
Symbolic Encryption with Pseudorandom Keys

Daniele Micciancio∗

February 23, 2018

Abstract

We give an efficient decision procedure that, on input two (acyclic) cryptographic expressions making
arbitrary use of an encryption scheme and a (length doubling) pseudorandom generator, determines (in
polynomial time) if the two expressions produce computationally indistinguishable distributions for any
pseudorandom generator and encryption scheme satisfying the standard security notions of pseudoran-
domness and indistinguishability under chosen plaintext attack. The procedure works by mapping each
expression to a symbolic pattern that captures, in a fully abstract way, the information revealed by the
expression to a computationally bounded observer. We then prove that if any two (possibly cyclic) ex-
pressions are mapped to the same pattern, then the associated distributions are indistinguishable. At the
same time, if the expressions are mapped to different symbolic patterns and do not contain encryption
cycles, there are secure pseudorandom generators and encryption schemes for which the two distributions
can be distinguished with overwhelming advantage.

Keywords: Symbolic security, computational soundness, completeness, pseudo-random generators, in-
formation leakage, greatest fixed points.

1 Introduction

Formal methods for security analysis (e.g., [14, 11, 25, 39, 40, 1]) typically adopt an all-or-nothing approach
to modeling adversarial knowledge. For example, the adversary either knows a secret key or does not have any
partial information about it. Similarly, either the message underlying a given ciphertext can be recovered,
or it is completely hidden. In the computational setting, commonly used in modern cryptography for its
strong security guarantees, the situation is much different: cryptographic primitives usually leak partial
information about their inputs, and in many cases this cannot be avoided. Moreover, it is well known that
computational cryptographic primitives, if not used properly, can easily lead to situations where individually
harmless pieces of partial information can be combined to recover a secret in full. This is often the case
when, for example, the same key or randomness is used within different cryptographic primitives.

Starting with the seminal work of Abadi and Rogaway [3], there has been considerable progress in
combining the symbolic and computational approaches to security protocol design and analysis, with the
goal of developing methods that are both easy to apply (e.g., through the use of automatic verification
tools) and provide strong security guarantees, as offered by the computational security definitions. Still,
most work in this area applies to scenarios where the use of cryptography is sufficiently restricted that the
partial information leakage of computational cryptographic primitives is inconsequential. For example, [3]
studies expressions that use a single encryption scheme as their only cryptographic primitive. In this setting,
the partial information about a key k revealed by a ciphertext {|m|}k is of no use to an adversary (except,
possibly, for identifying when two different ciphertexts are encrypted under the same, unknown, key), so one
can treat k as if it were completely hidden. Other works [34, 4] combine encryption with other cryptographic

∗University of California at San Diego, 9500 Gilman Dr., Mail Code 0404, La Jolla, CA 92093, USA. e-mail:
daniele@cs.ucsd.edu. Research supported in part by NSF under grant CNS-1528068. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the
National Science Foundation.

1

primitives (like pseudo-random generation and secret sharing,) but bypass the problem of partial information
leakage simply by assuming that all protocols satisfy sufficiently strong syntactic restrictions to guarantee
that different cryptographic primitives do not interfere with each other.

Our results. In this paper we consider cryptographic expressions that make arbitrary (nested) use of
encryption and pseudo-random generation, without imposing any syntactic restrictions on the messages
transmitted by the protocols. In particular, we consider cryptographic expressions as those studied in [3],
like ({|m|}k, {|{|k|}k′ |}k′′), representing a pair of ciphertexts: the encryption of a message m under a session
key k, and a double (nested) encryption of the session key k under two other keys k′, k′′. But, while in [3]
key symbols represent independent randomly chosen keys, here we allow for pseudorandom keys obtained
using a length doubling pseudorandom generator k 7→ G0(k); G1(k) that on input a single key k outputs
a pair of (statistically correlated, but computationally independent) keys G0(k) and G1(k). The output
of the pseudorandom generator can be used anywhere a key is allowed. In particular, pseudo-random
keys G0(k), G1(k) can be used to encrypt messages, or as messages themselves (possibly encrypted under
other random or pseudorandom keys), or as input to the pseudo-random generator. So, for example, one
can iterate the application of the pseudorandom generator to produce an arbitrary long sequence of keys
G1(r),G1(G0(r)),G1(G0(G0(r))),

We remark that the usefulness of pseudorandom generators in cryptographic protocols is not limited to
reducing the amount of randomness needed by cryptographic algorithms. Pseudorandom generators are often
used as an essential tool in secure protocol design. For example, they are used in the design of forward-secure
cryptographic functions to refresh a user private key [8, 31], they are used in the best known (in fact, optimal
[36]) multicast key distribution protocols [12] to compactly communicate (using a seed) a long sequence of
pseudo-random keys, and they play an important role in Yao’s classic garbled circuit construction for secure
two party computation to mask and selectively open part of a hidden circuit evaluation [42, 30].

Pseudo-random generators (like any deterministic cryptographic primitive) inevitably leak partial infor-
mation about their input key.1 Similarly, a ciphertext {|e|}k may leak partial information about k if, for
example, decryption succeeds (with high probability) only when the right key is used for decryption. As we
consider the unrestricted use of encryption and pseudo-random generation, we need to model the possibility
that given different pieces of partial information about a key, an adversary may be able to recover that key
completely. Our main result shows how to do all this within a fairly simple symbolic model of computa-
tion, and still obtain strong computational soundness guarantees. Our treatment of partial information is
extremely simple and in line with the spirit of formal methods and symbolic security analysis: we postulate
that, given any two distinct pieces of partial information about a key, an adversary can recover the key in
full. Perhaps not surprisingly, we demonstrate (Theorem 3 and Corollary 2) that the resulting symbolic
semantics for cryptographic expressions is computationally sound, in the sense that if two expressions are
symbolically equivalent, then for any (length regular) semantically secure encryption scheme and (length
doubling) pseudo-random generator the probability distributions naturally associated to the two expressions
are computationally indistinguishable. More interestingly, we justify our symbolic model by proving a cor-
responding completeness theorem (Theorem 4), showing that if two (acyclic2) cryptographic expressions are
not symbolically equivalent (according to our definition), then there is an instantiation of the cryptographic
primitives (satisfying the standard security notion of indistinguishability) such that the probability distri-
butions corresponding to the two expressions can be efficiently distinguished with almost perfect advantage.
In other words, if we want the symbolic semantics to be computationally sound with respect to any stan-
dard implementation of the cryptographic primitives, then our computationally sound symbolic semantics is
essentially optimal.

1For example, G0(k) gives partial information about k because it allows to distinguish k from any other key k′ chosen
independently at random: all that the distinguisher has to do is to compute G0(k′) and compare the result to G0(k).

2For cyclic expressions, i.e., expressions containing encryption cycles, our completeness theorem still holds, but with respect
to a slightly weaker adversarial model based on least fixed point computations.

2

Techniques A key technical contribution of our paper is a syntactic characterization of independent keys
that exactly matches its computational counterpart, and a corresponding notion of computationally sound
key renaming (Corollary 1). Our syntactic definition of independence is simple and intuitive: a set of keys
k1, . . . , kn is symbolically independent if no key ki can be obtained from another kj via the application of
the pseudo-random generator. We show that this simple definition perfectly captures the intuition behind
the computational notion of pseudo-randomness: we prove (Theorem 1) that our definition is both com-
putationally sound and complete, in the sense that the keys k1, . . . , kn are symbolically independent if and
only if the associated probability distribution is indistinguishable from a sequence of truly independent uni-
formly random keys. For example, although the probability distributions associated to pseudo-random keys
G0(k) and G1(k) are not independent in a strict information theoretic sense, the dependency between these
distributions cannot be efficiently recognized when k is not known because the joint distribution associated
to the pair (G0(k),G1(k)) is indistinguishable from a pair of independent random values.

A key component of our completeness theorem is a technical construction of a secure pseudorandom
generator G and encryption scheme {|·|}k satisfying some very special properties (Lemma 7) that may be
of independent interest. The properties are best described in terms of pseudorandom functions. Let fk be
the pseudorandom function obtained from the length-doubling pseudorandom generator G using the classic
construction of [18]. We give an algorithm that on input any string w and two ciphertexts c0 = {|m0|}k0 and
c1 = {|m1|}k1 (for arbitrarily chosen, and unknown messages m0,m1) determines if k1 = fk0(w), and, if so,
completely recovers the value of the keys k0 and k1 with overwhelming probability.

Related work. Cryptographic expressions with pseudo-random keys, as those considered in this paper,
are used in the symbolic analysis of various cryptographic protocols, including multicast key distribution
[36, 34, 35], cryptographically controlled access to XML documents [4], and (very recently) the symbolic
analysis of Yao’s garbled circuit construction for secure two party computation [30]. However, these works
(with the exception of [30], which builds on the results from a preliminary version of our paper [32]) use
ad-hoc methods to deal with pseudorandom keys by imposing syntactic restrictions on the way the keys
are used. Even more general (so called “composed”) encryption keys are considered in [29], but only under
the random oracle heuristics. We remark that the use of such general composed keys is unjustified in the
standard model of computation, and the significance of the results of [29] outside the random oracle model
is unclear.

The problem of defining a computationally sound and complete symbolic semantics for cryptographic
expressions has already been studied in several papers before, e.g., [3, 37, 15]. However, to the best of our
knowledge, our is the first paper to prove soundness and completeness results with respect to the standard
notion of computationally secure encryption [19]. In the pioneering work [3], Abadi and Rogaway proved
the first soundness theorem for basic cryptographic expressions. Although in their work they mention
various notions of security, they focus on a (somehow unrealistic) variant of the standard security definition
that requires the encryption scheme to completely hide both the key and the message being encrypted,
including its length. This is the notion of security used in many other works, including [28]. The issue
of completeness was first raised by Micciancio and Warinschi [37] who proved that the logic of Abadi and
Rogaway is both sound and complete if one assumes the encryption scheme satisfies a stronger security
property called confusion freeness (independently defined also in [2], and subsequently weakened in [15]).
The notion of completeness used in [37, 2, 15] is different from the one studied in this paper. The works
[37, 2, 15] consider restricted classes of encryption schemes (satisfying stronger security properties) such that
the computational equivalence relation induced on expressions is the same for all encryption schemes in the
class. In other words, if two expressions can be proved not equivalent within the logic framework, then the
probability distributions associated to the two expressions by evaluating them according to any encryption
scheme (from the given class) are computationally distinguishable. It can be shown that no such notion
of completeness can be achieved by the standard security definition of indistinguishability under chosen
plaintext attack, as considered in this paper, i.e., different encryption schemes (all satisfying this standard
notion of security) can define different equivalence relations. In this paper we use a different approach:
instead of strengthening the computational security definitions to match the symbolic model of [3], we relax

3

the symbolic model in order to match the standard computational security definition of [19]. Our relaxed
symbolic model is still complete, in the sense that if two expressions evaluate to computationally equivalent
distributions for any encryption scheme satisfying the standard security definition, then the equality between
the two expressions can be proved within the logic. In other words, if two expressions are not equivalent
in our symbolic model, then the associated probability distributions are not computationally equivalent for
some (but not necessarily all) encryption scheme satisfying the standard computational security notion.

Circular security is a recurring theme in computationally sound symbolic security analysis, and in the
last several years the problem has received renewed interest due to its application to the design of fully
homomorphic encryption (FHE) schemes. Applications to computational soundness require a strong form
of circular security (“key dependent message”- or KDM-security, [10]), where keys can be used to encrypt
arbitrary subexpressions that may depend on the value of one or more keys. A computational soundness
results using KDM secure encryption is proved in [6]. The standard definition of security (CPA security, or
indistinguishability under chosen plaintext attack [19]) does not guarantee the security of a key k in this
setting, and it is easy to build encryption schemes for which k is immediately recoverable from Ek(k). Similar
separations between standard and circular security are given in [5, 13, 9] for cycles of length 2, in [41] for
bit encryption schemes, and in [7, 20, 21, 23, 26, 27] for cycles of arbitrary length. These results show that
one cannot assume, in general, that encryption schemes satisfying the traditional notion of CPA security
are secure in the presence of key cycles or key dependent messages. In this paper, we focus on the standard
definition of CPA security, which does not protect the encryption key in the presence of encryption cycles.
In [3] the circular security problem is addressed by assuming that cryptographic expressions do not contain
encryption cycles. In this paper we follow an alternative “co-inductive” approach [33] which proves security
unconditionally (i.e., possibly in the presence of key cycles) by defining the adversarial knowledge by means
of a greatest fixed point computation.

This paper is a major extension and revision of an earlier unpublished manuscript [32]. Our soundness
results (Section 4) are similar to those already presented in [32], but we have substantially simplified the
presentation by providing a simple direct definition of the key recovery function. (In [32], soundness results
were formulated and proved using a rather complex algebraic framework to represent the adversarial knowl-
edge.) Our completeness results (Section 5) are completely new, and constitute one of the main technical
contributions of this work.

Organization. The rest of the paper is organized as follows. In Section 2 we review basic notions from
symbolic and computational cryptography as used in this paper. In Section 3 we present our basic results on
the computational soundness of pseudo-random keys, and introduce an appropriate notion of key renaming.
In Section 4 we present our symbolic semantics for cryptographic expressions with pseudorandom keys and
prove that it is computationally sound. Finally, in Section 5, we justify the definitional choices made in
Section 4 by proving a corresponding completeness result. Section 6 concludes the paper with some closing
remarks.

2 Preliminaries

In this section we review standard notions and notation from symbolic and computational cryptography used
in the rest of the paper. The reader is referred to [3, 33] for more background on the symbolic model, and
[16, 17, 24] (or any other modern cryptography textbook) for more information about the computational
model, cryptographic primitives and their security definitions.

We write {0, 1}∗ to denote the set of all binary strings, {0, 1}n for the set of all strings of length n,
|x| for the bitlength of a string x, ε for the empty string, and “;” (or simple juxtaposition) for the string
concatenation operation mapping x ∈ {0, 1}n and y ∈ {0, 1}m to x; y ∈ {0, 1}n+m.

4

2.1 Symbolic cryptography

In the symbolic setting, messages are described by abstract terms. For any sets of key and data terms Keys,
Data, define Exp(Keys,Data) as the set of cryptographic expressions generated by the grammar

Exp ::= Data | Keys | (Exp,Exp) | {|Exp|}Keys, (1)

where (e1, e2) denotes the ordered pair of subexpressions e1 and e2, and {|e|}k denotes the encryption of e
under k. As a notational convention, we assume that the pairing operation is right associative, and omit
unnecessary parenthesis. E.g., we write {|d1, d2, d3|}k instead of {|(d1, (d2, d3))|}k.

In [3, 33], Keys = {k1, . . . , kn} and Data = {d1, . . . , dn} are two flat sets of atomic keys and data blocks.
In this paper, we consider pseudo-random keys, defined according to the grammar

Keys ::= Rand | G0(Keys) | G1(Keys), (2)

where Rand = {r1, r2, . . .} is a set of atomic key symbols (modeling truly random and independent keys), and
G0, G1 represent the left and right half of a length doubling pseudo-random generator k 7→ G0(k); G1(k).
Notice that grammar (2) allows for the iterated application of the pseudo-random generator, so that from
any key r ∈ Rand, one can obtain keys of the form Gb1(Gb2(. . . (Gbn(r)) . . .)) for any n ≥ 0, which we
abbreviate as Gb1b2...bn(r). (As a special case, for n = 0, Gε(r) = r.) For any set of keys S ⊆ Keys, we
write G∗(S) and G+(S) to denote the sets

G∗(S) = {Gw(k) | k ∈ S,w ∈ {0, 1}∗}
G+(S) = {Gw(k) | k ∈ S,w ∈ {0, 1}∗, w 6= ε}

of keys which can be obtained from S through the repeated application of the pseudo-random generator
functions G0 and G1, zero, one or more times. Using this notation, the set of keys generated by the
grammar (2) can be written as Keys = G∗(Rand). It is also convenient to define the set

G−(S) = {k | G+(k) ∩ S 6= ∅} =
⋃
k′∈S

{k | k′ ∈ G+(k)}.

Notice that, for any two keys k, k′, we have k ∈ G−(k′) if and only if k′ ∈ G+(k), i.e., G− corresponds to
the inverse relation of G+.

The shape of an expression is obtained by replacing elements from Data and Keys with special symbols
� and ◦. Formally, shapes are defined as expressions over these dummy key/data symbols:

Shapes = Exp({◦}, {�}).

For notational simplicity, we omit the encryption keys ◦ in shapes and write {|s|} instead of {|s|}◦. Shapes
are used to model partial information (e.g., message size) that may be leaked by ciphertexts, even when the
encrypting key is not known.

The symbolic semantics of cryptographic expressions is defined by mapping them to patterns, which
are expressions containing subterms of the form {|s|}k, where s ∈ Shapes and k ∈ Keys, representing
undecryptable ciphertexts. Formally, the set of patters Pat(Keys,Data) is defined as

Pat ::= Data | Keys | (Pat,Pat) | {|Pat|}Keys | {|Shapes|}Keys. (3)

Since expressions are also patterns, and patterns can be regarded as expressions over the extended sets
Keys∪ {◦}, Data∪ {�}, we use the letter e to denote expressions and patterns alike. We define a subterm
relation v on Pat(Keys,Data) as the smallest reflexive transitive binary relation such that

e1 v (e1, e2), e2 v (e1, e2), and e v {|e|}k (4)

5

for all e, e1, e2 ∈ Pat(Keys,Data) and k ∈ Keys. The parts of a pattern e ∈ Pat(Keys,Data) are all of
its subterms:

Parts(e) = {e′ ∈ Pat(Keys,Data) | e′ v e}. (5)

The keys and shape of a pattern are defined by structural induction according to the obvious rules

Keys(d) = ∅ shape(d) = �
Keys(k) = {k} shape(k) = ◦

Keys(e1, e2) = Keys(e1) ∪Keys(e2) shape(e1, e2) = (shape(e1), shape(e2))
Keys({|e|}k) = {k} ∪Keys(e) shape({|e|}k) = {|shape(e)|}

where d ∈ Data, k ∈ Keys, e, e1, e2 ∈ Pat(Keys,Data), and shape(s) = s for all shapes s ∈ Shapes.
Notice that, according to these definitions, Keys(e) includes both the keys appearing in e as a message, and
those appearing as an encryption key. On the other hand, Parts(e) only includes the keys that are used as
a message. As an abbreviation, we write

PKeys(e) = Parts(e) ∩Keys(e)

for the set of keys that appear in e as a message. So, for example, if e = (k, {|0|}k′ , {|k′′|}k) then Keys(e) =
{k, k′, k′′}, but PKeys(e) = {k, k′′}. This is an important distinction to model the fact that an expression
e only provides partial information about the keys in Keys(e) \Parts(e) = {k′}.

2.2 Computational model

In this section we describe the computational model used by modern cryptography, and recall the definition of
the cryptographic primitives used in this paper. We also describe how cryptographic expressions are mapped
to probability distributions in the computational model. This is all pretty standard, but we pinpoint some
details that are especially important in our setting.

We assume that all algorithms and constructions take as an implicit input a (positive integer) security
parameter `. For simplicity, we let all algorithms use the same security parameter `, which we may think as
fixed at the outset. We use calligraphic letters, A,B, etc., to denote randomized algorithms or the probability
distributions defined by their output. We write x ← A for the operation of drawing x from a probability
distribution A, or running a probabilistic algorithm A with fresh randomness and output x. The uniform
probability distribution over a finite set S is denoted by U(S), and we write x ← S as an abbreviation for
x ← U(S). Technically, since algorithms are implicitly parameterized by the security parameter `, each A
represents a distribution ensemble, i.e., a sequence of probability distributions {A(`)}`≥0 indexed by `. For
brevity, we will informally refer to probability ensembles A simply as probability distributions, thinking of
the security parameter ` as fixed. But, when analyzing algorithms, running times and success probabilities
should always be understood as functions of `. We use standard asymptotic notation f = O(g) or g = Ω(f)
if lim`→∞ |f(`)/g(`)| <∞, and f = ω(g) or g = o(f) if lim`→∞ f(`)/g(`) = 0. A probability ε(`) is negligible
if ε(`) = `−ω(1). We say that a probability δ(`) is overwhelming if 1−δ(`) is negligible. For any two functions
f, g of the security parameter, we write f ≈ g if their difference ε(`) = f(`)− g(`) is negligible.

We say that an algorithm is efficient if it runs in time `O(1), polynomial in the security parameter. Unless
otherwise stated, we assume that all probability distributions used in this paper are generated by efficient
algorithms. An efficiently computable predicate is an algorithm D that outputs either 0 (reject/false) or 1
(accept/true). Two probability distributions A0 and A1 are computationally indistinguishable if for any effi-
cient algorithm D, Pr{D(x) : x← A0} ≈ Pr{D(x) : x← A1}. Equivalently, A0 and A1 are computationally
indistinguishable if Pr{D(x) = b : b← {0, 1}, x← Ab} ≈ 1/2.

Cryptographic Primitives In the computational setting, cryptographic expressions evaluate to probabil-
ity distributions over bit strings, and two expressions are considered equivalent if the associated distributions
are computationally indistinguishable. We consider cryptographic expressions that make use of two standard
cryptographic primitives: pseudorandom generators, and (public or private key) encryption schemes.

6

A pseudorandom generator is an efficient algorithm G that on input a bit string x ∈ {0, 1}` (the seed, of
length equal to the security parameter `) outputs a string G(x) of length bigger than `. We assume without
loss of generality3 that G is a length doubling pseudorandom generator, i.e., it always outputs strings of
length 2`. We write G0(x) and G1(x) for the first and second half of the output of a (length doubling)
pseudorandom generator, i.e., G(x) = G0(x);G1(x) with |G0(x)| = |G1(x)| = |x| = `. A pseudorandom
generator G is computationally secure if the output distribution {G(x) : x ← {0, 1}`} is computationally
indistinguishable from the uniform distribution U({0, 1}2`) = {y : y ← {0, 1}2`}.

A (private key) encryption scheme is a pair of efficient (randomized) algorithms E (for encryption) and
D (for decryption) such that D(k, E(k,m)) = m for any message m and key k ∈ {0, 1}`. The encryption
scheme is secure it if satisfies the following definition of indistinguishability under chosen plaintext attack.
Informally, the definition requires that the distributions E(k,m) and E(k, 0|m|) are computationally indis-
tinguishable, when k is chosen uniformly at random, and m is an arbitrary (adversarially chosen) message.
More technically, for any probabilistic polynomial time adversary A, the following must hold. Choose a bit
b ∈ {0, 1} and a key k ∈ {0, 1}` uniformly at random, and let Ob(m) be an encryption oracle that on input a
message m outputs E(k,m) if b = 1, or E(k, 0|m|) if b = 0, where 0|m| is a sequence of 0s of the same length
as m. The adversary A is given oracle access to Ob(·), and attempts to guess the bit b. The encryption
scheme is secure if Pr{AOb(·) = b} ≈ 1/2, i.e., the adversary cannot determine the bit b with probability
substantially better than 1/2. For notational convenience, the encryption E(k,m) of a message m under a
key k is often written as Ek(m).

Public key encryption is defined similarly, with the following modifications: (1) the encryption E(pk,m)
and decryptionD(sk, c) algorithms are given different keys, produced by a key generation algorithm (sk,pk)←
K, and (2) the public key is given as input to the adversary A(pk) in the security definition of indistinguisha-
bility under chosen plaintext attack. In the public key setting, it may be assumed, without loss of generality,
that the adversary makes a single query to the encryption oracle Ob. All our results hold for private and
public key encryption algorithms, with hardly any difference in the proofs. So, for simplicity, we will focus
the presentation on private key encryption, but we observe that adapting the results to public key encryption
is straightforward.

In some of our proofs, it is convenient to use a seemingly stronger (but equivalent) security definition
for encryption, where the adversary is given access to several encryption oracles, each encrypting under an
independently chosen random key. More formally, the adversary A in the security definition is given access
to a (stateful) oracle Ob(i,m) that takes as input both a message m and a key index i. The first time A
makes a query with a certain index i, the encryption oracle chooses a key ki ← {0, 1}` uniformly at random.
The query Ob(i,m) is answered using key ki as in the previous definition: if b = 1 then Ob(i,m) = E(ki,m),
while if b = 0 then Ob(i,m) = E(ki, 0

|m|).
We remark that secure encryption, as defined above, allows ciphertexts to leak partial information about

the secret key. For example, for any secure encryption scheme E (using keys of length `), one can define a
modified scheme E ′((k0; k1),m) = (k0; E(k1,m)) that uses keys of length 2`, and leaks the first half of the
key k0, using only the second half k1 for the actual encryption. Since no additional information is leaked
about k1, this still satisfies the standard definition of indistinguishability under chosen plaintext attack.
Partial information leakage about the key allows, for example, to tell (with negligible probability of error)
if two ciphertexts E(k0,m0) and E(k1,m1) use the same key k0 = k1, or independently chosen keys k0 6= k1.
Stronger definitions of security providing a form of key anonymity are also possible. But the basic definition
of indistinguishability under chosen plaintext attack is the most widely used one, both for private and public
key encryption. So, for simplicity, we focus on the standard basic definition, leaving the adaptation of our
results to stronger definitions to future work.

Computational encryption also leaks the length of the message being encrypted. When encrypting mes-
sages of bounded size, message size can be hidden by padding the messages to their maximum length. But
leaking information about the message is somehow unavoidable when encrypting arbitrarily long messages,
as those generated by (1).

3A pseudorandom generator G(n) with output length `+ n can be defined by setting G(1)(x) to the first `+ 1 bits of G(x),
and G(n)(x) = y0;G(1)(y1) for n > 1, where (y0; y1) = G(n−1)(x), |y0| = n− 1 and |y1| = `.

7

Computational evaluation. In order to map a cryptographic expression from Exp to a probability
distribution, we need to pick a length doubling pseudorandom generator G, a (private key) encryption
scheme E , a string representation γd for every data block d ∈ Data, and a pairing function4 π used to
encode pairs of strings.

Since encryption schemes do not hide the length of the message being encrypted, it is natural to require
that all functions operating on messages are length-regular, i.e., the length of their output depends only on
the length of their input. For example, G is length regular by definition, as it always maps strings of length
` to strings of length 2`. Throughout the paper we assume that all keys have length ` equal to the security
parameter, and the functions d 7→ γd, π and E are length regular, i.e., |γd| is the same for all d ∈ Data,
|π(x1, x2)| depends only on |x1| and |x2|, and |E(k, x)| depends only on ` and |x|.

Definition 1 A computational interpretation is a tuple (G, E , γ, π) consisting of a length-doubling pseudo-
random generator G, a length regular encryption scheme E, and length regular functions γd and π(x1, x2). If
G is a secure pseudorandom generator, and E is a secure encryption scheme (satisfying indistinguishability
under chosen plaintext attacks, as defined in the previous paragraphs), then we say that (G, E , γ, π) is a secure
computational interpretation.

Computational interpretations are used to map symbolic expressions in Exp to probability distributions
in the obvious way. We first define the evaluation σJeK of an expression e ∈ Exp(Keys,Data) with respect
to a fixed key assignment σ : Keys → {0, 1}`. The value σJeK is defined by induction on the structure
of the expression e by the rules σJdK = γd, σJkK = σ(k), σJ(e1, e2)K = π(σJe1K, σJe2K), and σJ{|e|}kK =
E(σ(k), σJeK). All ciphertexts in a symbolic expressions are evaluated using fresh independent encryption
randomness. The computational evaluation JeK of an expression e is defined as the probability distribution
obtained by first choosing a random key assignment σ (as explained below) and then computing σJeK. When
Keys = G∗(Rand) is a set of pseudo-random keys, σ is selected by first choosing the values σ(r) ∈ {0, 1}`
(for r ∈ Rand) independently and uniformly at random, and then extending σ to pseudo-random keys in
G+(Rand) using a length doubling pseudo-random generator G according to the rule

G(σ(k)) = σ(G0(k));σ(G1(k)).

It is easy to see that any two expressions e, e′ ∈ Exp(Keys,Data) with the same shape s = shape(e) =
shape(e′) always map to strings of exactly the same length, denoted |JsK| = |σJeK| = |σ′Je′K|. The computa-
tional evaluation function σJeK is extended to patterns by defining

σJsK = 0|JsK|

for all shapes s ∈ Shapes. Again, we have |σJeK| = |Jshape(e)K| for all patterns e ∈ Pat(Keys,Data), i.e.,
all patterns with the same shape evaluate to strings of the same length.

Notice that each expression e defines a probability ensemble JeK, indexed by the security parameter
` defining the key length of G and E . Two symbolic expressions (or patterns) e, e′ are computationally
equivalent (with respect to a given computational interpretation (G, E , γ, π)) if the corresponding probability
ensembles JeK and Je′K are computationally indistinguishable. An equivalence relation R on symbolic expres-
sions is computationally sound if for any two equivalent expressions (e, e′) ∈ R and any secure computational
interpretation, the distributions JeK and Je′K are computationally indistinguishable. Conversely, we say that
a relation R is complete if for any two unrelated expressions (e, e′) /∈ R, there is a secure computational
interpretation such that JeK and Je′K can be efficiently distinguished.

4We do not assume any specific property for the pairing function, other than invertibility and efficiency, i.e., π(w1, w2) should
be computable in polynomial (typically linear) time, and the substrings w1 and w2 can be uniquely recovered from w1 · w2,
also in polynomial time. In particular, π(w1, w2) is not just the string concatenation operation w1;w2 (which is not invertible),
and the strings π(w1, w2) and π(w2, w1) may have different length. For example, w1 · w2 could be the string concatenation of
a prefix-free encoding of w1, followed by w2.

8

3 Symbolic model for pseudorandom keys

In this section we develop a symbolic framework for the treatment of pseudorandom keys, and prove that it
is computationally sound and complete. Before getting into the technical details we provide some intuition.

Symbolic keys are usually regarded as bound names, up to renaming. In the computational setting, this
corresponds to the fact that changing the names of the keys does not alter the probability distribution associ-
ated to them. When pseudorandom keys are present, some care has to be exercised in defining an appropriate
notion of key renaming. For example, swapping r and G0(r) should not be considered a valid key renaming
because the probability distributions associated to (r,G0(r)) and (G0(r), r) can be easily distinguished.5 A
conservative approach would require a key renaming µ to act simply as a permutation over the set of atomic
keys Rand. However, this is overly restrictive. For example, renaming (G0(r),G1(r)) to (r0, r1) should be
allowed because (G0(r),G1(r)) represents a pseudorandom string, which is computationally indistinguish-
able from the truly random string given by (r0, r1). The goal of this section is to precisely characterize which
key renamings can be allowed, and which cannot, to preserve computational indistinguishability.

The rest of the section is organized as follows. First, in Section 3.1, we introduce a symbolic notion of
independence for pseudorandom keys. Informally, two (symbolic) keys are independent if neither of them can
be derived from the other through the application of the pseudorandom generator. We give a computational
justification for this notion by showing (see Theorem 1) that the standard (joint) probability distribution
associated to a sequence of symbolic keys k1, . . . , kn ∈ Keys in the computational model is pseudorandom
precisely when the keys k1, . . . , kn are symbolically independent. Then, in Section 3.2, we use this definition
of symbolic independence to define a computationally sound notion of key renaming. Intuitively, in order
to be computationally sound and achieve other desirable properties, key renamings should map independent
sets to independent sets. In Corollary 1 we prove that, under such restriction, applying a renaming to
cryptographic expressions yields computationally indistinguishable distributions. This should be contrasted
with the standard notion of key renaming used in the absence of pseudorandom keys, where equivalent
expressions evaluate to identical probability distributions.

3.1 Independence

In this section we define a notion of independence for symbolic keys, and show that it is closely related to
the computational notion of pseudorandomness.

Definition 2 For any two keys k1, k2 ∈ Keys, we say that k1 yields k2 (written k1 � k2) if k2 ∈ G∗(k1),
i.e., k2 can be obtained by repeated application of G0 and G1 to k1. Two keys k1, k2 are independent (written
k1⊥k2) if neither k1 � k2 nor k2 � k1. We say that the keys k1, . . . , kn are independent if ki⊥kj for all
i 6= j.

As an example, they keys G0(r)⊥G01(r) are independent, but the keys G0(r) � G10(r) are not. As
usual, we write k1 ≺ k2 as an abbreviation for (k1 � k2) ∧ (k1 6= k2). Notice that (Keys,�) is a partial
order, i.e., the relation � is reflexive, antisymmetric and transitive. Pictorially a set of keys S ⊆ Keys can
be represented by the Hasse diagram6 of the induced partial order (S,�). (See Figure 1 for an example.)
Notice that this diagram is always a forest, i.e., the union of disjoint trees with roots

Roots(S) = S \G+(S).

S is an independent set if and only if S = Roots(S), i.e., each tree in the forest associated to S consists of
a single node, namely its root.

We consider the question of determining, symbolically, when (the computational evaluation of) a sequence
of pseudorandom keys k1, . . . , kn is pseudorandom, i.e., it is computationally indistinguishable from n truly
random independently chosen keys. The following lemma shows that our symbolic notion of independence

5All that the distinguisher has to do, on input a pair of keys (σ0, σ1), is to compute G0(σ1) and check if the result equals σ0.
6The Hasse diagram of a partial order relation � is the graph associated to the transitive reduction of �, i.e., the smallest

relation R such that � is the symmetric transitive closure of R.

9

r1

G10(r1) G1(r1)

G01(r1) G11(r1)

G0(r2)

G00(r2) G010(r2) G110(r2)

G01(r2)

Figure 1: Hasse diagram associated to the set of keys S = {r1,G10(r1),G1(r1),G01(r1), G11(r1),
G0(r2),G00(r2),G010(r2),G110(r2), G01(r2)}. For any two keys, k1 � k2 if there is a directed path from k1 to
k2. The keys {G0(r2),G01(r2)} form an independent set because neither G0(r2) � G01(r2), nor G01(r2) �
G0(r2). The Hasse diagram of S is a forest consisting of 3 trees with roots Roots(S) = {r1,G0(r2),G01(r2)}.

corresponds exactly to the standard cryptographic notion of computational pseudorandomness. We remark
that the correspondence proved in the lemma is exact, in the sense that the symbolic condition is both
necessary and sufficient for symbolic equivalence. This should be contrasted with typical computational
soundness results [3], that only provide sufficient conditions for computational equivalence, and require
additional work/assumptions to establish the completeness of the symbolic criterion [37, 15].

Theorem 1 Let k1, . . . , kn ∈ Keys = G∗(Rand) be a sequence of symbolic keys. Then, for any secure
(length doubling) pseudorandom generator G, the probability distribution Jk1, . . . , knK is computationally in-
distinguishable from Jr1, . . . , rnK (where r1, . . . , rn ∈ Rand are distinct atomic keys), if and only if the keys
k1, . . . , kn are (symbolically) independent, i.e., ki⊥kj for all i 6= j.

Proof. We first prove the “only if” direction of the equivalence, i.e., independence is a necessary condition for
the indistinguishability of Jr1, . . . , rnK and Jk1, . . . , knK. Assume the keys in (k1, . . . , kn) are not independent,
i.e., ki � kj for some i 6= j. By definition, kj = Gw(ki) for some w ∈ {0, 1}∗. This allows to deterministically
compute JkjK = Gw(JkiK) from JkiK using the pseudorandom generator. The distinguisher between Jr1, . . . , rnK
and Jk1, . . . , knK works in the obvious way: given a sample (σ1, . . . , σn), compute Gw(σi) and compare the
result to σj . If the sample comes from Jk1, . . . , knK, then the test is satisfied with probability 1. If the sample
comes from Jr1, . . . , rnK, then the test is satisfied with exponentially small probability because σi = JriK is
chosen at random independently from σj = JrjK. This concludes the proof for the “only if” direction.

Let us now move to the “if” direction, i.e., prove that independence is a sufficient condition for the
indistinguishability of Jr1, . . . , rnK and Jk1, . . . , knK. Assume the keys in (k1, . . . , kn) are independent, and
let m be the number of applications of G0 and G1 required to obtain (k1, . . . , kn) from the basic keys in
Rand. We define m+ 1 tuples Ki = (ki1, . . . , k

i
n) of independent keys such that

• K0 = (k1, . . . , kn)

• Km = (r1, . . . , rn), and

• for all i, the distributions JKiK and JKi+1K are computationally indistinguishable.

It follows by transitivity that JK0K = Jk1, . . . , knK is computationally indistinguishable from JKmK =
Jr1, . . . , rnK. More precisely, any adversary that distinguishes Jk1, . . . , knK from Jr1, . . . , rnK with advan-
tage δ, can be efficiently transformed into an adversary that breaks the pseudorandom generator G with
advantage at least δ/m. Each tuple Ki+1 is defined from the previous one Ki as follows. If all the keys
in Ki = {ki1, . . . , kin} are random (i.e., kij ∈ Rand for all j = 1, . . . , n), then we are done and we can set

Ki+1 = Ki. Otherwise, let kij = Gw(r) ∈ Keys \Rand be a pseudorandom key in Ki, with r ∈ Rand and

w 6= ε. Since the keys in Ki are independent, we have r /∈ Ki. Let r′, r′′ ∈ Rand be two new fresh key

10

symbols, and define Ki+1 = {ki+1
1 , . . . , ki+1

n } as follows:

ki+1
h =

 Gs(r
′) if kih = Gs(G0(r)) for some s ∈ {0, 1}∗

Gs(r
′′) if kih = Gs(G1(r)) for some s ∈ {0, 1}∗

kih otherwise

It remains to prove that any distinguisher D between JKiK and JKi+1K can be used to break (with the same
success probability) the pseudorandom generator G. The distinguisher D′ for the pseudorandom generator
G is given as input a pair of strings (σ′, σ′′) chosen either uniformly (and independently) at random or
running the pseudorandom generator (σ′, σ′′) = G(σ) on a randomly chosen seed σ. D′(σ′, σ′′) computes n
strings (σ1, . . . , σn) by evaluating (ki+1

1 , ki+1
2 , . . . , ki+1

n) according to an assignment that maps r′ to σ′, r′′ to
σ′′, and all other base keys r ∈ Rand to independent uniformly chosen values. The output of D′(σ′, σ′′) is
D(σ1, . . . , σn). Notice that if σ′ and σ′′ are chosen uniformly and independently at random, then (σ1, . . . , σn)
is distributed according to JKi+1K, while if (σ′, σ′′) = G(σ), then (σ1, . . . , σn) is distributed according to JKiK.
Therefore the success probability of D′ in breaking G is exactly the same as the success probability of D in
distinguishing JKiK from JKi+1K. �

3.2 Renaming pseudorandom keys

We will show that key renamings are compatible with computational indistinguishability as long as they
preserve the action of the pseudorandom generator, in the sense specified by the following definition.

Definition 3 (pseudo-renaming) For any set of keys S ⊆ Keys, a renaming µ : S → Keys is compatible
with the pseudorandom generator G if for all k1, k2 ∈ S and w ∈ {0, 1}∗,

k1 = Gw(k2) if and only if µ(k1) = Gw(µ(k2)).

For brevity, we refer to renamings satisfying this property as pseudo-renamings.

Notice that the above definition does not require the domain of µ to be the set of all keys Keys, or even
include all keys in Rand. So, for example, the function mapping (G0(r0),G1(r0)) to (r0,G001(r1)) is a
valid pseudo-renaming, and it does not act as a permutation over Rand. The following lemmas show that
Definition 3 is closely related to the notion of symbolic independence.

Lemma 1 Let µ be a pseudo-renaming with domain S ⊆ Keys. Then µ is a bijection from S to µ(S).
Moreover, S is an independent set if and only if µ(S) is an independent set.

Proof. Let µ : S → Keys be a pseudo-renaming. Then µ is necessarily injective, because for all k1, k2 ∈ S
such that µ(k1) = µ(k2), we have µ(k1) = µ(k2) = Gε(µ(k2)). By definition of pseudo-renaming, this implies
k1 = Gε(k2) = k2. This proves that µ is a bijection from S to µ(S).

Now assume S is not an independent set, i.e., k1 = Gw(k2) for some k1, k2 ∈ S and w 6= ε. By definition
of pseudo-renaming, we also have µ(k1) = Gw(µ(k2)). So, µ(S) is not an independent set either. Similarly,
if µ(S) is not an independent set, then there exists keys µ(k1), µ(k2) ∈ µ(S) (with k1, k2 ∈ S) such that
µ(k1) = Gw(µ(k2)) for some w 6= ε. Again, by definition of pseudo-renaming, k1 = Gw(k2), and S is not an
independent set. �

In fact, pseudo-renamings can be equivalently defined as the natural extension of bijections between two
independent sets of keys.

Lemma 2 Any pseudo-renaming µ with domain S can be uniquely extended to a pseudo-renaming µ̄ with
domain G∗(S). In particular, any pseudo-renaming can be (uniquely) specified as the extension µ̄ of a
bijection µ : A→ B between two independent sets A = Roots(S) and B = µ(A).

11

Proof. Let µ : S → Keys be a pseudo-renaming. For any w ∈ {0, 1}∗ and k ∈ S, define µ̄(Gw(k)) =
Gw(µ(k)). This definition is well given because µ is a pseudo-renaming, and therefore for any two repre-
sentations of the same key Gw(k) = Gw′(k′) ∈ G∗(S) with k, k′ ∈ S, we have Gw(µ(k)) = µ(Gw(k)) =
µ(Genw′(k′)) = Gw′(µ(k′)). Moreover, it is easy to check that µ̄ is a pseudo-renaming, and any pseudo-
renaming that extends µ must agree with µ̄. We now show that pseudo-renamings can be uniquely specified
as bijections between two independent sets of keys. Specifically, for any pseudo-renaming µ with domain S,
consider the restriction µ0 of µ to A = Roots(S). By Lemma 1, µ0 is a bijection between independent sets
A and B = µ0(A). Consider the extensions of µ and µ0 to G∗(S) = G∗(Roots(S)) = G∗(A). Since µ and
µ0 agree on A = Roots(S), both µ̄ and µ̄0 are extensions of µ0. By uniqueness of this extension, we get
µ̄0 = µ̄. Restricting both functions to S, we get that the original pseudo-renaming µ can be expressed as the
restriction of µ̄0 to S. In other words, µ can be expressed as the extension to S of a bijection µ0 between
two independent sets of keys A = Roots(S) and B = µ(A). �

We remark that a pseudo-renaming µ : S → Keys cannot, in general, be extended to one over the set
Keys = G∗(Rand) of all keys. For example, µ : G0(r0) 7→ r1 is a valid pseudo-renaming, but it cannot be
extended to include r0 in its domain.

The next lemma gives one more useful property of pseudo-renamings: they preserve the root keys.

Lemma 3 For any pseudo-renaming µ : A→ Keys we have µ(Roots(A)) = Roots(µ(A)).

Proof. By Lemma 1, µ is injective. Therefore, we have

µ(Roots(A)) = µ(A \G+(A)) = µ(A) \ µ(G+(A)).

From the defining property of pseudo-renamings we also easily get that µ(G+(A)) = G+(µ(A)). Therefore,
µ(Roots(A)) = µ(A) \G+(µ(A)) = Roots(µ(A)). �

Using Lemma 2, throughout the paper we specify pseudo-renamings as bijections between two inde-
pendent sets of keys. Of course, in order to apply µ : S → µ(S) to an expression e, the key set Keys(e)
must be contained in G∗(S). Whenever we apply a pseudo-renaming µ : S → Keys to an expression
or pattern e, we implicitly assume that Keys(e) ⊂ G∗(S). (Typically, S = Roots(Keys(e)), so that
Keys(e) ⊂ G∗(Roots(Keys(e))) = G∗(S) is always satisfied.) Formally, the result of applying a pseudo-
renaming µ to an expression or pattern e ∈ Pat(Keys,Data) is defined as

µ(d) = d
µ(k) = µ̄(k)

µ(e1, e2) = (µ(e1), µ(e2))
µ({|e|}k) = {|µ(e)|}µ̄(k)

µ(s) = s

for all d ∈ Data, k ∈ Keys, e, e1, e2 ∈ Pat(Keys,Data) and s ∈ Shapes. We can now define an appropriate
notion of symbolic equivalence up to renaming.

Definition 4 Two expressions or patterns e1, e2 ∈ Pat(Keys,Data) are equivalent up to pseudo-renaming
(written e1

∼= e2), if there is a pseudo-renaming µ such that µ̄(e1) = e2. Equivalently, by Lemma 2, e1
∼= e2

if there is a bijection µ : Roots(Keys(e1))→ Roots(Keys(e2)) such that µ̄(e1) = e2.

It easily follows from the definitions and Theorem 1 that ∼= is an equivalence relation, and expressions
that are equivalent up to pseudo-renaming are computationally equivalent.

Corollary 1 Equivalence up to pseudo-renaming (∼=) is a computationally sound relation, i.e., for any two
patterns e1, e2 ∈ Pat(Keys,Data) such that e1

∼= e2, the distributions Je1K and Je2K are computationally
indistinguishable.

12

Proof. Assume e1
∼= e2, i.e., there exists a bijection µ : Roots(Keys(e1)) → Roots(Keys(e2)) such that

µ̄(e1) = e2. Let n be the size of A1 = Roots(Keys(e1)) and A2 = Roots(Keys(e2)) = µ(A1). We show
that any distinguisher D between Je1K and Je2K = Jµ̄(e1)K can be efficiently transformed into a distinguisher
A between JA1K and JA2K with the same advantage as D. Since A1 and A2 are independent sets of size n,
by Theorem 1 the probability distributions JA1K and JA2K are indistinguishable from Jr1, . . . , rnK. So, JA1K
and JA2K must be indistinguishable from each other, and A’s advantage must be negligible. We now show
how to build A from D. The distinguisher A takes as input a sample σ coming from either JA1K or JA2K.
A evaluates e1 according to the key assignment A1 7→ σ, and outputs D(σJe1K). By construction, σJe1K
is distributed according to Je1K when σ = JA1K, while it is distributed according to Je2K = Jµ̄(e1)K when
σ = JA2K = Jµ(A1)K. It follows that A has exactly the same advantage as D. �

Based on the previous corollary, it is convenient to define a notion of “normal pattern”, where the keys
have been renamed in some standard way.

Definition 5 Let e ∈ Pat(Keys,Data) be any pattern, and K = {k1, . . . , kn} = Roots(Keys(e)) be the
set of root keys that occur in e, numbered according to the order in which they appear in e. The normalized
pattern Norm(e) = µ(e) is obtained by applying the pseudorandom key renaming µ(ki) = ri to e, where
r1, . . . , rn is any fixed ordering of the keys of Rand.

It immediately follows from the definition that Norm(e) ∼= e, and that any two patterns e0, e1 are
equivalent up to renaming (e0

∼= e1) if and only if their normalizations Norm(e0) = Norm(e1) are identical.

3.3 Examples

We conclude this section with some illustrative examples. Let µ be the function mapping G1(r1) 7→ G01(r2),
G10(r1) 7→ r1 and r2 7→ G11(r2). This is a pseudo-renaming because it is a bijection between two independent
sets {G1(r1),G10(r1), r2} and {G01(r2), r1,G11(r2)}. Consider the expression

e6 = (G0(r2), {|r2,G1(r1)|}G10(r1), {|d1, d2|}G11(r1)) (6)

with Keys(e6) = {G0(r2),G1(r1),G10(r1), r2,G11(r1)}. The pseudo-renaming µ can be applied to e6

because the domain of µ equals the set of root keys

Roots(Keys(e6)) = {G1(r1),G10(r1), r2}

and Keys(e6) ⊂ G∗(Roots(Keys(e6))). So, µ can be extended to a function

k ∈ Keys(e6) G1(r1) G10(r1) r2 G0(r2) G11(r1)
µ̄(k) G01(r2) r1 G11(r2) G011(r2) G101(r2)

which, applied to expression e6, yields

µ(e6) = (G011(r2), {|G01(r2), r1|}G11(r2), {|d1, d2|}G101(r2)).

Both expressions normalize to

Norm(e6) = Norm(µ(e6)) = (G0(r1), {|r1, r2|}r3 , {|d1, d2|}G1(r2))

where Roots(Norm(e6)) = {r1, r2, r3}.
As another example, consider the expression

e7 = ({|d1,G0(r1)|}G01(r1),G11(r1)). (7)

13

We have Roots(Keys(e7)) = {G0(r1),G1(r1)}. Let µ be the pseudo-renaming mapping G0(r1) 7→ r1

and G1(r1) 7→ r2. Then, expression e7 is equivalent to µ(e7) = ({|d1, r1|}G0(r2),G1(r2)). The probability
distributions associated to the two expressions

Je7K = J{|d1,G0(r1)|}G01(r1),G11(r1)K Jµ(e7)K = J{|d1, r1|}G0(r2),G1(r2)K

are statistically different (e.g., the support size of the second distribution is larger than that of the first one),
but computationally indistinguishable. The expression µ(e7) is the normalization of e7), i.e., Norm(e7) =
Norm(µ(e7)) = e7.

4 Cryptographic expressions with pseudo-random keys

In this section we present our main result: we give symbolic semantics for cryptographic expressions with
pseudorandom keys, and prove that it is computationally sound. We begin by recalling the framework of
[3, 33] to define computationally sound symbolic semantics of cryptographic expressions. Then, in Section 4.1
we show how to instantiate it to model cryptographic expressions with pseudorandom keys, and in Section 4.2
we prove that the resulting semantics is computationally sound. A justification for the definitional choices
made in this section is provided in Section 5, where we prove a corresponding completeness theorem showing
that our semantics precisely characterizes the computational indistinguishabilitly of (acyclic) cryptographic
expressions with pseudorandom keys.

Following [3, 33], the symbolic semantics of cryptographic expressions e ∈ Exp(Keys,Data) is defined
by a set of known keys S ⊆ Keys(e) (to be specified) and a corresponding pattern p(e, S) obtained from e
by replacing all undecryptable subexpression {|e′|}k v e (where k /∈ S) with a subpattern {|shape(e′)|}k that
reveals only the shape of the encrypted message. The definition of p is standard, and it is formally specified in
Figure 2. Notice that p is defined not just for expressions, but for arbitrary patterns e ∈ Pat(Keys,Data).
Informally, for any expression or pattern e ∈ Pat(Keys,Data) and set of “known keys” S ⊆ Keys, the
pattern p(e, S) represents the result of observing e when using (only) the keys in S for decryption. We
remark that the definition of p is identical to previous work [3, 33], as it treats pseudo-random keys Keys ⊂
G∗(Rand) just as regular keys, disregarding their internal structure. (Relations between pseudorandom
keys will be taken into account when defining the set of keys S known to the adversary.) In particular, as
shown in [3, 33], this function satisfies the properties

p(e,Keys) = e (8)

p(p(e, S), T) = p(e, S ∩ T) (9)

which can be informally stated by saying that p(·, S) acts on patterns as a family of projections.
What is left to do is to define the set S of keys known to the adversary. Following [33], this involves the

definition of a key recovery function r, mapping patterns to sets of keys. Informally, r(e) ⊆ Keys is the set
of keys that can be (potentially) recovered combining the information obtained from all the parts of e. The
definition of r is specific to our work, and it is given in Section 4.1. But before defining r, we recall how
it is used in [33] to define the set of adversarially known keys S, and the corresponding symbolic semantics
p(e, S) for cryptographic expressions.

The key recovery function r is required to satisfy the monotonicity property

r(p(e, S)) ⊆ r(e) (10)

for any e and S, which, informally, says that projecting an expression (or pattern) e does not increase the
amount of information recoverable from it. The function p and r are used to associate to each expression e
a corresponding key recovery operator

Fe(S) = r(p(e, S)) (11)

mapping any S ⊆ Keys(e) to the set of keys Fe(S) that can be potentially recovered from the pattern
p(e, S) observed by an adversary when using the keys in S for decryption. It is a easy consequence of (10)

14

that the key recovery operation Fe is monotone, i.e., if S ⊆ S′, then Fe(S) ⊆ Fe(S′), for any two sets of
keys S, S′. It follows that Fe admits a least fixed point7

fix(Fe) =
⋃
n

Fne (∅)

which can be algorithmically computed starting from the empty set of keys, and repeatedly applying Fe to
it, recovering more and more keys

∅ ⊂ Fe(∅) ⊂ F2
e (∅) ⊂ F3

e (∅) ⊂ · · ·

until the fixed point Fne (∅) = Fn+1
e (∅) = fix(Fe) is reached and no more keys can be recovered. This

inductive definition of known keys S = fix(Fe) is the traditional method to define the adversarial knowledge
in symbolic security analysis, and the method used in [3] when proving a computational soundness result for
acyclic expressions, i.e., expressions with no encryption cycles.

Here we follow a dual approach, put forward in [33], which defines the adversarial knowledge as the
greatest fixed point FIX(Fe) (i.e., the largest set S such that Fe(S) = S) and shows that this co-inductive
approach results in a more precise connection between symbolic and computational cryptography. Informally,
using the greatest fixed point corresponds to working by induction on the set of keys that are provably hidden
from the adversary, starting from the empty set (i.e., assuming no a-priori guarantee that any key is secure),
and showing that more and more keys are protected from the peering eyes of the adversary. Formulating
this process in terms of the complementary set of “potentially known keys”, one starts from the set of all
keys Keys(e), and repeatedly applies the key recovery operator Fe to it. The result is a sequence of smaller
and smaller sets

Keys(e) ⊃ Fe(Keys(e)) ⊃ F2
e (Keys(e)) ⊃ F3

e (Keys(e)) ⊃ · · ·

of potentially known keys, which converges to the greatest fixed point

FIX(Fe) =
⋂
n

Fne (Keys(e)),

i.e., the largest set of keys that are guaranteed to be unknown to an adversary that observes the expression
e. In summary, the symbolic semantics of an expression e is defined as

Pattern(e) = p(e,FIX(Fe)) (12)

where FIX(Fe) is the greatest fixed point of Fe, representing the keys (potentially) known to the adversary.
It is easy to see that any fixed point S = Fe(S) necessarily satisfies fix(Fe) ⊆ S ⊆ FIX(Fe). In general,
fix(Fe) may be a strict subset of FIX(Fe), but [33, Theorem 2] shows that if e is an acyclic expressions, then
fix(Fe) = FIXe(Fe) and Fe has a unique fixed point. In summary, the inductive and co-inductive approaches
produce the same patterns for acyclic expressions. Based on [33, Theorem 2], we generalize the definition of
acyclic expressions to include all expressions e such that Fe has a unique fixed point fix(Fe) = FIXe(Fe).

The main result of [33], which we will use in our work, is given by the following soundness theorem.

Theorem 2 ([33, Theorem 1]) Let p : Pat×(Keys)→ Pat and r : Pat→ ℘(Keys) be any two functions
satisfying (8), (9) and (10). Then, for any expression e ∈ Exp(Keys,Data), the key recovery operator Fe
defined in (11) is monotone, and admits a greatest fixed point FIX(Fe) =

⋂
n≥0 Fne (Keys). Moreover, if,

for any e ∈ Pat(Keys,Data), the distributions JeK and Jp(e, r(e))K are computationally indistinguishable,
then the symbolic semantics Pattern(e) = p(e,FIX(Fe)) is computationally sound, in the sense that the
distributions JeK and JPattern(e)K are computationally indistinguishable.

The reader is referred to [33] for a proof of the theorem, and further discussion about fixed points and
the use of induction versus co-induction.

7We recall that a fixed point for Fe is a set of keys S ⊆ Keys(e) such that S = Fe(S).

15

p(d, S) = d

p(k, S) = k

p((e1, e2), S) = (p(e1, S),p(e2, S))

p({|e|}k, S) =

{
{|shape(e)|}k if k /∈ S
{|p(e, S)|}k if k ∈ S

Figure 2: The the pattern function p : Pat(Keys,Data)×℘(Keys)→ Pat(Keys,Data) where k ∈ Keys,
d ∈ Data, and (e1, e2), {|e|}k ∈ Pat(Keys,Data). Intuitively, p(e, S) is the observable pattern of e, when
using the keys in S for decryption.

4.1 Key recovery with pseudorandom keys

In order to instantiate the framework of [33] and use Theorem 2, we need to specify an appropriate knowledge
recovery function r : Pat(Keys,Data)→ ℘(Keys) describing the set of keys r(e) that an adversary may be
able to extract from all the parts of e. In the standard setting, where keys are atomic symbols, and encryption
is the only cryptographic primitive, r(e) can be simply defined as the set of keys appearing in e as a message,
i.e., r(e) = Keys(e) ∩ Parts(e). This is because the partial information about a key k revealed by a
ciphertext {|m|}k is of no use to an adversary, except possibly for telling when two ciphertexts are encrypted
under the same key. When dealing with expressions that make use of possibly related pseudorandom keys
and multiple cryptographic primitives, one needs to take into account the possibility that an adversary may
combine different pieces of partial information about the keys in mounting an attack. To this end, we define
r(e) to include all keys k such that either

1. e contains k as a subexpression (directly revealing the value of k), or

2. e contains both k as an encryption key (providing partial information about k) and some other related
key k′ (providing an additional piece of information about k).

In other words, our definition postulates that the symbolic adversary can fully recover a key k whenever it
is given two distinct pieces of partial information about it. In addition, r(e) contains all other keys that can
be derived using the pseudorandom generator G.

Definition 6 (Key Recovery Function) For any expression or pattern e, let r(e) = Keys(e) ∩G∗(K)
where

K = Keys(e) ∩ (Parts(e) ∪G−(Keys(e))) = PKeys(e) ∪ (Keys(e) ∩G−(Keys(e))).

The expression Keys(e) ∩ G∗(K) simply extends the set of known keys K using the pseudorandom
generator. The interesting part of Definition 6 is the set K. This definition may seem overly conservative,
as it postulates, for example, that a key k can be completely recovered simply given two ciphertexts {|�|}k
and {|�|}k′ where k′ = G101(k) is derived form k using the (one-way) functions G0,G1. In Section 5 we
justify our definition showing that it leads to a symbolic semantics which is optimal, in the sense that for
any two (acyclic) expressions with different patterns, there are computationally secure encryption schemes
and pseudorandom generators for which the corresponding probability distributions can be efficiently dis-
tinguished. So, the power granted by Definition 6 to the symbolic adversary is necessary (and sufficient) to
achieve computational soundness with respect to any valid instantiation of the cryptographic primitives.

We illustrate the definition of r by providing a few examples:

r({|r1|}G0(r1), {|G0(r2)|}G1(r2)) = {r1,G0(r1),G0(r2)}
r(G1(r1), {|d|}G0(r1),G0(r2), {|d|}r2) = {G1(r1),G0(r2), r2}

r({|G0(r1)|}G1(r2), {|r1|}r2) = {G1(r2),G0(r1), r1, r2}

16

In the first example, r1,G0(r2) are (potentially) recoverable because they appear as a message. Therefore,
also G0(r1) is (potentially) recoverable applying G0 to r2. On the other hand, G1(r2) is not recoverable
because it only appears as an encryption subscript, and it is symbolically independent from the other keys.
In the second example, r2 can be (potentially) recovered by combining partial information about it from
G0(r2) and {|d|}r2 . However, G0(r1) is unrecoverable because it is symbolically independent from G1(r1).
In the last example, all keys can be potentially recovered. Notice that the definition of r does not take
encryption into account, and assumes the adversary has potential access to all parts of a given expression,
even undecryptable ones. Hiding undecryptable expressions from the adversary is taken care of by p in the
definition of the key recovery operator (11), before r is applied.

It is easy to see that r satisfies property (10).

Lemma 4 Let r as in Definition 6. Then, r(p(e, S)) ⊆ r(e) for any pattern e.

Proof. For any patter e, the set r(e) depends only on the sets Keys(e) and PKeys(e). Moreover, this de-
pendence is monotone. Since Keys(p(e, S)) ⊆ Keys(e) and PKeys(p(e, S)) ⊆ PKeys(e), by monotonicity
we get r(p(e, S)) ⊆ p(e). �

We will use the fact that the functions r and p commute with pseudo-renamings.

Lemma 5 For any expression or pattern e ∈ Pat(Keys,Data) and pseudo-renaming µ : S → G∗(Rand)
such that Keys(e) ⊆ S, we have

r(µ(e)) = µ(r(e)).

Proof. This is a simple consequence of Keys(µ(e)) = µ(Keys(e)), Parts(µ(e)) = µ(Parts(e)), and the fact
that µ preserves the ≺ relation. �

Lemma 6 For any pattern e ∈ Pat(Keys,Data), set of keys S, and pseudo-renaming µ : A→ G∗(Rand)
such that Keys(e) ∪ S ⊆ A, we have

µ(p(e, S)) = p(µ(e), µ(S)).

Proof. The proof is by induction on the structure of e. The first three cases are simple:

• If e = d ∈ D, then µ(p(d, S)) = d = p(µ(d), µ(S)).

• If e = k ∈ K ∪ {◦}, then µ(p(k, S)) = µ(k) = p(µ(k), µ(S)).

• If e = (e1, e2), then using the induction hypothesis we get µ(p((e1, e2), S)) = p(µ(e1, e2), µ(S)).

We are left with the case when e = {|e′|}k is a ciphertext. There are two possibilities, depending on whether
k ∈ S or not. Notice that µ is injective on G∗(A). So, for any k ∈ Keys(e) ⊂ G∗(A) and S ⊂ G∗(A), we
have k ∈ S if and only if µ(k) ∈ µ(S). Therefore,

• if k /∈ S, then µ(p({|e′|}k, S)) = {|shape(e′)|}µ(k) = p(µ({|e′|}k), µ(S)), and

• if k ∈ S, then µ(p({|e′|}k, S)) = {|µ(p(e′, S))|}µ(k) = p(µ({|e′|}k), µ(S)),

where in the second case we have also used the induction hypothesis. �

17

4.2 Computational Soundness

We are now ready to prove that the greatest fixed point semantics Pattern(e) = p(e,FIX(Fe)) is computa-
tionally sound with respect to any secure computational interpretation (G, E , γ, π), as defined in Section 2.

Theorem 3 For any secure computational interpretation and any expression e ∈ Exp(Keys,Data), the
distributions JeK and JPattern(e)K are computationally indistinguishable.

Proof. In order to prove the theorem, it is enough to check that the conditions in Theorem 2 are satisfied.
We already observed that the function p defined in Figure 2 satisfies (8) and (9). Moreover, by Lemma 4, the
function r satisfies (10). It remains to check that for any e ∈ Pat(Keys,Data), the probability distributions
JeK and Jp(e, r(e))K are computationally indistinguishable.

First of all, we claim that proving the lemma for arbitrary patterns e reduces to proving it for the special
case of normal patterns, i.e., patterns such that Roots(e) ⊂ Rand. To establish the claim, consider an
arbitrary pattern e with Roots(Keys(e)) = {k1, . . . , kn} and let µ be the pseudo-renaming mapping ki to
ri, for n distinct keys r1, . . . , rn ∈ Rand. We know, from Corollary 1, that JeK is indistinguishable from
Jµ(e)K. But, by Lemma 3, Roots(µ(e)) = µ(Roots(e)) = {r1, . . . , rn} ⊆ Rand, i.e., µ(e) is normal. So,
if we can prove the property for normal patterns, then Jµ(e)K is indistinguishable from Jp(µ(e), r(µ(e)))K.
Using the commutativity properties from Lemma 6 and 5 we get

p(µ(e), r(µ(e))) = p(µ(e), µ(r(e))) = µ(p(e, r(e))).

So, the distribution Jp(µ(e), r(µ(e)))K is identical to Jµ(p(e, r(e)))K. Finally, using Corollary 1 again, we see
that Jµ(p(e, r(e)))K is indistinguishable from Jp(e, r(e))K. The indistinguishability of JeK from Jp(e, r(e))K
follows by transitivity.

Let us now prove that JeK and Jp(e, r(e))K are computationally indistinguishable for any normal patterns
e. So, let e be any pattern satisfying Roots(Keys(e)) ⊆ Rand. Consider the pattern e′ = p(e, r(e)). We
want to prove that Je′K is indistinguishable from JeK. The pattern e′ is obtained from e by replacing all
subexpressions of e of the form {|e′′|}k with k /∈ r(e) by {|shape(e′′)|}k.

Let K = Keys(e) \ r(e) be the set of all keys not in r(e), and let k ∈ K be an arbitrary element of K.
Notice that k must necessarily satisfy the following properties:

1. k ∈ Rand, i.e., k is a truly random key. This is because, otherwise, using the fact that e is normal, we
would have r ≺ k for some r ∈ Rand ∩Keys(e). So, by definition of r, we would also have r ∈ r(e),
k ∈ r(e), and k /∈ K.

2. k ∈ Keys(e) \Parts(e), i.e., k appears in e only as an encryption key, and never as a message. Again,
this is because otherwise we would have k ∈ r(e) and k /∈ K.

3. G+(k) ∩ Keys(e) = ∅, i.e., no key in G+(k) appears anywhere in e. As before, this is because,
otherwise, we would have k ∈ r(e) and k /∈ K.

Using these properties, we see that the probability distribution JeK can be efficiently sampled without knowing
any of the keys in K ⊆ Rand, provided we have access to |K| encryption oracles, one for every r ∈ K. More-
over, if instead of properly encrypting the query messages m, the oracles encrypt 0|m|, then the same evalu-
ation algorithm produces a sample from Jp(e, r(e))K. So, any algorithm to distinguish JeK from Jp(e, r(e))K
can be turned into an algorithm to break the indistinguishability of E under chosen plaintext attacks. �

An easy consequence of Theorem 3 is that the equivalence relation defined by normalized patterns is
computationally sound.

Corollary 2 For any two expressions e1, e2, if Norm(Pattern(e1)) = Norm(Pattern(e2)) then Je1K and
Je2K are computationally indistinguishable.

18

Proof. If Norm(Pattern(e1)) = Norm(Pattern(e2)), then Pattern(e1) ∼= Pattern(e2), and Pattern(e1) =
µ(Pattern(e2)) for some pseudo-renaming µ. By Theorem 3, the probability distribution JeiK is compu-
tationally indistinguishable from JPattern(ei)K, for i = 1, 2. Moreover, by Corollary 1, JPattern(e2)K
is indistinguishable from Jµ(Pattern(e2))K = JPattern(e1)K. Therefore, by transitivity, we get that the
distributions

Je1K ≈ JPattern(e1)K = Jµ(Pattern(e2))K ≈ JPattern(e2)K ≈ Je2K

are computationally indistinguishable. �

5 Completeness

In this section we prove a converse to our main soundness result (Theorem 3 and Corollary 2), showing that
if two (acylic) expressions have different patterns, then the corresponding distributions can be efficiently
distinguished. More specifically, we show that for any two such symbolic expressions e0, e1, there is a secure
computational interpretation J·K (satisfying the standard computational notions of security for pseudorandom
generators and encryption schemes) and an efficiently computable predicate D such that Pr{D(Je0K)} ≈ 0 and
Pr{D(Je1K)} ≈ 1. So, the symbolic equivalence notion put forward in Theorem 3 and Corollary 2 is the best
possible one for which computational soundness is guaranteed with respect to any computationally secure
interpretation. In other words, if we want a cryptographic application to be computationally secure with
respect to any instantiation of the cryptographic primitives satisfying standard security requirements, then
the symbolic equivalence condition specified in Corollary 2 is both necessary and sufficient for computational
indistinguishability.

As in previous work on the completeness of symbolic semantics [37, 15], we do this by modeling the
adversarial knowledge as the least fixed point of the key recovery operator, yielding the pattern

pattern(e) = p(e, fix(Fe)),
fix(Fe) =

⋃
n≥0

Fne (∅).

We recall that this produces exactly the same patterns as the greatest fixed point semantics Pattern(e) =
p(e,FIX(Fe)) used in Section 4 when e is an expression without encryption cycles. In fact, for these
expressions, the key recovery operator has a unique fixed point fix(Fe) = FIX(Fe). But, just as greatest
fixed points are more natural to use when proving soundness theorems [33], least fixed points are the best
fit for completeness proofs [37, 15].

The core of our completeness theorem is the following lemma, which shows that computationally secure
encryption schemes and pseudorandom generators can leak enough partial information about their keys,
so to make the keys completely recoverable whenever two keys satisfying a nontrivial relation are used to
encrypt. The key recovery algorithm A described in Lemma 7 provides a tight computational justification
for the symbolic key recovery function r described in Definition 6.

Lemma 7 If pseudorandom generators and encryption schemes exist at all, then there is a secure computa-
tional interpretation (G, E , γ, π) and a deterministic polynomial time key recovery algorithm A such that the
following holds. For any (symbolic) keys k0, k1 ∈ Keys, messages m0,m1, and binary string w 6= ε,

• if k1 = Gw(k0), then
A(Eσ(k0)(m0), Eσ(k1)(m1), w) = σ(k0)

for any key assignment σ; and

• if k1 6= Gw(k0), then
A(Eσ(k0)(m0), Eσ(k1)(m1), w) = ⊥

outputs a special symbol ⊥ denoting failure, except with negligible probability over the random choice
of the key assignment σ.

19

Proof. We show how to modify any (length doubling) pseudorandom generator G′ and encryption scheme
E ′ to satisfy the properties in the lemma. The new E and G use keys that are three times as long as those
of E ′ and G′. Specifically, each new key σ(k) consists of three equal length blocks which we denote as
σ(k)[0], σ(k)[1] and σ(k)[2], where each block can be used as a seed or encryption key for the original G′
and E ′. Alternatively, we may think of k as consisting of three atomic symbolic keys k = (k[0], k[1], k[2]),
each corresponding to ` bits of σ(k). For notational simplicity, in the rest of the proof, we fix a random key
assignment σ, and, with slight abuse of notation, we identify the symbolic keys k[i] with the corresponding
`-bit strings σ(k)[i]. So, for example, we will write k and k[i] instead of σ(k) and σ(k)[i]. Whether each k[i]
should be interpreted as a symbolic expression or as a bitstring will always be clear from the context.

The new encryption scheme
E(k,m) = k[0]; k[1]; E ′(k[2],m)

simply leaks the first two blocks of the key, and uses the third block to perform the actual encryption. It is
easy to see that if E ′ is secure against chosen plaintext attacks, then E ′ is also secure. Moreover, E can be
made length regular simply by padding the output of E ′ to its maximum length.

For the pseudo-random generator, assume without loss of generality that G′ is length doubling, mapping
strings of length ` to strings of length 2`. We need to define a new G mapping strings of length 3` to strings
of length 6`. On input k = k[0]; k[1]; k[2], the new G stretches k[0] to a string of length 6` corresponding to
the symbolic expression

(G00(k[0]),G010(k[0]),G110(k[0]),G01(k[0]),G011(k[0]),G111(k[0])) (13)

and outputs the exclusive-or of this string with (0; k[2]; k[2]; 0; k[2]; k[2]). The expression (13) is evaluated
using G′. Since G′ is a secure length doubling pseudorandom generator, and the keys in (13) are symbolically
independent, by Theorem 1 expression (13) is mapped to a pseudorandom string of length 6`. Finally, since
taking the exclusive-or with any fixed string (e.g., (0; k[2]; k[2]; 0; k[2]; k[2])) maps the uniform distribution to
itself, the output of G is also computationally indistinguishable from a uniformly random string of length 6`.
This proves that G is a secure length doubling pseudorandom generator as required. It will be convenient to
refer to the first and second halves of this pseudorandom generator G(k) = G0(k);G1(k). Using the definition
of G, we see that for any bit b ∈ {0, 1}, the corresponding half of the output consists of the following three
blocks:

Gb(k)[0] = JG0b(k[0])K (14)

Gb(k)[1] = JG01b(k[0])K⊕ k[2] (15)

Gb(k)[2] = JG11b(k[0])K⊕ k[2]. (16)

Next, we describe the key recovery algorithm A. This algorithm takes as input two ciphertexts Ek0(m0),
Ek1(m1) and a binary string w. The two ciphertexts are only used for the purpose to recover the partial
information about the keys k0[0], k0[1], k1[0], k1[1] leaked by E . So, we will assume A is given k0[0], k0[1] and
k1[0], k1[1] to start with. Let w = wn . . . w1 be any bitstring of length n, and define the sequence of keys

ki = (ki[0], ki[1], ki[2])

by induction as
k0 = k0, ki+1 = Gwi+1(ki)

for i = 0, . . . , n− 1. Notice that, if k0 and k1 are symbolically related by k1 = Gw(k0), then the last key in
this sequence equals kn = k1 as a string in {0, 1}`.

Using (14), the first block ki[0] of these keys can be expressed symbolically as

ki[0] = JGui
(k0[0])K where ui = 0wi0wi−1 . . . 0w1.

So, Algorithm A(k0[0], k0[1], k1[0], k1[1], w) begins by computing the value of all ki[0] = JGui
(k0[0])K (for

i = 0, . . . , n) starting from the input value k0[0] and applying the pseudorandom generator G′ as directed by

20

ui. At this point, A may compare kn[0] with its input k1[0], and expect these two values to be equal. If the
values differ, A immediately terminates with output ⊥. We will prove later on that if k1 6= Gw(k0), then
kn[0] 6= k1[0] with high probability, and A correctly outputs ⊥. But for now, let us assume that k1 = Gw(k0),
so that k1 = JGw(k0)K = kn and the condition kn[0] = k1[0] is satisfied. In this case, A needs to recover and
output the key k0. Since algorithm A is already given k0[0] and k0[1] as part of its input, all we need to do
is to recover the last block k0[2] of the key. To this end, A first uses (15) to compute kn−1[2] as

k1[1]⊕ G0(G1(Gwn
(kn−1[0]))) = kn[1]⊕ JG01wn

(kn−1[0])K
= kn[1]⊕ (Gwn

(kn−1)[1]⊕ ki−1[2])

= kn[1]⊕ (kn[1]⊕ ki−1[2])

= kn−1[2].

Similarly, starting from kn−1[2], A uses (16) to compute ki[2] for i = n− 2, n− 3, . . . , 0 as

ki+1[2]⊕ G1(G1(Gwi+1(ki[0]))) = ki+1[2]⊕ JG11wi+1(ki[0])K

= ki+1[2]⊕ (Gwi+1
(ki)[2]⊕ ki[2])

= ki+1[2]⊕ (ki+1[2]⊕ ki[2])

= ki[2].

At this point, A can output (k0[0], k0[1], k0[2]) = (k0[0], k0[1], k0[2]) = k2. This completes the analysis for
the case k1 = Gw(k0).

We need to show that if k1 6= Gw(k0), then the probability that kn[0] = k1[0] is negligible, so that
A correctly outputs ⊥. This is proved expressing kn[0] symbolically in terms of k0[0], and then using the
symbolic characterization of computational independence from Section 3. The proof proceeds by cases,
depending on whether k0 ∈ G∗(k1), k1 ∈ G∗(k0), or G∗(k0) ∩G∗(k1) = ∅, i.e., k0 and k1 are symbolically
independent. Since we are interested only in the first blocks k0[0], k1[1] of these two keys, we introduce some
notation. For any bitstring v = v1 . . . vm, let 0|v = 0v10v2 . . . 0vm be the result of shuffling v with a string
of zeros of equal length. Then, by construction, we have the following:

1. If k1 ∈ G∗(k0), then k1 = Gv(k0) for some string v, and k1[0] = G0|v(k0[0]).

2. Similarly, if k0 ∈ G∗(k1), then k0 = Gv(k1) for some string v, and k0[0] = G0|v(k1[0]).

3. Finally, k0 = Gv0(r0) and k1 = Gv1(r1) are symbolically independent (i.e., either r0 6= r1, or v0, v1

are not one a prefix of the other,) then k0[0] = G0|v0(r0) and k1[0] = G0|v1(r1) are also symbolically
independent (i.e., either r0 6= r1, or (0|v0), (0|v1) are not one a prefix of the other).

We need to show that in all three cases the probability that kn[0] = G0|w(k0[0]) and k1[0] evaluates to the
same bitstring is negligible. We consider each case separately.

Case 3. Let k0[0] and k1[0] be symbolically independent. In this case, also kn[0] = G0|w(k0[0]) and
k1[0] are symbolically independent. It follows, from Theorem 1, that the distribution JG0|w(k0[0]), k1[0]K is
computationally indistinguishable from the evaluation Jr0, r1K of two independent uniformly random keys.
In particular, since r0 and r1 evaluate to the same bitstring with exponentially small probability 2−`, the
probability that kn[0] = G0|w(k0[0]) and k1[0] evaluate to the same string is also negligible.

Case 2. Let k0[0] = G0|v(k1[0]) for some string v. Then, the pair of keys

(kn[0], k1[0]) = (G0|w(k0[0]), k1[0]) = (G0|w(G0|v(k1[0])), k1[0]) = (G0|wv(k1[0]), k1[0])

is symbolically equivalent to (Gu(r), r) for some u = (0|wv) 6= ε. So, by Theorem 1, we can equivalently
bound the probability δ (over the random choice of σ) that JGu(r)Kσ evaluates to JrKσ. The trivial (identity)
algorithm I(y) = y inverts the function defined by Gu with probability at least δ. Since u 6= ε, Gu defines
a one-way function, and δ must be negligible.

21

Case 1. Let k1[0] = G0|v(k0[0]) for some v 6= w. This time, we are given a pair of keys

(kn[0], k1[0]) = (G0|w(k0[0]),G0|v(k0[0]))

which are symbolically equivalent to (G0|w(r),G0|v(r)). As before, by Theorem 1, it is enough to evaluate
the probability δ that G0|w(r) and G0|v(r) evaluate to the same bitstring. If v is a (strict) suffix of w or w
is a (strict) suffix of v, then δ must be negligible by the same argument used in Case 2. Finally, if v and
w are not one a suffix of the other, then G0|w(r) and G0|v(r) are symbolically independent, and δ must be
negligible by the same argument used in Case 1.

We have shown that in all three cases, the probability δ that Gun(k0[0]) and k1[0] evaluate to the same
bitstring is negligible. So, the test performed by A fails (expect with negligible probability) and A outputs
⊥ as required by the lemma. �

We will use Lemma 7 to distinguish between expressions that have the same shape. Expressions with
different shapes can be distinguished more easily simply by looking at their bitsize. Recall that for any
(length regular) instantiation of the cryptographic primitives, the length of all strings in the computational
interpretation of a pattern JeK (denoted |JeK|) depends only on shape(e). In other words, for any two patterns
e0, e1, if shape(e0) = shape(e1), then |Je0K| = |Je1K|. The next lemma provides a converse of this property,
showing that whenever two patterns have different shape, they may evaluate to strings of different length.
So, secure computational interpretations are not guaranteed to protect any piece of partial information about
the shape of symbolic expressions.

Lemma 8 If pseudorandom generators and encryption schemes exist at all, then for any two expressions e0

and e1 with shape(e0) 6= shape(e1), there exists a secure computational interpretation (G, E , γ, π) such that
|Je0K| 6= |Je1K|.

Proof. We show how to modify any secure computational interpretation simply by padding the out-
put length, so that the lemma is satisfied. More specifically, we provide a computational interpretation
such that the length of Je0K is different from the length of any expression with different shape. Let
S = {shape(e) | e ∈ Parts(e0)} be the set of all shapes of subexpressions of e0, and let n = |S|+1. Associate
to each shape s ∈ S a unique number ϕ(s) ∈ {1, . . . , n− 1}, and define ϕ(s) = 0 for all shapes s /∈ S. Data
blocks and keys are padded to bit-strings of length congruent to ϕ(�) and ϕ(◦) modulo n, respectively. The
encryption function first applies an arbitrary encryption scheme, and then pads the ciphertext E(m) so that
its length modulo n equals ϕ({|s|}), for some shape s such that |m| = ϕ(s). The pairing function π is defined
similarly: if the two strings being combined in a pair have length |m0| = ϕ(s0) (mod n) and |m1| = ϕ(s1)
(mod n), then the string encoding the pair (m0,m1) is padded so that its length equals ϕ(s0, s1) modulo
n. It is easy to check that all patterns e are evaluated to strings of length |JeK| = ϕ(shape(e)) (mod n).
Since shape(e0) ∈ S and shape(e1) /∈ S, we get |Je0K| 6= 0 (mod n) and |Je1K| = 0 (mod n). In particular,
|Je0K| 6= |Je1K|. �

We are now ready to prove our completeness theorem, and establish the optimality of the computationally
sound symbolic semantics from Section 4.

Theorem 4 For any two expressions e0 and e1, if pattern(e0) 6∼= pattern(e1), then there exists a secure
computational interpretation (G, E , γ, π) and a polynomial time computable predicate D such that Pr{D(Je0K)} ≈
0 and Pr{D(Je1K)} ≈ 1, i.e., the distributions Je0K and Je1K can be distinguished with negligible probability of
error.

Proof. We consider two cases, depending on the shapes of the expressions. If shape(e0) 6= shape(e1),
then let J·K be the computational interpretation defined in Lemma 8. Given a sample α from one of the two
distributions, the distinguisher D simply checks if |α| = |Jshape(e1)K|. If they are equal, it accepts. Otherwise
it rejects. It immediately follows from Lemma 8 that this distinguisher is always correct, accepting all sample
α from Je1K, and rejecting all samples α from Je0K.

22

The more interesting case is when shape(e0) = shape(e1). This time the difference between the two
expressions is not in their shape, but in the value of the keys and data. This time we use the computational
interpretation J·K defined in Lemma 7, and show how to distinguish between samples from Je0K and samples
from Je1K, provided pattern(e0) 6∼= pattern(e1).

Let Sib = Feb(∅) be the sequence of sets of keys defined by the key recovery operator associated to
eb. We know that ∅ = S0

b ⊆ S1
b ⊆ S2

b ⊆ · · · ⊆ Snb = fix(Feb) for some integer n. Let eib = Pat(eb, S
i
b)

be the sequence of patterns defined by the sets Sib, and enb = Pat(eb,fix(Feb)) = pattern(eb). Since
pattern(e0) 6∼= pattern(e1), there is an index i such that en0 6∼= en1 . Let i the smallest such index. We
will give a procedure that iteratively recovers all the keys in the sets S0

b , S
1
b , . . . , S

i
b, and then distinguishes

between samples coming from the two distributions.
The simplest case is when i = 0, i.e., e0

0 6∼= e0
1. In this case S0

0 = ∅ = S0
1 , and we do not need to recover

any keys. Since e0 and e1 have the same shape, D can unambiguously parse α as a concatenation of data
blocks d, keys k and ciphertexts {|m|}k, without knowing if α comes from Je0K or Je1K. These data blocks,
keys and ciphertexts corresponds precisely to the atomic components of e0

0 or e1
1. If these two patterns differ

in one of the data blocks, then D can immediately tell if α comes from e0
0 or e0

1 by looking at the value of
that piece of data. So, assume all data blocks are identical, and e0

0 and e0
1 differ only in the values of the

keys. Consider the set P of all key positions in e0
0 (or, equivalently, in e0

1), and for every position p ∈ P , let
kpb be the key in e0

b at position p. For any two positions p, p′, define the relation rb(p, p
′) between the keys

kpb and kp
′

b to be

rb(p, p
′) =


+w if kp

′

b = Gw(kpb) for some w ∈ {0, 1}+

−w if kpb = Gw(kp
′

b) for some w ∈ {0, 1}+

0 if kpb = kp
′

b

⊥ otherwise

Notice that if r0(p, p′) = r1(p, p′) for all positions p, p′ ∈ P , then e0
0
∼= e0

1. So, there must be two positions
p, p′ such that r0(p, p′) 6= r1(p, p′), i.e., the keys at positions p and p′ in the two expressions e0

0 and e0
1 satisfy

different relations. At this point we distinguish two cases:

• If two keys are identical (rb(p, p
′) = 0) and the other two keys are unrelated (r1−b(p, p

′) = ⊥), then we
can determine the value of b simply by checking if the corresponding keys recovered from the sample
α are identical or not. Notice that even if the subexpression at position p (or p′) is a ciphertext, the
encryption scheme defined in Lemma 7 still allows to recover the first 2` bits of the keys, and this is
enough to tell if two keys are identical or independent with overwhelming probability.

• Otherwise, it must be the case that one of the two relations is rb(p, p
′) = ±w for some string w. By

possibly swapping p and p′, and e0 and e1, we may assume that r0(p, p′) = +w while r1(p, p′) 6= +w.

In other words, kp
′

0 = Gw(kp0), while kp
′

1 6= Gw(kp0). We may also assume that the subexpressions
at position p and p′ are ciphertexts. (If the subexpression at one of these positions is a key, we can
simply use it to encrypt a fixed message m, and obtain a corresponding ciphertext.) Let α0, α

′
0 be the

ciphertexts extracted from α corresponding to positions p and p′. We invoke the algorithm A(α0, α
′
0, w)

from Lemma 7 and check if it outputs a key or the special failure symbol ⊥. The distinguisher accepts
if and only if A(α0, α

′
0, w) = ⊥. By Lemma 7, if α was sampled from Je0K, then A(α0, α

′
0, w) will

recover the corresponding key with probability 1, and D rejects the sample α. On the other hand, if
α was sampled from Je1K, then A(α0, α

′
0, w) = ⊥ with overwhelming probability, and D accepts the

sample α.

This completes the description of the decision procedure D when i = 0. When i > 1, we first use Lemma 7
to recover the keys in S1

b . Then we use these keys to decrypt the corresponding subexpressions in α, and
use Lemma 7 again to recover all the keys in S2

b . We proceed in a similar fashion all the way up to Sib.

Notice that since all the corresponding patterns ej0
∼= ej1 (for j ≤ i) are equivalent up to renaming, all the

keys at similar positions p, p′ will satisfy the same relations r0(p, p′) = r1(p, p′), and we can apply Lemma 7
identically, whether the sample α comes from Je0K or Je1K. This will allow to recover the keys in Sib, at which

23

point we can parse (and decrypt) α to recover all the data blocks, keys and ciphertexts appearing in eib.
Finally, using the fact that ei0 6∼= ei1, we proceed as in the case i = 0 to determine the value of b. �

6 Conclusion

We presented a generalization of the computational soundness result of Abadi and Rogaway [3] (or, more
precisely, its co-inductive variant put forward in [33]) to expressions that mix encryption with a pseudo-
random generator. Differently from previous work in the area of multicast key distribution protocols [34,
36, 35], we considered unrestricted use of both cryptographic primitives, which raises new issues related
partial information leakage that had so far been dealt with using ad-hoc methods. We showed that partial
information can be adequately taken into account in a simple symbolic adversarial model where the attacker
can fully recover a key from any two pieces of partial information. While, at first, this attack model may
seem unrealistically strong, we proved a completeness theorem showing that the model is essentially optimal.

A slight extension of our results (to include the random permutation of ciphertexts) has recently been
used in [30], which provides a computationally sound symbolic analysis of Yao’s garbled circtuit construction
for secure two party computation. The work of [30] illustrates the usefulness of the methods developed in
this paper to the analysis of moderately complex protocols. Our results can be usefully generalized even
further, to include richer collections of cryptographic primitives, e.g., different types of (private and public
key) encryption, secret sharing schemes (as used in [4]), and more. Extensions to settings involving active
attacks are also possible [38, 22], but probably more challenging.

References

[1] M. Abadi and A. Gordon. A calculus for cryptogaphic protocols: the spi calculus. Information and
Computation, 148(1):1–70, Jan. 1999. Preliminary version in CCS 1997.

[2] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In N. Kobayashi
and B. Pierce, editors, Proceedings of the 4th International Symposium on Theoretical Aspects of Com-
puter Software - TACS 2001, volume 2215 of Lecture Notes in Computer Science, pages 82–94, Sendai,
Japan, Oct. 2001. Springer.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography (The computational soundness of
formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[4] M. Abadi and B. Warinschi. Security analysis of cryptographycally controlled access to XML documents.
Journal of the ACM, 55(2):1–29, 2008. Prelim. version in PODS’05.

[5] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its relation to circular encryp-
tion. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 - June
3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 403–422. Springer, 2010.

[6] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness and completeness of formal encryption: The
cases of key cycles and partial information leakage. Journal of Computer Security, 17(5):737–797, 2009.

[7] N. Alamati and C. Peikert. Three’s compromised too: Circular insecurity for any cycle length from
(ring-)lwe. In M. Robshaw and J. Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II, volume 9815 of Lecture Notes in Computer Science, pages 659–680. Springer, 2016.

[8] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA,

24

August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 431–448.
Springer, 1999.

[9] A. Bishop, S. Hohenberger, and B. Waters. New circular security counterexamples from decision linear
and learning with errors. In T. Iwata and J. H. Cheon, editors, Advances in Cryptology - ASIACRYPT
2015 - 21st International Conference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume 9453
of Lecture Notes in Computer Science, pages 776–800. Springer, 2015.

[10] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent
messages. In Selected Areas in Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s,
Newfoundland, Canada, August 15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in Computer
Science, pages 62–75. Springer, 2002.

[11] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the Royal Society
of London, Series A, 426:233–271, 1989.

[12] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security: A taxonomy
and some efficient constructions. In INFOCOM 1999. Proceedings of the Eighteenth Annual Joint
conference of the IEEE computer and communications societies, volume 2, pages 708–716. IEEE, Mar.
1999.

[13] D. Cash, M. Green, and S. Hohenberger. New definitions and separations for circular security. In
M. Fischlin, J. A. Buchmann, and M. Manulis, editors, Public Key Cryptography - PKC 2012 - 15th
International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany,
May 21-23, 2012. Proceedings, volume 7293 of Lecture Notes in Computer Science, pages 540–557.
Springer, 2012.

[14] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

[15] V. Gligor and D. O. Horvitz. Weak key authenticity and the computational completeness of formal
encryption. In Proceedings of CRYPTO ’03, volume 2729 of LNCS, pages 530–547. Springer, Aug. 2003.

[16] O. Goldreich. Foundations of Cryptography, volume I - Basic Tools. Cambridge Unievrsity Press, 2001.

[17] O. Goldreich. Foundation of Cryptography, volume II - Basic Applications. Cambridge Unievrsity Press,
2004.

[18] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM, 33(4):792–807,
1986.

[19] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sience,
28(2):270–299, 1984. Preliminary version in Proc. of STOC 1982.

[20] R. Goyal, V. Koppula, and B. Waters. Separating IND-CPA and circular security for unbounded
length key cycles. In S. Fehr, editor, Public-Key Cryptography - PKC 2017 - 20th IACR International
Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March
28-31, 2017, Proceedings, Part I, volume 10174 of Lecture Notes in Computer Science, pages 232–246.
Springer, 2017.

[21] R. Goyal, V. Koppula, and B. Waters. Separating semantic and circular security for symmetric-key
bit encryption from the learning with errors assumption. In J. Coron and J. B. Nielsen, editors, Ad-
vances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II,
volume 10211 of Lecture Notes in Computer Science, pages 528–557, 2017.

25

[22] M. Hajiabadi and B. M. Kapron. Computational Soundness of Coinductive Symbolic Security under
Active Attacks, pages 539–558. Springer, 2013.

[23] M. Hajiabadi and B. M. Kapron. Toward fine-grained blackbox separations between semantic and
circular-security notions. In J. Coron and J. B. Nielsen, editors, Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes
in Computer Science, pages 561–591, 2017.

[24] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography and
Network Security Series). Chapman & Hall/CRC, 2007.

[25] R. A. Kennerer, C. Meadows, and J. K. Millen. Three systems for cryptographic protocol analysis.
Journal of Cryptology, 7(2):79–130, 1994.

[26] V. Koppula, K. Ramchen, and B. Waters. Separations in circular security for arbitrary length key
cycles. In Y. Dodis and J. B. Nielsen, editors, Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, volume 9015 of
Lecture Notes in Computer Science, pages 378–400. Springer, 2015.

[27] V. Koppula and B. Waters. Circular security separations for arbitrary length cycles from LWE. In
M. Robshaw and J. Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume
9815 of Lecture Notes in Computer Science, pages 681–700. Springer, 2016.

[28] P. Laud. Encryption cycles and two views of cryptography. In NORDSEC 2002 - Proceedings of the 7th
Nordic Workshop on Secure IT Systems, number 2002:31 in Karlstad University Studies, pages 85–100,
Karlstad, Sweden, Nov. 2002. Karlstad University Studies.

[29] P. Laud and R. Corin. Sound computational interpretation of formal encryption with composed keys.
In Information Security and Cryptology, 6th Int. Conf. – Proc. of ICISC’03, volume 2971 of LNCS,
pages 55–66, Seoul, Korea, Nov. 2003. Springer.

[30] B. Li and D. Micciancio. Symbolic security of garbled circuits. Cryptology ePrint Report 141, IACR,
2018.

[31] T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure signatures with an un-
bounded number of time periods. In Advances in Cryptology - EUROCRYPT 2002, International
Conference on the Theory and Applications of Cryptographic Techniques, Amsterdam, The Nether-
lands, April 28 - May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer Science, pages
400–417. Springer, 2002.

[32] D. Micciancio. Pseudo-randomness and partial information in symbolic security analysis. Cryptology
ePrint Report 249, IACR, 2009.

[33] D. Micciancio. Computational soundness, co-induction, and encryption cycles. In Advances in Cryptol-
ogy - Proceedings of EUROCRYPT 2010, volume 6110 of LNCS, pages 362–380. Springer, 2010.

[34] D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In Theory of Cryptography
Conference – Proceedings of TCC’05, volume 3378 of LNCS, pages 169–187. Springer, Feb. 2005.

[35] D. Micciancio and S. Panjwani. Corrupting one vs. corrupting many: the case of broadcast and multicast
encryption. In Proceedings of ICALP ’06, volume 4052 of LNCS, pages 70–82. Springer, July 2006.

[36] D. Micciancio and S. Panjwani. Optimal communication complexity of generic multicast key distribution.
IEEE/ACM Transactions on Networking, 16(4):803–813, Aug. 2008. Preliminary version in Eurocrypt
2004.

26

[37] D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of encrypted
expressions. Journal of Computer Security, 12(1):99–129, 2004. Preliminary version in WITS’02.

[38] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries.
In Theory of Cryptography Conference, Proceedings of TCC 2004, volume 2951 of LNCS, pages 133–151.
Springer, 2004.

[39] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: protocol security analysis. IEEE
Transactions on Software Engineering, SE-13(2):274–288, Feb. 1987.

[40] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6(1–2):85–128, 1998.

[41] R. Rothblum. On the circular security of bit-encryption. In A. Sahai, editor, Theory of Cryptography
- 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings,
volume 7785 of Lecture Notes in Computer Science, pages 579–598. Springer, 2013.

[42] A. C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual Symposium on
Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982, pages 160–164, 1982.

27

