Proof. Let A andB be two closed extended processes such thatA R B. EitherA �ℓ B
and we easily conclude. Otherwise, we have that there exist two closed extended pro-
cessesÃ, B̃, a plain processP (with fv (P) ⊆ dom(A)) and a sequence of metavari-
ablesũ such that:

A ≡ νũ.(Ã | P), B ≡ νũ.(B̃ | P) andÃ �ℓ B̃.

16

We show that the 3 points of the definition of labelled simulation hold. First, we have
that A ≈s B. Indeed, we have that̃A ≈s B̃, thus since≈s is closed by application
of evaluation context, we deduce thatνũ.(Ã | P) ≈s νũ.(B̃ | P), and thusA ≈s B.
Now, we distinguish several cases depending on the form of the labelα involved in the
reductionA

α
−→ A′.

1. α = νx.out(c, x). We distinguish two cases:

(a) A′ ≡ νũ.(Ã′ | P) for some closed extended processÃ′ andÃ
νx.out(c,x)
−−−−−−−→ Ã′

with c, x 6∈ ũ. (Note thatc, x 6∈ ũ can be assumed w.l.o.g.: fromA ≡ νũ.(Ã |
P), B ≡ νũ.(B̃ | P) and Ã �ℓ B̃ we obtain byα-conversion thatA ≡
νũ1.(Ã1 | P1), B ≡ νũ1.(B̃1 | P1) for someũ1 with c, x 6∈ ũ1 and as�ℓ is
closed under injective renaming of free names we have thatÃ1 �ℓ B̃1).
SinceÃ �ℓ B̃, we know that there exists a closed extended processB̃′ such

thatB̃ →∗ νx.out(c,x)
−−−−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = νũ.(B̃′ | P). We have

thatB ≡ νũ.(B̃ | P) →∗ νx.out(c,x)
−−−−−−−→→∗ νũ.(B̃′ | P)

def
= B′ andA′ R B′ by

definition ofR.
(b) A′ ≡ νũ.νñ.(Ã | P ′ | {M/x}) for some plain processP ′ and some sequence

of names̃n such that̃n∩ fn(B̃) = ∅ andP
νx.out(c,x)
−−−−−−−→ νñ.(P ′ | {M/x}) with

c, x 6∈ ũ ∪ ñ.
Let B′ = νũ.νñ.(B̃ | P ′ | {M/x}). We have that̃A | {M/x} �ℓ B̃ | {M/x}
thanks to Lemma 6 and the fact thatÃ �ℓ B̃ . ThusÃ′ R B̃′ by definition of
R. We have also that:

B ≡ νũ.(B̃ | P) →∗ νx.out(c,x)
−−−−−−−→→∗ νũ.νñ.(B̃ | P ′ | {M/x})

def
= B′.

2. α = out(c, a). We distinguish two cases:

(a) A′ ≡ νũ.(Ã′ | P) andÃ
out(c,a)
−−−−−→ Ã′ with a, c 6∈ ũ.

SinceÃ �ℓ B̃, we know that there exists a closed extended processB̃′ such

that B̃ →∗ out(c,a)
−−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = νũ.(B̃′ | P). We have

thatB ≡ νũ.(B̃ | P) →∗ out(c,a)
−−−−−→→∗ νũ.(B̃′ | P)

def
= B′ andA′ R B′ by

definition ofR.
(b) A′ ≡ νũ.(Ã | P ′) andP

out(c,a)
−−−−−→ P ′ with a, c 6∈ ũ.

Let B′ = νũ.(B̃ | P ′). By definition ofR, we have thatÃ′ R B̃′. We have

also thatB ≡ νũ.(B̃ | P) →∗ out(c,a)
−−−−−→→∗ νũ.(B̃ | P ′)

def
= B′.

3. α = in(c, M). We distinguish two cases:

(a) A′ ≡ νũ.(Ã′ | P) andÃ
in(c,M)
−−−−−→ Ã′ with c 6∈ ũ andũ do not occur inM .

SinceÃ �ℓ B̃ andfv(M) ⊆ dom(A) ⊆ dom(Ã), we know that there exists a

closed extended process̃B′ such thatB̃ →∗ in(c,M)
−−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let

B′ = νũ.(B̃′ | P). We have thatB ≡ νũ.(B̃ | P) →∗ in(c,M)
−−−−−→→∗ νũ.(B̃′ |

P)
def
= B′ andA′ R B′ by definition ofR.

(b) A′ ≡ νũ.(Ã | P ′) andP
in(c,M)
−−−−−→ P ′ with c 6∈ ũ andũ do not occur inM .

Let B′ = νũ.(B̃ | P ′). By definition ofR, we have thatÃ′ R B̃′. We have

also thatB ≡ νũ.(B̃ | P) →∗ in(c,M)
−−−−−→→∗ νũ.(B̃ | P ′)

def
= B′.

17

4. α = νa.out(c, a) anda 6∈ fn(B). We distinguish four cases:

(a) A′ ≡ νũ.(Ã′ | P) andÃ
νa.out(c,a)
−−−−−−−→ Ã′ with c 6∈ ũ. We have also to assume

thata 6∈ fn(B̃). (Note again that we can assume this w.l.o.g.: ifa 6∈ fn(B) and
a 6∈ ũ then we can assume thata 6∈ fn(B̃). We can always assumea 6∈ ũ as
explained previously.)
SinceÃ �ℓ B̃ anda 6∈ fn(B̃), we know that there exists a closed extended pro-

cessB̃′ such thatB̃ →∗ νa.out(c,a)
−−−−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = νũ.(B̃′ |

P). We have thatB ≡ νũ.(B̃ | P) →∗ νa.out(c,a)
−−−−−−−→→∗ νũ.(B̃′ | P)

def
= B′ and

A′ R B′ by definition ofR.

(b) A′ ≡ νũ.(Ã | P ′) andP
νa.out(c,a)
−−−−−−−→ P ′ with c 6∈ ũ.

Let B′ = νũ.(B̃ | P ′). By definition ofR, we have thatÃ′ R B̃′. We have

also thatB ≡ νũ.(B̃ | P) →∗ νa.out(c,a)
−−−−−−−→→∗ νũ.(B̃ | P ′)

def
= B′.

(c) A′ ≡ νũ′.(Ã′ | P) andÃ
out(c,a)
−−−−−→ Ã′ with c 6∈ ũ, a ∈ ũ andũ′ = ũ r {a}.

SinceÃ �ℓ B̃, we know that there exists a closed extended processB̃′ such

that B̃ →∗ out(c,a)
−−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = νũ′.(B̃′ | P). We have

thatB ≡ νũ.(B̃ | P) →∗ νa.out(c,a)
−−−−−−−→→∗ νũ′.(B̃′ | P)

def
= B′ andA′ R B′ by

definition ofR.

(d) A′ ≡ νũ′.(Ã | P ′) andP
out(c,a)
−−−−−→ P ′ with c 6∈ ũ, a ∈ ũ andũ′ = ũ r {a}.

Let B′ = νũ′.(B̃ | P ′). By definition ofR, we have thatA′ R B′. We have

also thatB ≡ νũ.(B̃ | P) →∗ νa.out(c,a)
−−−−−−−→→∗ νũ′.(B̃ | P ′)

def
= B′.

5. α = τ . We distinguish 8 cases:
(a) A′ ≡ νũ.(Ã′ | P) andÃ → Ã′.

SinceÃ �ℓ B̃, we know that there exists a closed extended processB̃′ such
that B̃ →∗ B̃′ and Ã′ �ℓ B̃′. Let B′ = νũ.(B̃′ | P). We have thatB ≡

νũ.(B̃ | P) → νũ.(B̃′ | P)
def
= B′ andA′ R B′ by definition ofR.

(b) A′ ≡ νũ.(Ã | P ′) andP → P ′.
Let B′ = νũ.(B̃ | P ′). By definition ofR, we have thatA′ R B′. We have

also thatB ≡ νũ.(B̃ | P) → νũ.(B̃ | P ′)
def
= B′.

(c) A′ ≡ νũ.(Ã′ | P ′) with Ã
out(c,a)
−−−−−→ Ã′ andP

in(c,a)
−−−−→ P ′.

SinceÃ �ℓ B̃, we know that there exists a closed extended processB̃′ such

that B̃ →∗ out(c,a)
−−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = νũ.(B̃′ | P ′). We have

that B ≡ νũ.(B̃ | P) →∗ νũ.(B̃′ | P ′)
def
= B′ andA′ R B′ by definition

of R.

(d) A′ ≡ νũ, a.(Ã′ | P ′) with Ã
νa.out(c,a)
−−−−−−−→ Ã′ andP

in(c,a)
−−−−→ P ′.

SinceÃ �ℓ B̃ anda 6∈ fn(B̃), we know that there exists a closed extended pro-

cessB̃′ such thatB̃ →∗ νa.out(c,a)
−−−−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. LetB′ = νũ, a.(B̃′ |

P ′). We have thatB ≡ νũ.(B̃ | P) →∗ νũ, a.(B̃′ | P ′)
def
= B′ andA′ R B′

by definition ofR.

(e) A′ ≡ νũ.(Ã′ | P ′) with Ã
in(c,a)
−−−−→ Ã′ andP

out(c,a)
−−−−−→ P ′.

18

SinceÃ �ℓ B̃, we know that there exists a closed extended processB̃′ such

thatB̃ →∗ in(c,a)
−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = νũ.(B̃′ | P ′). We have that

B ≡ νũ.(B̃ | P) →∗ νũ.(B̃′ | P ′)
def
= B′ andA′ R B′ by definition ofR.

(f) A′ ≡ νũ, a.(Ã′ | P ′) with Ã
in(c,a)
−−−−→ Ã′ andP

νa.out(c,a)
−−−−−−−→ P ′.

SinceÃ �ℓ B̃, we know that there exists a closed extended processB̃′ such

that B̃ →∗ in(c,a)
−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = νũ, a.(B̃′ | P ′). We have

that B ≡ νũ.(B̃ | P) →∗ νũ.(B̃′ | P ′)
def
= B′ andA′ R B′ by definition

of R.

(g) A′ ≡ νũ, x.(Ã′ | P ′) with Ã
νx.out(c,x)
−−−−−−−→ Ã′ andP

in(c,x)
−−−−→ P ′.

SinceÃ �ℓ B̃, we know that there exists a closed extended processB̃′ such

that B̃ →∗ νx.out(c,x)
−−−−−−−→→∗ B̃′ andÃ′ �ℓ B̃′. Let B′ = νũ, x.(B̃′ | P ′). We

have thatB ≡ νũ.(B̃ | P) →∗ νũ, x.(B̃′ | P ′)
def
= B′ andA′ R B′ by

definition ofR.

(h) A′ ≡ νũ.νñ.(Ã′ | P ′) with Ã
in(c,M)
−−−−−→ Ã′ and P

νx.out(c,x)
−−−−−−−→ νñ.(P ′ |

{M/x}).
SinceÃ �ℓ B̃ and fv (M) ⊆ fv (P) ⊆ dom(A) ⊆ dom(Ã), we know that

there exists a closed extended processB̃′ such thatB̃ →∗ in(c,M)
−−−−−→→∗ B̃′ and

Ã′ �ℓ B̃′. Let B′ = νũ.νñ.(B̃′ | P ′). We have thatB ≡ νũ.(B̃ | P) →∗

νũ.νñ.(B̃′ | P ′)
def
= B′ andA′ R B′ by definition ofR. ⊓⊔

Proposition 1. Let A andB be two extended processes such thatA �ℓ B. We have
thatC[A] �ℓ C[B] for all closing evaluation contextC[].

Proof. We prove this result by structural induction onC[].
Base case:C = . In such a case we easily conclude.
Induction step.We distinguish several cases depending on the form ofC.

– C[] = νu.C′[]. In such a case, thanks to our induction hypothesis, we have that
C′[A] �ℓ C′[B]. Then, thanks to Lemma 7, we easily deduce thatC[A] �ℓ C[B].

– C[] = P | C′[]. We conclude as in the previous case.
– C[] = {M/x} | C′[]. In such a case, thanks to our induction hypothesis, we have

thatC′[A] �ℓ C′[B]. Then, thanks to Lemma 6, we easily deduce thatC[A] �ℓ

C[B].

This allows us to conclude the proof. ⊓⊔

B Proofs of Section 3

Lemma 3. LetF be a functionality andD[] the dummy adversary forF : F � D[F].

19

Proof. We define the following relationR on closed extended processes

R = �ℓ ∪ {(A, D[A]) | ∃F . fnet(A) ⊆ fnet(F) and,
D[] is a dummy adversary forF}.

We now show thatR is a labelled simulation. IfA �ℓ B we trivially conclude.
Suppose thatB = D[A] andD[] is a dummy adversary for some functionalityF such
that fnet(A) ⊆ fnet(F). We have thatD[] = νs̃im.(D1 | νñet .(D2 |)) whereD1

andD2 are closed plain processes as described in Definition 7.
We note that by the type system, for any labelα we have thatbn(α) ∩ NET = ∅.

Hence, ifA(→∗ α
−→→∗)∗A′ thenfnet(A′) ⊆ fnet(A). We now show the 3 points of the

definition of a labelled simulation.

1. By construction ofD[], we have thatφ(A) ≡ φ(D[A]), thusφ(A) ≈s φ(D[A]).
2. Suppose thatA → A′. As → is closed under application of evaluation contexts,

we have thatD[A] → D[A′]. Moreover,fnet(A′) ⊆ fnet(A). We conclude that
A′ R D[A′].

3. Suppose thatA
α
→ A′ with fv (α) ⊆ dom(A) andbn(α)∩ fn(D[A]) = ∅. We have

to consider different cases.
– Names inñet do not occur inα. In this caseD[A]

α
→ D[A′]. Moreover,

fnet(A′) ⊆ fnet(A). We conclude thatA′ R D[A′].
– α = in(netk, M). We have that

D[A] ≡ νs̃im .(in(netk, x).out(sim i
k, x) | D1 | νñet .(D2 | A))

in(netk,M)
−−−−−−−→ νs̃im .(out(sim i

k, M) | D1 | νñet .(D2 | A))

≡ νs̃im .(out(sim i
k, M) | D1 | νñet .(in(sim i

k, x).out(netk, x) | D2 | A))

→ νs̃im .(D1 | νñet .(out(netk, M) | D2 | A))

→ νs̃im .(D1 | νñet .(D2 | A′))
≡ D[A′]

Moreover,fnet(A′) ⊆ fnet(A). We conclude thatA′ R D[A′].
– α = (νu.)out(netk, u). We have that

D[A] ≡ νs̃im .(D1 | νñet .(in(netk, x).out(simo
k, x) | D2 | A))

→ νs̃im .(D1 | νñet .(νu.)(out(simo
k, u) | D2 | A′))

≡ νs̃im .(in(simo
k, x).out(netk, x) | D1 | νñet .(νu.)(out(simo

k, u) | D2 | A′))

→ νs̃im .(νu.)(out(netk, u) | D1 | νñet .(D2 | A′))
(νu.)out(netk,u)
−−−−−−−−−−→ νs̃im .(D1 | νñet .(D2 | A′))

≡ D[A′]

Moreover,fnet(A′) ⊆ fnet(A). We conclude thatA′ R D[A′].

Lemma 4. The relation≤SS is a preorder, that is the following hold: (i)reflexivity:
F1 ≤SS F1; (ii) transitivity:F1 ≤SS F2 andF2 ≤SS F3 ⇒ F1 ≤SS F3.

20

Proof. Reflexivity holds thanks to Lemma 3. Now, it remains to establish transitivity.
AsF1 ≤SS F2 andF2 ≤SS F3, we have that there exist an adversaryS1 for F2 and an
adversaryS2 for F3 such that:

– F1 � S1[F2] andfnet(F1) = fnet(S1[F2]);
– F2 � S2[F3] andfnet(F2) = fnet(S2[F3]).

As � is closed under application of evaluation contexts (Proposition 1) we also have
thatS1[F2] � S1[S2[F3]]. By transitivity of� we have thatF1 � S1[S2[F3]].

As fnet(F2) = fnet(S2[F3]) andS1 is an adversary forF2, we deduce thatS1 is
also an adversary forS2[F3] and thus, thanks to Lemma 2, we deduce thatS1[S2[]]
is an adversary forF3. In order to conclude, it remains to show thatfnet(F1) =
fnet(S1[S2[F3]]).

As fnet(F2) = fnet(S2[F3]), we deduce thatfnet(S1[F2]) = fnet(S1[S2[F3]])
and we conclude thanks to the fact thatfnet(F1) = fnet(S1[F2]). ⊓⊔

Lemma 8. Letc be a channel of typeNET andA be an extended process:νc.A � A.

Proof. Actually, we prove a stronger statement. We show that:

A �ℓ B implies νc.A �ℓ B for anyc ∈ NET.

Let R = �ℓ ∪ {(A, B) | A ≡ νc.Ā, Ā �ℓ B}. We show thatR is a labelled
simulation. IfA �ℓ B then we trivially conclude. SupposeA R B andA ≡ νc.Ā with
Ā �ℓ B. We need to show the 3 points of the definition of labelled simulation.

1. As c ∈ NET, we have thatφ(νc.Ā) ≡ φ(Ā). As Ā �ℓ B we have thatĀ ≈s B
and hence we conclude thatA ≈s B.

2. SupposeA → A′. Henceνc.Ā → A′. By inspection of the reduction rules we have
thatA′ ≡ νc.Ā′ andĀ → Ā′ for some closed extended processĀ′. As Ā �ℓ B we
have that there existsB′ such thatB →∗ B′ andĀ′ �ℓ B′. HenceA′ R B′.

3. SupposeA
α
−→ A′. Hence,νc.Ā

α
−→ A′. By the type system we have thatα 6=

νd.out(a, d) for anyd ∈ NET. By inspection of the labelled rules we have that
A′ ≡ νc.Ā′ andĀ

α
−→ Ā′ for some closed extended processĀ′. As Ā �ℓ B we

have that there existsB′ such thatB →∗ α
−→→∗ B′ andĀ′ �ℓ B′. HenceA′ R B′.

To prove Lemma 8 we observe thatA �ℓ A. From the above statement we have that
νc.A �ℓ A and henceνc.A � A. ⊓⊔

Note that Lemma 8 relies on the type system and the fact that channels of typeNET

only appear in “channel position”. In particular this avoids a counterexample where

A = out(a, c). In such a case, we have thatA
out(a,c)
−−−−−→ 0, whereasνc.A can only

moves with a label of the formνd.out(a, d).

Proposition 2. LetF1, F2 be functionalities andCio be an IO context.

F1 ≤SS F2 =⇒ Cio [F1] ≤SS Cio [F2].

21

Proof. As F1 ≤SS F2 we have that there exists a simulatorS for F2 such thatF1 �
S[F2] and fnet(F1) = fnet(S[F2]). As � is closed under application of evaluation
contexts we also have thatCio [F1] � Cio [S[F2]]. By Definition 5 and Definition??,
we have thatCio andS are of the form:

– Cio = ν ĩo1.(C1 | ν ĩo2.(C2 | . . . |ν ĩoℓ.(Cℓ |) . . .)) with
⋃

1≤i≤ℓ

ĩoi ⊆ IO and

where eachCi (1 ≤ i ≤ ℓ) is a closed plain process.

– S = νñet1.(S1 | νñet2.(S2 | . . . |νñetk.(Sk |) . . .)), fnet(F2) ⊆
⋃

1≤j≤k

ñetj ⊆ NET,

fn(S[]) ∩ IO = ∅ and where eachSj (1 ≤ j ≤ k) is a closed plain process.

Let D[] = νs̃im .(D1 | νñet .(D2 |)) be the dummy adversary forCio [S[F2]].
Thanks to Lemma 3 we have thatCio [S[F2]] � D[Cio [S[F2]]]. Now, thanks to Lemma 8,
we have that

D[Cio [S[F2]]] � D[Cio [S′[F2]]]

where:

– S′ = νñet
′

1.(S1 | νñet
′

2.(S2 | . . . | νñet ′k.(Sk |) . . .)), and

– ñet
′

i = ñet i r ñet.

Sinceñet
′

i ∩ fnet(Cio []) = ∅ (1 ≤ i ≤ k) and fnet(S′[]) ∩ IO = ∅, we have
that Cio [S′[F2]] ≡ S′[Cio [F2]] and thusD[Cio [S′[F2]]] ≡ D[S′[Cio [F2]]]. In or-
der to conclude, it remains to show thatD[S′[]] is a simulator forCio [F2] such that
fnet(Cio [F1]) = fnet(D[S′[Cio [F2]]]).

First note thatD[S′[]] is of the right form andfnet(D[S′[]]) ∩ IO = ∅. Moreover,
sinceD is a dummy adversary forCio [F2], we haveñet = fnet(Cio [S[F2]]) and thus
we have that:

fnet(Cio [F2]) = fnet(Cio []) ∪ fnet(F2)

⊆ fnet(Cio []) ∪
⋃

1≤j≤k ñetj

⊆ fnet(Cio [S[F2]]) ∪
⋃

1≤j≤k ñetj

= ñet ∪
⋃

1≤j≤k ñetj

= ñet ∪
⋃

1≤j≤k ñet
′

j

⊆ s̃im ∪ ñet ∪
⋃

1≤j≤k ñet
′

j

Thus,D[S′[]] is a simulator forCio [F2]. Moreover, we have thatfnet(Cio [F1]) =
fnet(D[S′[Cio [F2]]]). Indeed, we have that:

– fnet(Cio [F1]) = fnet(Cio [S[F2]]) = ñet, and
– fnet(D[S′[Cio [F2]]]) = fnet(D[Cio [S′[F2]]]) = fnet(D[Cio [S[F2]]]) = fnet(Cio [S[F2]]) = ñet.

This allows us to conclude. ⊓⊔

Proposition 3. LetF1, F2 andF3 be three functionalities. We have that:
(i) F1 ≤SS F2 ⇒ F1 | F3 ≤SS F2 | F3; and (ii) F1 ≤SS F2 ⇒ !F1 ≤SS !F2.

22

Proof. We show thatF1 ≤SS F2 ⇒ !F1 ≤SS!F2. We have that there exists an
adversaryS for F1 such thatF1�ℓS[F2]. By Lemma 1 we have that!F1�ℓ!S[F2].
Moreover, we have

!S[F2] = !(νñet1.(S1 | νñet2.(S2 | . . . | νñetk.(Sk | F2) . . .)))
�ℓ !(S1 | S2 | . . . | Sk | F2) by Lemmas 8 and 1
�ℓ !S1 |!S2 | . . . |!Sk |!F2) by Lemma 1
�ℓ D[!S1 |!S2 | . . . |!Sk |!F2)] by Lemma 3

whereD[] is the dummy adversary for!S1 |!S2 | . . . |!Sk |!F2. DefiningS′ = D[!S1 |
!S2 | . . . |!Sk |)] we obtain that!F1�ℓ!S[F2]�ℓS′[!F2] and conclude that!F1 ≤SS

!F2.

Theorem 1. We have that≤SS = ≤BB = ≤UC = ≤UCDA.

Proof. We prove the following inclusions:

– ≤SS ⊆ ≤BB.
Suppose thatF1 ≤SS F2. Hence, there exists an adversarySss for F2 such that
F1 � Sss[F2] and fnet(F1) = fnet(Sss[F2]). We have to show that there ex-
ists an adversarySbb for F2 such that for all adversaryA for F1 we have that
fnet(Sbb[F2]) = fnet(F1) andA[F1] � A[Sbb[F2]].

Let Sbb
def
= Sss. Hence, we have thatF1 � Sbb[F2] andfnet(Sbb[F2]) = fnet(F1).

As � is closed under application of evaluation contexts, for anyadversaryA for
F1 we obtain thatA[F1] � A[Sbb[F2]].

– ≤BB ⊆ ≤UC.
Suppose thatF1 ≤BB F2. In such a case there exists an adversarySbb for F2

such thatfnet(Sbb[F2]) = fnet(F1) and for all adversaryA for F1 we have that
A[F1] � A[Sbb[F2]]. We have to show that for all adversaryA for F2, there ex-
ists an adversarySuc for F1 such thatfnet(A[F1]) = fnet(Suc[F2]) andA[F1] �

Suc[F2]. LetA be an adversaryF2 andSuc[]
def
= A[Sbb[]]. As fnet(F1) = fnet(Sbb[F2]),

we have alsofnet(A[F1]) = fnet(A[Sbb[F2]]) = fnet(Suc[F2]). In order to con-
clude, it remains to show thatSuc is an adversary forF2. This is indeed the case
sinceSuc[] = A[Sbb[]] andSbb is an adversary forF2 andA is also an adversary.
This allows us to conclude.

– ≤UC ⊆ ≤UCDA.
Suppose thatF1 ≤UC F2. Hence, for all adversaryA for F1 there exists an adver-
sarySuc for F2 such thatA[F1] � S[F2] and fnet(A[F1]) = fnet(Suc[F2]). We
have to show that there exists an adversaryS for F2 such thatF [F1] � S[F2] and
fnet(S[F2]) = fnet(D[F1]) whereD is the dummy adversary forF1. TakingD
for A we easily conclude by applying our hypothesis.

– ≤UCDA ⊆ ≤SS.
Suppose thatF1 ≤UCDA F2. Hence, there exists an adversaryS for F2 such that
D[F1] � S[F2] andfnet(S[F2]) = fnet(D[F1]) whereD is the dummy adversary
for F1. We have thatfnet(D[F1]) = fnet(F1). By Lemma 3, we have thatF1 �
D[F1]. We conclude by transitivity of�. ⊓⊔

23

C Proof of Section 4

Lemma 5. Letn be a name andc be a channel name such thatc 6∈ fn(P) ∪ fn(Q).

νc. ![νn.(out(c, n) | P) | in(c, x).Q] �ℓ ! νc.[νn.(out(c, n) | P) | in(c, x).Q].

Proof. Consider the processesP1, P2 andP defined as follows:

– P1 = νc. ![νn.(out(c, n) | P) | in(c, x).Q], and
– P2 = !νc.[νn.(out(c, n) | P) | in(c, x).Q], and
– P = νn.(out(c, n) | P) | in(c, x).Q.

Let k be an integer. We consider the contextCA
k [] andCB

k [] defined as follows:

– CA
k [] = νn1, . . . , nk. [(out(c, n1) | in(c, x).Q) | · · · | (out(c, nk) | in(c, x).Q) |].

– CB
k [] = νn1, . . . , nk. [νc.(out(c, n1) | in(c, x).Q) | · · · | νc.(out(c, nk) | in(c, x).Q) |].

By conventionCA
k [] = CB

k [] = .

We define the following relationR on closed extended processes

R = �ℓ ∪ {(A, B) | A ≡ νc.(!P | CA
k [D]) andB ≡ (!νc.P) | CB

k [D]
for some extended processD and somek}

Note thatP1 R P2 and we can show thatR is a labelled simulation by showing that
the 3 points of the definition of labelled simulation hold. ⊓⊔

24

