
Security of Cyclic Double Block Length Hash Functions including

Abreast-DM

Ewan Fleischmann, Michael Gorski, Stefan Lucks
{ewan.fleischmann,michael.gorski,stefan.lucks}@uni-weimar.de

Bauhaus-University Weimar, Germany

Abstract. We provide the first proof of security for Abreast-DM, one of the oldest and most well-
known constructions for turning a block cipher with n-bit block length and 2n-bit key length into a
2n-bit cryptographic hash function. In particular, we prove that when Abreast-DM is instantiated with
AES-256, i.e. a block cipher with 128-bit block length and 256-bit key length, any adversary that asks
less than 2124.42 queries cannot find a collision with success probability greater than 1/2. Surprisingly,
this about 15 years old construction is one of the few constructions that have the desirable feature of
a near-optimal collision resistance guarantee.

We generalize our techniques used in the proof of Abreast-DM to a huge class of double block length
(DBL) hash functions that we will call cyclic. Using this generalized theorem we are able to derive
several DBL constructions that lead to compression functions that even have a higher security guar-
antee and are more efficient than Abreast-DM. Furthermore we give DBL constructions that have
the highest security guarantee of all DBL compression functions currently known in literature. We also
provide an analysis of preimage resistance for cyclic compression functions. Note that this work has
been already presented at Dagstuhl ’09.

Keywords: cryptographic hash function, block cipher based, proof of security, double-block length,
ideal cipher model, Abreast-DM.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary length to an output
of fixed length. It should satisfy at least collision-, preimage- and second-preimage resistance and
is is one of the most important primitives in cryptography [23].

Block Cipher-Based Hash Functions. Since their initial design by Rivest, MD4-family hash func-
tions (e.g. MD4, MD5, RIPEMD, SHA-1, SHA2 [3, 26, 27, 29, 30]) have dominated cryptographic
practice. But in recent years, a sequence of attacks on these type of functions [8, 11, 38, 39] has
led to a generalized sense of concern about the MD4-approach. The most natural place to look for
an alternative is in block cipher-based constructions, which in fact predate the MD4-approach [22].
Another reason for the resurgence of interest in block cipher-based hash functions is due to the rise
of size restricted devices such as RFID tags or smart cards: A hardware designer has to implement
only a block cipher in order to obtain an encryption function as well as a hash function. But since
the output length of most practical encryption functions is far too short for a collision resistant
hash function, e.g. 128-bit for AES, one is mainly interested in sound design principles for double
block length (DBL) hash functions [2]. A DBL hash-function uses a block cipher with n-bit output
as the building block by which it maps possibly long strings to 2n-bit ones.

1

Our Contribution. Four, somewhat ’classical’ DBL hash functions are known: MDC-2, MDC-
4, Abreast-DM and Tandem-DM [4, 5, 21]. At EUROCRYPT’07 and FSE’09 security bounds
for MDC-2 and Tandem-DM had been shown [36, 10]. In this article, we will give the first
security bound for Abreast-DM in terms of collision- and preimage resistance. Assuming the
same hash output length of 256 bits our security bound will state that no adversary asking less
than 2124.42 queries cannot find a collision with probability greater than 1/2. We will generalize our
proof techniques to a huge class of DBL compression functions called Cyclic. By applying these
methods, we are able to derive compression functions that have an even higher security guarantee
than Abreast-DM. Since there are currently only two DBL compression functions known in
literature that have a birthday-type security guarantee (for collision resistance), Hirose’s FSE’06
construction [14] and Tandem-DM [21, 10], we not only add another compression function to this
exclusive club, but also provide a technique for constructing such functions. Using this construction
method, we are able to derive practical DBL compression functions that have the highest security
guarantee currently known.

We will also prove an upper bound of success if an adversary is trying to find a (second-)preimage.
This bound is rather weak as it essentially states, that the success probability of an adversary asking
strictly less than 2n queries is asymptotically negligible.

Outline. The paper is organized as follows: Section 2 includes formal notations and definitions as
well as a review of related work. In Section 3, we proof that any adversary asking less than 2124.42

oracle queries has negligible advantage in finding a collision for the Abreast-DM compression
function. Section 4 generalizes our techniques to a huge class of DBL compression functions and
give security bounds in terms of collision resistance and preimage resistance. Section 5 discusses
how we can use the results from the previous section to derive new DBL compression functions that
have the highest security guarantee of all currently known DBL compression functions. In Section
6 we discuss our results and conclude.

2 Preliminaries

2.1 Iterated DBL Hash Function Based on block ciphers

Ideal Cipher Model. A block cipher is a keyed family of permutations consisting of two paired
algorithms E : Ω × K → Ω and E−1 : Ω × K → Ω where Ω is the set of plaintexts/ciphertexts,
and K the set of keys. If Ω = {0, 1}n and K = {0, 1}k , we will call it an (n, k)-block cipher. Let
BC(Ω,K) be the set of all such block ciphers. Now, for any one fixed key K ∈ K, decryption
E−1

K = E−1(·,K) is the inverse function of encryption EK = E(·,K), so that E−1
K (EK(X)) = X

holds for any input X ∈ Ω.
Most of the attacks on hash functions based on block ciphers do not utilize the internal structure

of the block ciphers. The security of such hash functions is usually analyzed in the ideal cipher model
[2, 9, 18]. In the ideal cipher model the underlying primitive, the block cipher E, is modeled as a
family of random permutations {EK} whereas the random permutations are chosen independently
for each key K, i.e. formally E is selected randomly from BC(X ,K).

DBL Compression Functions. Iterated DBL hash functions with two block cipher calls in their
compression function are discussed in this article. A hash function H : {0, 1}∗ → X 2 can be built
by iterating a compression function F : Ω2×{0, 1}b → Ω2 as follows: Split the padded message M

2

into b-bit blocks M1, . . . ,Ml, fix (G0,H0), apply (Gi,Hi) = F (Gi−1,Hi−1,Mi) for i = 1, . . . , l and
finally set H(M) := (Gl,Hl). Let the compression function F be such that

(Gi,Hi) = F (Gi−1,Hi−1,Mi),

where Gi−1,Hi−1, Gi,Hi ∈ Ω and Mi ∈ {0, 1}b. We assume that the compression function F consists
of FT , the top row, and FB , the bottom row. Each of the component functions FB and FT performs
exactly one call to the block cipher and can be defined as follows:

Gi = FT (Gi−1,Hi−1,Mi) = E(XT ,KT)⊕ ZT ,

Hi = FB(Gi−1,Hi−1,Mi) = E(XB ,KB)⊕ ZB,

where XT ,KT , ZT and XB ,KB , ZB are uniquely determined by Gi−1,Hi−1,Mi.
We define the rate r of a block cipher based compression/hash function F by

r =
|Mi|

(number of block cipher calls in F)× n
.

The key scheduler rate rkey is defined as

rkey =
1

number of key scheduler operations per compression function
.

It follows that rkey = 1 if KT = KB and rkey = 1/2 otherwise. They both are a measure of efficiency
for such block cipher based constructions. Note that there is currently a discussion in literature on
how to measure this efficiency ’correctly’.

2.2 Defining Security – Collision Resistance of a Compression Function

Insecurity is quantified by the success probability of an optimal resource-bounded adversary. The

resource is the number of queries to the ideal cipher oracles E or E−1. For a set S, let z
R← S

represent random sampling from S under the uniform distribution. For a probabilistic algorithm

M, let z
R←M mean that z is an output ofM and its distribution is based on the random choices

of M.
An adversary is a computationally unbounded but always-halting collision-finding algorithm

A with access to an oracle E ∈ BC(X ,K). We can assume (by standard arguments) that A is
deterministic. The adversary may make a forward query (X,K, ?)fwd to discover the corresponding
value Y = EK(X), or the adversary may make a backward query (?,K, Y)bwd, so as to learn the
corresponding value X = E−1

K (Y) for which EK(X) = Y . Either way the result of the query is
stored in a triple (Xi,Ki, Yi) and the query history, denoted Q, is the tuple (Q1, . . . , Qq) where
Qi = (Xi,Ki, Yi) is the result of the i-th query made by the adversary and where q is the total
number of queries made by the adversary. Without loss of generality, it is assumed that A asks at
most only once on a triplet of a key Ki, a plaintext Xi and a ciphertext Yi obtained by a query
and the corresponding reply.

The adversary’s goal is to output two different triplets (G,H,M) and (G′,H ′,M ′) such that
F (G,H,M) = F (G′,H ′,M ′). Since E is assumed to be an ideal cipher, we impose the reasonable
condition that the adversary must have made all queries necessary to compute F (G,H,M) and

3

F (G′,H ′,M ′). We will in fact dispense the adversary from having to output these two triplets, and
simply determine whether the adversary has been successful or not by examining its query history
Q. Formally, we say that Coll(Q) holds if there is such a collision and Q contains all the queries
necessary to compute it.

Definition 1. (Collision resistance of a compression function) Let F be a blockcipher based
compression function, F : Ω2 × {0, 1}b → Ω2. Fix an adversary A. Then the advantage of A in
finding collisions in F is the real number

AdvColl
F (A) = Pr[E

R← BC(X ,K); ((G,H,M), (G′ ,H ′,M ′))
R← AE,E−1

:

((G,H,M) 6= (G′,H ′,M ′)) ∧ F (G,H,M) = F (G′,H ′,M ′)].

For q ≥ 1 we write

AdvColl
F (q) = max

A
{AdvColl

F (A)}

where the maximum is taken over all adversaries that ask at most q oracle queries (i.e. E and E−1

queries).

2.3 Related Work

Schemes with non-optimal or unknown collision resistance. Preneel et al. [28] discussed the security
of SBL hash functions against several generic attacks. They concluded that 12 out of 64 hash
functions are secure against the attacks. However, formal proofs were first given by Black et al.
[2] about 10 years later. Their most important result is that 20 hash functions – including the 12
mentioned above – are optimally collision resistant. Knudsen et al. [19] discussed the insecurity
of DBL hash functions with rate 1 composed of (n, n)-block ciphers. Hohl et al. [15] analyzed the
security of DBL compression functions with rate 1 and 1/2. Satoh et al. [34] and Hattoris et al. [12]
discussed DBL hash functions with rate 1 composed of (n, 2n)-block ciphers. MDC-2 and MDC-4
[16, 1, 5] are (n, n)-block cipher based DBL hash functions with rates 1/2 and 1/4, respectively.
Steinberger [36] proved that for MDC-2 instantiated with, e.g., AES-128 no adversary asking less
than 274.9 can usually find a collision. Nandi et al. [25] proposed a construction with rate 2/3 but
it is not optimally collision resistant. In [20], Knudsen and Muller presented some attacks against
it. At EUROCRYPT’08 and CRYPTO’08, Steinberger [32, 33] proved some security bounds for
fixed-key (n, n)-block cipher based hash functions, i.e. permutation based hash functions, that all
have small rates and low security guarantees. None of these schemes/techniques mentioned so far
are known to have birthday-type collision resistance.

Schemes with Birthday-Type Collision Resistance. Merkle [24] presented three DBL hash func-
tions composed of DES with rates of at most 0.276. They are optimally collision resistant in the
ideal cipher model. Hirose [13] presented a class of DBL hash functions with rate 1/2 which are
composed of two different and independent (n, 2n)-block ciphers that have birthday-type collision
resistance. At FSE’06, Hirose [14] presented a rate 1/2 and (n, 2n)-block cipher based DBL hash
function that has birthday-type collision resistance. He essentially stated that for his compression
function, no adversary can find a collision with probability greater than 1/2 if no more than 2124.55

queries are asked (see [10, App. B] for details on this). At FSE’09, Fleischmann et. al. [10] that
for Tandem-DM, no adversary asking less than 2120.4 queries can find a collision with probabilty
greater than 1/2.

4

3 Security of Abreast-DM

3.1 Compression Function

The Abreast-DM hash function was proposed at EUROCRYPT ’92 by Xuejia Lai and James
L. Massey [21]. It incorporates two Davies-Meyer (DM) single block length compression functions
[23] which are used side-by-side. The compression function is illustrated in Figure 1 and is formally
given in Definition 2.

E

E

Gi−1

Hi−1

Gi

Hi

Mi

Figure 1. The compression function F ADM of Abreast-DM, the small circle ’◦’ denotes a bit-by-bit complement

Definition 2. Let FADM : {0, 1}2n × {0, 1}n → {0, 1}2n be a compression function such that
(Gi,Hi) = F ADM(Gi−1,Hi−1,Mi) where Gi,Hi,Mi, Gi−1,Hi−1 ∈ {0, 1}n. FADM consists of a (n, 2n)-
block cipher E as follows:

Gi = Gi−1 ⊕ EHi−1|Mi
(Gi−1)

Hi = Hi−1 ⊕ EMi|Gi−1
(H i−1),

where H denotes the bit-by-bit complement of H.
The compression function FADM requires two invocations of the block cipher E to produce an

output. Note that these two block cipher invocations can be computed in parallel. Normally, E
would be assumed to be AES-256 and therefore n = 128.

3.2 Security Results

Our discussion will result in proofs for the following bounds as given by Theorems 1 and 2.

Theorem 1. (Collision Resistance) Let F := F ADM as in Definition 2 and n, q be natural numbers
with q < 2n−2.58. Then

AdvColl
F (q) ≤ 18

(q

2n−1

)2
.

The following corollary explicitly states what this Theorem means for n = 128.

Corollary 1. For the compression function Abreast-DM, instantiated with AES-2561 any ad-
versary asking less than q = 2124.42 (backward or forward) oracle queries cannot usually find a
collision.
1 Formally, we model the AES-256 block cipher as an ideal block cipher.

5

Theorem 2. (Preimage Resistance) Let F := F ADM be as in Definition 2. For every N ′ = 2n − q
and q > 1

AdvInv
F (q) ≤ 2q/(N ′)2.

The proof of for Theorem 1 is given in Section 3.3, the proof of Theorem 2 is a simple corollary
of Theorem 5 and will be omitted. Using Theorem 1 and simple calculus, it is easy to see that the
compression function is asymptotically optimal for n→∞ since

lim
n→∞

AdvColl
F (q) =

q2

22n
.

3.3 Collision Resistance – Proof of Theorem 1

Analysis Overview. We will analyze if the queries made by the adversary contain the means for
constructing a collision of the compression function F ADM. Two queries to the oracles E, E−1 in
total are required to compute the output (Gi,Hi) of F ADM for any given input (Gi−1,Hi−1,Mi). It
is easy to see, that one oracle query uniquely determines the other query. Effectively, we look to
see whether there exist four (not necessarily distinct) queries that form a collision (see Figure 2).

To upper bound the probability of the adversary obtaining queries than can be used to construct
a collision, we upper bound the probability of the adversary making a query that can be used as
the final query to complete such a collision. Namely, for each i, 1 ≤ i ≤ q, we upper bound the
probability that the answer to the adversary’s i-th query (Xi,Ki, ?)fwd or (?,Ki, Yi)bwd will allow
the adversary to use the i-th query to complete the collision. In the latter case, we say that the
i-th query is ’successful’ and we give the attack to the adversary.

[TL]

[BL]

A1

B1 V

W

M1

R1

S1

[TR]

[BR]

A2

B2 Ṽ

W̃

M2

R2

S2

Figure 2. Notations used for a collision of Abreast-DM; CollADM(Q), in this case W = W̃ and V = Ṽ .

Naturally, the computation of any single compression function depends on two block cipher calls –
assuming that the construction does not allow to use one and the same query in the top- and the
bottom row of the compression function as in the case of Abreast-DM. In order to upper bound
the success probability for any single query mounted by the adversary, we have to upper bound the
maximal number of compression functions the adversary can complete with this single query result.
At a first glance any single query can be used in the top row or in the bottom row of a compression
function. Say, e.g., the query is (A,B|M,R) and the adversary intends to use it in the top row. As
it is practically impossible to track, whether the adversary has mounted the corresponding bottom
row query (B,M |A,S) in the past, we have to assume that the adversary has access to this query.

6

Formally, we give the adversary this query for free. In general, just this free query that is intended
for use in the bottom row, can be used also in the top row by the adversary in order to start the
computation of a new compression function. And, again, as we cannot say wheter the adversary has
access to the corresponding bottom row query, we have to assume that the adversary has access to
it (i.e. we will give it for free to him). Pursuing this process seems to result in a practically infinite
action. But it does not for Abreast-DM (and for all Cyclic compression functions, see Section
4) as will will discuss now.

On Abreast-DM’s Cycle. Assume that the adversary mounts his i-th query denoted by Q6i =
(A,B|M,R). For the ease of presentation, we will give the adversry’s ’first’ query index zero and
therefore i ∈ {0, 1, . . . , q − 1} assuming that the adversary mounts q queries in total. Also we give
the adversary’s i-th query index 6i for reasons that will become clear later – in short, this is due to
the 5 ’free’ queries the adversary is given for any single mounted query. First assume that the query
Q6i is used in the top row. The adversary is given for free the corresponding query of the bottom
row Q6i+1 := (B,M |A,S). Using Q6i and Q6i+1, the adversary is able to compute one result of a
compression function

(W1, V1) := F ADM(A,B,M) = (EB|M (A)⊕A,EM,A(B)⊕B).

As the adversary can (re)use the free query Q6i+1 in the top row, we give the adversary for free the
corresponding query Q6i+2 = (M,A|B,S) for the bottom row. After this free query, the adversary
can compute

(W2, V2) := F ADM(B,M,A) = (EM |A(B)⊕B,EA|B(M)⊕M)

using the queries Q6i+1 and Q6i+2. The continuation of this process is summarized in Table 1.
Likewise, the adversary is given for free the (forward) queries Q6i+3, Q6i+4, Q6i+5. The query Q6i+6

is equal to the initial query of the adversary Q6i and this process comes to an end.
Note that the query numbers in parentheses denote a reuse of a previous query, e.g. (6i+1)

denotes the reuse of query Q6i+1 in another position (top/bottom).
As indicated by Table 1, any single query is used in the bottom row as well as in the top row. Since
any single query (used in the top- or bottom position) uniquely determines the corresponding query
in the bottom- or top position it follows that the all queries can only be used for the compression
functions mentioned in Table 1.

Analysis Details. Fix numbers n, q and an adversary A asking q forward or backward queries to
its oracle E in total. Let CollADM(Q) be the event that the adversary can construct a collision of
F ADM using the queries in Q. The term ’last query’ means the latest query made by the adversary.
It is always the i-th query of the adversary and it is always denoted as Q6i. This is due to the
fact that we will give the adversary, for any single query, 5 additional free queries. We examine the
adversary’s mounted forward queries (X6i,K

1
6i|K2

6i, ?)fwd or backward queries (?,K1
6i|K2

6i, Y6i)bwd

one at a time as they come in. Similarly, the free queries are also examined one at a time as they
are given to the adversary.

We say a query Qm = (Xm,K1
m|K2

m, Ym) is successful if the output – Ym for a forward query
or Xm for a backward query – is such that the adversary can use this very query Qm to form
a collision. More precise there are are three queries Qj , Qk, Ql in the query history Q such that

7

F ADM(·) Query # Plaintext Key Ciphertext Chaining Value

(A,B, M)
6i (*) A B|M R W1 = R ⊕ A

6i + 1 B M |A S1 V1 = S ⊕ B

(B, M, A)
(6i + 1) B M |A S1 W2 = S1 ⊕ B

6i + 2 M A|B S2 V2 = S2 ⊕ M

(M, A, B)
(6i + 2) M A|B S2 W3 = S2 ⊕ M

6i + 3 A B|M S3 V3 = S3 ⊕ A

(A, B, M)
(6i + 3) A B|M S3 W4 = S3 ⊕ A

6i + 4 B M |A S4 V4 = S4 ⊕ B

(B,M, A)
(6i + 4) B M |A S4 W5 = S4 ⊕ B

6i + 5 M A|B S5 V5 = S5 ⊕ M

(M, A, B)
(6i + 5) M A|B S5 W6 = S5 ⊕ M

(6i) A B|M R V6 = R ⊕ A

Table 1. Starting by the i-th query of the adversary, Q6i, either (A,B|M, ?)fwd or (?, B|M, R)bwd, the adversary is
given 5 forward queries, query #’s 6i+1, 6i+2, 6i+3, 6i+4, 6i+5, for free. In total, he is able to compute 6 complete
compression functions F ADM by using these 6 queries. (*) This is the only query the adversary has mounted.

the four (not necessarily pairwise different) queries Qm, Qj , Qk, Ql can be used for a collision (see
Figure 2). The goal is thus to upper bound the adversary’s chance of ever making a successful last
query.

We now upper bound Pr[CollADM(Q)] by exhibiting predicates Win0(Q), . . . ,Winq−1(Q) such
that CollADM =⇒Win1(Q)∨. . .∨Winq(Q). Then, Pr[CollADM(Q)] ≤Win0(Q)+. . .+Winq−1(Q).

Since the adversary mounts q queries in total, we informally say that Wini(Q), 0 ≤ i ≤ q − 1
holds if the adversary finds a collision after mounting the i-th query using at least one of the
following queries Q6i, . . . , Q6i+5 conditioned on the fact that the adversary has not been successful
before.

Notation: Let Qk denote the first k queries made by the adversary or the adversary had been
given for free: Qk = ∪0≤j≤kQj and |Qk| = k + 1.

To formally define the predicates Wini(Q) the following Definitions are useful.

Definition 3. We say that a pair of queries (a, b) is successful in Qc, if the query Qa is used in
the top row, Qb in the bottom row in the computation of a compression function F ADM and there
exists a pair of queries Qj, Qk ∈ Qc such that a collision for F ADM can be computed:

Xa ⊕ Ya = Xj ⊕ Yj and Xb ⊕ Yb = Xk ⊕ Yk.

Definition 4. Let d = 0, . . . , 5, d′ = d + 1 mod 6, d̃ = max(d, d′). We say CollFitd
i (Q) if (i) the

pair of queries (6i + d, 6i + d′) is successful in Q
6i+d̃

and (ii) the adversary had not been successful

for 0 ≤ t ≤ d− 1: ¬CollFitt
i(Q).

The predicates Wini(Q) are defined as follows:

8

Definition 5. For 0 ≤ i ≤ q − 1,

Wini(Q) = ¬


 ∨

0≤ j ≤ i−1

Winj(Q)


 ∧

(
CollFit0

i (Q) ∨ . . . ∨CollFit5
i (Q)

)
.

We now show that our case analysis is complete.

Lemma 1. CollADM(Q) =⇒Win0(Q) ∨ . . . ∨Winq−1(Q).

Proof. Say CollADM(Q). Then a collision can be constructed from the queries Q. That is, our query
history Q contains queries Qi, Qj , Qk, Ql (see Figure 2) that can be used in positions TL, TR,BL

and BR, TL 6= TR, such that V = Ṽ and W = W̃ . Note that the condition TL 6= TR suffices
to ensure that a collision from two different inputs has occurred. It is easy to see that no query
mounted directly by the adversary can be successful since any such query only can only serve for
either a top- or bottom row position in the compression function F ADM. Also, the corresponding
query necessary to compute the complete compression function will be given to the adversary for
free after he has mounted a query. So the adversary can only be successful in the phase where he
is given the free queries one after another. Say the adversary is successful during the phase where
he gets the free queries following his i-th query. We can safely assume that this is the first time
the adversary has found such a collision and therefore i is minimal. Then ¬Winj(Q), 1 ≤ j < i,
CollFitd

i (Q) such that d ∈ {0, 1, . . . , 5} is minimal and therefore Wini(Q). This proves our claim.
(�)

Since Pr[CollADM(Q)] ≤∑q−1
j=0 Winj(Q) it follows that

Pr[CollADM(Q)] ≤
q∑

i=1

5∑

d=0

CollFitd
i (Q). (1)

We will now upper bound the probability of CollFitd
i (Q).

Lemma 2. Let 1 ≤ i ≤ q and 0 ≤ d ≤ 5. Then

Pr[CollFitd
i (Q)] ≤ 6i

(2n − 6i)2

Proof. Let d′ = d + 1 mod 6. The output of the compression function F ADM, (W,V), is uniquely
determined by the queries Q6i+d = (X6i+d,K6i+d, Y6i+d) and Q6i+d′ = (X6i+d′ ,K6i+d′ , Y6i+d′),

W = Y6i+d ⊕X6i+d and V = Y6i+d′ ⊕X6i+d′ .

Both W,V depend on the plaintext and the ciphertext of E. If Q6i+d was received by a forward
query, the key and the plaintext are fixed. As the result of the query, the ciphertext, is chosen
uniformly random from the set {0, 1}n (since we assume that E is an ideal cipher), it follows that
W is randomly determined by the answer of the oracle. In the case of a backward query, the key
and the ciphertext are fixed. The result of this query, the plaintext, is chosen uniformly random
and it follows again that W is randomly determined by the answer of the oracle. Using the same
arguments, it follows that V is also randomly determined by the answer of the oracle. Note that
the bit-by-bit inversion in the bottom row of X6i+d′ does not change any of our arguments.

9

To form a collision, two queries Qj , Qk are needed that can be chosen from at most 6(i + 1)
queries in Q6(i+1)−1. The adversary can use them to compute the output of < 6(i+ 1) compression
functions F ADM. Therefore,

Pr[CollFitd
i (Q)] ≤ 6(i + 1)

(2n − 6(i + 1))2
.

(�)

Using (1) we get the following upper bound for any q < 2n−log2 6 = 2n−2.58

Pr[CollADM(Q)] ≤
q−1∑

i=0

5∑

d=0

6(i + 1)

(2n − 6(i + 1))2
≤

q∑

i=1

5∑

d=0

6i

(2n − 6i)2

≤
q∑

i=1

36i

(2n − 6i)2
≤ 36 · q2 · 1

2

(2n − 6i)2
≤ 18

(q

2n−1

)2

This completes our proof of Theorem 1. �

Note that this bound is not meaningful even for q ≈ 2n−2.58 since 18q2/22n−2 would be larger
than one. Bounds for q in the case n = 128 have been discussed in Section 3.2. Note that the power
of the arguments stems from the fact that we can tightly upper bound the number of compression
functions that an adversary can compute given an upper bound of queries mounted by an adversary.

4 Security of Cyclic Hash Functions

In this section, we will generalize the definitions and techniques of the previous section.

4.1 Cyclic Compression Functions

Definition 6. Let (Ω, ∗) be a group, N = |Ω|. Let F CYC : Ω2 × {0, 1}b −→ Ω2 be a compression
function such that (Gi,Hi) = F CYC(Gi−1,Hi−1,Mi) where Gi−1,Hi−1, Gi,Hi ∈ Ω and Mi ∈ {0, 1}b,
b > 0. Let E ∈ BC(Ω,Ω × {0, 1}b) be a block cipher; ρ and σ permutations on the set Ω2 ×{0, 1}b
and πT , πB permutations on Ω. Let Z := (Gi−1,Hi−1,Mi) ∈ Ω2 × {0, 1}b. Then XT ,XB ∈ Ω,
KT ,KB ∈ Ω × {0, 1}b such that (XT ,KT) = ρ(Z) and (XB ,KB) = σ(ρ(Z)). Now F CYC consists
of a E as follows:

{
Gi = EKT (MT) ∗ πT (XT)
Hi = EKB(MB) ∗ πB(XB)

where the computation leading to Gi is informally called the ’top row’, and for Hi called ’bottom
row’.

The compression function F CYC is visualized in Figure 3.

10

E

E

Gi

Hi

XT

XB

KT

KB

ρ

σ

πT

πB

Ω

Ω

Ω × {0, 1}b

Ω × {0, 1}b

Ω2 × {0, 1}b

(Gi−1, Hi−1, Mi) = Z

Figure 3. Cyclic Compression Function (Gi, Hi) = F CYC(Z), Z = (Gi−1, Hi−1, Mi)

Since the properties of the permutation σ are highly relevant for the proof, we will discuss them
now. The following Definitions 7, 8 are in some way the heart of this discussion. They lay the
groundwork for defining cyclic double block length compression functions in the first place and
provide for a main notion that we will use, the order of an element and the order of a mapping.
Definition 7. Let σ be a bijective mapping on a set S where S := Ω2 × {0, 1}b. Let ID be the
identity mapping on S. The function σk is defined as σk := σ ◦ σk−1 for k > 0 and σ0 := ID.

(i) Fix some element s ∈ S. The order of s is defined to be |s| = minr≥1(σ
r(s) = s), i.e. |s| is

minimal (but > 0) such that σ|s|(s) = s.
(ii) If there is a c ∈ N≥1 such that ∀s̃ ∈ S : |s̃| = c, we say the oder of the mapping σ, denoted by
|σ|, is equal to c, i.e. |σ| = c. If there is no such c, then |σ| := 0. Note that, if |σ| > 0, the order
of σ is equal to the order of any element chosen from S.

Definition 8. Let F CYC, ρ and σ be as in Definition 6. If |σ| ≥ 2, then F CYC is called a cyclic
double block length (CDBL) compression function with cycle length |σ|.

Properties of CDBL Compression Functions. Now we will discuss the main properties of
F CYC. It is easy to see that a CDBL compression function with cycle length 1 is not reasonable as
this would essentially F CYC render a single block length compression function. A cycle length of 1
would imply σ = ID. The values of the initial vector (G0,H0) is nonetheless free to be different.
Single block length hash functions have already been thoroughly analyzed in [2, 28, 35].

Lemma 3. Let F CYC be as in Definition 8.

(i) Any oracle query for the top- or bottom row of F CYC uniquely determines the oracle query in
the bottom- or top row.

(ii) The queries used in F CYC for the bottom- and top row are always different, i.e. there are no
fixed-points.

Proof. The proof of (i) is trivial and (ii) is a consequence of |σ| > 1. (�)

(Counter)Examples. In the following, we will give some examples of known DBL constructions
and discuss how they match Definition 6.

11

Abreast-DM. To match Definition 6, we choose Ω = {0, 1}n, b = n, πT = id, πB(X) = X ,
ρ(G,H,M) = id = (G,H,M) and σ(G,H,M) = (H,M,G). As discussed in Section 3.3, it is easy
to see that Abreast-DM has a cycle length of |σ| = c = 6 using Table 1.

Hirose’s FSE’06 Proposal. A description of FHirose is given in Appendix A. In this case we choose
Ω = {0, 1}n, b = n, πT = πB = ID, ρ = ID and σ(Gi−1,Hi−1,Mi) = (Gi−1 ⊕ const,Hi−1,Mi)
in order to map with the definition of F CYC. It is easy to see that |σ| = 2. In [10, Appendix B]
it is shown that for FHirose no adversary asking less than 2124.55 queries cannot find a collision
probability greater than 1/2 given that FHirose was instantiated with a (128, 256) cipher as, e.g.,
AES-256.

Tandem-DM. This compression function can be seen as a counter-example. A description of the
compression function F TDM is given in Appendix B. Its security was analyzed by Fleischmann et
al. at FSE’09 [10] where it was shown that no adversary asking less than 2120.4 queries cannot find
a collision with probability greater than 1/2, given that F TDM was instantiated with a (128, 256)
cipher as, e.g., AES-256. As the compression function feeds in the ciphertext of the top row into
the bottom row, it cannot be represented as an instantiation of F CYC since the definition does not
allow any ciphertext feedback.

4.2 Security Results

Our discussion will result in proofs for the following bounds as given by Theorems 3, 4 and 5.

Theorem 3. (Collision Resistance for |σ| = 2) Let F := F CYC be a cyclic compression function
with cycle length c = |σ| = 2 as in Definition 8. If πT = πB, then a = 1, else a = 2. Then, for any
q > 1 and 2q < N ,

AdvColl
F (q) ≤ 2aq2

(N − 2q)2
+

2q

N − 2q
.

Theorem 4. (Collision Resistance for |σ| > 2) Let F := F CYC be a cyclic compression function
with cycle length c = |σ| > 2 as in Definition 8. Then, for any q > 1 and cq < N ,

AdvColl
F (q) ≤ c2

2

(
q

N − cq

)2

.

Theorem 5. (Preimage Resistance) Let F := F CYC be a cyclic compression function as in Defini-
tion 8. Then, for any q > 1 and q < N ,

AdvInv
F (q) ≤ 2q/(N − q)2.

Applications will be discussed in Section 5. The proof of Theorem 3 is given in Appendix C. The
proof of Theorem 5 is essentially due to Fleischmann et. al. [10, Thm. 2] and can be found in
Appendix D. The proof of Theorem 4 is given in Section 4.3.

12

4.3 Collision Resistance – Proof of Theorem 4

Analysis Overview. In this section we will omit some details that were already discussed in
Section 3.3. Again, we will analyze if the queries made by the adversary contain the means for
constructing a collision of the compression function F CYC. Similarly as in the proof of Abreast-DM,
we upper bound the probability of the adversary making a query that can be used as the final query
to complete a collision.

[TL]

[TR]

W

V

XTL

XBL

KTL

KBL

ρ

σ

πT

πB

Ω

Ω

Ω × {0, 1}b

Ω × {0, 1}b

Ω2 × {0, 1}b

Z
[TR]

[BR]

W̃

Ṽ

XTR

XBR

KTR

KBR

ρ

σ

πT

πB

Ω

Ω

Ω × {0, 1}b

Ω × {0, 1}b

Ω2 × {0, 1}b

Z̃

Figure 4. Notations used for a collision of Cyclic: CollCYC(Q), in this case W = W̃ and V = Ṽ but Z 6= Z̃.

The cycle in Cyclic. Assume that the adversary mounts a query Qci = (Xci,Kci, Yci), where
Xci, Yci ∈ Ω, Kci ∈ Ω × {0, 1}b, Yci = EKci

(Xci). The query index c · i for the i-th query of
the adversary is – similar as in the case of Abreast-DM – due the the c − 1 free queries the
adversary is given for any mounted query. First assume that the query is used in the top row.
Let U1 = (Xci,Kci) ∈ Ω × (Ω × {0, 1}b) = Ω2 × {0, 1}b and U2 = (Xci+1,Kci+1) = σ(U1) where
Xci+1 ∈ Ω and Kci+1 ∈ Ω × {0, 1}b. The adversary is given for free the corresponding query in
the bottom row Qci+1 = (Xci+1,Kci+1, Yci+1), Yci+1 = EKci+1

(Xci+1). Given these two queries, the
adversary is able to compute one output of the compression function (W1, V1) = F CYC(ρ−1(U1)).
The adversary can ’reuse’ the query Qci+1 in the top row as a starting point to compute a new result
of F CYC. We now give the adversary for free the corresponding bottom row query, Qci+2, assuming
that Qci+1 is used in the top row. For this query Qci+2, we have U3 = (Xci+2,Kci+2) = σ(U2) where
where Xci+2 ∈ Ω and Kci+2 ∈ Ω×{0, 1}b and Yci+2 = EKci+2

(Xci+2). Our main observation is that
U3 = σ(U2) = σ2(U1).

Let c = |σ| denote the cycle length of F CYC. This process can be continued. The adversary is
given for free the queries Qci+3, . . . , Qci+c−1 as is shown in Table 2 in more detail. A cycle is formed
since Uc = σ(Uc−1) = . . . = σc(U1) = U1 and therefore Qci+c = Qci. The queries forming the cycle
are visualized in Figure 5.

Analysis Details. Fix a set Ω, numbers b, q and an adversary A asking q backward and forward
queries to its oracle in total. Let CollCYC(Q) be the event that the adversary is able to construct a
collision of F CYC using the queries in Q. The term ’last query’ means the latest query made by the
adversary and is always given index c·i and denoted as Qci. We will examine the adversary mounted
queries (d = 0) and the free queries (d = 1, 2, . . . , c− 1), (Xci+d,Kci+d, ?)fwd or (?,Kci+d, Yci+d)bwd

one at a time as the adversary gets hold of them. A query Qm = (Xm,Km, Ym) is successful, if it
can be used to form a collision using other queries contained in the query history Qm as indicated
in Figure 4.

13

F CYC(·) Query # Plaintext Key Ciphertext Chaining Value

ρ−1(U1)
ci (*) Xci Kci Yci W1 = Yci ∗ πT (Xci)

ci + 1 Xci+1 Kci+1 Yci+1 V1 = Yci+1 ∗ πB(Xci+1)

ρ−1(σ(U1))
(ci + 1) Xci+1 Kci+1 Yci+1 W2 = Yci+1 ∗ πT (Xci+1)

ci + 2 Xci+2 Kci+2 Yci+2 V2 = Yci+2 ∗ πB(Xci+2)

ρ−1(σ2(U1))
(ci + 2) Xci+2 Kci+2 Yci+2 W3 = Yci+2 ∗ πT (Xci+2)

ci + 3 Xci+3 Kci+3 Yci+3 V3 = Yci+3 ∗ πB(Xci+3)

...
...

...
...

...
...

ρ−1(σc−2(U1))
(ci + c − 2) Xci+c−2 Kci+c−2 Yci+c−2 Wc−1 = Yci+c−2 ∗ πT (Xci+c−2)

ci + c − 1 Xci+c−1 Kci+c−1 Yci+c−1 Vc−1 = Yci+c−1 ∗ πB(Xci+c−1)

ρ−1(σc−1(U1))
(ci + c − 1) Xci+c−1 Kci+c−1 Yci+c−1 Wc = Yci+c−1 ∗ πT (Xci+c−1)

(ci) Xci Kci Yci Vc = Yci ∗ πB(Xci)

Table 2. Starting with query ci, (Xci, Kci, ?)fwd or (?, Kci, Yci)bwd, the adversary is given c − 1 forward queries
ci + 1, ci + 2, . . . , ci + c − 1 for free. In total, he is able to compute c results of F CYC by using these c queries. The
notations used in the table are given in the text.

We now upper bound Pr[CollCYC(Q)] by exhibiting predicates Win0(Q), . . . ,Winq−1(Q) such
that CollCYC =⇒ Win0(Q) ∨ . . . ∨ Winq−1(Q). Then, Pr[CollCYC(Q)] ≤ Win0(Q) + . . . +
Winq−1(Q). Since the adversary mounts q queries in total we informally say that Wini(Q), 0 ≤
i ≤ q− 1 holds if the adversary finds a collision after mounting the i-th query, 0 ≤ i ≤ q − 1, using
at least two of the following queries Qci, . . . , Qci+c−1 conditioned on the fact that the adversary has
not been successful before. For simplicity, we assume again that the free queries are always given
in ’ascending’ order as given in Table 2.

Note that the following Definitions and Lemmas are generalizations of the Definitions and Lemmas
given in Section 3.3.

Qci+c−2

Qci+c−1 Qci+c−1

Qci

Qci

Qci+1

Qci+1

Qci+2

F CYC
F CYC

F CYC
F CYC

. . .
...

Figure 5. A Cycle: An adversary uses the c queries to compute the complete output of c compression functions F CYC.

14

Definition 9. We say that a pair of queries (a, b) is successful in Qc, if the query Qa is used in
the top row, Qb in the bottom row in the computation of a compression function F CYC and there
exists a pair of queries Qj, Qk ∈ Qc such that a collision of F CYC can be computed:

πT (Xa)⊕ Ya = πT (Xj)⊕ Yj and πB(Xb)⊕ Yb = πB(Xk)⊕ Yk.

Definition 10. Let d = 0, . . . , c − 1, d′ = d + 1 mod c, d̃ = max(d, d′). We say CollFitd
i (Q) if

(i) the pair of queries (ci + d, ci + d′) is successful in Q
ci+d̃

and (ii) the adversary had not been

successful for 0 ≤ t ≤ d− 1: ¬CollFitt
i(Q).

The predicates Wini(Q) are defined as follows:

Definition 11.

Wini(Q) = ¬


 ∨

0≤j≤i−1

Winj(Q)


 ∧

(
CollFit1

i (Q) ∨ . . . ∨CollFitc
i (Q)

)

We now show that our case analysis is complete.

Lemma 4. CollCYC(Q) =⇒Win0(Q) ∨ . . . ∨Winq−1(Q).

This proof is omitted as it is essentially the same as the proof of Lemma 1, the only difference is
that d is not chosen from the set {0, 1, . . . , 5} but from the set {0, 1, . . . , c− 1}. (�)

Since Pr[CollCYC(Q)] ≤
∑q−1

j=0 Winj(Q) it follows that

Pr[CollCYC(Q)] ≤
q−1∑

i=0

c−1∑

d=0

CollFitd
i (Q). (2)

We will now upper bound Pr[CollFitd
i (Q)].

Lemma 5. Let 0 ≤ i ≤ q − 1 and 0 ≤ d ≤ c− 1. Then

Pr[CollFitd
i (Q)] ≤ ci

(N − ci)2
.

Proof. Let d′ = d + 1 mod c. The output of the compression function F CYC, (W,V), is uniquely
determined by the queries Qci+d = (Xci+d,Kci+d, Yci+d) and Q6i+d′ = (Xci+d′ ,Kci+d′ , Yci+d′),

W = Yci+d ∗ πT (Xci+d) and V = Yci+d′ ∗ πB(Xci+d′).

Using the same arguments as in the proof of Lemma 2 both W and V are randomly determined by
the answer of the oracle. Not that the permutations πT and πB do not change these arguments.

To form a collision, two queries Qj, Qk are needed that can be chosen from at most c(i + 1)
queries in Qc(i+1)−1. The adversary can use them to compute the output of < c(i + 1) compression
functions F CYC. Therefore,

Pr[CollFitd
i (Q)] ≤ c(i + 1)

(N − c(i + 1))2
.

(�)

15

Using (2) we get the following upper bound for any q ≥ 1 and N > cq

Pr[CollCYC(Q)] ≤
q−1∑

i=0

c−1∑

d=0

c(i + 1)

(N − c(i + 1))2
≤

q∑

i=1

c−1∑

d=0

ci

(N − ci)2

≤
q∑

i=1

c2i

(N − ci)2
≤ c2 · q2 · 1

2

(N − cq)2
≤ c2

2

(
q

N − cq

)2

.

This completes our proof of Theorem 4. �

5 Building more Efficient and Secure DBL Compression Functions

The following list contains all efficient double block length compression functions known from
literature that have provably birthday-type collision resistance. Except for Tandem-DM, they are
all in the class of Cyclic. The threshold value ’α’ gives the least amount of queries any adversary
must ask in order to have more than a chance of 0.5 in finding a collision for the compression
function assuming a plain-/ciphertext length of 128 bit of the block cipher.

Cycle length Threshold α Example(s) Common Key Parallel

2 2124.55
Hirose FSE’06 [14] yes yes

Add/1-DM, Section 5.1 yes yes

3 2125.42 Section 5.2 yes yes

4 2125.0 Add/2-DM, Section 5.1 yes yes

6 2124.42 Abreast-DM, Section 3.2 no yes

2k (k ≥ 2) 2127−k Add/k-DM, Section 5.1 yes yes

− 2120.4 Tandem-DM, FSE’09 [10] no no

Table 3. List of all known efficient double block length compression functions. ’Common Key’ indicates whether
both block cipher calls use the same key for their encryption operations, ’Parallel’ indicates whether both encryption
operations are independent of each other and can therefore be computed in parallel.

5.1 Add/k-DM (cycle length 2k)

Luckily, there does exist a very elegant method and efficient method to instantiate a compression
function with cycle length c = 2k for any k ≥ 1. This construction is very similar to Hirose’s FSE’06
proposal. It is shown in Figure 6 and formally given in Definition 12.

Definition 12. Let FAdd/k : {0, 1}2n × {0, 1}n → {0, 1}2n be a compression function such that
(Gi,Hi) = FAdd/k(Gi−1,Hi−1,Mi) where Gi,Hi,Mi ∈ {0, 1}n and let k ∈ N such that 1 ≤ k < n.
FAdd/k is built upon a (n, 2n)-block cipher E as follows:

Gi = E(Gi−1,Hi−1|Mi)⊕Gi−1

Hi = E(Gi−1 � 2n−k,Hi−1|Mi)⊕ (Gi−1 � 2n−k),

16

E

E

Gi−1

Hi−1

Gi

Hi

Mi

2n−k

Add/k-DM, cycle-length 2k

E

E

Gi−1

Hi−1

Gi

Hi

Mi

const

Hirose’s FSE’06 proposal, cycle length 2,
const 6= 0

Figure 6. Left: Cyclic Compression Function with cycle length 2k, k > 1. Right: (for comparison) Hirose’s FSE’06
proposal with a cycle length of 2.

where | represents concatenation. The symbol ′
�

′ denotes an addition modulo 2n.

Lemma 6. The compression function FAdd/k is in Cyclic and has a cycle length of 2k.

Proof. To map with Definition 8 we let Ω = {0, 1}n, b = n, πT = πB = ID, ρ = ID and σ :
{0, 1}n × {0, 1}2n → {0, 1}n × {0, 1}2n is chosen as σ(M,K) = (M � 2n−k,K). The claim follows
since

(σ ◦ . . . ◦ σ)︸ ︷︷ ︸
2k times

(M,K) = (M � 2k · 2n−k,K) = (M,K).

�

Therefore we can apply Theorem 3 for k = 1 or Theorem 4 if k ≥ 2.

Corollary 2. No adversary asking less than 2n−k−1 queries can have more than a chance of 0.5
in finding a collision for the compression function F := FAdd/k for any 1 < k < n.

Proof. This result can be obtained by using a simple calculation. As the cycle length c is equal to
2k (Lemma 6), it follows using Theorem 4

AdvCOLL
F (q) =

22k

2

(q

2n−1

)2
.

By applying AdvCOLL
F (q) = 0.5 and solving after q one obtains q(k) =

√
22n−2k−2 = 2n−k−1. �

Using n = 128, as for AES-256, we can derive without effort that no adversary asking less than
2122 queries can have more than a chance of 0.5 in finding a collision for the compression function
FAdd/5. The compression function FAdd/5 has a cycle length of 25 = 32.

5.2 Cube-DM (cycle length = 3)

The ’most optimal’ result in terms of security – at least in the class Cyclic – can be achieved by
using a compression function that has a cycle length 3. The approach is slightly different compared

17

to Add/k-DM as neither additions modulo 2n nor XOR can be used to create a permutation σ
with |σ| = 3. The guiding idea to use a message space Ω such that |Ω| is evenly divisible by three.
This construction is visualized in Figure 7 and given in Definition 14.

E′

E′

Gi−1

Hi−1

Gi

Hi

Mi

(2n − 1)/3

Figure 7. Cube-DM, a compression function with cycle length |σ| = 3, the symbol ′�′ denotes an addition
modulo 2n − 1.

Definition 13. Let E : {0, 1}n × {0, 1}2n → {0, 1}n be a block cipher with n-bit plain-/ciphertext
and 2n-bit key. Let Ω = {0, 1}n−{1n}, i.e. |Ω| = 2n−1. The block cipher E′ : Ω×(Ω×{0, 1}n)→ Ω,
where Ω × {0, 1}n is the key space is defined as

E′
K(X) =

{
EK(X), if EK(X) 6= 1n,

EK(EK(X)), else.

This definition of the block cipher E′ ensures that that E′
K(X) ∈ Ω for any value of X ∈ Ω: since

E is a permutation, it follows that E′ is a permutation. It is easy to see that, for n even, |Ω| is
divisible by three since

|Ω| mod 3 = 2n − 1 mod 3 = (2 · 2)n′ − 1 mod 3 = 0 mod 3. (3)

Definition 14. Let Ω = {0, 1}n − {1n}, N = |Ω| = 2n − 1. Let FCube : Ω2 × {0, 1}n → Ω2 be
a compression function such that (Gi,Hi) = FCube(Gi−1,Hi−1,Mi) where Gi−1,Hi−1, Gi,Hi ∈ Ω
and Mi ∈ {0, 1}b. Furthermore, let const = (2n − 1)/3 and ′�′ be the addition modulo 2n − 1. Now
FCube is built upon a block cipher E′ as in Definition 13:

Gi = EHi−1|Mi
(Gi−1) �Gi−1

Hi = EHi−1|Mi
(Gi−1 � const) � (Gi−1 � const),

where ′|′ represents concatenation.

Lemma 7. The compression function FCube is in Cyclic and has a cycle length of 3.

Proof. To map with Definition 8, we choose ρ = ID, πT = πB = ID, b = n and σ : Ω2 × {0, 1}n →
Ω2 × {0, 1}n is chosen to be σ(M,K) = (M � (2n − 1)/3,K). The claim follows using (3) and

(σ ◦ σ ◦ σ)(M,K) = (M � 3 · 2
n − 1

3
mod 2n − 1,K) = (M,K).

�

18

The threshold value of α = 2125.42 as given in Table 3 follows with Theorem 4. Note that the
operation ’�’ is trivially efficient since a simple ’if’ suffices to implement it. Also, the implementation
of E′ is not assumed to cost any measurable performance.

6 Discussion and Conclusion

In this paper, we have investigated the security of Abreast-DM, a long outstanding DBL com-
pression function based on a (n, 2n) block cipher that was presented at EUROCRYPT’92. In the
ideal cipher model, we showed that this construction hast birthday type collision resistance: any
adversary asking less than 2124.42 queries cannot find a collision with probability greater than 1/2.
The proof technique was generalized to a class of double block length compression functions Cyclic
and rigorous security bounds in terms of collision resistance and preimage resistance were given
for this construction. The security of such constructions mainly depends on a parameter, the cy-
cle length. Several new double block length compression functions were presented, some of them
(Cube-DM and Add/4-DM) both have a higher security guarantee in terms of collision resistance
than the best known DBL compression functions known in literature today.

Our work not only adds to the understanding of block cipher based compression functions but
also introduces generic construction principles for such constructions. This is even more important
as there are only two constructions known to have provably birthday type collision resistance (Hirose
FSE’09 and Tandem-DM). Somewhat interestingly, one of the implicit results seems to be that,
given the right construction, the security does not depend on whether the two block ciphers are
fed in with different keys. This result alone renders constructions with different keys to be in the
class of inefficient constructions as better ones always seem to be available.

Taking the long time Abreast-DM lacked a security proof, it is clear that there needs to be
a lot of research done in the field of block cipher based hash functions. Still, there do not exist
completely satisfying constructions and/or security proofs for, e.g., MDC-2/4. More general, there
has to be added a lot to our understanding, especially for constructions that are more efficient, e.g.
have rate 1, or use other building blocks such as, e.g., (n, n) block ciphers.

Acknowledgements

The authors wish to thank Thomas Shrimpton for pointing out the idea of Add/Cube-DM.

References

[1] ANSI. ANSI X9.31:1998: Digital Signatures Using Reversible Public Key Cryptography for the Financial Services
Industry (rDSA). American National Standards Institute, pub-ANSI:adr, 1998.

[2] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-Cipher-Based Hash-
Function Constructions from PGV. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 320–335. Springer, 2002.

[3] Antoon Bosselaers and Bart Preneel. Integrity Primitives for Secure Information Systems, Final Report of
RACE Integrity Primitives Evaluation RIPE-RACE 1040. Springer, 1995, Lecture Notes in Computer Science,
Volume 1007.

[4] C.Meyer and S.Matyas. Secure program load with manipulation detection code, 1988.
[5] D. Coppersmith, S. Pilpel, C. H. Meyer, S. M. Matyas, M. M. Hyden, J. Oseas, B. Brachtl, and M. Schilling.

Data authentication using modification dectection codes based on a public one way encryption function. U.S.
Patent No. 4,908,861, March 13, 1990.

19

[6] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science. Springer, 2005.

[7] Richard Drews Dean. Formal aspects of mobile code security. PhD thesis, Princeton, NJ, USA, 1999. Adviser-
Andrew Appel.

[8] Bert den Boer and Antoon Bosselaers. Collisions for the Compressin Function of MD5. In EUROCRYPT, pages
293–304, 1993.

[9] Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudorandom permutation. In
Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASIACRYPT, volume 739 of Lecture Notes
in Computer Science, pages 210–224. Springer, 1991.

[10] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. On the Security of Tandem-DM. In Robshaw [31],
page ??

[11] H. Dobbertin. The status of MD5 after a recent attack, 1996.
[12] Mitsuhiro Hattori, Shoichi Hirose, and Susumu Yoshida. Analysis of double block length hash functions. In

Kenneth G. Paterson, editor, IMA Int. Conf., volume 2898 of Lecture Notes in Computer Science, pages 290–302.
Springer, 2003.

[13] Shoichi Hirose. Provably secure double-block-length hash functions in a black-box model. In Choonsik Park and
Seongtaek Chee, editors, ICISC, volume 3506 of Lecture Notes in Computer Science, pages 330–342. Springer,
2004.

[14] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions. In Matthew J. B.
Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 210–225. Springer, 2006.

[15] Walter Hohl, Xuejia Lai, Thomas Meier, and Christian Waldvogel. Security of iterated hash functions based on
block ciphers. In Stinson [37], pages 379–390.

[16] ISO/IEC. ISO DIS 10118-2: Information technology - Security techniques - Hash-functions, Part 2: Hash-
functions using an n-bit block cipher algorithm. First released in 1992, 2000.

[17] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for Much Less than 2n Work. In
Cramer [6], pages 474–490.

[18] Joe Kilian and Phillip Rogaway. How to protect des against exhaustive key search. In Neal Koblitz, editor,
CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 252–267. Springer, 1996.

[19] Lars R. Knudsen, Xuejia Lai, and Bart Preneel. Attacks on fast double block length hash functions. J.
Cryptology, 11(1):59–72, 1998.

[20] Lars R. Knudsen and Frédéric Muller. Some attacks against a double length hash proposal. In Bimal K. Roy,
editor, ASIACRYPT, volume 3788 of Lecture Notes in Computer Science, pages 462–473. Springer, 2005.

[21] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers. In EUROCRYPT, pages 55–70, 1992.
[22] M. Rabin. Digitalized Signatures, 1978.
[23] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. CRC Press,

1996.
[24] Ralph C. Merkle. One way hash functions and des. In Gilles Brassard, editor, CRYPTO, volume 435 of Lecture

Notes in Computer Science, pages 428–446. Springer, 1989.
[25] Nandi, Lee, Sakurai, and Lee. Security analysis of a 2/3-rate double length compression function in the black-box

model. In IWFSE: International Workshop on Fast Software Encryption, LNCS, 2005.
[26] NIST National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard. April 1995. See

http://csrc.nist.gov.
[27] NIST National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard. April 1995. See

http://csrc.nist.gov.
[28] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers: A synthetic approach.

In Stinson [37], pages 368–378.
[29] R. L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities Board, April 1992.
[30] Ronald L. Rivest. The md4 message digest algorithm. In Alfred Menezes and Scott A. Vanstone, editors,

CRYPTO, volume 537 of Lecture Notes in Computer Science, pages 303–311. Springer, 1990.
[31] Matthew J. B. Robshaw, editor. Fast Software Encryption, 16th International Workshop, FSE 2009, Leuven,

Belgium, February 25-28, 2009, Revised Selected Papers, volume 5??? of Lecture Notes in Computer Science.
Springer, 2009.

[32] Phillip Rogaway and John P. Steinberger. Constructing cryptographic hash functions from fixed-key blockci-
phers. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 433–450.
Springer, 2008.

20

[33] Phillip Rogaway and John P. Steinberger. Security/efficiency tradeoffs for permutation-based hashing. In
Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 220–236.
Springer, 2008.

[34] Satoh, Haga, and Kurosawa. Towards secure and fast hash functions. TIEICE: IEICE Transactions on Com-
munications/Electronics/Information and Systems, 1999.

[35] Martijn Stam. Blockcipher Based Hashing Revisited. In Robshaw [31], page ??

[36] John P. Steinberger. The collision intractability of mdc-2 in the ideal-cipher model. In Moni Naor, editor,
EUROCRYPT, volume 4515 of Lecture Notes in Computer Science, pages 34–51. Springer, 2007.

[37] Douglas R. Stinson, editor. Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in
Computer Science. Springer, 1994.

[38] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the hash functions
md4 and ripemd. In Cramer [6], pages 1–18.

[39] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full sha-1. In Victor Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17–36. Springer, 2005.

A Hirose’s FSE’06 Proposal of a DBL Compression Function

At FSE’06, Hirose [14] proposed the DBL compression function FHirose (Definition 15 and Figure
8). He proved that when FHirose is employed in an iterated hash function H, then no adversary
asking less than 2125.7 queries can have more than a chance of 0.5 in finding a collision for n = 128.

Definition 15. Let FHirose : {0, 1}2n × {0, 1}n → {0, 1}2n be a compression function such that
(Gi,Hi) = FHirose(Gi−1,Hi−1,Mi) where Gi,Hi,Mi ∈ {0, 1}n. FHirose is built upon a (n, 2n) block
cipher E as follows:

Gi = FT (Gi−1,Hi−1,Mi) = E(Gi−1,Hi−1|Mi)⊕Gi−1

Hi = FB(Gi−1,Hi−1,Mi) = E(Gi−1 ⊕ C,Hi−1|Mi)⊕Gi−1 ⊕ C,

where ′|′ represents concatenation and c ∈ {0, 1}n − {0n} is a constant.

A visualization of this compression function is given in Figure 8.

E

E

Gi−1

Hi−1

Gi

Hi

Mi

C

Figure 8. The compression function F Hirose, E is an (n, 2n) block cipher.

21

B A non-cyclic compression function: Tandem-DM

The Tandem-DM compression function was proposed by Lai and Massey at EUROCRYPT’92 [21].
It uses two cascaded Davies-Meyer [2] schemes. The compression function is illustrated in Figure 9
and is formally given in Definition 16.

E

E

Gi−1

Hi−1

Gi

Hi

Mi

Figure 9. The compression function Tandem-DM F TDM where E is an (n, 2n) block cipher, the black rectangle
inside the cipher rectangle indicates the key input

Definition 16. Let F TDM : {0, 1}2n × {0, 1}n → {0, 1}2n be a compression function such that
(Gi,Hi) = F TDM (Gi−1,Hi−1,Mi) where Gi,Hi,Mi ∈ {0, 1}n. F TDM is built upon an (n, 2n) block
cipher E as follows:

Wi = E(Gi−1,Hi−1|Mi)

Gi = FT (Gi−1,Hi−1,Mi) = Wi ⊕Gi−1

Hi = FB(Gi−1,Hi−1,Mi) = E(Hi−1,Mi|Wi)⊕Hi−1.

C Collision Resistance – Proof of Theorem 3

Due to the special structure of the compression function in the case of c = |σ| = 2, the following
definition is useful for the proof.

Definition 17. A pair of distinct inputs (Gi−1,Hi−1,Mi), (G
′
i−1,H

′
i−1,M

′
i) to F CYC is called a

matching pair if (G′
i−1,H

′
i−1,M

′
i) = (ρ−1 ◦ σ ◦ ρ)(Gi−1,Hi−1,Mi). Otherwise they are called a

non-matching pair.

Fix numbers n, q and an adversary A asking q backward and forward queries to its oracle E in
total. Note that we will assume throughout this proof that the cycle length c = |σ| = 2. All queries
to the oracle are saved in a query history Q. Let CollCYC−2 be the event that the adversary is
able to construct a collision of F CYC in this case. We will examine the queries one at a time as
they come in; the latest query made by the adversary, his i-th query, will always be given index
2i, and is denoted as Q2i. Say the query Q2i = (X2i,K2i, Y2i) is a forward or backward query
mounted by the adversary and assume that Q2i is used in the top row. As two queries are required
for the computation of F CYC we will give the adversary the bottom row query for free. This query
is uniquely determined by its plaintext X2i+1 and key K2i+1 component as follows:

(X2i+1,K2i+1) = S(σ(S−1(X2i,K2i)))

22

and the adversary is given the ciphertext Y2i+1 = EK2i+1
(X2i+1). If the adversary uses the query

Q2i in the bottom row, we give him the top row query for free:

(X2i+1,K2i+1) = S(σ−1(S−1(X2i,K2i)))

and the adversary is given the ciphertext Y2i+1 = EK2i+1
(X2i+1) in this case. Since σ2 = ID it

follows that σ = σ−1 it follows that in either case, the adversary is given the same free query, i.e.
the input to the other query is always uniquely determined using one and the same computation.

Now assume for the simplicity of the following argument that the query Q2i is used in the top
row and Q2i+1 in the bottom row. As Gi = Y2i ⊕ πT (X2i) depends both on the plaintext and
the ciphertext of E and one of them is fixed by query and the other is determined randomly by
the oracle it follows that Gi is randomly determined by that answer. Using the same argument,
Hi = Y2i+1 ⊕ πT (X2i+1) is also randomly determined by the other answer.

For any 2 ≤ i ≤ q let Ci be the event that a colliding pair of non-matching inputs are found for
F CYC with the i-th pair of queries. Namely, it is the event that for some i′ < i

F CYC(ρ−1(X2i,K2i)) ∈ {F CYC(ρ−1(X2i′ ,K2i′)), F CYC(ρ−1(X2i′+1,K2i′+1))}

or

F CYC(ρ−1(X2i+1,K2i+1)) ∈ {F CYC(ρ−1(X2i′ ,K2i′)), F CYC(ρ−1(X2i′+1,K2i′+1))}

This condition is equivalent to

(Y2i ∗ πT (X2i), Y2i+1 ∗ πB(X2i+1)) = (Y2i′ ∗ πT (X2i′), Y2i+1 ∗ πB(X2i′+1)) or (4)

(Y2i ∗ πT (X2i), Y2i+1 ∗ πB(X2i+1)) = (Y2i′+1 ∗ πT (X2i′+1), Y2i ∗ πB(X2i′)) or (5)

(Y2i+1 ∗ πT (X2i+1), Y2i ∗ πB(X2i)) = (Y2i′ ∗ πT (X2i′), Y2i+1 ∗ πB(X2i′+1)) or (6)

(Y2i+1 ∗ πT (X2i+1), Y2i ∗ πB(X2i)) = (Y2i′+1 ∗ πT (X2i′+1), Y2i ∗ πB(X2i′)). (7)

Note that (4) is equal to (7) and (5) is equal to (6) if πT = πB . In this case, it follows that for
2q < N

Pr[Ci] ≤
2(i − 1)

(N − (2i− 2))(N − (2i− 1))
≤ 2q

(N − 2q)2
. (8)

Assuming πT 6= πB we obtain

Pr[Ci] ≤
4(i − 1)

(N − (2i− 2))(N − (2i− 1))
≤ 4q

(N − 2q)2
. (9)

For unifying the treatment of these two cases, we set a = 1 if πT = πB and a = 2 otherwise. Let
C be the event that a colliding pair of non-matching inputs are found for F CYC with q (pairs) of
queries. Then,

Pr[C] ≤
q∑

i=2

Pr[Cj] ≤
q∑

i=2

2q · a
(N − 2q)2

≤ 2aq2

(N − 2q)2
.

23

Now, let Ĉi be the event that a colliding pair of matching inputs is found for F CYC. It follows, that

Pr[Ĉi] ≤
2

N − 2q
.

Let Ĉ be the event that a colliding pair of matching inputs are found for F CYC with q (pairs) of
queries. Then,

Pr[Ĉ] ≤
q∑

i=2

Pr[Ĉi] ≤
2q

N − 2q
.

Since AdvColl
F (q) = Pr[C ∨ Ĉ] ≤ Pr[C] + Pr[Ĉ], the claim follows. �

D Preimage resistance – Proof of Theorem 5

Although, the main focus is on collision resistance, we are also interested in the difficulty of inverting
the compression function of F CYC. Generally speaking, second-preimage resistance is a stronger
security requirement than preimage resistance. A preimage may have some information of another
preimage which produces the same output. However, in the ideal cipher model, for the compression
function F CYC, a second-preimage has no information useful to find another preimage. Thus, only
preimage resistance is analyzed. Note, that there have be various results that discuss attacks on
iterated hash functions in terms of pre- and second-preimage, e.g. long-message second-preimage
attacks [7, 17], in such a way that the preimage-resistance level of a compression function cannot
easily be transferred to an iterated hash function built on it.

The adversary’s goal is to output a preimage (G,H,M) for a given ζ, where ζ is taken randomly
from the output domain, such as F CYC(G,H,M) = ζ. We will again dispense the adversary from
having to output such a preimage. Instead, we will determine whether the adversary has been
successful or not by examining its query history Q. We say, that PreImg(Q) holds if there is such
a preimage and Q contains all the queries necessary to compute it.

Definition 18. (Inverting random points of a compression function) Let F CYC be as in
Definition 6. Fix an adversary A that has access to oracles E,E−1. The advantage of A of inverting
F := F CYC is the real number

AdvInv
F (A) = Pr[E

R← BC(n, k); ζ
R← Ω2; (G,H,M)

R← AE,E−1

(ζ) | F CYC(G,H,M) = ζ].

Again, for q ≥ 1, we write

AdvInv
F (q) = max

A
{AdvInv

F (A)}

where the maximum is taken over all adversaries that ask at most q oracle queries.
Note, that there has been a discussion on formalizations of preimage resistance. For details we

refer to [2, Section 2, Appendix B].
The preimage resistance of the compression function F is given in the following Theorem.

Theorem 6. Let F := F CYC be as in Definition 6. For any N ′ = N − q and q > 1

AdvInv
F (q) ≤ 2q/(N ′)2.

24

Proof. Fix ζ = (ζ1, ζ2) ∈ Ω2 where σ1, σ2 ∈ Ω and an adversary A asking q queries to its oracles.
We upper bound the probability that A finds a preimage for a given ζ by examining the oracle
queries as they come in and upper bound the probability that the last query can be used to create
a preimage, i.e. we upper bound Pr[PreImg(Q)]. Let Qi denote the first i queries made by the
adversary. The term ’last query’ means the latest query made by the adversary since we examine
again the adversary’s queries (Xi,Ki)fwd or (Ki, Yi)bwd one at a time as they come in. The last
query is always given index i.

Case 1: The last query (Xi,Ki, Yi) is used in the top row. Either Xi or Yi was randomly assigned
by the oracle from a set of at least the size N ′ := N − q. The query is successful in the top row
if P T

M (Xi) ⊕ Yi = σ1 and thus has a chance of success of ≤ 1/N ′. In Qi there is at most one
query Qj , j ≤ i that can be used in the bottom row. This ’bottom’ query is successful if such a
query is in the query history Q and PB

M (Xj)⊕ Yj = σ2 and therefore has a chance of success of
≤ 1/N ′. So the total chance of success is ≤ q/(N ′)2 as the adversary mounts at most q queries.

Case 2: The last query (Xi,Ki, Yi) is used in the bottom row. The analysis is essentially the same
as in case 1. The total chance of success is ≤ q/(N ′)2, too.

As any query can be either used in the top or the bottom row, the claim follows.

25

