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Abstract Zhou et al proposed a quantum encryption scheme based on quantum
computation in 2006. Each qubit of the ciphertext is constrained to two pairs of
conjugate states. So its implementation is feasible with the existing technology. But
it is inefficient since it entails six key bits to encrypt one message bit, and the resulting
ciphertext for one message bit consists of three qubits. In addition, its security can
not be directly reduced to the well-known BB84 protocol. In this paper, we revisit it
using the technique developed in BB84 protocol. The new scheme entails only two
key bits to encrypt one message bit. The resulting ciphertext is just composed of
two qubits. It saves about a half cost without the loss of security. Moreover, the
encryption scheme is probabilistic rather than deterministic.

1 Introduction

Quantum cryptography uses quantum mechanics to guarantee secure communication. The se-
curity of quantum cryptography relies on the foundations of quantum mechanics, in contrast
to traditional public key cryptography which relies on the computational difficulty of certain
mathematical functions. Quantum communication involves encoding information in quantum
states, or qubits. Usually, photons are used for these quantum states.

The first quantum cryptographic protocol aims to establish a fresh key between two users,
which is invented by Charles H. Bennett and Gilles Brassard [1] and referred to as BB84. In
practice, any two pairs of conjugate states can be used for the protocol. The security of the
protocol comes from encoding the information in non-orthogonal states. Quantum indeterminacy
means that these states cannot generally be measured without disturbing the original state. With
the development of quantum cryptography (it is only used to produce and distribute a key in
the early days), quantum encryption becomes attractive.

Probabilistic encryption is the use of randomness in an encryption algorithm, so that when
encrypting the same message several times it will, in general, yield different ciphertexts. The
term ”probabilistic encryption” is typically used in reference to public key encryption algo-
rithms, however various symmetric key encryption algorithms achieve a similar property. To
be semantically secure, that is, to hide even partial information about the plaintext, an en-
cryption algorithm must be probabilistic. An intuitive approach to converting a deterministic
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encryption scheme into a probabilistic one is to simply pad the plaintext with a random string
before encrypting with the deterministic algorithm. Conversely, decryption involves applying
a deterministic algorithm and ignoring the random padding. The first provably-secure proba-
bilistic public-key encryption scheme was proposed by Goldwasser and Micali [4], based on the
hardness of the quadratic residuosity problem and had a message expansion factor equal to the
public key size. There are many efficient probabilistic encryption algorithms, including Optimal
Asymmetric Encryption Padding (OAEP) [2] and [7].

In 2006, Zhou et al proposed a quantum block encryption algorithm [10] (ZZNXZ for short),
which can be used to encrypt classical messages as well as quantum messages. The algorithm does
not require any quantum state pre-shared or stored, which makes it encrypt classical messages
possible in real applications. With the existing technology, its implementation becomes feasible.
But it has two limitations. One is that six classical key bits should be used to encrypt one
message bit. The other is that the resulting ciphertext for one message bit is composed of
three qubits. Thus, the original algorithm is a little inefficient. In addition, its security can
not be directly reduced to the well-known BB84 protocol. In this paper, we revisit it using the
technique developed in BB84 protocol. The new scheme entails only two key bits to encrypt one
message bit. The resulting quantum state for one message bit is just composed of two qubits
other than three qubits. It saves about a half cost without the loss of security. Moreover, the
encryption scheme is probabilistic other than deterministic.

2 Related work

In 2000, Horace P. Yuen [8] proposed a new approach to quantum cryptography, which is called
KCQ (keyed communication in quantum noise). It is developed on the basis of quantum detection
and communication theory for classical information transmission. By the use of a shared secret
key that determines the quantum states generated for different data bit sequences, the users
may employ the corresponding optimum quantum measurement to decode the data. In Yuen’s
protocol, let ρk

x be the quantum state corresponding to the data x (single bit or a bit sequence)
and running key sequence k that is used to determine the basis and/or polarity of the qk scheme
for that length of x. For M/2 possible bases and a single bit x, there is 1 + log2(M/2) bits
in k for both basis and polarity determination. Each ρk

x can be represented as a real vector
|rk

x〉 of norm 1 on the great circle, the angle between any two nearest neighbor vectors is 2π/M

radian. Notice that in the Yuen’s protocol, the quantum state ρk
x is no longer constrained to

two pairs of conjugate states. Therefore, the difficulty of modulating related quantum states
arises imperceptibly. This may be the reason that the Yuen’s protocol is rarely implemented
than BB84. As for the security proof of Yuen’s protocol, we refer to [5].

In Eurocrypt’04, I. Damg̊ard et al [3] considered the scenario where Alice wants to send a
secret classical n-bit message to Bob using a classical key, and where only one-way quantum
transmission from Alice to Bob is possible. They suggest an application of their results in the
case where only a short secret key is available and the message is much longer. Concretely, one
can use a pseudorandom generator to produce from the short key a stream of keys for a quantum
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cipher, using each of them to encrypt an n-bit block of the message. Their results suggest that
an adversary with bounded resources in a known plaintext attack may potentially be in a much
harder situation against quantum stream-ciphers than against any classical stream-cipher with
the same parameters. For illustration, they presented a method for designing quantum ciphers
which can be described as follows. Given message b1, b2, · · · , bn and key c, k1, · · · , kn, it outputs
the following n q-bit state as ciphertext: (H⊗n)c(Xk1 ⊗Xk2 ⊗ · · · ⊗Xkn |b1b2 · · · bn〉), where X

is the bit-flip operator and H is the Hadamard transform. Namely, it uses the last n bits of key
as a one-time pad, and the first key bit determines whether or not we do a Hadamard transform
on all n resulting q-bits. Decryption uses the operator (Xk1 ⊗Xk2 ⊗ · · · ⊗Xkn)(H⊗n)c, which
is the inverse of the encryption operator. In this scheme, the resulting ciphertext states are also
constrained to the four states |1〉, |0〉, |+〉, |−〉. That means it can be realistically implemented
with the current technology. But there is one point that is noteworthy, i.e., its encryption
algorithm is deterministic.

In 2007, Zhou et al proposed another quantum block encryption algorithm with hybrid keys.
In the encryption algorithm, two kinds of keys are involved. One is the quantum key as follows
|K1〉 = |k11〉 ⊕ |k12〉 · · · ⊕ |k1m〉, |k1i〉 = ai|0〉 + bi|1〉, where |ai|2 + |bi|2 = 1. The other is the
classical binary key K2 = k21k22 · · · k2l, k2j ∈ {0, 1}. Since each qubit of the resulting ciphertext
is not constrained to two pairs of conjugate quantum states, the difficulty of modulating related
quantum states occurs. We refer to [9] for details.

3 Review of ZZNXZ scheme

The scheme requires communicators to pre-share four groups of classical keys: one for the
choice of quantum ancilla bits, one for the choice of the Controlled-NOT operation, one for the
bits permutation, and another one for the choice of the quantum logic operation making the
ciphertext non-orthogonal. The resulting quantum ciphertext for one classical bit is composed
of three qubits. Each qubit is constrained to two pairs of conjugate states.

3.1 Encryption process

Consider the encryption of the ith classical plaintext bit using the corresponding ith key element
of each group of keys. If the keys are used up, reuse the remaining secure keys.

Step 1: Preparation. Given a classical message bit to be encrypted is m ∈ {0, 1}, Alice
prepares the quantum state |k1

1k
2
1m〉 according to the first group key k1, where k1

1 and k2
1

are two key elements of k1. The result C1 of this step may be one of the possible states
|000〉, |010〉, |100〉, |110〉, |001〉, |011〉, |101〉 and |111〉.

Step 2: Controlled-NOT operation. Alice performs a Controlled-NOT operation on the third
qubit (message qubit), according to the second group key k2. The whole possible ciphertext
states are listed in Table 1. The third qubit in each state of C1 is the original information qubit,
but in resulting state of C2 it is the result of the Controlled-NOT transformation and is no
longer the original information qubit itself, where the subscript m denotes the bit related to the
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original message bit.

Step 3: Permutation. Alice permutes two qubits in the state C2 by the following table 2,
according to the third group key k3. The resulting states C3 in the step are different in form
from those in C1, the second and the third qubits of each state of C3 may involve information
about the message (plaintext), unlike those of C1 where the information about the plaintext is
just confined to the third qubit. Thus the ciphertext space is doubled.

Step 4: Non-orthogonality. Alice carries out quantum computation on the ciphertext states
in C3 under the control of the fourth group key k4, according to the following table 3. Some
quantum computations such as Controlled-NOT gate, bit swapping, Hadamard gate and Z gate
are involved during the process. For the circuits of Controlled-NOT gate, bit swap gate, H gate
and Z gate, we refer to [6]. The resulting quantum ciphertext C4 is composed of three qubits.
Each qubit is constrained to two pairs conjugate states. The definition of the Controlled-NOT
gate is CA,B|A〉|B〉 → |A〉|A⊕B〉, where A,B ∈ {0, 1},

CA,B =

[
I 0
0 X

]
, where X =

[
0 1
1 0

]
, I =

[
1 0
0 1

]

The matrix forms of H and Z are

H =
1√
2

[
1 1
1 −1

]
=

1√
2
(X + Z), Z =

[
1 0
0 −1

]

Clearly, H|0〉 = |+〉,H|1〉 = |−〉, where |0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
, |±〉 = 1√

2
(|0〉 ± |1〉).

Table 1: The first encryption transformation

C1 k2 = 0 C2 k2 = 1 C2

|000m〉 |000m〉 |000m〉
|010m〉 |010m〉 |011m〉
|100m〉 |101m〉 |100m〉
|110m〉 |111m〉 |111m〉
|001m〉 |001m〉 |001m〉
|011m〉 |011m〉 |010m〉
|101m〉 |100m〉 |101m〉
|111m〉 |110m〉 |110m〉

3.2 Decryption process

Step 1: Decrypting C4 with k4. If the key element is 01, i.e. the H gate is applied while
encrypting, one applies the same H gate to the ciphertext while decrypting. If the key element
is 10, i.e. the ZH gate is applied while encrypting, one applies the HZ gate to the ciphertext
while decrypting. If the key element is 00 or 11, let the ciphertext stay put.

Step 2: Decrypting C3 with k3. If the key element is 0, leave it alone. If the key element is
1, permute the second and the third qubits with the bit swap circuit.
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Table 2: The second encryption transformation

C2 k3 = 0 C3 k3 = 1 C3

|000m〉 |000m〉 |00m0〉
|001m〉 |001m〉 |01m0〉
|010m〉 |010m〉 |00m1〉
|011m〉 |011m〉 |01m1〉
|100m〉 |100m〉 |10m0〉
|101m〉 |101m〉 |11m0〉
|110m〉 |110m〉 |10m1〉
|111m〉 |111m〉 |11m1〉

Table 3: The third encryption transformation

C3 k4 = 00 or 11 k4 = 01 k4 = 10 C3 k4 = 00 or 11 k4 = 01 k4 = 10
|000m〉 |000m〉 |00+m〉 |00−m〉 |00m0〉 |00m0〉 |00m+〉 |00m−〉
|001m〉 |001m〉 |00−m〉 |00+m〉 |00m1〉 |00m1〉 |00m−〉 |00m+〉
|010m〉 |010m〉 |01+m〉 |01−m〉 |01m0〉 |01m0〉 |01m+〉 |01m−〉
|011m〉 |011m〉 |01−m〉 |01+m〉 |01m1〉 |01m1〉 |01m−〉 |01m+〉
|100m〉 |100m〉 |10+m〉 |10−m〉 |10m0〉 |10m0〉 |10m+〉 |10m−〉
|101m〉 |101m〉 |10−m〉 |10+m〉 |10m1〉 |10m1〉 |10m−〉 |10m+〉
|110m〉 |110m〉 |11+m〉 |11−m〉 |11m0〉 |11m0〉 |11m+〉 |11m−〉
|111m〉 |111m〉 |11−m〉 |11+m〉 |11m1〉 |11m1〉 |11m−〉 |11m+〉

Step 3: Decrypting C2 with k2. The decryption is described as

|A〉|A⊕B〉 → |A〉|A⊕ (A⊕B)〉 = |A〉|B〉

where A,B ∈ {0, 1}, and this transformation is still a Controlled-NOT transformation.

Step 4: Transforming C1. The third bit of each 3-bit quantum state in the result derived
in Step 3 corresponds to initial classical message bit. Cascading all the initial classical message
bits, Bob gets the bit string of plaintext.

3.3 Two limitations of the ZZNXZ scheme

As mentioned before, the ZZNXZ quantum encryption scheme is feasibly implemented with
the existing technology since only tow pairs of conjugate states are involved. But we observe
that there are two limitations. One is that six classical key bits should be used to encrypt one
classical message bit. The requirement for a long key is a bit impressive. The other is that the
resulting ciphertext for one message bit should be composed of three qubits. Apparently, it is
applicable if a cipher entails less qubits and less key bits. In addition, its security can not be
directly reduced to the well-known BB84 protocol.

By the way, we also observe that the description of the ZZNXZ scheme is not clearly specified
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(see Table 2 and Table 3). Actually, there is no any difference between |000m〉 and |00m0〉. Both
of them are composed of three qubits |0〉. It is not necessary to list them respectively.

In what follows, we shall present an improvement of the ZZNXZ scheme without the loss
of security, which entails less qubits and less key bits. Moreover, the new scheme is no longer
deterministic, instead probabilistic.

4 ZZNXZ scheme revisited

4.1 Description

Either the encryption algorithm or the decryption algorithm in the revisited scheme is imple-
mented by quantum computation, which can be realized by current technology. We now describe
it as follows.

Encryption algorithm: Input a message bit m and a secret key K = k1k2. Output the
quantum ciphertext c = |αβ〉, where |α〉, |β〉 ∈ {|0〉, |1〉, |+〉, |−〉}.

E1 Padding. Pick a random bit b ∈ {0, 1}, concatenate b with m and modulate the quantum
state |bm〉.

E2 Transformation. Compute the ciphertext c by the following table 4. The encryption
transformation is defined by

c = |αβ〉 =





|bm〉, k1k2 = 00
|bm1〉, k1k2 = 11
|bm2〉, k1k2 = 01
|bm3〉, k1k2 = 10

where |m1〉 = X|m〉, |m2〉 = H|m〉, |m3〉 = ZH|m〉,
X =

(
0 1
1 0

)
,H = 1√

2

[
1 1
1 −1

]
, Z =

[
1 0
0 −1

]

Table 4: Encryption transformation

|bm〉 k1k2 = 00 k1k2 = 11 k1k2 = 01 k1k2 = 10

|00〉 |00〉 |01〉 |0+〉 |0−〉
|10〉 |10〉 |11〉 |1+〉 |1−〉
|01〉 |01〉 |00〉 |0−〉 |0+〉
|11〉 |11〉 |10〉 |1−〉 |1+〉

Decryption algorithm: Input a quantum ciphertext c = |αβ〉 and a secret key K = k1k2.
Output a classical message bit m.
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The decryption transformation is defined by

|m〉 =





|β〉, k1k2 = 00
X|β〉, k1k2 = 11
H|β〉, k1k2 = 01
HZ|β〉, k1k2 = 10

Remark 1 The padding bit b has no relation to the decryption transformation. That is to
say, the encryption scheme is probabilistic other than deterministic.

4.2 Security analysis

The security of the scheme is directly based on BB84 protocol. In some sense, it is just the
generalization of BB84 protocol in the scenario of two users communicating with the help of a
shared key. We now give a brief argument for the security of the improved scheme.

Given a ciphertext |αβ〉, an adversary cannot derive |m〉 without the information of k1k2,
because the qubit |β〉 is constrained to the two pairs of conjugate states |0〉, |1〉, |+〉, |−〉. By
the encryption transformation, the adversary cannot determine which operator of the possible
operators I, X,H, ZH has been used. For each bit, the probability is bounded by 1

4 . Suppose the
length of the encrypted message block is n, the probability is bounded by 1

4n , which is negligible.

Furthermore, if the adversary can obtain the multiple duplications of the second qubit and
measure them, he also cannot determine the bit m because the four states are uniformly dis-
tributed in the second position. For example, if the adversary obtains |1+〉 and knows each
qubit, he can still not determine m because there are two preimages, |10〉 and |11〉. In that case,
its security reduced to the following transformation (Table-5):

Table 5: The reduced transformation

|bm〉 k1k2 = 00 k1k2 = 11

|00〉 |00〉 |01〉
|10〉 |10〉 |11〉
|01〉 |01〉 |00〉
|11〉 |11〉 |10〉

The reduced transformation is equal to the following conventional transformation (Table-6):
So far, the conventional transformation remains secure even through quantum computers become
true.

Finally, the adversary cannot derive |m〉 from the qubit |α〉 since the padding bit b has no
relation to m. This comes from the fact that all quantum operators are performed on the second
qubit.
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Table 6: A conventional transformation

bm k = 0 k = 1

00 00 01
10 10 11
01 01 00
11 11 10

4.3 Comparison

We now make a comparison between the new scheme and the ZZNXZ scheme. The results are
listed in the following Table-7.

Table 7: Comparison for generating a ciphertext for one message bit

Scheme key-bit qubit conjugate states probabilistic

Improvement 2 2 |0〉, |1〉, |+〉, |−〉 Yes
ZZNXZ 6 3 |0〉, |1〉, |+〉, |−〉 No

Roughly speaking, the revisited scheme saves about a half cost, if we think of that the
cost of permuting two qubits in the original step 3 is equal to that of modulating a quantum
ancilla state. The improved scheme is of a peculiar characteristic, probabilistic property, which
is practically appreciated. Besides, the security of the new scheme can be directly reduced to
that of BB84 protocol.

5 Conclusion

In this paper, we present an improvement of the ZZNXZ quantum encryption scheme and show
its security. Interestingly, our scheme can be viewed as the generalization of BB84 protocol in
the scenario of two users communicating with the help of a shared key.
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