
Faster Pairings on Special Weierstrass Curves

Craig Costello∗, Huseyin Hisil, Colin Boyd,

Juan Manuel Gonzalez Nieto, and Kenneth Koon-Ho Wong

Information Security Institute, Queensland University of Technology,

GPO Box 2434, Brisbane QLD 4001, Australia

{craig.costello,h.hisil,c.boyd,j.gonzaleznieto,kk.wong}@qut.edu.au

Abstract

This paper presents efficient formulas for computing cryptographic
pairings on the curve y2 = cx3 + 1 over fields of large characteristic. We
provide examples of pairing-friendly elliptic curves of this form which are
of interest for efficient pairing implementations.

Keywords: Tate pairing, Miller’s algorithm, elliptic curves.

1 Introduction

Bilinear pairings have found many applications in cryptography, such as the
identity-based encryption scheme of Boneh and Franklin [9], the one-round tri-
partite key agreement scheme of Joux [17] and the short signature scheme of
Boneh, Lynn and Shacham [10]. To implement pairing-based protocols in prac-
tice, it is necessary to match curves which are pairing-friendly with an efficient
pairing algorithm. The most efficient method of computing pairings is Miller’s
algorithm [21]. Each iteration of this process requires three significant com-
putations: (i) point operations, i.e. point doubling and/or point addition; (ii)
Miller line function computations and (iii) updating the Miller function value.
In this paper we explore the j-invariant zero curve y2 = cx3+1 and provide new
formulas that facilitate a faster pairing computation on this curve by decreasing
the number of computationally expensive field operations encountered in stage
(ii).

For pairing computations with even embedding degree k, the curve y2 =
cx3 + 1 allows the Miller doubling stage to be computed in (k + 3)m + 5s +
1M + 1S, where m and s denote the costs of multiplication and squaring in
the base field while M and S denote the costs of multiplication and squaring
in the extension field of degree k. For the more general j-invariant zero curve
y2 = x3 + b, the fastest Miller doubling operation count recorded to date is

∗This author acknowledges funding from the Queensland Government Smart State PhD
Scholarship.

1



(k +3)m+8s+1M+1S [1], meaning that the special curve y2 = cx3 +1 offers
an advantage of 3s at the doubling stage.

We provide practically useful examples of the curve y2 = cx3+1 for different
embedding degrees. For the majority of embedding degrees k ≤ 50, the curve
generation technique we adopt achieves ρ-values similar to the best values pre-
sented in [13]. We draw comparisons between the curve we employ and other
special curves and discuss where this curve model would be optimal in practice.

The remainder of this paper is organised as follows. §2 gives a brief overview
of pairings. §3 explains our search for a faster Weierstrass model and efficient
group operations. §4 presents the optimization of the new formulas for the
computation of the Tate pairing. §5 discusses curve generation and provides
some practical examples and §6 summarizes our contributions and compares
them with the literature. In the appendices, we share our scripts that verify the
main claims of §3 and §4. The appendices also provide more intrinsic details on
the realization of the proposed formulas.

2 Background on pairings

This section gives a brief background on pairings. Galbraith gives a more com-
prehensive survey [14].

Let Fq be a finite field with q = pn elements where p ≥ 5 is prime and let E
be an elliptic curve defined over Fq. Let O denote the identity on E. Let r be a
large prime that is coprime to q such that r|#E(Fq) and let k be the embedding
degree of E with respect to r. For practical purposes we assume that k > 1.
We call Fq the base field and Fqk the extension field. Let fi,P ∈ Fq(E) be a
function with divisor div(fi,P ) = i(P )− ([i]P )− (i− 1)(O).

The Tate pairing. Choose a point P ∈ E(Fq)[r], this implies div(fr,P ) =
r(P )−r(O). Let Q ∈ E(Fqk)/rE(Fqk) and let µr denote the group of r-th roots
of unity in F∗

qk . The reduced Tate pairing er [4] is defined as

er : (P,Q) 7→ fr,P (Q)(q
k−1)/r ∈ µr.

Miller’s algorithm [21] computes the paired value iteratively by taking ad-
vantage of the fact that fi+j,P can be written as fi+j,P = fi · fj · l/v, where l
and v are the lines used in the computation of [i]P + [j]P = [i + j]P . That is, l
is the line that intersects E at [i]P , [j]P and −[i+ j]P , and v is the vertical line
that intersects E at both [i+j]P and −[i+j]P . This enables us to compute the
function f2i,P from fi,P directly by evaluating the lines that are used in point
doubling of P . Similarly, we can compute the function fi+1,P from fi,P so that
fr,P can be computed in log2 r steps, as summarised in Algorithm 1.

There are many other optimizations which speed up the computation of the
Miller loop in certain settings, including the denominator elimination technique
[4], uses of efficiently computable endomorphisms [24], [15], and loop shortening
techniques [2], [16], [3], [20], [26], [19], [25].

2



Algorithm 1 Miller’s algorithm
Input: P ∈ E(Fqk )[r], Q ∈ E(Fqk ), r = (rm−1 . . . r1r0)2 with rm−1 = 1.
Output: fr,P (Q)← fvar.

1: R← P , fvar ← 1.
2: for i = m− 2 down to 0 do
3: Compute lines ldbl and vdbl for doubling R.
4: R← [2]R.
5: fvar ← f2

var · ldbl(Q)/vdbl(Q).
6: if ri = 1 then
7: Compute lines ladd and vadd for adding R and P .
8: R← R + P .
9: fvar ← fvar · ladd(Q)/vadd(Q).

10: end if
11: end for
12: return fvar.

3 Choice of curve

In this section we specify the choice of curve that facilitates an efficient iteration
of the Miller loop.

Let E be a Weierstrass form elliptic curve y2 = x3 + ax + b. Let (x1, y1) be
a point in E(Fq) − {O}. We then have (x1, y1) + (x1,−y1) = O. Further let
(x2, y2) be a point in E(Fq) − {O} such that y2 6= 0 and (x2, y2) 6= (x1,−y1).
We then have (x1, y1) + (x2, y2) = (x3, y3) where

x3 = λ2 − x1 − x2, (1)

y3 = λ(x1 − x3)− y1 (2)

with
λ =

{
(y1 − y2)/(x1 − x2) if (x1, y1) 6= (x2, y2)
(3x2

1 + a)/(2y1) if (x1, y1) = (x2, y2)
.

In the literature, addition using (1) and (2) in the case (x1, y1) = (x2, y2)
is named point doubling. Similarly the case (x1, y1) 6= (x2, y2) is named point
addition. We shall follow the same nomenclature.

In our experiments we have observed that it is possible to rewrite the dou-
bling formulas as follows provided that b 6= 0 is a square in Fq such that c2 = b.
We have [2](x1, y1) = (x3, y3) where

x3 = x1(µ− µ2) + aσ, (3)

y3 = (y1 − c)µ3 + aδ − c (4)

with µ = (y1 + 3c)/(2y1), σ = (a − 3x2
1)/(2y1)2, δ = (3x1(y1 − 3c)(y1 + 3c) −

a(9x2
1 + a))/(2y1)3. Computer aided proofs of the correctness of formulas (3)

and (4) are provided in Appendix A.
In the derivation of these formulas we have consulted [22]. The new point

doubling formulas strike us with an interesting property: the total degrees1 of x3

1The total degree is defined as the sum of the degrees of the numerator and denominator
of a rational function.

3



and y3 are lower than those of the original point doubling formulas. Furthermore
the total degrees of the new formulas are minimal. This can be verified using
Algorithm 2 of [22, §4]. In particular, the total degree of x3 and y3 drops from
6 to 5 and from 9 to 7, respectively.

The evaluation of lower degree functions often requires less field operations.
However, it seems that the original point doubling formulas still win in affine
coordinates. On the other hand, we will eventually be forced to switch to homo-
geneous projective or Jacobian coordinates in order to prevent costly inversions.
Therefore it is worthwhile to check operation counts on these coordinates. We
will delay the details until §4.

If we work on the elliptic curve y2 = x3 + c2, i.e. a = 0, the formulas (3) and
(4) become much simpler. In addition, in order to prevent the computational
disadvantage of field operations with c in doubling formulas we prefer to work
with another representation of the same curve given by y2 = cx3 +1. This curve
is isomorphic over Fq to the Weierstrass curve v2 = u3 + c2. The isomorphism
from y2 = cx3 + 1 to v2 = u3 + c2 is given by σ : (x, y) 7→ (u, v) = (cx, cy) with
the inverse σ−1 : (u, v) 7→ (x, y) = (u/c, v/c).

Again, we denote the identity on y2 = cx3 + 1 by O and point negation
is performed by negating the y coordinate. Using the same notation as in the
original formulas, we have [2](x1, y1) = (x3, y3) where

x3 = x1(µ− µ2), (5)

y3 = (y1 − 1)µ3 − 1 (6)

with µ = (y1 + 3)/(2y1) and we have (x1, y1) + (x2, y2) = (x3, y3) where

x3 = c−1λ2 − x1 − x2, (7)

y3 = λ(x1 − x3)− y1 (8)

with λ = (y1 − y2)/(x1 − x2). The point (0, 1) is of order 3. Computer aided
proofs of the correctness of formulas (5), (6), (7), and (8) are provided in Ap-
pendix B.

4 Tate pairing computation on y2 = cx3 + 1

In this section we further investigate the arithmetic of y2 = cx3 + 1 to assist
efficient computation of the Tate pairing. We first derive suitable line equations
to compute the Miller value at both the doubling and addition stages. We
then eliminate unnecessary computations before converting all computations to
projective representation to avoid inversions. We provide several appendices
that verify our claims.

Barreto et al. [6] show that it is possible to eliminate costly operations in
Miller’s algorithm provided the point where the Miller function is evaluated is
chosen suitably. In the Tate pairing, the vertical line functions v (vdbl and vadd)
in Algorithm 1 are evaluated at the point Q = (xQ, yQ). These vertical line
functions take the form v = xR − xQ, where R = (xR, yR) is the intermediate
point in Algorithm 1. The computations in Miller’s algorithm can be simplified

4



if v takes a value in a proper subfield Fqd ⊂ Fqk . When computing the Tate
pairing on curves with even embedding degrees k = 2d, we choose Q to enable
this simplification by choosing a point Q′ on the quadratic twist E′ of E and
mapping Q′ to Q under the twisting isomorphism, meaning that xQ ∈ Fqd and
yQ = ỹQ

√
ν, where ỹQ ∈ Fqd and ν is some quadratic non-residue in Fqd .

The Miller values. If we derive the line equations arising from the addition
of (x1, y1) and (x2, y2) we obtain

gadd = c
λ(x2 − xQ)− y2 + yQ

c(x1 + x2 + xQ)− λ2
(9)

where λ = (y1 − y2)/(x1 − x2) and gadd = ladd(Q)/vadd(Q) (refer to Line 9 of
Algorithm 1). This formula shares several common subexpressions with (7) and
(8).

For the case (x1, y1) = (x2, y2), we propose a new formula for the line com-
putation which uses several shared common subexpressions with the new point
doubling formulas (5) and (6). The new formula is given by

gdbl =
2cy1(x1 − xQ)2

x2
1(3cxQ)− y2

1 + 3 + 2y1yQ
, (10)

where gdbl = ldbl(Q)/vdbl(Q) (refer to Line 5 of Algorithm 1). Furthermore, if
(x1, y1) = −(x2, y2) we have

gvert = −c(x1 − xQ). (11)

Computer aided proofs of the correctness of our formulas are provided in
Appendix C.

Irrelevant factors. We now focus on eliminating the terms in equations (9)
and (10) by adopting the denominator elimination technique [7]. Recall that
yQ is the only element that appears in the formulas above2 that is in the full
extension field Fqk . We immediately notice that the denominator of gadd in
equation (9) is completely contained in Fqd and can therefore be eliminated, to
give

g′add = (y1 − y2)(x2 − xQ)− (x1 − x2)(y2 − yQ). (12)

With identical reasoning we can omit the numerator of gdbl in equation
(10). These eliminations are standard. Now, observe that since yQ is of the
form yQ = ỹQ

√
ν, we can write the denominator as 1/(t1 + t2

√
ν) where t1 =

x2
1(3cxQ) − y2

1 + 3 and t2 = 2y1ỹQ. If the Miller value is computed in this
fashion there will be an inversion at the end of the Miller loop. Even worse,
both the numerator and the denominator of fvar would have to be updated at
each iteration of the Miller loop since the addition step produces a non-trivial
numerator. To prevent this we multiply the numerator and the denominator of

2The point (x2, y2) represents P ∈ E(Fq) and the point (x1, y1) represents R ∈ E(Fq) in
Algorithm 1, a multiple of P , so that x1, x2, y1, y2 ∈ Fq .

5



1/(t1+t2
√

ν) by the conjugate expression t1−t2
√

ν to give (t1−t2
√

ν)/(t21−t22ν).
Since t21 − t22ν ∈ Fqd we can simply omit the denominator to give

g′dbl = x2
1(3cxQ)− y2

1 + 3− 2y1yQ. (13)

It also follows that if (x1, y1) = −(x2, y2) we have g′vert = 1. If r is odd, the
Miller loop always finishes in this fashion so we ignore the point addition in the
final iteration.

We next present point doubling and point addition formulas together with
their associated line formulas in homogeneous projective coordinates. Our ex-
periments gave the best results in homogeneous coordinates rather than Jaco-
bian coordinates for doubling and additions. While additions generally favour
projective coordinates it is interesting to note that also doublings on this curve
are faster in projective coordinates. In particular the number of field operations
for the doubling is 4m + 3s while the best known doubling speeds so far are
2m + 5s but in Jacobian coordinates. So this representation achieves the best
addition speed and the best doubling speed (up to some m/s tradeoffs) in the
same coordinate system.

Homogeneous projective coordinates. In homogeneous projective coor-
dinates each point (x, y) is represented by the triplet (X : Y : Z) which satisfies
the projective equation Y 2Z = cX3 + Z3 and corresponds to the affine point
(X/Z, Y/Z) with Z 6= 0. The identity element is represented by (0: 1 : 0). The
negative of (X : Y : Z) is (X : − Y : Z).

Point doubling with line computation. Given (X1 : Y1 : Z1) with Z1 6= 0
the point doubling can be performed as [2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = 2X1Y1(Y
2
1 − 9Z2

1 ),

Y3 = (Y1 − Z1)(Y1 + 3Z1)
3 − 8Y 3

1 Z1,

Z3 = 8Y 3
1 Z1.

(14)

These formulas are derived from (5) and (6) in Section 3. Point doubling
without line computation needs 4m + 3s using the following sequence of opera-
tions.

A = Y 2
1 , B = Z2

1 , C = (Y1 + Z1)
2 −A−B, Z3 = 4A · C,

X3 = 2X1 · Y1 · (A− 9B), Y3 = (A− 3B + C) · (A + 9B + 3C)− Z3.

The line formula derived from (13) is given by

g′′dbl = X2
1 (3cxQ)− Y 2

1 + 3Z2
1 − 2Y1Z1yQ (15)

= E · (3cxQ)−A + 3B − 2C · yQ

where E = X2
1 .

Assume that 3cxQ is precomputed. If Q is chosen according to the discussion
at the start of this section, then multiplication with 3cxQ or with yQ counts as
(k/2)m.

6



The point doubling with line computation needs (k+3)m+5s if k is even. In
this operation count we have further exploited an additional m/s tradeoff when
calculating 2X1Y1 in the point doubling formulas, which can now be computed
as (X1 + Y1)2 − E −A.

See Appendix D for furter justifications and details on the operation schedul-
ing.

Point addition with line computation. Given (X1 : Y1 : Z1) and (X2 : Y2 : Z2)
with Z1 6= 0 and Z2 6= 0 and (X1 : Y1 : Z1) 6= (X2 : Y2 : Z2), an addition can be
performed as (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = (X1Z2 − Z1X2)(Z1Z2(Y1Z2 − Z1Y2)
2 − c(X1Z2 + Z1X2)(X1Z2 − Z1X2)

2),

Y3 = (Y1Z2 − Z1Y2)(c(2X1Z2 + Z1X2)(X1Z2 − Z1X2)
2 − Z1Z2(Y1Z2 − Z1Y2)

2)−
cY1Z2(X1Z2 − Z1X2)

3,

Z3 = cZ1Z2(X1Z2 − Z1X2)
3.

(16)

These formulas are derived from (1) and (2) in Section 3. Point addition
without line computation needs 12m+2s+1c if Z2 is arbitrary and 9m+2s+1c
if Z2 = 1. Note that c stands for a multiplication with c.

The line formula derived from (12) is given by

g′′add = (Y1Z2 − Z1Y2)(X2 − xQZ2)−
(X1Z2 − Z1X2)Y2 + (X1Z2 − Z1X2)Z2yQ. (17)

Assuming that Q is chosen according to the discussion at the start of this
section, multiplication with (X2 − xQZ2) or with Z2yQ counts as (k/2)m each.
Assume that Z2 = 1. Point addition with line computation needs (k + 10)m +
2s + 1c if k is even. Assume that Z2 is arbitrary. Assume that (X2 − xQZ2)
and Z2yQ are precomputed. The point addition with line computation needs
(k + 13)m + 2s + 1c if k is even.

The algorithm that we use for the point addition part is a slightly modified
version of Cohen/Miyaji/Ono algorithm [12]. We omit details here and refer to
Appendix D for justifications and details on the operation scheduling.

5 Curve Generation

This section discusses generating pairing-friendly curves of the form y2 = cx3+1.
We also point out a minor adjustment to be made to the pairing definition when
employing this curve in the supersingular setting.

Implementing the Tate pairing on the curve y2 = cx3 + 1 requires the con-
struction of the j-invariant zero curve y2 = x3 + b where b = c2 for c ∈ Fq. All
j-invariant zero curves have a special endomorphism ring and such curves have
CM discriminant D = 3. In Construction 6.6 of [13], Freeman et al. extend
on the results of Barreto et al. [5] and Brezing and Weng [11] to efficiently
construct D = 3 curves for all values of k where 18 - k. Freeman et al. discuss

7



that this construction achieves the best ρ-value curve families for the majority
of embedding degrees k ≤ 50.

Our experiments showed that for most embedding degrees this method of
construction will efficiently produce a curve of the desired form with the best
ρ-value, however the extra condition we impose on the curve constant (being a
quadratic residue) is restrictive. For instance, we were unable to obtain a k = 8
curve with b as a square using this construction. For k = 12, constructing the
curve y2 = cx3 + 1 gives ρ ≈ 3/2, which is significantly larger than what can
be obtained for BN curves [11] where b is non-square, for which D is also 3 but
which have the optimal ρ-value of ρ = 1.

Nevertheless, there is a wide range of useful embedding degrees that would
welcome the speedups offered on the curve y2 = cx3 + 1. We present two
pairing-friendly examples of the curve using Construction 6.6 of [13].

k = 12, ρ ≈ 3/2, c = 1,

q = 0x55555583E6AAB5415B22F364648CF7D4A1A9716C687F053\
39126A5FC2A09 (239 bits),

r = 0x10000005D24000CB530E5C544B4E84E5B34F41BD1 (161 bits),

t = 0x1000000174A (41bits).

k = 24, ρ ≈ 5/4, c = 3,

q = 0x577380D96AF284FCF9200C2CC966EC756D86B4CBF2A3AAD\
3C1 (199 bits),

r = 0x105121CA61CB6CAF9EF3A835A4442784FFF816AF1 (161 bits),

t = 0x100A0F (21 bits).

Supersingular curves. When the characteristic of the underlying field is p ≡
2 mod 3, the curve y2 = cx3 +1 is supersingular with k = 2. We would usually
define the symmetric pairing as ê : G×G → GT where ê(P,Q) = e(P, φ(Q)) and
φ is the distortion map φ(x, y) = (ξx, y) for some non-trivial cube root of unity
ξ ∈ Fp2 . However, using the distortion map in this manner would not allow the
use of the formulas derived in §4, since these formulas were derived under the
assumption that it was the y-coordinate of the second argument in the pairing
that was in the extension field. Instead, we follow Scott’s technique [23] and
define the supersingular pairing as ẽ : G×G → GT where ẽ(P,Q) = e(P, θ(Q))
and θ is defined as θ(Q) = φ(Q)− πp(φ(Q)), where πp is the p-power Frobenius
endomorphism. For Q = (xQ, yQ), we have that πp(φ(Q)) = πp(ξxQ, yQ) =
(ξ2xQ, yQ) so that θ(Q) becomes θ(xQ, yQ) = (ξxQ, yQ)−(ξ2xQ, yQ). The map θ
is an isomorphism from the base field subgroup to the trace zero subgroup, where
the x-coordinates lie in the base field and the y-coordinates are in the extension
field so that we can apply the formulas from §4 [23]. The inverse map from the
trace zero subgroup to the base field subgroup is defined as θ−1(Q) = Tr(φ(Q)),
where Tr is the trace map.

8



6 Comparison and conclusion

We have studied pairing computations on a non-standard Weierstrass curve
of the form y2 = cx3 + 1. This is the most specific curve model studied so
far since there are only 3 isomorphism classes of curves for this shape in the
general case where p ≡ 1 mod 3. The main contribution of this paper is a
faster computation of the Tate pairing on this special curve. Practical examples
of such curves can be achieved using Construction 6.6 of [13]. There are many
examples of embedding degrees for which this construction gives the best known
ρ-value [13], however it remains an open question to find suitable curves of this
form having ρ-values very close to 1 with practically interesting embedding
degrees, e.g. k = 8.

The following table summarizes the advantage of employing this new curve
in the Tate pairing by comparing our results with the fastest results achieved
on other j-invariant zero curves documented prior to this work. The formulas
given by Arène et al. [1] for j-invariant zero curves give an operation count that
improves the operation count originally presented in [16], so we draw compar-
isons against these improved formulas below. We follow the trend of presenting
the operation count for even k [18], since this is generally preferred in practice
[4], [7]. We do not include the multiplications and squarings that take place
in the extension field Fqk , since these are common to all operation counts (see
lines 5 and 9 of Algorithm 1).

Tate pairing DBL mADD ADD

Arène et al. [1] (k + 3)m + 8s (k + 6)m + 6s (k + 12)m + 5s

This work (k + 3)m + 5s (k + 10)m + 2s + 1c (k + 13)m + 2s + 1c

As k gets large in the Tate pairing, the overall speed up that is achieved through
using the curve y2 = cx3 +1 becomes less, since the more difficult operations in
Fqk consume more computation relative to those operations in the base field.

Lastly, we note that the EFD [8] reports 2m+5s point doubling formulas in
Jacobian coordinates for j-invariant zero curves. Therefore a protocol requiring
scalar multiplications should use Jacobian coordinates and should only switch
to our proposal when the pairing is being computed. This conversion comes
at the cost of 2m + 1s + 1c by taking (X : Y : Z) in Jacobian coordinates to
(XZ : Y : cZ3) in homogeneous projective coordinates on the curve y2 = cx3+1.

7 Acknowledgements

The authors wish to thank Tanja Lange and the anonymous referees for helpful
comments and corrections.

9



References

[1] C. Arène, T. Lange, M. Naehrig, and C. Ritzenthaler. Faster pair-
ing computation. Cryptology ePrint Archive, Report 2009/155, 2009.
http://eprint.iacr.org/2009/155.

[2] P. S. L. M. Barreto, S. D. Galbraith, C. Ó’ Héigeartaigh, and M. Scott. Ef-
ficient pairing computation on supersingular Abelian varieties. Cryptology
ePrint Archive, Report 2004/375, 2004. http://eprint.iacr.org/2004/
375.

[3] P. S. L. M. Barreto, S. D. Galbraith, C. Ó’ Héigeartaigh, and M. Scott. Ef-
ficient pairing computation on supersingular Abelian varieties. Des. Codes
Cryptography, 42(3):239–271, 2007.

[4] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms
for pairing-based cryptosystems. In CRYPTO 2002, volume 2442 of LNCS,
pages 354–369. Springer, 2002.

[5] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves
with prescribed embedding degrees. In Security in Communication Net-
works, volume 2576 of LNCS, pages 257–267. Springer, 2003.

[6] P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementation of
pairing-based cryptosystems. Journal of Cryptology, 17(4):321–334, 2004.

[7] P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-
friendly groups. In SAC 2003, volume 3006 of LNCS, pages 17–25. Springer,
2004.

[8] D. J. Bernstein and T. Lange. Explicit-formulas database. http://www.
hyperelliptic.org/EFD.

[9] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil
pairing. SIAM J. Comput., 32(3):586–615, 2003.

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 17(4):297–319, 2004.

[11] F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryp-
tography. Des. Codes Cryptography, 37(1):133–141, 2005.

[12] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation
using mixed coordinates. In ASIACRYPT’98, volume 1514 of LNCS, pages
51–65. Springer, 1998.

[13] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly el-
liptic curves. Cryptology ePrint Archive, Report 2006/372, 2006. http:
//eprint.iacr.org/2006/372.

10



[14] S. D. Galbraith. Pairings, volume 317 of London Mathematics Society
Lecture Note Series, pages 183–213. Cambridge University Press, 2005.

[15] S. D. Galbraith and M. Scott. Exponentiation in pairing-friendly groups
using homomorphisms. In Pairing 2008, volume 5209 of LNCS, pages 211–
224. Springer, 2008.

[16] F. Hess, N. P. Smart, and F. Vercauteren. The Eta pairing revisited. IEEE
Transactions on Information Theory, 52(10):4595–4602, 2006.

[17] A. Joux. A one round protocol for tripartite Diffie-Hellman. Journal of
Cryptology, 17(4):263–276, 2004.

[18] N. Koblitz and A. Menezes. Pairing-based cryptography at high security
levels. In Cryptography and Coding, volume 3796 of LNCS, pages 13–36.
Springer, 2005.

[19] E. Lee, H.-S. Lee, and C.-M. Park. Efficient and generalized pairing compu-
tation on Abelian varieties. Cryptology ePrint Archive, Report 2008/040,
2008. http://eprint.iacr.org/2008/040.

[20] S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Optimised versions
of the Ate and twisted Ate pairings. In Cryptography and Coding, volume
4887 of LNCS, pages 302–312. Springer, 2007.

[21] V. S. Miller. The Weil pairing, and its efficient calculation. Journal of
Cryptology, 17(4):235–261, 2004.

[22] M. Monagan and R. Pearce. Rational simplification modulo a polynomial
ideal. In ISSAC’06, pages 239–245. ACM, 2006.

[23] M. Scott. Faster identity based encryption. Electronics Letters, 40(14):861–
862, 2004.

[24] M. Scott. Faster pairings using an elliptic curve with an efficient endo-
morphism. In INDOCRYPT 2005, volume 3797 of LNCS, pages 258–269.
Springer, 2005.

[25] F. Vercauteren. Optimal pairings. Cryptology ePrint Archive, Report
2008/096, 2008. http://eprint.iacr.org/2008/096.

[26] C.-A. Zhao, F. Zhang, and J. Huang. A note on the Ate pairing. Cryptology
ePrint Archive, Report 2007/247, 2007. http://eprint.iacr.org/2007/
247.

A Appendix

This Maple script verifies that (3) and (4) commute with the original point
doubling formulas.

11



b:=c^2: W:=(x,y)->y^2-(x^3+a*x+b): #The short Weierstrass curve, W.
L:=(3*x1^2+a)/(2*y1): x3:=L^2-2*x1: y3:=L*(x1-x3)-y1: #Double on W.
mu:=(y1+3*c)/(2*y1): sigma:=(a-3*x1^2)/(2*y1)^2: #Double on W with new formulas.
delta:=(3*x1*(y1-3*c)*(y1+3*c)-a*(9*x1^2+a))/(2*y1)^3: #Double on W with new formulas.
x3new:=x1*(mu-mu^2)+ a*sigma: y3new:=(y1-c)*mu^3+a*delta-c: #Double on W with new formulas.
simplify(x3-x3new,[W(x1,y1)]); simplify(y3-y3new,[W(x1,y1)]); #Check.

B Appendix

This Maple script verifies that (5), (6), (7), and (8) commute with the original
doubling and addition formulas.

Q:=(x,y)->y^2-(c*x^3+1): #The curve considered in this work, Q.
W:=(u,v)->v^2-(u^3+c^2): #The short Weierstrass curve, W.
QtoW:=(x,y)->c*x,(x,y)->c*y: #The map from Q to W.
WtoQ:=(u,v)->u/c,(u,v)->v/c: #The map from W to Q.
##Verify the correctness of point additon formulas.
u1,v1:=QtoW(x1,y1): u2,v2:=QtoW(x2,y2): #Map the points (x1,y1) and (x2,y2) on Q to W.
L:=(v1-v2)/(u1-u2): u3:=L^2-u1-u2: v3:=L*(u1-u3)-v1: #Add on W with the original formulas.
x3,y3:=WtoQ(u3,v3): #Map the sum (u3,v3) on W to Q.
simplify(W(u3,v3),[Q(x1,y1),Q(x2,y2)]); #Check.
Lnew:=(y1-y2)/(x1-x2): x3new:=c^(-1)*Lnew^2-x1-x2: y3new:=Lnew*(x1-x3)-y1: ##Add on Q.
simplify(x3-x3new,[Q(x1,y1),Q(x2,y2)]); simplify(y3-y3new,[Q(x1,y1),Q(x2,y2)]); #Check.
unassign(’Lnew’,’L’,’u2’,’v2’,’u3’,’v3’,’x3’,’y3’,’x3new’,’y3new’);
##Verify the correctness of point doubling formulas.
L:=3*u1^2/(2*v1): u3:=L^2-2*u1: v3:=L*(u1-u3)-v1: #Double on W with the original formulas.
x3,y3:=WtoQ(u3,v3): #Map the sum (u3,v3) on W to Q.
simplify(W(u3,v3),[Q(x1,y1)]); #Check.
mu:=(y1+3)/(2*y1): x3new:=x1*(mu-mu^2): y3new:=(y1-1)*mu^3-1: #Double on Q.
simplify(x3-x3new,[Q(x1,y1)]); simplify(y3-y3new,[Q(x1,y1)]); #Check.

C Appendix

This Maple script verifies the correctness of (9), (10), and (11).

Q:=(x,y)->y^2-(c*x^3+1): #The curve considered in this work, Q.
W:=(u,v)->v^2-(u^3+c^2): #The short Weierstrass curve, W.
QtoW:=(x,y)->c*x,(x,y)->c*y: #The maps from Q to W.
WtoQ:=(u,v)->u/c,(u,v)->v/c: #The maps from W to Q.
##Verify the correctness of the line formulas for addition.
u1,v1:=QtoW(x1,y1): u2,v2:=QtoW(x2,y2): uQ,vQ:=QtoW(xQ,yQ): ##(xi,yi) on Q to (ui,vi) on W.
L:=(v1-v2)/(u1-u2): l:=L*(u1-uQ)+vQ-v1: v:=uQ-(L^2-u1-u2): #Compute the addition-line on W.
Lnew:=(y1-y2)/(x1-x2): gadd:=c*(Lnew*(x2-xQ)-y2+yQ)/(c*(x1+x2+xQ)-Lnew^2): #New line on Q.
simplify(l/v-gadd,[Q(x1,y1),Q(x2,y2),Q(xQ,yQ)]); #Check.
##Verify the correctness of the line formulas for doubling.
L:=3*u1^2/(2*v1): l:=L*(u1-uQ)+vQ-v1: v:=uQ-(L^2-2*u1): #Compute the doubling-line on W.
gdbl:=2*c*y1*(x1-xQ)^2/(x1^2*(3*c*xQ)-y1^2+3+2*y1*yQ): #New line on Q.
simplify(l/v-gdbl,[Q(x1,y1),Q(xQ,yQ)]); #Check.
##Verify the correctness of the line formulas for the sum of negatives.
l:=uQ-u1: v:=1: #The vertical line on W.
gvert:=-c*(x1-xQ): #The new line on Q.
simplify(l/v-gvert,[Q(x1,y1),Q(x2,y2),Q(xQ,yQ)]); #Check.

D Appendix

This Maple script verifies the correctness of (14) and (15).

Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3): x1:=X1/Z1: y1:=Y1/Z1:
x3:=x1*(y1^2-9)/(2*y1)^2: y3:=(y1-1)*(y1+3)^3/(2*y1)^3-1:
Line:=x1^2*(3*c*xQ)-y1^2+3-2*y1*yQ:

12



##Point doubling formulas in homogenous projective coordinates.
X3:=2*X1*Y1*(Y1^2-9*Z1^2):
Y3:=(Y1-Z1)*(Y1+3*Z1)^3-8*Z1*Y1^3:
Z3:=(2*Y1*Z1)*(2*Y1)^2:
gDBL:=X1^2*(3*c*xQ)-Y1^2+3*Z1^2-2*Y1*Z1*yQ: #Line formulas.
simplify(x3-X3/Z3,[Q(X1,Y1,Z1)]); simplify(y3-Y3/Z3,[Q(X1,Y1,Z1)]); #Check.
factor(Line-gDBL/Z1^2); #Check.

This Maple script shows how to schedule operations for (14). The point doubling
without line computation needs 4m + 3s + 0c.

Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3):
##Point doubling formulas with register allocations.
X3:=2*X1: X3:=X3*Y1: Z3:=3*Z1: t1:=Y1+Z3: t1:=t1^2: Y3:=Y1^2: Z3:=Z3^2: t2:=Y3-Z3:
t2:=3*t2: X3:=X3*t2: t2:=t2+Z3: t2:=t2+Z3: Z3:=Y3+Z3: Z3:=t1-Z3: t2:=t2+Z3: Z3:=Y3*Z3:
Z3:=4*Z3: Y3:=t1*t2: Y3:=Y3-Z3:
simplify(Q(X3,Y3,Z3),[Q(X1,Y1,Z1)]); #Check.

This Maple script shows how to schedule operations for (14) and (15). Multipli-
cation with c1 or with yQ counts as (k/2)m. Assume that c1 is precomputed.
The point doubling with line computation needs 5m + 5s if k = 2 or more
generally (k + 3)m + 5s if k is even.

Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3):
Line:=X1^2*(3*c*xQ)-Y1^2+3*Z1^2-2*Y1*Z1*yQ:
c1:=3*c*xQ: #Precomputed value.
##Point doubling formulas and line computation with register allocations.
t1:=X1+Y1: t2:=Y1+Z1: t1:=t1^2: t2:=t2^2: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1-X3:
t1:=t1-Y3: t2:=t2-Y3: t2:=t2-Z3: Z3:=3*Z3: t3:=Y3-Z3: gDBL:=X3*c1-t3-t2*yQ:
t3:=t3+t2: t4:=3*Z3: X3:=Y3-t4: X3:=t1*X3: t1:=3*t2: t2:=t1+t2: Z3:=t2*Y3:
Y3:=Y3+t4: t1:=t1+Y3: Y3:=t3*t1: Y3:=Y3-Z3:
simplify(Q(X3,Y3,Z3),[Q(X1,Y1,Z1)]); simplify(Line-gDBL); #Check.

This Maple script verifies the correctness of (16) and (17).

Q1:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3): x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:
L:=(y1-y2)/(x1-x2): x3:=c^(-1)*L^2-x1-x2: y3:=L*(x1-x3)-y1:
Line:=(y1-y2)*(x2-xQ)-(x1-x2)*(y2-yQ):
##Point addition formulas in homogenous projective coordinates.
X3:=(X1*Z2-Z1*X2)*(Z1*Z2*(Y1*Z2-Z1*Y2)^2-c*(X1*Z2+Z1*X2)*(X1*Z2-Z1*X2)^2):
Y3:=(Y1*Z2-Z1*Y2)*(c*(2*X1*Z2+Z1*X2)*(X1*Z2-Z1*X2)^2-Z1*Z2*(Y1*Z2-Z1*Y2)^2) -

c*Y1*Z2*(X1*Z2-Z1*X2)^3:
Z3:=c*Z1*Z2*(X1*Z2-Z1*X2)^3:
gADD:=(Y1*Z2-Z1*Y2)*(X2-xQ*Z2)-(X1*Z2-Z1*X2)*Y2+(X1*Z2-Z1*X2)*Z2*yQ: #Line formulas.
simplify(x3-X3/Z3,[Q1(X1,Y1,Z1),Q1(X2,Y2,Z2)]); #Check.
simplify(y3-Y3/Z3,[Q1(X1,Y1,Z1),Q1(X2,Y2,Z2)]); factor(Line-gADD/Z1/Z2^2); #Check.

This Maple script shows how to schedule operations for (16) and (17) with
Z2 = 1.

Z2:=1: Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3):
Line:=(Y1*Z2-Z1*Y2)*(X2-xQ*Z2)-(X1*Z2-Z1*X2)*(Y2-yQ*Z2):
c1:=X2-xQ: c2:=Y2-yQ: #Precomputed values.
##Point addition formulas and line computation with register allocations.
t1:=Z1*X2: t1:=X1-t1: t2:=Z1*Y2: t2:=Y1-t2: gADD:=c1*t2-t1*Y2+t1*yQ:
t3:=t1^2: t3:=c*t3: X3:=t3*X1: t3:=t1*t3: t4:=t2^2: t4:=t4*Z1: t4:=t3+t4:
t4:=t4-X3: t4:=t4-X3: X3:=X3-t4: t2:=t2*X3: Y3:=t3*Y1: Y3:=t2-Y3: X3:=t1*t4: Z3:=Z1*t3:
simplify(Q(X3,Y3,Z3),[Q(X1,Y1,Z1),Q(X2,Y2,Z2)]); simplify(Line-gADD); #Check.

13



This Maple script shows how to schedule operations for (16) and (17).

Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3):
Line:=(Y1*Z2-Z1*Y2)*(X2-xQ*Z2)-(X1*Z2-Z1*X2)*(Y2-yQ*Z2):
c1:=X2-xQ*Z2: c2:=Y2-yQ*Z2: #Precomputed values.
##Point addition formulas and line computation with register allocations.
t1:=Z1*X2: X3:=X1*Z2: t1:=X3-t1: t2:=Z1*Y2: Y3:=Y1*Z2: t2:=Y3-t2:
gADD:=c1*t2-t1*Y2+t1*Z2*yQ:
Z3:=Z1*Z2: t3:=t1^2: t3:=c*t3: X3:=t3*X3: t3:=t1*t3: t4:=t2^2: t4:=t4*Z3: t4:=t3+t4:
t4:=t4-X3: t4:=t4-X3: X3:=X3-t4: t2:=t2*X3: Y3:=t3*Y3: Y3:=t2-Y3: X3:=t1*t4: Z3:=Z3*t3:
simplify(Q(X3,Y3,Z3),[Q(X1,Y1,Z1),Q(X2,Y2,Z2)]); simplify(Line-gADD); #Check.

14


