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Abstract

Consider a model of secret sharing schemes with cheaters. We say that
a secret sharing scheme is error decodable if we can still recover the secret
s correctly from a noisy share vector (share!,---,share),). In this paper,
we first prove that there exists an error decodable secret sharing scheme
if and only if the adversary structure I satisfies a certain condition called
Q3. Next for any I which satisfies Q3, we show an error decodable secret
sharing scheme such that the decoding algorithm runs in polynomial-
time in |S| and the size of a linear secret sharing scheme (monotone span
program) which realzes I'.  We finally show an applicaiton to 1-round
Perfectly Secure Message Transmission schemes (PSMT).
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1 Introduction

Consider a model of secret sharing schemes with cheaters as follows. The mem-
bers of some non-access set B are cheaters and they open forged shares in the
reconstruction phase while all the other participants are honest and open valid
shares. We say that a secret sharing scheme is error decodable if we can still
recover the secret s correctly from the noisy share vector (share,-- -, share!),
where n is the number of participants. For example, Shamir’s (k,n)-threshold
secret sharing scheme is error decodable if and only if n > 3(k— 1)+ 1 [7]. In
this case, the decoding algorithm runs in polynomial time in n and |S|, where
|S| denotes the size of s.

On the other hand, threshold secret sharing schemes have been generalized
to access strcutures, where an access strcuture X is defined by

Y={A]AC{1,---,n}is an access set}.



The complement of ¥ is called the adversary structure and denoted by I'. That
is,
I'={B|BC{l,---,n} is a non-access set}.

Now does there exist an error decodable secret sharing scheme for general secret
sharing schemes ? This fundamental problem has not been solved so far.

In this paper, we first prove that there exists an error decodable secret
sharing scheme for T if and only if T satisfies a certain condition called Q3.

Next for any I" which satisfies Q3, we show an error decodable secret sharing
scheme such that the decoding algorithm runs in polynomial-time in |S| and the
size of a linear secret sharing scheme (monotone span program) which realizes
.

We finally show its applicaiton to 1-round Perfectly Secure Message Trans-
mission schemes (PSMT) [2, 3].

Related works: The notions of adversary structures I' and @ were introduced
by Hirt and Maurer in the context of multi-party protocols [4]. T satisfies Q3
it (B, UB; UBj) # {1,---,n} for any By, B;, B; € I'. For example, the I" of a
(k,n)-threshold secret sharing scheme satisfies Q? if and only if n > 3(k—1)+1.

2 Preliminaries

2.1 Secret Sharing Scheme

In a secret sharing scheme, the dealer distributes a secret s to n participants
P = {P,---,P,} in such a way that some subsets of the participants can
reconstruct s while the other subsets of the participants have no information on
s. A subset of the participants who can reconstruct s is called an access set.
More formally, let F be a finite field. A dealer is a probabilistic polynomial
time algorithm Dealer such that on input a secret s € F and a random string r

Dealer(s,r) = (sharey, - -, share,),
where share; is given to a participant P;. For a subset A C {1,---,n}, let
shareq = {share; | i € A}.

Let S denote a random variable induced by s, and SHARE 4 denote a random
variable induced by sharey. We require that

H(S | SHARE,) =0 or H(S), (1)

where H denotes entropy. A is called an access set if H(S | SHARE4) = 0, and
a non-access set if H(S | SHARE,) = H(S). The family of access sets is called
an access structure X.



Let Reconstruct be a reconstruction algorithm such that

s if AeX

Reconstruct(A,shareA):{ L if AgS

Definition 2.1 We say that (X, Dealer, Reconstruct) is a secret sharing scheme.
In particular, it is called perfect if eq.(1) holds.

There exists a perfect secret sharing scheme for an access structure ¥ if and
only if ¥ is monotone [5].

Definition 2.2 ¥ is monotone if A€ Y and A’ D A, then A’ € X.

In what follows, a secret sharing scheme means a perfect secret sharing
scheme.

2.2 Linear Secret Sharing Scheme (LSSS)

A secret sharing scheme for any monotone access structure ¥ can be realized
by a linear secret sharing scheme (LSSS). Let

mi
M =

My

be an £ x d matrix over a finite field F and ¢ : {1,---,£} — {1,---,n} be a
labeling function, where £ > d and ¢ > n.

Distribution algorithm:

1. To share a secret s € F, the dealer first chooses a random vector r € F?~!

and compute a vector
s
v=DMX ( r > , (2)

2. Let LSSS(s,r) = (sharey, -, share,), where
share; = {v; | ¥(j) =i} (3)

The dealer gives share; to P; as a share for¢t =1,---,n.

where v = (v, -+, v)7.

Reconstruction algorithm: A subset of participants A can reconstruct the
secret s if and only if (1,0,---,0) is in the linear span of

My =A{m;[4(j) € A}.

Definition 2.3 We say that the above (M,v) is a monotone span program
which realizes X.



3 Error Decodable Condition

Let (X, Dealer, Reconstruct) be a secret sharing scheme. The adversary structure
is defined as the family of non-access sets

I'={B|B¢x}

Suppose that the members of some non-access set B € I' are cheaters, and
they open forged shares in the reconstruction phase. In this case, a noisy share
vector is revealed such that

y = Dealer(s,r) + e

where e = (e1,---,e,) is an error vector. ! TUnder what condition can we

recover s correctly from y? In this section, we show an answer to this problem.
Let

support(e) = {i | e; #0}.

Then support(e) € T because the cheaters belong to a non-access set B € T'.

Definition 3.1 T satisfies Q* if (B,UB;UB;) # {1,---,n} for any By, B;, Bj €
T.

For example, the adversary structure I’ of a (k,n)-threshold secret sharing
scheme satisfies Q3 iff n > 3(k — 1) + 1, where

P={B||Bl<k-1}.
Lemma 3.1 T satisfies Q> if and only if

support(Dealer(s,r) — Dealer(s’,r")) Z (B; U B;) (4)
for any s,s',r,r" such that s # s' and for any B;,B; € T

(Proof) (1) Suppose that I does not satisfy Q*. Then there exist Bp,, B;, B; € T
such that
{1,---,n}:BhUBiUBj.

Since By, is a non-access set, the members of Bj, have no information on the
secret, s. Therefore, there exist some s, s’, 7,7’ such that s # s’ and

share; = share)
for all i € By, where

Dealer(s,r) = (sharey,:--,share,),

Dealer(s’,r') = (share],---,share])

L It is assumed that share; and e; are elements of some Abelian group for each i. For
exapmple, the operation is bit-wise XOR.



This means that
support(Dealer(s,r) — Dealer(s',7")) C {1,---,n} \ By = (B; U Bj)
because {1,---,n} = By U B; U B;.
(2) Suppose that
support(Dealer(s,r) — Dealer(s’,r")) C (B; U B;)
for some s,s’,r,r' such that s # s’ and some B;, B; € I'. Let
X = support(Dealer(s,r) — Dealer(s’,r")).

We show that B, = X°€ is a non-access set, where ¢ denotes the complement.
Note that for all ¢ € By, it holds that

share; = share;,
where

Dealer(s,r) = (sharey,:--,share,),

Dealer(s’,r') = (share],:--,share)

This means that Bp, is not an access set because B, cannot determine s or s’.
Hence B, is a non-access set. Hence

{1,---,n}=X°UX =B,UX C B,UB;UB;,.

This means that I' does not satisfy Q3.
Q.E.D.

Lemma 3.2 There exists an algorithm which can recoever s correctly from y
for any error vector e such that support(e) € T if and only if T satisfies Q3.

(Proof) We cannot compute s correctly if and only if
y = Dealer(s,r) + e = Dealer(s',r") + &'
for some e, e’ such that
support(e) € T and support(e) € T
for some s, s’,r,r' such that s # s’. In this case, we have
Dealer(s,r) — Dealer(s',r') = &' —e.

This holds if and only if

support(Dealer(s,r) — Dealer(s',r")) C support(e') U support(e). (5)



To summarize, we cannot compute s correctly if and only if eq.(5) holds. Now
Lemma 3.1 implies that we can compute s correctly if and only if I' satisfies Q3.
Q.E.D.

Let Decode be an algorithm such that

s if support(e) €T

Decode(Dealer(s,r) + e) = { L if support(e) ¢T

Definition 3.2 We say that (X, Dealer, Reconstruct, Decode) is an error decod-
able secret sharing scheme.

Theorem 3.1 There exists an error decodable secret sharing scheme
(X, Dealer, Reconstruct, Decode) if and only if T' = £¢ satisfies Q3.

(Proof) From Lemma 3.2.
Q.ED.

4 Polynomial-Time Error Decodable Scheme

The Decode implicitely shown in the proof of Lemma 3.2 recovers s by exhaustive
search in general. Hence it runs in exponential time.

In this section, for any I' which satisfies @3, we show an error decodable
secret sharing scheme such that the decoding algorithm runs in polynomial
time in |S| and the size of a monotone span program (M,v) for ', where |S]|
denotes the bit length of the secrets.

We fix (M, 1) such that M is an £ x d matrix. We then say that an algorithm
runs in polynomial time if it runs in polynomial time in |S| and £.

4.1 Weak Secret Sharing Scheme

We first show a weak error decodable secret sharing scheme
II; = (X, Dealer;, Reconstruct;, Decode;)
for each 1 < i < n. It has the following properties.

e Decode; always outputs the correct secret s or L. (It never outputs a
wrong s'.) Further it outputs s if P; is honest.

e The members of a non-access set B learns no information on s if i ¢ B.

e Each algorithm runs in polynomial time.

Distribution algorithm: (See Fig.1.)



1. For a secret s € F, the dealer chooses random r € F?~!, and computes
LSSS(s,r) = (sharey, - - -, share,)
according to eq.(3).
2. The dealer gives (s,r) and share; to P; as his share.
3. For each j # 4, the dealer gives share; to P; as his share.

Reconstruciton algorithm: The members of an access set A can reconstruct
s by applying the reconstruction algorithm of the LSSS to their shares.

Error-decoding algorithm: Suppose that P; revealed (s',r') and y;, and each
P; # P; revealed y;. Let y = (y1, -, Yn)-

(d1) If support(y — LSSS(s,r)) € T, then output z = s'.
(d2) Otherwise output = L.

Lemma 4.1 Suppose that ' satisfies Q3.

e Decode; always outputs the correct secret s or L. (It never outputs a wrong
s'.) Further it outputs s if P; is honest.

o The members of a non-access set B learns no information on s if i € B.

e Fach algorithm runs in polynomial time.

(Proof) It is easy to see 2 and 3. We will prove 1. First it is easy to see that
y = LSSS(s,r) + e;

for some error vector e; such that support(e;) € T'. Next define e = y —
LSSS(s',r"). Then
y = LSSS(s', ') + es.
First suppose that P; is honest. Then it is clear that LSSS(s’,r") = LSSS(s, r).
This means that es = e;. Hence we obtain that

support(es) = support(e;) € I.

In this case, Decode; outputs & = s’ = s according to (d1). Next suppose that
P; is a cheater and (s, ') # (s,1).

o If ' =35, then x = s or L according to (d1) and (d2).
o If s’ # s, then we obtain that
y = LSSS(s,r) + e; = LSSS(s', ') + es.
Hence
LSSS(s,r) — LSSS(s',r') = e2 —ey.
This means that T’ does not satisfy Q> from Lemma, 3.1.

Q.E.D.
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Figure 1: Weak secret sharing scheme II;(s)
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4.2 Full Scheme

We now show a polynomial-time error decodable secret sharing scheme for any
I" which satisfies Q3. Let (M,) be a monotone span program which realizes T.
For simplicity, assume that £ = n and ¢(i) =i fori =1,---,n.

Distribution algorithm: (See Fig.1.)

1. For a secret s € F, the dealer chooses random r € F*!, and computes
v = (v1,---,v,) according to eq.(2).

2. For i = 1,---,n, the dealer runs the distribution algorithm of our weak
error decodable secret sharing scheme II; by letting v; be a secret.

Reconstruciton algorithm: The members of an access set A can reconstruct
s as follows. Suppose that A = {iy,---,in}.

e For j =1,---,h, run the reconstruction algorithm of II;; and recover v;;.

e Recover s by applying the reconstruction algorithm of the LSSS to these

Ui]. .

Error-decoding algorithm:

e For i = 1,---.n, run the error-decoding algorithm of II; and recover ;.
From Lemma 4.1, we have z; = v; or L. Further z; = v; if P; is honest.

e Recover s by applying the reconstruction algorithm of the LSSS to z; such
that z; # L.

From Lemma 4.1, we obtain the following theorem.

Theorem 4.1 The above scheme is an error decodable secret sharing scheme
for any T which satisfies Q>. Further each algorithm runs in polynomial time
in |S| and ¢.

The size of shares sﬁ?a}ei of each P; is given by
|share;| = (d + £ - |share;])|S], (6)

where share; is the share of the underlying LSSS.



5 Application to 1-Round PSMT
5.1 PSMT

The model of Perfectly Secure Message Transmission schemes (PSMT) was in-
troduced by Dolev et al. [2]. In this model, there are n channels between a
sender and a receiver, and they share no key. The sender wishes to send a
secret s to the receiver securely and reliably. An adversary A can observe and
forge the messages sent through some subset of n channels.

Let the adversary structure I' be the family of subsets of n channels that the
adversary A can corrupt. A PSMT is a scheme which satisfies perfect privacy
and perfect reliablity even in the presence of infinitely powerful adversary A who
can corrupt any subset of I'. Perfect privact means that A learns no information
on s. Perfect reliability means that the receiver can output § = s correctly.

5.2 Previous 1-Round PSMT for Adversary Structure

Desmedt, Wang and Burmester [3] showed that there exists a 1-round PSMT
if and only if the adversary structure I' satisfies Q®. Their 1-round PSMT is

described as follows. Let
FJr = {Bly"')BT}

be the family of maximal non-access sets.
1. For a secret s € F, the sender chooses random ry,---,rr € F such that

s=ry+---rr.

2. For ¢ = 1,---,T, the sender sends r; through all channels belonging to
{1,---,n}\ B;.

The total communication cost is given by

T
> (n—1Bi])-|S]. (7)

i=1

5.3 Proposed 1-Round PSMT for Adversary Structure

We show a more efficient 1-round PSMT by using our error decodable secret
sharing scheme (X, Dealer, Reconstruct, Decode) shown in 4.2.

1. For a secret s € F, the sender computes
Dealer(s,r) = (share,, - - -, share,),

and sends share; through channel i for i = 1,-- -, n.
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2. Suppose that the receiver received sﬁ?a;e; through channel ¢ for i =
1,--+,n. He reconstructs s by applying Decode to (sﬂ?a;ell, cee sﬂa;eln).

From Theorem 4.1, we obtain the following theorem.

Theorem 5.1 The above scheme is a 1-Round PSMT for any T' which satisfies
Q3. Further the sender and the receiver runs in polynomail time in |S| and (.

5.4 Comparison

In our scheme, the total communication cost is

n

Comm,,, = Y _|share;| = » (d+ (- |share;|)|S]

=1 =1
= (nd + 0%)|S|

from eq.(6), where an ¢ x d matrix M is used in the LSSS. In the scheme of
Desmedt et al. [3], the total communication cost is

T
Commygp, = Z(n —|B:i|)|S|

i=1

from eq.(7), where T is the number of maximal non-access sets B;.

We can see that Commy,,,,. is much smaller than Comm ., in general because
the latter depends on T'. For example, suppose that n = 3¢ 4+ 1, and consider a
threshold adversary who corrupts at most ¢ channels. 2 Then T = (7). Hence

Commupy = (") (n —t)|9],

t

Thus the communication cost of Desmedt et al. scheme is exponential in ¢. On
the other hand, there exists a monotone span program (M,) such that M is
an n x (t + 1) matrix for the threshold adversary. Hence

Comm,y, = (n(t +1) +n?)|S| = n(n + ¢+ 1)|S|

Thus our communication cost is O(n?) = O(?). (See Table 1.)

2 For this model, Dolev et al. [2] showed a scheme such that the total communication cost
is n|S|.
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Table 1: Total Communication cost

General Adversary | Threshold Adversary
Desmedt et al. [3] | 327 (n — |Bi])|S| exp(t)
Proposed (nd + £%)]S] O(t?)

6 Discussion

It is the best that there exists a polynomial-time decoding algorithm for the
underlying LSSS. In this case, we do not have to use our scheme of Sec.4.2. For
example, Shamir’s (k,n)-threshold secret sharing scheme (which is an LSSS)
has a polynomial-time decoding algorithm. On the other hand, it is known that
the decoding problem of general linear codes is NP-hard [1].

It will be a future work to prove or disprove that the decoding problem of
LSSS for any I satisfying @Q® is NP-hard.
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