Simulation based security in the applied pi calculus

Stéphanie DelaudeSteve Kremér, and Olivier Pereira

1 LSV, ENS Cachan & CNRS & INRIA, France
2 UCL Crypto group, Belgium

Abstract. We present a symbolic framework for refinement and compmuositf
security protocols. The framework uses the notion of ideatfionalities. These
are abstract systems which are secure by construction aict wém be combined
into larger systems. They can be separately refined in coddatin concrete pro-
tocols implementing them. Our work builds on ideas from catapional models
such as the universally composable security and reactmalaiability frame-
works. The underlying language we use is the applied pi aacwhich is a
general language for specifying security protocols. Infoamework we can ex-
press the different standard flavours of simulation-bagedrity which happen
to all coincide. We illustrate our framework on an autheatimn functionality
which can be realized using the Needham-Schroeder-Loweqwio For this we
need to define an ideal functionality for asymmetric endgoypand its realization.
We also show a joint state result for this functionality whadlows composition
(even though the same key material is reused) using a taggdeanism.

1 Introduction

Symbolic techniques showed to be a very useful approachéanbdeling and analysis
of security protocols: for twenty years, they improved onderstanding of security pro-
tocols, allowed discovering flaws [18], and provided suppar protocol design [11].
These techniques also resulted in the creation of powentohaated analysis tools [5,
10, 3], and impacted on several protocol standards useg dagre.g., [9].

Until now, symbolic techniques mostly concentrated on Bpieg and proving con-
fidentiality and correspondence properties, i.e., showihigh symbols are kept secret,
and on which session parameters participants agree whenacpksession completes.
However, such specifications do not provide any informagioout the behavior of pro-
tocols when they are used in composition with other proma@oid surprising behaviors
are well know to happen in such contexts [8]. Moreover, prol®are often expected to
provide more sophisticated security guarantees: we cah tfiprivacy-type properties
for voting protocols, or input independence for auctiontpcols.

In this paper, we present a symbolic framework for refinensamt composition
of security protocols, in which protocols are defined in temwhthe behavior of ideal
functionalities, following the general outline of simutat-based security [6,13,4]. A
lower-level protocol is said to securely emulate a higlesel protocol, or ideal func-
tionality, if any behavior that can be observed from thermt&on of an adversary with
the lower-level protocol can also be observed from the aution of another adversary
(called the simulator) with the higher-level protocol. Asesult, ideal functionalities

can be successively refined into more concrete protocotsalbo composed to build
more complex protocols. Functionalities have been praptisea wide range of proto-
col tasks, including general secure multi-party compatef6]. In the spi-calculus [2],
Abadi and Gordon also present the idea of a protocol beiniyalgut to an idealized
version. This is however more restrictive as they do not tlagenotion of a simulator.

Simulation-based security frameworks can typically beod@gosed into two “lay-
ers”; (i) a foundational layer that provides a general mdolietoncurrent computation,
and (ii) a security layer that provides general securityriigdins, most importantly the
notion of secure protocol emulation to be used. While theisgclayer is essentially
common to all frameworks [4, 6, 7,15, 19], including this pgathe foundational layer
varies widely. Those variations typically lie in the conmrcy model (from the most
common token-passing mechanism to the use of schedulewravitbus powers) and in
the definition of computational bounds. These differengpgally result in incompa-
rable security notions.

Defining simulation-based security while choosing the igpijgbi calculus [1] as the
foundational layer brings the main benefits of this approaththe symbolic world:

— it provides a powerful machinery that can be used to specifjda range of so-
phisticated protocol tasks in terms of the behavior of fiomalities, and

— general composition theorems guarantee that protocofslkeleaving as expected
when executed in arbitrary contexts.

While we tried to stick to the common definitions from the séguayer of simulation-
based security frameworks, the use of the applied pi cadcatufoundational layer
raised interesting challenges.

First, at the most foundational level, one has to adopt anaif indistinguishabil-
ity of processes. While the symmetric notions of computetiandistinguishability and
observational equivalence are most commonly used in th@agyaphic and symbolic
worlds respectively, the symmetry of such relations apgetém be too restrictive for
our purpose. For instance, requiring a symmetric equicaeelation makes visible the
addition of an adversary that simply acts as a relay. Suclesiretl behaviors moti-
vate the introduction of new notions of observational pdeorand labelled simulation
relations in the applied pi calculus.

Next, our attempts at translating ideal functionalitiesiirthe computational world
into the symbolic world showed to be a non immediate task.iffigtance, traditional
ideal functionalities for asymmetric encryption produgehertexts by encrypting ran-
dom strings unrelated to the original messages. In oumgettie use a technique of
double-encrypting messages such that a plaintext comespg to a given ciphertext
can only be retrieved through the decryption services effdry the functionalities.

Eventually, we investigate the statement of general coitippgheorems, and of
a specific joint state composition theorem for our asymrmeitnicryption functionality,
as this functionality is typically expected to be used inesal/protocol sessions. While
these theorems appear to be the natural counterpart octhrajputational versions [4,
6,7,17], the joint state composition theorem brings mesgagging constraints that
are consistent with those obtained by using a completefgreifit symbolic approach
(e.g. [14]).

2 The applied pi calculus

The applied pi calculus [1] is a language for describing corent processes and their
interactions.

2.1 Syntax and informal semantics

To describe processes, one starts with a setamfies(which are used to name com-
munication channels or other atomic data), a setanfables and asignatureX’ which
consists of théunction symbolsvhich will be used to defineerms In the case of se-
curity protocols, typical function symbols will includac for encryption, which takes
plaintext and a key and returns the corresponding ciphierdex dec for decryption,
taking ciphertext and a key and returning the plaintextmieare defined as names,
variables, and function symbols applied to other termanbeand function symbols are
sorted, and of course function symbol application musteesgorts and arities. By the
means of an equational thedEywe describe the equations which hold on terms built
from the signature. We denote: the equivalence relation induced ByTwo terms are
related by=¢ only if that fact can be derived from the equation€inVhen the set of
variables occurring in a terffi is empty, we say thaf is ground

Example 1.Let E.,,. be the theory made up of the equatials(enc(x, k), k) = = and
test(enc(z,y), y) = ok. We have thatest(dec(enc(enc(n, k1), k2), k2), k1) = ok.

In the applied pi calculus, one haain processesindextended processeBlain
processes are built up in a similar way to processes in thalpulus, except that mes-
sages can contain terms (rather than just names). Bélbwnd N are termsy is a
name,x a variable and. is a metavariable, standing either for a name or a variable.
Extended processes addtive substitutionand restriction on variables.

P,Q,R:= plain processes A, B, C := extended processes
0 P
P|Q A|B
vn.P vn.A
if M = N thenP else@ ve.A
in(u,x).P M/}
out(u, N).P

{M .} is the substitution that replaces the variablaith the term) . Active sub-
stitutions generalise “let”. The process.({*/,} | P) corresponds exactly to the
process “let = M in P”. As usual, names and variables have scopes, which are de-
limited by restrictions and by inputs. We wrife(A), bv(A), fn(A) andbn(A) for the
sets of free and bound variables and free and bound namésre§pectively. We also
assume that, in an extended process, there is at most ortégidysfor each variable,
and there is exactly one when the variable is restricted.a¥étst an extended process
is closedif all its variables are either bound or defined by an activessitution.

Active substitutions are useful because they allow us to amegxtended process
to itsframe¢(A) by replacing every plain process ihwith 0. A frame is an extended
process built up frond and active substitutions by parallel composition and ietgin.
The framegp(A) can be viewed as an approximation4fthat accounts for the static
knowledgeA exposes to its environment, but ndis dynamic behaviour. The domain of

a frameyp, denoted bylom(y), is the set of variables for which defines a substitution
(those variables: for which ¢ contains a substitutiof? /,} not under a restriction
on z). An evaluation context[] is an extended process with a hole instead of an
extended process.
Example 2.Consider the following proceds:
vk. (in(io1,x).out(net,enc(x, k))
| in(net,y). if test(y, k) = ok thenout(ioq, dec(y, k)) else0).

The first component receives a messagm the channelo; and sends its encryp-
tion with the keyk on the channelet. The second is waiting for an inpyon net, uses
the secret key: to decrypt it. If the decryption succeeds, then it forwatdsitesulting
plaintext onios.

2.2 Semantics

The operational semantics of processes in the appliedqilcalis defined by structural
rules defining two relationsstructural equivalencébriefly described in Section 2.1)
andinternal reduction noted—. Structural equivalence, noteg is the smallest equiv-
alence relation on extended processes that is closed unc@nversion on names and
variables, application of evaluation contexts, and sonmerostandard rules such as
associativity and commutativity of the parallel operatod @ommutativity of the bind-
ings. In addition the following three rules are related ttvacsubstitutions and equa-
tional theories:

ve{M/o} =0, M/} A= {1/} A(M o}, and{M /o } = {V/o} i M = N

Internal reduction— is the smallest relation on extended processes closed under
structural equivalence and application of evaluation extstsuch that

CoMM out(a, M).P | in(a,z).Q — P | Q{M/.}
THEN if M = N thenP elseQ)Q — P whereM =g N
ELsE if M = N thenP elseQQ — Q

for any ground termd/ and N such thatM #g N

The operational semantics is extended lgteelledoperational semantics enabling
us to reason about processes that interact with their envient. Labelled operational
semantics defines the relatiéh whereq is either an inputn(a, M) (a is a channel
name and} is a term that can contain names and variablesyaoout(a, z) (z is
variable of base type), aut(a, ¢) or vc.out(a, ¢) (cis a channel name). We adopt the
following rules in addition to the internal reduction rules

IN in(a,z).p 2@, pov) o scope A~ A" udoes notoccur im
out(a,c) vu.A 2 vu. A’
OuT-CH out(a,c).P ——— P
bn(a) N fn(B) =0
out(a,c) f A @ A/ b (B —
OPEN-CH A At(: c#a PAR — v(aa) Nfo(B) =0
ve. A L2280, 4 A|B— A" |B
OUTT out(a, M).P 2D, pr)y oo AEB BB A=B
x & fo(P) U fo(M) AS A

Our rules differ slightly from those described in [1], altigh we prove in [12] that
labelled bisimulation in our system coincides with labelkesimulation in [1].

Example 3.Consider the proced3 defined in Example 2. We have that:

P Muk.(out(net,enc(s,k))
| in(net,y). if test(y, k) = ok thenout(ios, dec(y, k)) else0)
— vk.if test(enc(s, k), k) = ok thenout(ioa, dec(enc(s, k), k)) else0)

— vk.out(ios,)
vz.out(ioz,) Z/IC{G/T}

Let A be the resulting process. We have thétl) = vk.{*/.,}.

2.3 Equivalences

In [1], it is shown that observational equivalence coinsiagth labelled bisimilarity.
This relation is like the usual definition of bisimilarityxeept that at each step one
additionally requires that the processes are staticallyvatgnt.

Definition 1 (static equivalence £,)). Two termsM and N are equal in the frame
¢, written (M =g N)¢, if, and only if there exist& and a substitutiorr such that
¢ = vn.o, Mo =g No, andn N (fn(M) U fn(N)) = 0. Two framesp; and ¢, are
statically equivalentp, =~ ¢2, whendom(¢,) = dom(¢2), and for all termsM, N
we have thatM =g N)¢; if and only if (M =g N)¢s.

Example 4.Let g = vs.{*"(>%) / 1 andy; = vr.{"/,} wherek, s andr are names
and E be the theory given in Example 1. We haitest(x, k) =g ok)yo but not
(test(zx, k) = ok)p1, thuspg %5 ¢1. However, we havek.pg ~; ¢1.

We are now defining observational equivalence and obsenadtpreorder. For this
we introduce the notion of barb. Given an extended procedsand a channel namg
we write A || a when A —* Clout(a, M).P] for some termM, plain process?, and
evaluation context’[_] that does not bind.

Definition 2 (observational preorder, equivalence)Observational preordéx) (resp.
equivalencgx)) is the largest (resp. largest symmetric) relation on exlted processes
having same domain such thatR B implies

1. ifA | athenB | a;
2. ifA—* A', thenB —* B’and A’ R B’ for someB’;
3. C[A] R C]B] for all closing evaluation contexis/[_].

Definition 3 (labelled (bi)similarity). A relation’R on closed extended processes is a
simulation relation ifA R B implies

1. 6(4) =, §(B),

2. ifA— A’ thenB —* B’ and A’ R B’ for someB’,

3.ifA S A andfv(a) € dom(A) andbn(a) N fn(B) = B, thenB —*%—* B
and A’ R B’ for someB’.

If R andR~! are both simulation relations we say thRtis a bisimulation relation.
Labelled similarity(<;), resp.labelled bisimilarity(=,), is the largest simulation, resp.
bisimulation relation.

Observational preorder and similarity were not introduefll]. However, these
definitions seem natural for our purposes. Obviously we Haate: C < and~, C <.
We now show that labelled bisimilarity is a precongruence.

Proposition 1. Let A and B be two extended processes such thak, B. We have
that C[A] <, C[B] for all closing evaluation context'[_].

From this proposition it follows thak, C <. Hence, we can use labelled similarity
as a convenient proof technique for observational preovtieractually expect the two
relations to coincide but did not prove it as we did not negddreover, the relatior,
is stable under application of replication and replicati@tributes over parallel.

Lemma 1. Let P and @ be two closed plain processes. We have that: (i} i<, @
then!P <,!1Q; (i) (P | Q) =¢!'P|!Q and!P |'Q =,!(P | Q).

3 Simulation based security

3.1 Basic definitions

The simulation-based security approach classicallyrdjsishes betweenput-output
channelswhich yield the internal interface of a protocolfanctionalityto its environ-
ment anchetwork channelsvhich allow the adversary to interact with the functiotali

We suppose that all channels are of one of these two $0rtst NET. Moreover the
sort system ensures that names of BT can never be conveyed as data on a channel,
i.e. these channels can never be transmitted. We ¥wét€¢ P) for fn(P) N NET.

Definition 4 (functionality, adversary). A functionality F is a closed plain process.
Anadversaryor F is an evaluation context[_] of the form:

vnet1.(Ar | vneta.(As | ... |vnety.(Ax | Z)...)) with fnet(F) C U, <,<j, net; € NET
where eachd; (1 < i < k) is a closed plain process, arfd(A[_]) N 10 = 0.

We may note that if4[_] is an adversary faF thenfnet(A[_]) = fnet(A[F]).

Lemma 2. Let 7 be a functionality and4;[-] be an adversary forF. ThenA; [F]
is a functionality. Besides, iflz[] is an adversary fotd, [F], then A5[A;[]] is an
adversary forF.

While adversaries can control the communications of fumetiities onNET chan-
nels,lO contextanodel the environment of those functionalities, providihgm with
their inputs and collecting their outputs.

Definition 5 (10 context). An 10O contextis an evaluation context';,[-] of the form
v101.(C1 | vio2.(Ca | ... |viog.(Ck | =) ...)) with [J, <, <, t0; € 10 where eaclC;
(1 < i < k)is aclosed plain process. T

Note that if ¥ is a functionality and”[_] is an IO context, thet;, [F] is a functionality.

3.2 Strong simulatability

The notion of strong simulatability [16], which is probalthe simplest secure emula-
tion notion used in simulation-based security, can be fdabed in our setting.

Definition 6 (strong simulatability). Let /1 and F, be two functionalities/; emu-
lates F, in the sense obtrong simulatabilitywritten F; <55 F,, if there exists an
adversarys for F; (the simulator) such thahet(F;) = fnet(S[Fz]) andF; < S[F2].

The definition ensures that any behavior/f can be matched bg, executed in
the presence of a specific advers&yHence, there are no more attacks Bnthan
attacks onF,. Moreover, the presence 6fallows abstract definitions of higher-level
functionalities, which are independent of a specific reaion.

Example 5.Let . = in(io01, s).out(netc, ok).in(nete, x). if = ok thenout(ios, s).
The functionality models a confidential channel and takestargially secret value as
input on channelo;. The adversary is notified via channeidt . that this value is to be
transmitted. If the adversary agrees the value is outpuhanmelio-. This functional-
ity can be realized by the proceBsntroduced in Example 2.

LetS = vnete.in(netee, x).vr.out(net, r).in(net, x). if © = r thenout(netc, ok) | -).
We indeed have tha® <, S[F.] andfnet(P) = fnet(S[Fc]).

In order to examine the properties of strong simulatabititypur specific setting,
we now define a particular adversary which is calletbenmy adversary

Definition 7 (dummy adversary). Let F be a functionality. Thelummy adversary

for F is the adversany[] = vsim.(Dy | vnet.(D | -)) where:
— net = fnet(F) = {nety,..., net,};
— sim = {sim}, ..., sim}, sim, ..., sim%} C NET;
— Dy =lin(nety, z).out(sim’,z) | ... |lin(net,,z).out(sim! x) |
lin(sim{, z).out(nety,z) | ... |lin(sim?, x).out(net,, x);
— Dy =lin(sim!, x).out(nety,z) | ... |lin(sim®, x).out(net,,z) |
lin(nety, x).out(sim{,z) | ... |lin(net,, z).out(sim?, x);

By construction we have thétet(D[F]) = fnet(F).

Lemma 3. LetF be a functionality and)[.] the dummy adversary foF: F < D[F].

However, we do not have th& ~ D[F], sinceD[F] has more non-determinism
thanF. A direct consequence of this lemma is ttiat < F» andfnet(F;) = fnet(F2)
implies thatF; <55 F,: it is sufficient to observe thaF, < D[F,] and hence by
transitivity 7; < D[F»]. We use these observations to show #iat is a preorder.

Lemma 4. The relation<5S is a preorder, that is the following hold: (deflexivity:
F1 <55 Fy; (i) transitivity: Fy <55 Fy andFy <55 Fy = F; <55 Fi.

Moreover, we show that S is closed under application of IO contexts and parallel
composition of functionalities.

Proposition 2. Let F;, F» be functionalities and”;, be an 10 context.
Fi <35 Fy = Cyo[F1] <55 Cio[Fa).

Now, we prove the following composition results. Actuattjpsure under parallel
composition of functionalities is a direct consequencehef previous proposition by
noticing that whenF is a functionality then | F is an 10-context. The proof of the
closure under replication is more involved and given in Apgirg.

Proposition 3. Let 71, F»> and F3 be three functionalities. We have that:
(O SSS Fo = F | F3 SSS Fo | Fs; and (i) F, SSS Fo = 1F SSS 1 Fs.

3.3 Other notions of simulation based security

Several other notions of simulation based security appetird literature. We present
these notions, and show that they all coincide in our setfiings coincidence is typi-
cally regarded as highly desirable [16, 15], while it doesmad in most simulation-
based security frameworks [6, 4].

Definition 8. LetF; and.F; be two functionalities andl be any adversary faf;.

— F; emulatesF; in the sense oblack box simulatabilitywritten 7, <BB 7, iff
38.VA. A[F1] = A[S[F,]] whereS is an adversary fofF, with fnet(S[F3]) = fnet(F}).

— F; emulatesF; in the sense ofuniversally composable simulatabiljtyvritten
Fi <Y€ 7, iff VA. 3S. A[F|] < S[F.] whereS is an adversary fotF, such
thatfnet(A[F1]) = fnet(S[F2]).

— F1 emulatesF; in the sense ofiniversally composable simulatability with dummy
adversarywritten F; <YPA £, iff 3S. D[F,] < S[F»] whereD is the dummy
adversary fotF; ands is an adversary fofF, such thafnet(S[7,]) = fnet(D|[F1]).

Theorem 1. We have thakss = <BB = <UC — <UCDA

The above security notions can also be defined replacingwdigmal preorder by
observational equivalence. We denote the correspondlatiares by <35, <BB <UC
and<Y¢PA_ surprisingly, the use of observational equivalence tatiso be too strong,
ruling out natural secure emulation cases: for instanee<ffi relation is not reflexive.

4 Applications

We illustrate our framework by showing the secure emulatiba mutual authenti-
cation functionality by the Needham-Shroeder-Lowe (NStigtpcol [18].As the NSL
protocol uses public key encryption we first introduce inti®ec4.1 functionalities
for asymmetric encryption: the ideal functionality and riéslization together with a
joint state composition result. Then, in Section 4.2, wespn¢ the mutual authentica-
tion functionality and its realization through the NSL prool. Finally we use the joint
state composition result in Section 4.3 to obtain a resulafounbounded number of
concurrent sessions.

We use the notatioim(u, =M) to test whether the input omis equal (moduldt)
to the termp/ (if not, the process blocks). We sometimes use tuples ofdedenoted
by (M, ..., M,), while keeping the equational theory for these tuples iaiplLastly,
we omit “else®” in a conditional wher) = 0.

4.1 Asymmetric encryption with joint state

In this section we introduce a functionality for asymmegiryption together with a
joint state composition resuWhich is crucial for composition of protocols that share
key material. Even though encryption in a Dolev-Yao moddligeady idealized we
will see that we nevertheless need to introducéaal functionalityfor encryption in
order to obtain the joint state composition result. Thraughhis section we rely on the
following equational theory:

adec(aenc(z, pk(y), 2),y) = x testdec(aenc(z, pk(y), 2), y) = ok.

The first equation models randomized asymmetric encryptioereas the second
one allows testing whether decryption with a given key sadseor not.

Real encryption. The real encryption functionality is described in Figure 1:

— Initialisation: the functionality receives a channel nam%ke, which will be used
for all sensitive information exchanges, i.e. when thistionality is used the chan-

nel iOéke should be restricted. A fresh private kek is generated and the corre-

sponding public key, i.epk(sk), is sent onz'o;ke. Then the process is ready to re-

ceive encryption or decryption requests. Note that en@gpequests can be sent

on the sensitive channét’!,. or on the public channe’bﬁke which is the channel

pke
the environment will typically use. Decryption requests anly available through

the sensitive channés, . and thus will not be used by the attacker.

— EncryptionPe,: each time this process receives a request on the chaémﬁ;lgl
(resp.z‘ogke), it computes the corresponding ciphertext (probabdisticryption)
and outputs the ciphertext on the chaniagl, (resp.ioz.).

— DecryptionPy..: €ach time this process receives a request on the chart@glit

tries to decrypt the ciphertext and checks whether the tagads. If so, it outputs

the plaintext on the chann’ejéke. Otherwise, it does nothing.

Poke 1= in(i0pke, 10 pke) -V Sk.0UL (90 fye, (KEY, pk(sk))).

(letioje = 10pe INPenc | letiofe = 103 IN Penc | Peec)
Penc := in(i0pe, (= ENC,m)). _

vra. letmenc = aenc({TAGo, m), pk(sk), r2) in out(ioy., (CIPHER menc))
Pec := in(io;ke7 (= DEC,m)).

let (= TAGo, m1) = adec(m, sk) in out(ioy., (PLAIN, m))

Fig. 1: Real encryption functionality

Ideal functionality. We now propose, in Figure 2, an idealized versfgg. of the real
encryption functionality, which guarantees that the caaritthlity of messages is pre-
served independently of any cryptanalytic effort that ddag performed on ciphertexts
from the knowledge of public keys. In various cryptograpsettings [4, 6, 17], this is
achieved by computing ciphertexts as the encryption ofoenchessages instead of the
actual plaintext. To be able to perform decryption, a tabtepfaintext/ciphertext asso-
ciations is maintained. The burden of this associatioretaébavoided in our symbolic
specification by using two layers of encryption: messagediest encrypted using a
secure keyk(ssk), then tagged and encrypted with the public k&ysk) that is pub-
lished during the initialization step. We stress that reifk(ssk) nor ssk are ever
transmitted byF,.., guaranteeing that it is impossible to decrypt such a cipkeout-
side the functionality, even if the key: is adversarially chosen, which will be a crucial
feature for our joint state composition theorem.

The ideal functionality behaves as follows:

— Initialisation: the attacker chooses the secret kgyand the tag that will be added
in each encryption. Then a secure key: is generated and now the process is ready
to receive encryption or decryption requests.

— Encryption .. each time the process receives a request on the chwﬁugl
(resp.ioﬁke), it computes the corresponding ciphertext and outputsififeertext on
the channejoéke (resp.z’oﬁke). As explained above, the plaintextis first encrypted
usingpk(ssk) before being tagged and encrypted witt{sk).

— DecryptionFye.: each time the process receives a request on the chmj;[geelit
tries to decrypt the ciphertext and checks if the tag is tigept@vided during the
initialization. Then, it checks if the resulting plaintégtencrypted undesk(ssk).

If so, this means that this ciphertext has been produced étieryption func-
tionality and thus has to be decrypted twice. Otherwise cipbertext has been
produced by the attacker and the plaintext is sent on therrdharﬁke.

Foke 1= in(i0pke, i0pye)-0ut(net, INIT).in(net, (= ALGO, sk, tag)).out(ioy., (KEY, pk(sk))).
vssk. (let i0pke = io;ke inFenc | let 10pke = ioﬁke in 1 Fenc | 1 Faec)

Fenc i= in(iof,ke, (= ENC,m)).vr1.v72.
letalea = aenc(m, pk(ssk),r1) inletmenc = aenc({tag, alea), pk(sk),r2) in
out (0}, (CIPHER menc))
Fuee := in(iope, (= DEC,m)). let (= tag,m1) = adec(m, sk) in
if testdec(m, ssk) = ok thenout(iop., (PLAIN, adec(m1, ssk)))
elseout(iop, (PLAIN, m1))

Fig. 2: Ideal encryption functionality

Realization. We indeed have that the real encryption functionality mealithe ideal
one, i.e.Poe <55 Fpke- This is witnessed by the adversary:

Apke = vnet.(in(net, = INIT). vsk. out(net, (ALGO, sk, TAGy)) | -).

10

Composition with joint state. While <5° is stable under replication this is not al-
ways sufficient to obtain composition guarantees. Indeplication of a process also
replicates all key generation operations. In order to obsaif-composition and inter-
protocol composition with common key material we negaimat state functionalityP;s,

i.e. a functionality that realizes .. while reusing the same key material. We actually
show such a functionality for the functionalif,., which is a variant ofF,e in which
each message is tagged. More precisely, the proggsss defined asF,i., except that:

(i) the functionality begins with the instructioigio e, ioéke).in(z‘o;ke, sid) instead of
in(70pke, ioéke), (i) each input of the fornin(c, m) is replaced byn(c, (= sid, m)), and
(iii) each output of the formeut(c, m) is replaced byut(c, (sid, m)).

The Pjs functionality process launches one instance of fyge functionality that
will be used in all protocol sessions. All the requests tojthet state functionality
are received on the public chanrie}. in processP,.. They are then forwarded using
the private 10 channetont to P2. The process; shares the private chann@l.
with Fp. and forwards all the requests after concatenating thessesgentifier to the
plaintext. Then the response is again forwarded to the pfﬂéjé which outputs the
result on the public channé .

Pis = veont.(Py | viopke, i0pe- (P2 | -))
Pis := in(i0pke; 10pye)-in(i01, sid).out(cont, (sid, INIT)).
in(cont (= KEY ,pk)). out(zopke,(szd KEY pk))
(|Et ZOpke - ZOpke in 73]5 enc | leti ZOpke - ZOpke in Ps enc | i dec
lin(40pke; zogke) in(io1, szd) out(zopke, (szd KEY, pk)).
(Ietzo zopke in ”PJS enc | leti ioy, zogke in 7)]15 enc | 1P, JS dec))
Pit_enc == in(i0}ye, (= sid, = ENC,m)). ou_t(cont, (sid, ENC,m)).
m(cont (= CIPHER c)). out(i0pe, {sid, CIPHER c))
Pit_dec = in(iope, (= sid, = DEC, c)). out(cont, (sid, dec, c)).
in(cont, (= PLAIN, m)). out(i0pke, {sid, PLAIN, m))
P = in(cont, (sid, = INIT)).vi0p..0ut (i0pke, 10pe)-
in(zopke7<: KEY7pk>).OUt(CO77,t <KEY pk>) (Ps enc | ,szfdec)
7Dj§—enc = in(cont, (= sid, = ENC,m)). out(%ope, (ENC, (sid, m))).
in(i0pe, (= CIPHER c)). out(cont, (CIPHER c))
P?_gec := in(cont, (= sid, = DEC, c)). out(iop,, (DEC,c)).
in(40pke, (= PLAIN,m)). out(cont, (PLAIN, m))

Fig. 3: Joint state 10-context

We now observe that the following joint state compositisuteholds. One instance
of the encryption functionality can be used to emulate arounded number of such
instances using the joint state proceBs{Fore] <°° !Foje.

This relation is witnessed by the adversaty described in Figure 4 as we have
that: Pjs[Foke] = Ajs[!Foke). This adversary launches several functionalities with the

11

same keyk. However, note that the session identifiéd used to tag each encryption
associated could be different. The value of these sessantifiiérs is selected by the
attacker.

Ajs == ves. (A | vnet. (A2 |)

1 .
Ajs :=in

:= in(cs, INIT).out(net, INIT).in(net, (= ALGO, sk, tag)).out(cs, (ALGO, sk, tag))
A2 .=
s 1=

net, (sid, = INIT)). out(cs, INIT).
n(cs, (= ALGO, sk, tag)). out(net, (sid, ALGO, sk, (sid, tag))).

lin(net, (sid’, = INIT)).out(net, (sid’, ALGO, sk, (sid’, tag)))

(
in(

Fig. 4: Joint state adversary

Note that it is crucial to introduce the ideal functionalitfe indeed have that
Pis[Poke) <5° Pis[Foke] <5° Fpke as well aslPpre <551 Fpie (WherePy is de-
fined from Py in the same way a% ke from Fpie). However,Pis[Pore] £5° Ppke.
In particular!Py Will provide multiple public keys whilePjs[Pyie] only provides a
single one. Taking the more abstract ideal functionalityved this to be avoided by a
simulator that chooses the same secret key for each instéittoe functionality.

4.2 Mutual authentication

Ideal functionality for mutual authentication. The F,., functionality is described in
Figure 5 and works as follows. Both the initiatdfi{;:) and the respondefH..,) receive

a request for mutual authentication on thiichannel. They forward this request to the
adversary and, if both parties are honest, to a trusted Agstvhich compares these
requests and authorizes going further if they match. Exalytuvhen the adversary
asks to finish the protocol, then both participants comptedgorotocol session.

Realization of mutual authentication. The realization ofF, ., based on the Needham-
Schroeder-Lowe protocol is described in Figure 6. For sicitglwe consider only two
honest identitiesip-A and1D-B) and one adversary identityp(-1). We suppose that
these are the only terms of satand that the type system only allows these values for
the variablegd;. The public key infrastructure is modelled as local tablehe partic-
ipants which are used to retrieve the channel names asst¢iathe’ .. functionality

of a given identity. We defind™-\ to be Fi\ [iopke — iopi.] Where[iope — iop]
denotes the replacementf,.. by iogie.

We have thaP,q <55 F,.wm by showing thaP,g =< S[Faun] WhereS = vnet.(_ |
Viod. Pasilior — net][iog — net]). Intuitively, when, ., sends the initialization on
channehet then theP,q protocol is executed. If the protocol succeeds then it sérels
messageéFINISH, sid, idy, id2) on channehet. The restriction on’gﬁke is to avoid that
the environment uses the encryption functionality and suees thajn(S) N 10 = (.

12

Fauth := Vcl-VCQ-(]:init | fresp | fth)

Finit := in(%01, (INIT, sid, id1, id2)).out(net, (INIT, sid, id1, id2)).
if id2 = ID-1 thenin(net, (FINISH, = sid, = id1, = id2)).
out(io1, (finish, sid, id1, id2))
elseout(c1, (COMPARE, sid, id1, id2)).
in(cl, <: OK, = std, = id1, = ng))
in(net, (FINISH, = sid, = id1, = id2)).
out(zo1, (FINISH, sid, id1, id2))
Fresp 1= in(i02, (INIT, sid, id1, idz)).out(net, (INIT, sid, id1, id2)).
if id1 = ID-1 thenin(net, (FINISH, = sid, = id1, = id2)).
out(i02, (FINISH, sid, id1,id2))
elseout(cz, (COMPARE sid, id1, id2)).
in(CQ7 <: OK, = sid, = id1, = Zd2>)
in(net, (FINISH, = sid, = id1, = id2)).
out(zoz, (FINISH, sid, id1, id2))
Fin = in(c1, (= COMPARE, sid, id1, idz)).in(c2, (= COMPARE = sid, = id1, = ida)).
out(cl, <OK, sid, id1, id2>).0ut(02, <OK, sid, id1, ’Ld2>)

Fig. 5: Mutual authentication functionality

4.3 From one to many sessions

We have shown th&,q <% Fauh. This result only shows tha, is as secure aB,uh
for a single session of the protocol. By Proposition 3 we thae! P, <55!F, . but
this does not correspond to the expected security for anumderd number of sessions,
as each session uses a different key. To show!tRat, can be realized with shared
key material we use our joint state result. To apply this ltesa need the following
technical lemma.

Lemma 5. Letn be a name and be a channel name such tha¥ fn(P) U fn(Q).
vellvn.(out(e,n) | P) | in(e,z).Q] =¢!ve.[vn.(out(e,n) | P) |in(e, z).Q).

Applying this lemma twice ofP,y we obtain that

. A . B A B ia s o0b
V10 phes 10pke-! (Fhe | Fore | V10 pyes 10pie-

pke p <ss'Pns|
. B . . b >~
(out(iopke; wﬁke) | out(70pke; wpke) | Pinit | Presp))
Applying Lemma 1 we have that
. A . B A B Ca b
Viopkes 10pke- (ke 'Foke 'V10pker 10pke- <SS1p

(out(iopke, iOﬁke) | out(i0pke, iol,ike) | Pinit | Presp))
Now we can use the joint state result to obtain that:

ViOfky iOﬁ(e' (Pjé[ff;?(e] 73]? []:Fﬁe] |!Vi03ke7 7;()zke'

(out(iopke, iogke) | out(i0pke, Z'nge) | Pinit | Presp))
whererf = Pjs[iopke — z‘o;ie]. This corresponds to a result for unbounded number
of sessions with shared key material. Note that the joirtestantext uses a tagging
mechanism and adds a tag to each encryption.

SS !Pnsl

13

. A - B . . b
Prsl i= ViOpke; 10pke; 10pies 10pke-
A B b
(fpke | fpke | OUt(ZOPl@? Zoske) | OUt(Zopkev 7'Opke) | Pinit | PI’ESP)
Pinit := in(zo1, (INIT, sid, id1,id2)).
if idy = 1D-A then letiopt = 0. IN Pinic

pke ™ -
else ifid; = ID-B then letiofis = i00y, in Piky
Piie := if ido = 1D-A then letio[i? = iog. in Pi,

else ifidz = 1D-B then letio i = 0%ke IN P
else ifid> = 1D-1 then letio = 0pe IN Pitie

P = out(iofe, sid).
ewsgry vna.out(iog?, (sid, ENC, (na,id1))). in(ioyd, (= sid, = CIPHER z1)).

out(netns, T1)-
(Msg2) in(netns, T2).

out (o, (sid, DEC, z2)). in(iope, (= sid, = PLAIN, (= na, ynp, = id2))).
emsgay out(iog P, (sid, ENC,ynp)).in(ioger, (= sid, = CIPHER x3)).

out(netns, T3)-

out(io1, (FINISH, sid, id1, id2))

Presp = in(iOQ7 <: INIT, sid, ’idl,id2>).
if idy = 1D-A then letiopt = (0% IN Presp
else ifid; = ID-B then letiolis = 0%, IN Pregp
else ifid; = ID-1 then letio},, = 10} IN Pregp

Presp 1= if id2 = ID-A then letio s = io% N P,

pke T
else ifid> = 1D-B then letiols? = iop. in Pig,
2 e - res .
Presp := out(ioF, sid).
emsgry in(netns, 21).out(ion T, (sid, DEC, x1)).in(ioy , (= sid, = PLAIN, (Tna, = id1))).

(*Msg 2*) Z/nb.out(iog‘ki;, (sid, ENC, (Zna, nb, idQ)).in(ioE}ii, (= sid,= CIPHER x2)).
out(netnsl, T2).

(Msg3) in(netns, xg).out(io;izp, (sid, DEC, am)).in(io[iip, (= sid, = PLAIN, Ynp)).
if Y, = nbthenout(ioz, (FINISH, sid, id1,id2))

Fig. 6: Mutual authentication realization

5 Conclusions

This paper proposes a symbolic framework for the analyssgoftirity protocols along
the lines of the simulation based security approach, whitgpting the applied pi cal-
culus as basic layer. We state central definitions and sgauotions, show general
composition theorems and specific joint-state compositsults for asymmetric en-
cryption, and illustrate their use in the analysis of a mudwghentication protocol.
This framework brings the benefits of the secure compositienrems associated
to simulation based security into the symbolic world, andrapthe path to the analysis
of more sophisticated protocols that can naturally spethiethe behavior of an ideal
functionality, e.g., electronic commerce or voting prattsc At a more fundamental
level, our framework makes use of preorder notions, whichesestablished by labeled
simulation. While the use of labeled bisimulations is quitenmon in the applied pi

14

calculus and has been integrated in automatic proversytioenation of proofs relying
on labeled simulation appears as an interesting challerdatiire works.

References

1. M. Abadi and C. Fournet. Mobile values, new names, andreemmmunication. IfProc.
28th ACM Symp. on Principles of Programming Languages (PQBLACM, 2001.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic fools: The spi calculus.
Technical Report 149, SRC, 1998.

3. A. Armando et al. The AVISPA Tool for the automated validatof internet security
protocols and applications. IRroc. 17th Int. Conference on Computer Aided Verification
(CAV'05), LNCS. Springer, 2005.

4. M. Backes, B. Pfitzmann, and M. Waidner. The reactive saaibility (RSIM) framework
for asynchronous systemmformation and Computatiqr05(12):1685—-1720, 2007.

5. B. Blanchet. An Efficient Cryptographic Protocol Veriflgased on Prolog Rules. Froc.
14th IEEE Computer Security Foundations Workshop (CSFyvZIi01.

6. R. Canetti. Universally composable security: A new payadfor cryptographic protocols.
In Proc. 42nd IEEE Symp. on Foundations of Computer Scienc€ & @) 2001.

7. R. Canetti, L. Cheung, D. Kaynar, N. Lynch, and O. Pereitampositional security for
Task-PIOAs. InProc. 20th Computer Security Foundations Symposium (C3F2007.

8. R. Canetti and J. Herzog. Universally composable syrlasialysis of mutual authentica-
tion and key exchange protocols. Proc. Theory of Cryptography Conference (TCC’06)
LNCS. Springer, 2006.

9. I. Cervesato, A. Jaggard, A. Scedrov, J.-K. Tsay, and Gst&t Breaking and fixing public-
key kerberosInformation and Computatiqr206(2-4):402—-424, 2008.

10. C. Cremers. The Scyther Tool: Verification, falsificatiand analysis of security protocols.
In Proc. 20th Int. Conference on Computer Aided VerificatioA(©8), LNCS, 2008.

11. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Alzsttion and refinement in protocol
derivation. InProc. 17th IEEE Computer Security Foundations Workshog-{@94), 2004.

12. S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisiniteffor the applied pi-calculus.
In Proc. 27th Conference on Foundations of Software Techgaad Theoretical Computer
Science (FSTTCS'0O/MNCS. Springer, 2007.

13. O. Goldreich, S. Micali, and A. Wigderson. How to play angntal game: A completeness
theorem for protocols with honest majority. Pmoc. 19th ACM Symposium on the Theory of
Computing (STOC’87)ACM Press, 1987.

14. J. D. Guttman and F. J. Thayer. Protocol independenoeadhrdisjoint encryption. Ifroc.
13th IEEE Computer Security Foundations Workshop (CSFyvZmpo.

15. R. Kusters. Simulation-Based Security with Inexhiélestinteractive Turing Machines. In
Proc. 19th IEEE Computer Security Foundations Workshog={@96), 2006.

16. R. Kusters, A. Datta, J. C. Mitchell, and A. Ramanath@n the relationships between
notions of simulation-based securiiournal of Cryptology21(4):492-546, 2008.

17. R.Kusters and M. Tuengerthal. Joint State TheoremBudbtic-Key Encryption and Digitial
Signature Functionalities with Local Computation. Rroc. 21st IEEE Computer Security
Foundations Symposium (CSF'Q2D08.

18. G. Lowe. An attack on the Needham-Schroeder public kélyeatication protocol.Infor-
mation Processing Letter§6(3):131-133, 1995.

19. P. Mateus, J. Mitchell, and A. Scedrov. Composition gptwgraphic protocols in a proba-
bilistic polynomial-time calculus. Iroc. 14th Conference on Concurrency Theory (CON-
CUR’03), LNCS. Springer, 2003.

15

A Proof of Proposition 1

The proof relies on the following two lemmas.

Lemma 6. LetR be the relation on closed extended processes defined awsollo
R= =< U{(A,B)|A=A|{M/z}, B=B|{M/z}, andA <, B}.

We have thaR is a labelled simulation.

Proof. Let A and B be two closed extended processes such4h& B. EitherA =<,
B and we easily conclude. Otherwise, we have that there extstctosed extended
processes, B, an active substitutiofiM /x} such that:

A=A|{M/z},B=B|{M/z}, andA <, B.
We show that the 3 points of the definition of labelled simiolatold.

1. A ~, B. Indeed, we have thal ~, B, thusA | {M/z} ~, B | {M/z}. The
result easily follows.

2. If A — A’ thenB —* B’ for someB’ such thatd’ R B'.
SinceA = A | {M/x}, we have that’ = A’ | { M/x} for some closed extended
processA’ such thatd — A’. SinceA =, B, we know that there exists a closed
extended procesB’ such thatB —* B’ andA’ <, B’. LetB’ = B’ | {M/z}.
We have thaBB = B | {M/z} —* B’ | {M/z} & B’ andA’ R B’ by definition
of R.

3. If A% A with fu(a) € dom(A) andbn(a) N fa(B) = 0, thenB —*%—* B
for someB’ such thatd’ R B'. }
SinceA = A | {M/z}, we have thatd’ = A’ | {M/z} for some closed extended
processA’ such thatd “= A’ with o/ = afz — M]. Note thatfv(a’) C dom(A)
and we can assume thiat(a’) N fn(B) = 0. SinceA =<, B, we know that there
exists a closed extended procé¥ssuch thatB —*2~—* B’ andA’ <, B'. Let
B' = B' | {M/z}. We have thaB = B | {M/z} —*5—* B/ | {M/z} < B/
andA’ R B’ by definition of R. This allows us to conclude. ad

Lemma 7. LetR be the relation on closed extended processes defined aw$ollo
R= =<y U{(A,B)| A=vi.(A| P), vi.(B | P), andA <, B}.
We have thaR is a labelled simulation.

Proof. Let A andB be two closed extended processes such4hRt B. EitherA <, B
and we easily conclude. Otherwise, we have that there existlosed extended pro-
cessesd, B, a plain proces#® (with fu(P) C dom(A)) and a sequence of metavari-
ablest such that:

A=vi.(A| P),B=vi.(B|P)andA <, B.

16

We show that the 3 points of the definition of labelled simolahold. First, we have
that A ~, B. Indeed, we have thal ~, B, thus since~, is closed by application
of evaluation context, we deduce thai.(A | P) ~, va.(B | P), and thusA ~, B
Now, we distinguish several cases depending on the formedfthela involved in the
reductiond = A’.

1. o = vz.out(c, x). We distinguish two cases:

(a) A’ = vii.(A' | P) for some closed extended proce¥sand A
with ¢, z ¢ 4. (Note thate, = ¢ @ can be assumed w.l.o.g.: froh= vii.(A |
P), B = vi.(B | P) andA <, B we obtain bya-conversion thatd =
Vﬂl.(Al | Pl), B = Vﬂl.(Bl | Pl) for someu; with c, T ¢ w1 and as=<y is
closed under injective renaming of free names we havedhat, B]).
SinceA =<, B, we know that there exists a closed extended profsaich

thatB —* 2", BrandA’ <, B'. Let B' = vii.(B' | P). We have

thatB = vi.(B | P) —* —*vi.(B' | P) ¥ B andA’ R B’ by
definition of R.

(b) A’ = va.vn.(A | P' | {M/z}) for some plain procesg’ and some sequence
of namesi such thatiN fn(B) = 0 andP 222", 15 (P! | {M/z}) with
c,x €uUn.

Let B’ = vi.vi.(B | P' | {M/z}). We have thatd | {M/z} <, B | {M/z}
thanks to Lemma 6 and the fact that<, B . ThusA’ R B’ by definition of
R. We have also that:

B =vi.(B| P)—* —* v (B | P | {M/z}) = B
2. a = out(c, a). We distinguish two cases:
(@) A’ = vii.(A' | P) andA 2%, Jr with a, ¢ ¢ 4.
SinceA <, B, we know that there exists a closed extended pro&ssuch
that B —+* "%« Brand A’ <, B. Let B' = vi.(B' | P). We have
def

vz.out(c,z) A/
_

vx.out(c,x)
—_

vz.out(c,z)

out(c,a)

thatB = vi.(B | P) —* —* vi.(B' | P) € B’ andA’ R B’ by
definition of R.
(b) A’ = va.(A| P)andP 2%, p' with a,c ¢ .

Let B’ = va.(B | P'). By definition of R, we have thatd’ R B’. We have
also thatB = vii.(B | P) —* —*vi(B|P) ¥ B.
3. a =in(¢, M). We distinguish two cases

in(c, M

(@) A’ =vi.(4' | P)andA MeM) 7 with ¢ ¢ @ and@ do not oceur inM.
SinceAd <, B andfv() C dom(A) C dom(A), we know that there exists a

out(c,a)
—_—

closed extended proces such that e meM) s BrandA’ <, B, Let
B’ = vi.(B' | P). We have thaB = vi.(B | P) —* "M« va(B |

P) % B’ andA’ R B’ by definition of R.

(b) A’ =vi.(A | P)andP e prwith ¢ ¢ @ anda do not occur inM.
Let B’ = vi.(B | P'). By definition of R, we have thatd’ R B’. We have

also thatB = vii.(B | P) e g, (B|P)¥ B.

17

4. o = va.out(c,a) anda ¢ fn(B). We distinguish four cases:

(@) A’ = vi.(A' | P)andA vaoute®) | X with ¢ ¢ @. We have also to assume
thata ¢ fn(B). (Note again that we can assume this w.l.o.gu: & fn(B) and
a ¢ @ then we can assume that¢ fn(B). We can always assume¢ i as
explained previously.)
SinceA <, B anda ¢ fn(B), we know that there exists a closed extended pro-
cessB’ such thatB —* —* B’andA’ <, B'. LetB' = vi.(B' |
P). We have thaB = vi.(B | P) -+~ .« (B | P) % B’ and
A’ R B’ by definition of R.

(b) A’ = vie.(A | P!y andP 222D, pryith ¢ ¢ . o
Let B’ = va.(B | P’). By definition of R, we have thatd’ R B’. We have
also thatB = vi.(B | P) —* “vi.(B|P)E B

(©) A’ = vit'.(A' | P)andA 2%, A'with ¢ ¢ i, a € @ andii’ = i@ ~ {a}.
SinceA =¢ B, we know that there exists a closed extended pro&ssuch
that B —* 2%, .« BrandA’ <, B'. Let B' = vi'.(B' | P). We have
that B = vi.(B | P) —* 22", vy (B | P) % B andA’ R B’ by
defimtion of R.

d) A" =vi' (A | P’) andP P'withc & @, a € wandd’ = a ~\ {a}.
Let B’ = vi/.(B | P'). By definition of R, we have thatd’ R B’. We have
also thatB = vii.(B | P) —* —* i/ (B | P) ¥ B

va.out(c,a)
_

va.out(c,a)
_

out(c,a)

va.out(c,a)

5. a=7.We distinguish 8 cases:

(@) A’ = vi.(4A | P) andA — A’
Since A ﬁ B, we know that there exists a closed extended pro&s&uch
that B —* B’ andA’ <, B'. Let B = va.(B' | P). We have thatB =
vi.(B | P) — vi.(B' | P) % B’ andA’ R B’ by definition ofR.

(b) A" =vu.(A|P)andP — P’
Let B’ = va.(B | P’). By definition of R, we have thatd’ R B’. We have
also thatB = vii.(B | P) — vi.(B | P') ¥ B.

(c) A" = va. (A' | P’) with A M A’ andp ™Mo, in(c,a) P
SinceA =<, B, we know that there exists a closed extended progsaich

that B —* 2%, .« BrandA’ <, B'. Let B' = vii.(B' | P'). We have
thatB = vi.(B | P) —* vi.(B' | P)) ¥ B’ andA’ R B’ by definition
of R.

(d) A’ = vii,a.(A' | Py with 4 22212, 4 andp 29, pr,
SinceA <, B anda ¢ fn(B), we know that there exists a closed extended pro-
cessB’ suchthaty —* 2>, .« BrandA’ <, B'. Let B’ = vii, a.(B' |
P'). We have thaB = vi.(B | P) —* vii,a.(B' | P') & B’ andA’ R B’
by definition of R.
(€) A' = vi.(A'| P')with A ™. 4 andP

out(c,a)

P

18

SinceA =<, B, we know that there exists a closed extended profsaich
thatB —*"“%, . BrandA’ <, B'. Let B’ = vii.(B' | P'). We have that
B=vi.(B|P)—*vi.(B' | P) Y B andA’ R B’ by definition of R.

() A = vi,a.(4 | P)with A 22 4 angp L2210, pr
SinceA <, B, we know that there exists a closed extended proﬁéwch
thatB "0, e B and i <, B'. Let B' = vii,a.(B' | P'). We have
that B = vii.(B | P) —* vi.(B' | P)) € B’ andA’ R B’ by definition
of R.

Q) A’ = vii,z.(A' | P')with 4 222, jr andp M, pr
SinceA <, B, we know that there exists a closed extended pro&ssuch
that B —* 22"« Brand A’ <, B'. Let B' = vii,x.(B' | P'). W
have thatB = vi.(B | P) —* vi,z.(B' | P) & B’ andA’ R B’ by
definition of R.

(h)y 4 = vavn.(A | P') with A

{M/x}). ~
SinceA <y, B andfv(M) C fo(P) C dom(A) C dom(A), we know that

there exists a closed extended procBssuch thatB —>*m(c—’M)>~—>* B’ and
A <, B'. Let B' = vawn.(B' | P'). We have tha3 = va.(B | P) —
viivii.(B' | P') < B’ andA’ R B’ by definition of R. 0

in(c,M) vx.out(c,z)
—_—

A’ and P vin.(P' |

Proposition 1. Let A and B be two extended processes such thak, B. We have
that C[A] <, C[B] for all closing evaluation context_|.

Proof. We prove this result by structural induction 6fi].
Base caseC' = _. In such a case we easily conclude.
Induction stepWe distinguish several cases depending on the for@i.of

[] = vu.C'[]. In such a case, thanks to our induction hypothesis, we Heate t
C'[A] =%, C'[B]. Then, thanks to Lemma 7, we easily deduce &\at] <, C[B].
C[] = P | C'[]. We conclude as in the previous case.
- C[_] = {M/z} | C'[]. In such a case, thanks to our induction hypothesis, we have
that C’[A] <, C'[B]. Then, thanks to Lemma 6, we easily deduce tHigt] <,
C|B].

This allows us to conclude the proof. a

B Proofs of Section 3

Lemma 3. LetF be a functionality and)[.] the dummy adversary foF: F < D[F].

19

Proof. We define the following relatiof® on closed extended processes

R = =y U{(A,D[4]) | IF. fnet(A) C fnet(F) and,
D]] is adummy adversary foF }.

We now show thafR is a labelled simulation. IfA <, B we trivially conclude.
Suppose thaB = D[A] andD[_] is a dummy adversary for some functionalifysuch
thatfnet(A) C fnet(F). We have thaD[] = vsim.(D; | vnet.(Dy | _)) whereD;
andD- are closed plain processes as described in Definition 7.

We note that by the type system, for any lahelve have thabn(a) N NET = §.
Hence, ifA(—*%—*)* A’ thenfnet(A’) C fnet(A). We now show the 3 points of the
definition of a labelled simulation.

1. By construction oD[_], we have thap(A) = ¢(D[A]), thuse(A) =, ¢(D[A]).

2. Suppose thatt — A’. As — is closed under application of evaluation contexts,
we have thatD[A] — DJ[A’]. Moreover,fnet(A’) C fnet(A). We conclude that
A’ R D[A'].

3. Suppose that % A’ with fv(a) C dom(A) andbn(a) N fn(D[A]) = 0. We have
to consider different cases.

— Names innet do not occur ina. In this caseD[A] < D[A’]. Moreover,
fnet(A’) C fnet(A4). We conclude that’ R D[A'].
— a = in(nety, M). We have that

D[A] = vsim.(in(nety, z).out(simk,z) | Dy | vnet.(Dy | A))

inlnebi M) cim . (out(siml, M) | Dy | vnet.(Ds | A))

vsim.(out(simi, M) | Dy | vnet.(in(simk, z).out(nety, z) | Dy | A))
vsim.(Dy | vnet.(out(nety, M) | Dy | A))

vsim.(Dy | vnet.(Dy | A'))

D[A]

m -y |

Moreoverfnet(A’) C fnet(A). We conclude that’ R D[A’].
— a = (vu.)out(nety, u). We have that

Dy | vnet.(in(nety, x).out(simg,z) | Do | A))

Dy | vnet.(vu.)(out(sim$,u) | Dy | A'))

in(simg, x).out(nety, z) | D1 | vnet.(vu.)(out(sim,u) | Dy | A'))
— wsim.(vu.)(out(nety,u) | Dy | vnet.(Dy | A))

(rwoutlneten) con (Dy | vnet.(Ds | A)
= D[A]

D[A] = vsim.
— vsim.
= vsim.

P~ A~ A~ A~

Moreoverfnet(A’) C fnet(A). We conclude that’ R D[A’].

Lemma 4. The relation<5S is a preorder, that is the following hold: (deflexivity:
F1 <55 Fy; (i) transitivity: Fy <55 Fy andFy <55 Fy = F; <55 Fi.

20

Proof. Reflexivity holds thanks to Lemma 3. Now, it remains to esshbiransitivity.
As F; <55 F, andF, <55 F3, we have that there exist an advers&tyfor F, and an
adversanyS? for F; such that:

— F1 = SYF2) andfnet(F1) = fret(St[F2));
- Fo = S2 [fg] andfnet(]-'g) = fnet(82 [fg])

As =< is closed under application of evaluation contexts (Pritipos1) we also have
thatS*[F,] < SY[S?[F3]]. By transitivity of < we have thatF; < S[S?[F35]].

As fret(F2) = fnet(S?[F3]) andS! is an adversary fof,, we deduce tha$; is
also an adversary fo$?[F3] and thus, thanks to Lemma 2, we deduce thetS?[]]
is an adversary fotFs. In order to conclude, it remains to show thatt(F;) =
fnet(S1[S?[F3])).

As fnet(F2) = fnet(S%[F3]), we deduce thatnet(S'[F2]) = fret(S'[S?[F5]))
and we conclude thanks to the fact thadt(F;) = fnet(S*[F)). O

Lemma 8. Letc be a channel of typMET and A be an extended process:. A < A.

Proof. Actually, we prove a stronger statement. We show that:
A =<y B implies vc.A <, B foranyc € NET.

LetR = <, U{(A,B) | A =vcA, A=, B}. We show thaiR is a labelled
simulation. IfA <, B then we trivially conclude. Suppose’R B andA = vc. A with
A <, B. We need to show the 3 points of the definition of labelled &ation.

1. Asc € NET, we have thaty(vc.A) = ¢(A). As A <, B we have thatd ~, B
and hence we conclude that~, B.

2. Supposel — A’. Henceve.A — A’. By inspection of the reduction rules we have
thatA’ = ve. A’ andA — A’ for some closed extended proceE¥sAs A <, B we
have that there exist8’ such thatB —* B’ andA’ <, B’. Henced’ R B’.

3. Supposed = A’. Hence,vc. A < A’. By the type system we have that #
vd.out(a,d) for anyd € NET. By inspection of the labelled rules we have that
A" = ve. A andA % A’ for some closed extended proce$s As A <, B we
have that there exis8’ such thatB —*-=—* B’ andA’ <, B’. Henced’ R B'.

To prove Lemma 8 we observe that<, A. From the above statement we have that
ve.A <, Aand hencec. A < A. O

Note that Lemma 8 relies on the type system and the fact treatradis of typeNET
only appear in “channel position”. In particular this awid counterexample where

out(a,c)

A = out(a,). In such a case, we have that 0, whereassc.A can only

moves with a label of the formd.out(a, d).

Proposition 2. Let 77, F» be functionalities and’;, be an 10 context.
Fi1 <55 Fy = Ci|F1] <35 Co[Fa).

21

Proof. As F; <55 F, we have that there exists a simulaffor F, such thatF; <
S[F2] andfnet(F1) = fnet(S[F2]). As < is closed under application of evaluation
contexts we also have thét, [F;] < C;,[S[F2]]. By Definition 5 and Definitior??,
we have that”;, andsS are of the form:

= Cio = vi01.(Cy | viog.(Cy | ... |viog.(Ce | -)...)) with |] do; € 10 and
1<i<e
where eaclt’; (1 <i < /) is aclosed plain process.

— S =wvnet1.(S1 | vneta.(S2 | ... [vnets.(Sk | -)...)), fnet(F2) €) met; C NET,
1<5<k
/n(S[]) N 10 = 0 and where each; (1 < j < k) is a closed plain process.

Let D[] = vsim.(Dy | vnet.(Dy | _)) be the dummy adversary fat;,[S[F2]].
Thanks to Lemma 3 we have th@}, [S[Fz]] = D[C;,[S[F2]]]. Now, thanks to Lemma 8,
we have that

D[Cio[S[F2]]] = D[Cio[S"[F2]]]
where:

— 8" = vnety.(Sy | vnety.(Sa | ... | vnet's.(Sk | -)...)), and
/ — —

— net;, = net; \ net.

Sinceﬁe?; Nfret(Ci[]) = 0 (1 < i < k) andfnet(S’[]) N 10 = @, we have
that C,, [S'[F2]] = S'[Cio[F2]] and thusD[C;,[S'[F2]]] = D[S'[Cio[F2]]]- In or-
der to conclude, it remains to show th@{S’[_]] is a simulator forC,, [F2] such that
fnet(Cio [F1]) = fnet(D[S'[Cio [F2]]])-

First note thaiD[S’[]] is of the right form andnet(D[S’[]]) N 10 = (). Moreover,
sinceD is a dummy adversary far';, [F2], we havenet = fnet(C, [S|F2]]) and thus
we have that:

fnet(Cio[F2]) = fnet(Ciol]) U fnet(Fs)

fnet(Cm[_]) U Ulgjgk ;z\e/tj/v
ﬁ‘\e/t(cio [S[}—Q]D,E Ui<j<k net;
net U U, < <y, net;
W U Uy oy L,

— —_— —
sim U net U U, <<y, net;

mnin

N

Thus, D[S’[.] is a simulator forC;,[F2]. Moreover, we have thehet(C,[F1]) =
fnet(D[S'[Cyo[F2]]])- Indeed, we have that:

- fnet(Cm [.7:1]) = fnet(C’io [S[fg]]) = ﬁ\e/t, and N
— fnet(D[S [Cio[F2]]]) = fet(D[Cio [S'[F]]]) = fet(D[Cuo[SI]]) = fet(Cio [SIF]]) = net.

This allows us to conclude. |

Proposition 3. Let 71, F»> and F3 be three functionalities. We have that:
() Fr < Fo = Fi| F3 <> Fp | Fiand (i) 71 < F = 1F <A,

22

Proof. We show thatF; <55 F, = |F; <S55I F,. We have that there exists an
adversaryS for F; such thatF; <,S[Fz]. By Lemma 1 we have thdtF; <,!S[F3].
Moreover, we have

IS[Fs] = vnet1.(Sy | vnets.(Sy | ... | vnety.(Sk | F2)...))

=S| S2 |- | Sk | Fe) by Lemmas 8 and 1

=151 |1Se | .. 1Sk |\ F2) by Lemma 1
whereD|_] is the dummy adversary fé6; |!S2 | ... |!Sk |!F2. DefiningS’ = D[!5; |
1S5 | ... [1Sk | -)] we obtain thatF; <,!S[F»]<,S'[|\F»] and conclude thdtF; <S5

1Fs.

Theorem 1. We have thasS = <BB = <UC — <UCDA

Proof. We prove the following inclusions:

— <55 C <BB,
Suppose thafF; <55 F,. Hence, there exists an adversaty for F, such that
Fi1 =X Ss[F2] andfnet(Fi) = fnet(Sss[F2]). We have to show that there ex-
ists an adversang,, for F, such that for all adversary for 7, we have that
fnet(Sbb[}'g]) = fnet(}'l) andA[]—'l] = A[Sbb[fg]]
Let Spp & S... Hence, we have thaf; < Syy[F>] andfnet(Spp[Fo]) = fnet(Fy).
As = is closed under application of evaluation contexts, for adyersaryA for
F1 we obtain thatA[F1] < A[Spb[F2]].

_ <BB C <UC_
Suppose thatF; <BB F,. In such a case there exists an adverssyy for F,
such thatfnet(Spp[F2]) = fnet(F1) and for all adversaryd for 7; we have that
A[F1] = A[Sub[F2]]. We have to show that for all adversadyfor Fs, there ex-

ists an adversarg,. for 7 such thafnet(A[F)]) = fnet(Su[F2]) and A[F;] <

Suc[F2]. Let. A be an adversar, andS,c[-] def A[Spb[-]]. Asfnet(F1) = fnet(Spp[F2]),

we have alsdnet(A[F;]) = fnet(A[Spp[F2]]) = fnet(Suc[F2]). In order to con-
clude, it remains to show th&,. is an adversary fof,. This is indeed the case
sinceS,[-] = A[Skb[-]] andSyy is an adversary faF; and.A is also an adversary.
This allows us to conclude.

<UC C <UCDA_

Suppose thaf; <Y¢ F,. Hence, for all adversary for F; there exists an adver-
sary S, for F, such thatd[F;] < S[F;] andfnet(A[F1]) = fnet(Suc[F2]). We
have to show that there exists an adversafgr 7, such thatt'[F;| < S[F>] and
fnet(S[Fz]) = fnet(D[F1]) whereD is the dummy adversary fofF;. Taking D
for .4 we easily conclude by applying our hypothesis.

<UCDA C <SS.

Suppose thafF; <UPA F,. Hence, there exists an adversaryor F, such that
D[F;] = S|Fs] andfnet(S[F2]) = fnet(D[F1]) whereD is the dummy adversary
for 1. We have thafnet(D[F1]) = frnet(F;). By Lemma 3, we have thaf; <
D[F;]. We conclude by transitivity oK. O

23

C Proof of Section 4

Lemma 5. Letn be a name and be a channel name such tha¥ fn(P) U fn(Q).
vellvn.(out(e,n) | P) | in(e,2).Q] =¢!ve.[vn.(out(e,n) | P) |in(c,z).Q).

Proof. Consider the processé}, P, andP defined as follows:

— P = vel[lvn.(out(e,n) | P) |in(c, z).Q], and
— Py =lvefvn.(out(c,n) | P)|in(c,z).Ql, and
— P = vn.(out(e,n) | P) |in(e,z).Q

Let k be an integer. We consider the contéxt[-] andC#[] defined as follows:

- CAl) =vn1,...,ng [(out(c,n1) | in(c,2).Q) | -+ | (out(c,ng) | in(c,2).Q) | _].
- CB)=vna,...,ng. [ve.(out(c,n1) | in(e,x).Q) | -+ | ve.(out(c, ng) | in(e,2).Q) | -].
By conventionCA[] = CE[] = _.

We define the following relatio® on closed extended processes

R= =<0 U{(4,B)| A=ve.(P | CAD]) andB = (lve.P) | CE[D]
for some extended procegsand some:}

Note thatP; R P, and we can show th& is a labelled simulation by showing that
the 3 points of the definition of labelled simulation hold. O

24

