
Protecting the NOEKEON Cipher Against
SCARE Attacks in FPGAs by using Dynamic

Implementations

Julien Bringer1, Hervé Chabanne1,2, Jean-Luc Danger2

1 Sagem Sécurité
2 Télécom ParisTech

Abstract. Protecting an implementation against Side Channel Analy-
sis for Reverse Engineering (SCARE) attacks is a great challenge and we
address this challenge by presenting a first proof of concept. White-box
cryptography has been developed to protect programs against an adver-
sary who has full access to their software implementation. It has also
been suggested as a countermeasure against side channel attacks and we
examine here these techniques in the wider perspective of SCARE. We
consider that the adversary has only access to the cryptographic device
through its side channels and his goal is to recover the specifications of
the algorithm. In this work, we focus on FPGA (Field-Programmable
Gate Array) technologies and examine how to thwart SCARE attacks
by implementing a block cipher following white-box techniques. The pro-
posed principle is based on changing dynamically the implementations.
It is illustrated by an example on the Noekeon cipher and feasibility in
different FPGAs is studied.

Keywords. SCARE attacks, white-box cryptography, FPGA.

1 Introduction

White-box cryptography has been introduced in the domain of Digital
Rights Management with the ambitious goal of protecting keys of a block
cipher while leaving to an adversary whole access to the software imple-
menting this algorithm. Practically, this leads ciphers to be represented
by a network of look-up tables. White-box implementations for DES and
AES have been given in [2, 3]. These protections can affect either an
encryption algorithm E (naked variant) or F o E o G where F and G
are secret bijections. Today, there has been large cryptanalytic efforts on
many implementations (naked or not) [1, 10, 12,16,18,24].

We here retain from white-box cryptography the use of look-up tables
which hides the structure of a block cipher. In this paper, we take back



this technique but in a different context. Our aim is now to protect a block
cipher implemented in hardware. Moreover, we move from a white-box
environment to a grey-box one where adversaries only get various side
channels from the running algorithm (see for instance The Side Chan-
nel Cryptanalysis Lounge, http://www.crypto.ruhr-uni-bochum.de/

en sclounge.html). The idea of using white-box cryptography as a pos-
sible countermeasure against side channel attacks is not new. However,
we consider here the situation where the adversary has not all the ele-
ments of the algorithm in his possession and wants to recover the missing
details by Side Channel Attack Reverse Engineering (SCARE).

SCARE was introduced in [19] with a proprietary algorithm for GSM
phone. These results were improved by [4]. [9] studies DES in this context
and is extended to Unknown Hardware Feistel Implementation by [20].
Use of proprietary algorithms and the protection of their specifications
can be conceived in organizations that can afford the risk of relying on
secret algorithms such as military groups or pay-tv / mobile network op-
erators. Nevertheless, achieving an implementation which actually resists
SCARE attacks is still a great challenge.

We explain why white-box cryptographic implementations indeed pro-
vide an effective solution against SCARE. In particular, by constantly re-
newing the look-up tables - as in classical counter-measures against side
channels - we might reduce the side channels information on the specifi-
cations of the running block cipher to almost nothing. We also underline
that our proposal could be implemented on today’s chips as FPGAs and
we illustrate this aspect with the cipher Noekeon [6].

The remainder of this paper is organized as follows. Section 2 explains
why, in a theoretical model, dynamic white-box cryptography actually
counteracts SCARE. Section 3 gives an overview of the Noekeon cipher.
Section 4 focuses on practical aspects of our proposal where we illustrate
our ideas by giving a complete FPGA implementation of the Noekeon
cipher in this white-box context.

We emphasize that the reader should see this work as a first proof of
concept. This might lead to a solution practically addressing the challenge
of resisting SCARE.

2 Security Model and General Principle of our Protection

In white-box cryptography, the classical representation of the operations
and the use of the cryptographic keys within a cipher are generally turned



into a representation of look-up table network, namely a set of look-up
tables {Tl}l∈L with some arcs between the tables (an arc corresponds to
the output of one table becoming an input of another one). Then the
look-up tables are obfuscated by encoding their input and output with
encoding bijections; for instance Tl would be replaced by fout ◦ Tl ◦ fin.
The choice of encoding functions of input and output is made according
to the existing arcs between the tables so that the entire implementation
does not change: if there is an arc from Tl to Tl′ , the output encoding of Tl

must be the inverse of the corresponding input encoding of Tl′ . Encodings
at the same time of several tables gathered together are possible as well.

From a side channel perspective, this implementation technique has
yet some advantages. The implementation following a network of look-
up tables does not give a direct access to the algorithm specifications
and the main advantage is that a look-up table implementation improves
the resistance against side channel analysis as the activity of the internal
variables processed in the memory core are hardly discernible.

Remark 1. A look-up table access seems hard to exploit by Simple Power
Analysis and the resistance against Differential Power Analysis (DPA) is
improved when the size of tables decreases. Indeed the size of the tables
has an effect onto the DPA signal-to-noise ratio; this is illustrated for
instance by [11].

2.1 Model

We detail here our security model and the corresponding assumptions.
Following the previous remark, we consider that an adversary can obtain
information on a look-up table neither by reading directly on it nor by
measuring some signals during its execution. That is why we assume that
a look-up table does not leak information by itself. However, we consider
that the adversary can obtain information (partial or not) on the input
and output of a look-up table execution. We assume that the adversary
can make use of High-Order differential Side Channel Analysis (HO-SCA;
introduced in [15,17] for High-Order DPA, see also [13]) to obtain several
such information during an execution of the encryption algorithm.

We assume that the encryption algorithm implementation is made of
consecutive steps where each step corresponds to the parallel evaluation
of several look-up tables. We consider that the adversary can make several
measures during an execution but only one measure per step. In the
sequel, such an adversary is called an HO-SCA adversary. We define also a



generalized HO-SCA adversary as an HO-SCA adversary which is enabled
to make several measures at the same step.

2.2 Our Protection in a Theoretical Nutshell

In a white-box implementation, an attacker can read at any moment of
the execution the result provided by a look-up table, i.e. an encoded
output f(x) (for some encoding function f), where x corresponds to a
non-obfuscated intermediate result of the underlying cipher. In [18], the
authors explain – under some conditions on the cipher structure – how
this property can be exploited to recover the keys. In our context of grey-
box attacks, the attacker would encounter more difficulties to read an
entire result but the same situation may occur. To thwart this and at
the same time to achieve security against SCA, we introduce a dynamic
implementation by renewing the encoding bijections after each execution
of the cipher. This is somewhat a generalization of [5] which applies a
same random permutation to all the intermediate values during an AES
execution in order to achieve first-order DPA resistance.

Given an encryption algorithm E which can be implemented as a
network of look-up tables with the set of tables {Tl}l∈L, the implemen-
tation at a time t is given by the tables {Tl[t] = fl,out[t] ◦ Tl ◦ fl,in[t]}l∈L.
After the implementation execution, a new set of random encoding bijec-
tions {gl,in, gl,out} is chosen and the implemented tables are transformed
into gl,out ◦ Tl[t] ◦ gl,in, i.e. the implementation of the tables evolves into
{Tl[t

′] = fl,out[t
′] ◦ Tl ◦ fl,in[t′]}l∈L with fl,out[t

′] = gl,out ◦ fl,out[t] and
fl,in[t′] = fl,in[t] ◦ gl,in.

Remark 2. Constantly renewing the look-up tables might seem a very
costly solution but we explain later on in Section 4.5 why it might be fea-
sible for practical hardware implementations. In our model, we moreover
assume that the renewal process does not leak. Consequently, the adver-
sary is seen here as a kind of constrained HO-SCA adversary. Note that a
thorough practical analysis of the implementation would be necessary in
the future to verify this claim. We thus see these points as an interesting
challenge for further researches.

Given a fixed input message and a fixed algorithm (and key), the use
of such random encodings which are renewed after each execution implies
that an HO-SCA adversary cannot distinguish the intermediate values
from uniform ones. If there are no correlated encodings within any step,
then the resistance holds against a generalized HO-SCA adversary.



3 Noekeon Cipher [6]

We give here an overview of the Noekeon cipher. Noekeon was proposed
to the NESSIE project in 2000 [6, 7, 14]. Noekeon is a 128-bit block ci-
pher over 16 rounds. Noekeon maintains a state of four 32-bit words:
a0, a1, a2, a3. Each round is constituted by the following operations:

1. A first round constant is XORed to a0,

2. A linear transformation θ is applied to the four words a0, a1, a2, a3.
During the execution of θ, the round key is introduced by an XOR
into the state.

Consider the involutive mapping that modifies four 32-bit words by
XORing a linear transformation of the XOR of the other two words.
This linear transformation consists of taking a word X, rotating it
over a byte to the left to give Y and rotating it over a byte to the
right to give Z and XORing X, Y and Z, Z ← X ⊕ Y ⊕Z. θ consists
of applying the described mapping, where the state words in odd
positions are modified (X = a0 ⊕ a2, Z is XORed to a1 and a3),
followed by XORing the key to the state, followed by again applying
the described mapping, where the state words in even positions are
modified.

For k the working key and a the state, each formed by four 32-bit
words, the computation of θ(k, a) is illustrated by Table 1.

Table 1. Computation of θ(k, a)

temp← a0 ⊕ a2; temp← temp⊕ (temp >> 8)⊕ (temp << 8);
a1 ← a1 ⊕ temp;
a3 ← a3 ⊕ temp;
a0 ← a0 ⊕ k0; a1 ← a1 ⊕ k1; a2 ← a2 ⊕ k2; a3 ← a3 ⊕ k3;
temp← a1 ⊕ a3; temp← temp⊕ (temp >> 8)⊕ (temp << 8);
a0 ← a0 ⊕ temp;
a2 ← a2 ⊕ temp;

3. A second round constant is XORed to a0.

4. π1: The words a1, a2, a3 are rotated of 1, 5, and 2 bits, respectively,
to the left.

5. Γ : All bits in the same position in a0, a1, a2, a3 are grouped together
into nibbles (i.e. words of 4 bits) which go through the same non-linear
bijection γ (i.e. γ is applied 32 times, once for each possible nibble).

6. π2: The words a1, a2, a3 are rotated of 1, 5 and 2 bits, respectively, to
the right.



Finally, after the last round, a final constant is XORed to a0 and θ is
applied.

To sum up, each round of the cipher can be decomposed in one
non-linear step Γ and several linear ones. We have: 16 matrices Mj ,
j = 1, . . . , 16 representing the steps 1 to 3 (from first round constant
XOR to the second round constant XOR), one matrix for each round; 16
applications of π1, Γ and π2; and a matrix M ′ = Mfinal for the final step
(the final constant XOR and the application of θ).

4 Our Implementation of the NOEKEON Cipher

Compared to AES, Noekeon is a softer candidate for the technique we
have introduced in Section 2.2, mainly due to the non-linear transforma-
tion where the corresponding look-up table is smaller than for the AES.
Nonetheless, it would be interesting to investigate its adaptation to other
similar block ciphers.

4.1 General Description

Our implementation follows the strategy of Section 2 by the use of sev-
eral tables look-up representation with the inclusion of input and output
encoding functions to hide the key and the running values during com-
putations.

Each of the 32 applications of γ in the non-linear step Γ of each round
is implemented by a table look-up. A different 4×4 table is used for each
γ. Moreover, instead of γ, our table represents fi ◦ γ ◦ g−1

i , i = 0, . . . , 31
where the fi’s, gi’s are random bijections over nibbles. We need 16 × 32 =
512 different tables for the whole algorithm, which takes 512× 24× 4 bits
(4KBytes). Following this, almost the whole implementation will operate
on nibbles. We call the nibble of index i (for i ∈ {0, . . . , 31}), denoted
nibi, the nibble containing all the bits of index i of the current state
a0, a1, a2, a3, i.e. nibi = ai

0a
i
1a

i
2a

i
3 where ai

k denotes the i-th bit of ak.
Only π1, π2 are seen as operations on bits. In fact, as rotations of different
order of the words a0, a1, a2, and a3, they correspond to permutations of
bits between nibbles and can be simply hardwired.

Concerning the 128 × 128 binary matrices M1, . . . , M16 and M ′, we
observe from Table 1 that the output bits of a nibble do not depend on
all the input bits. By construction of θ, which is based on XORs and four
rotations of 8 bits (to the left and to the right), and for a given round



key, a nibble of the output state depends only on three nibbles of the
input state. The corresponding formulas for the update of nibi are given
below (where the additions of index are taken modulo 32): T

(

ai
0 ai

1 ai
2 ai

3

)

is updated as

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

ai

0 ⊕ ki

0 ⊕

“

ai

1 ⊕ ki

1 ⊕ ai

3 ⊕ ki

3

”

⊕

“

a
i+8
1
⊕ k

i+8
1
⊕ a

i+8
3
⊕ k

i+8
3

”

⊕

“

a
i+24
1

⊕ k
i+24
1

⊕ a
i+24
3

⊕ k
i+24
3

”

ai

1 ⊕

“

ai

0 ⊕ ai

2

”

⊕

“

a
i+8
0
⊕ a

i+8
2

”

⊕

“

a
i+24
0

⊕ a
i+24
2

”

⊕ ki

1

ai

2 ⊕ ki

2 ⊕

“

ai

1 ⊕ ki

1 ⊕ ai

3 ⊕ ki

3

”

⊕

“

a
i+8
1
⊕ k

i+8
1
⊕ a

i+8
3
⊕ k

i+8
3

”

⊕

“

a
i+24
1

⊕ k
i+24
1

⊕ a
i+24
3

⊕ k
i+24
3

”

ai

3 ⊕

“

ai

0 ⊕ ai

2

”

⊕

“

a
i+8
0
⊕ a

i+8
2

”

⊕

“

a
i+24
0

⊕ a
i+24
2

”

⊕ ki

3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

For instance, nib0 is updated thanks to the input bits of nib0, nib8 and
nib24. This enables us to split the representation of a such matrix into 32
smaller (4 × 12) binary matrices which take less room to be represented
with look-up tables than a 128× 128 binary matrix. For i ∈ {0, . . . , 31},
the matrix used to update nibi at round j, as it would have been done
by Mj , is denoted below by U i

j (j ∈ {1, . . . , 16}) and the matrix used to

update nibi at the final step is denoted by U i
final.

The implementation of a 4×12 binary matrix U is realized as follows.
U is split into three 4× 4 submatrices U [0], U [1], U [2] and the computa-
tion of U.T (x0, . . . , x11) becomes U.T (x0, . . . , x11) = U [0].T (x0, . . . , x3) ⊕
U [1].T (x4, . . . , x7) ⊕ U [2].T (x8, . . . , x11) where ⊕ corresponds to an XOR
on vectors of GF (2)4. Each U [l] is represented as a 4 × 4 look-up table,
for a size of 8 Bytes, and each XOR is seen as a 8× 4 look-up table, for a
size of 128 Bytes. Instead of considering 2 XOR of 8 inputs, a complexity
reduction is achieved by using 4 XOR of 3 inputs as the size is only of 4
Bytes (8 Bytes if we consider the 4× 4 look-up table as U [l]).

It leads to three 4× 4 encoded look-up tables and one 4× 4 encoded
look-up tables (for the XORs). Thus, one 4× 12 binary matrix is imple-
mented on 32 Bytes. Note that the same input/decoding strategy as for
γ is also respected: random bijections over 4 bits are used at each 4 bits
inputs and outputs of the tables.

By applying this method to all the U i
j (i ∈ {0, . . . , 31}, j ∈ {1, . . . , 16}∪

{final}), we obtain 32× 17× 4 look-up tables of 4× 4 size for an overall
size of 32× 17× 32 Bytes, i.e. 17408 Bytes.

In addition to the 4×4 input/output encodings, we also insert mixing
linear bijections to further disguise the representation of these matrices
(as introduced in [3] to hide the separation of a bit strings into nibbles).



For this aim, we randomly choose an invertible 12 × 12 matrix MBi
j

for each U i
j , and instead of implementing directly the 5 look-up tables

related to U i
j , we write U i

j as the product of the two matrices U i
j .MBi

j and

(MBi
j)

−1. The implementation of U i
j .MBi

j as look-up tables is realized

as explained above for U i
j and we add the implementation of the 12× 12

matrix (MBi
j)

−1 by following the same principle, i.e. splitting into nine 4×
4 submatrices with the associated XOR and the additional input/output
encodings. For one matrix (MBi

j)
−1, it gives 3 times the size of U i

j .MBi
j ,

i.e. 52224 Bytes.

With these representations of the matrices M1, . . . , M16, M ′, Γ and
hardwired π1 and π2, the total number of 4× 4 look-up tables is:

(MBi
j)

−1 : 32× 17× 12

U i
j .MBi

j : + 32× 17× 4

π2 ◦ Γ ◦ π1 : + 32× 16

This gives a total size of 73728 Bytes for all the 4× 4 look-up tables.

4.2 Choice of Encoding Functions

The above description is made with the choice of random bijections as
encoding functions. Although it is the classical strategy with static en-
codings, our aim is to renew the encoding functions after each execution
of the algorithm, which enables us to select bijective functions with a
simpler representation.

Note also that all the input/output encoding functions are not fully
independent because the output encoding function which acts on a nibble
at one step must be followed by its inverse as the input encoding functions
of the next operation on this nibble. In particular, as π1 and π2 operate
like permutation of bits between nibbles, the encoding functions have to
be taken accordingly. For an easy compatibility of the encodings with
these permutations, we design specific functions for the input and output
encoding which are before or after the application of π1 and π2, i.e. around
γ, at the output of the U i

j .MBi
j (for j ∈ {1, . . . , 16}) and at the input

of (MBi
j)

−1 (for j ∈ {2, . . . , 16} ∪ {final}). We design these encoding

functions f : GF (2)4 → GF (2)4 as an XOR with a random padding
cf = (cf,0, cf,1, cf,2, cf,3) – that is f(x) = x⊕cf – so that the inverse can be
evaluated bit by bit. For instance, given all the output encoding functions
g0
j , . . . , g

31
j of the matrices U0

j , . . . , U31
j at some round j, it enables us to

design π1-compatible input encoding functions f0
j , . . . , f31

j of the 32 look-
up tables for γ.



An example: The first look-up table for γ operates on the first nibble
of the state. This nibble after permutation of the state by π1 comes from
the bit 0 of nib0, the bit 1 of nib31, the bit 2 of nib27 and the bit 3 of nib30.
If gi

j(x) = x ⊕ (cgi
j ,0, cgi

j ,1, cgi
j ,2, cgi

j ,3), then f0
j is defined as f0

j (x) = x ⊕

(cg0
j ,0, cg31

j ,1, cg27
j ,2, cg30

j ,3). In the next section, we consider that encodings

for inputs of an XOR table are also chosen in this form. This enables us
to lighten further the architecture.

Remark 3. Note that in our grey-box context, we can relax constraints on
the encoding functions as the adversary has no direct access to the look-up
tables but only to their side channels. We here only have to periodically
renew these tables and a simple linear mask might be sufficient to this
purpose. Moreover, this simplifies the renewal (cf. end of Section 4.3).

4.3 Implementation Complexity in FPGAs

The FPGA architectures are based on Look-Up Tables (LUTs) which
have at least 4 inputs (LUT4). LUT4 are well suited to implement the
Noekeon algorithm as a 4× 4 look-up table is implemented by 4 LUT4s.
A first implementation consists in considering 32 parallel computations
of nibbles at each round as explained in section 4.1. Figure 1 represents
the corresponding architecture for one nibble path.

This gives a total of 36864 LUT4s for the whole function. This ar-
chitecture can be optimized by considering eight parallel processings of
four nibbles. Each bundle is composed of four nibbles

(nibi, nibi+8, nibi+16, nibi+24).

The architecture is composed of 8 bundle paths, a bundle path being
illustrated by Figure 2. An advantage of this architecture is that all output
encodings at the same level can be chosen independently thus leading to
resistance against a generalized HO-SCA adversary (cf. Section 2).

There is 44 4 × 4 look-up tables for each bundle path. Hence the
implementation requires a total of 23808 LUT4s for the whole Noekeon
implementation (22528 for the 16 rounds and 1280 for the last round).

An important complexity optimization is performed by serializing the
16 rounds calculation. Hence the same synchronized structure is used for
the 16 rounds. The robustness is not damaged if a specific care is taken,
as described in chapter 4.5. In this case 1408 LUT4s are required for the
round implementation and 1280 for the last round. If we consider the



XOR XOR XOR

XOR

4x4

4x4

4x4 4x4 4x4 4x4 4x4 4x4 4x4 4x4

4x4 4x4

4x4

MB
−1

nibi nibj nibk nibi nibj nibk nibi nibj nibk

U.MB

nibout

π2 ◦ Γ ◦ π1

Fig. 1. Architecture of the nibble path.

XOR XOR XOR XOR

4x4 4x4 4x4 4x4

4x4 4x4 4x4 4x4 4x44x4 4x4 4x4 4x4 4x4 4x4 4x4 4x4 4x4 4x44x4

4x44x44x44x44x44x44x44x44x44x44x44x44x44x44x44x4

XOR XOR XOR XOR

MB
−1

nib16 nib24nib8nib0 nib16 nib24nib8nib0 nib16 nib24nib8nib0 nib16 nib24nib8nib0

nibc nibdnibbniba nibc nibdnibbniba nibc nibdnibbniba nibc nibdnibbniba

niba nibb nibc nibd

nibout24nibout16nibout8nibout0

U.MB

π2 ◦ Γ ◦ π1

Fig. 2. Optimized architecture with Four-Nibbles bundle path.



128-bit register to store the intermediate results at each round, this gives
a total of 2816 FPGA cells of LUT4.

4.4 Feasibility in Current FPGAs

Most SRAM-based FPGAs (those from ALTERA, XILINX and Lattice
for instance) [21–23] have cells composed of LUT4 but recent families have
a more advanced cell structure. For instance the STRATIX II, III and
IV from ALTERA take advantage of the Adaptive LUT Module (ALM)
which could be configured as two independent LUT4. The VIRTEX 5
family from XILINX has six-input look-up (LUT6) which can output two
signals. Table 2 summarizes the occupation percentage in the SRAM-
based FPGA devices. Columns 4×4 and TOTAL indicate respectively
the number of cells for the 4×4 table and the total number of cells for
the proposed Noekeon implementation with the serial implementation.
In the rightmost column the occupancy rate is indicated for the biggest
devices. It remains relatively low and proves the white box feasibility of
the Noekeon implementation in most FPGA devices.

Table 2. Occupation rate

Device cell type 4×4 TOTAL max cell occ. rate

CYCLONE II LUT4 4 2816 68416 4.1%
CYCLONE III LUT4 4 2816 119088 2.3%

STRATIX LUT4 4 2816 79040 3.6%
STRATIX II ALM 2 1408 71760 2%
STRATIX III ALM 2 1408 135200 1%
STRATIX IV ALM 2 1408 212480 0.56%

LATTICE ECP2 LUT4 4 2816 68000 4.1%
LATTICE SC/M LUT4 4 2816 115000 2.4%

SPARTAN3 LUT4 4 2816 74880 3.8%
VIRTEX2 PRO LUT4 4 2816 99216 2.8%

VIRTEX4 LUT4 4 2816 200448 1.4%
VIRTEX5 LUT6 2 1408 207360 0.7%

4.5 Dynamic implementation for encoding renewal

The tables are updated periodically in order to change the masking func-
tions fl,in and fl,out (cf. Section 2). Moreover they have to be changed
after each ciphering round for the serial implementation in order to keep
a high robustness level . In FPGA a solution could be to reconfigure it



either completely or partially (only for the XILINX devices) [23] but the
time needed for reconfiguration would reduce significantly the ciphering
rate. Another solution – as a trade-off between practical and theoretical
security – is to add extra pins to input random number values issued from
a Random Number Generator (RNG) or ideally a True RNG (TRNG) [8]
based on non deterministic physical phenomenon. The extra RNG pins
do not add logic in some FPGAs as in ALTERA STRATIX II, III and
IV [21]. The cost to implement a 4×4 look up tables is two ALMs (Adap-
tive Logic Modules) as shown in Table 2. If two extra pins for random
numbers are added, there is no supplementary cost as the ALM is able
to implement two LUT6 having four common inputs, as illustrated in
Figure 3.

a
b
c
d

LUT4

LUT4

LUT6

LUT6
a
b
c
d

s0

s1 s1

s0

RNG0
RNG1

Fig. 3. Using two RNG pins does not add ALMs.

The global architecture is shown in Figure 2 with its 5 layers of look
up tables. Hence there is a need of 5 TRNGs, one for each layer, the same
RNG being used for fl,in and fl,out of adjacent look up tables as shown
in Figure 4.

2 bits of entropy per nibble for encoding renewal allows the generation
of 264×5 different implementations per round. This implies a TRNG which
has too stringent speed requirement to be feasible. A complexity reduction
is to apply 2 bits of TRNG for a bundle or group of 4 nibbles. One bit
is used for fl,in and the other for fl,out. In this case the TRNG has to
produce a total of 40 bits (One bit for each of the 5 layers, multiplied by
8 bundles). The internal code pointed by each bit value can change by
static or dynamic reconfiguration. In order to reduce the TRNG speed, the
random number can generate a seed at the beginning of every ciphering



clk

round
not at the same

in

output to last stage

fl,in

fl,out

4× 4 LUTs

fl,in

fl,out

4× 4 LUTs

U.MB

MB−1

RNG1

RNG2

RNG3

RNG4

RNG5

fl,in

fl,out

4× 4 LUTs π2 ◦ Γ ◦ π1

fl,in

fl,out

4× 4 LUTs

fl,in

fl,out

4× 4 LUTs

Fig. 4. Architecture with 5 layers of LUTs.



operation. At every round a specific sequence transforms the coding and
allows to change the 40-bit RNG word. This RNG change allows to keep
a high robustness level as the hamming distance between two rounds
remains random. This RNG transformation can be based on a Non-Linear
operation like a set of AES substitution boxes between two rounds. Five
AES S-Boxes are needed in case of 40-bit TRNG seed. A padding stage
is also necessary to feed correctly the encoding functions as explained in
section 4.2. Figure 5 shows the general architecture of a Noekeon loop
with the RNG and its associated processing.

5 SBoxes
NL

Padding

RNG
init

40 bits

init

5 layers
LUTs

CLK CLK

Fig. 5. RNG processing Architecture.

If the clock frequency fclock is 50 MHz the TRNG data rate is of
40 × fclock

17 = 118Mbps. The number 17 comes from the 16 rounds plus
the final Noekeon step. Fast TRNGs like [8] can then be used for dynamic
implementations of Noekeon.

5 Conclusion

In this paper, we address the challenge of how to protect the content of a
block cipher against reverse engineering by side-channel attacks. To this
end, we use the look-up tables representation which prevail in the domain
of white-box cryptography. When these tables are periodically renewed -
while keeping the same functionality - we can reduce to few the informa-
tion given to an adversary about the underlying algorithm. We describe a
first proof of concept of our ideas as well as a preliminary implementation
feasibility inside a FPGA of the block cipher Nokeon. The strategy could



be applied to other similar block ciphers as well. Nonetheless, the impact
on a best-known cipher needs to be evaluated.

The look-up table renewal strategy based on TRNG is a key pro-
tection feature. Some more work is still needed to validate the exact
implementation cost and tune the level of protection provided by our
solution according to the complexity. Other ways as on the fly FPGA
reconfiguration in XILINX FPGAs could also be investigated. In particu-
lar, the impacts on the efficiency and the exact overhead imposed by our
dynamic reconfiguration must be measured on real implementations. Fur-
ther works include also SCA through experiments to verify the efficiency
of the countermeasure and to compare it to existing counter measures
against SCARE attacks.

References

1. Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a White
Box AES Implementation. In Helena Handschuh and M. Anwar Hasan, editors,
Selected Areas in Cryptography, volume 3357 of LNCS, pages 227–240. Springer,
2004.

2. Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
White-Box DES Implementation for DRM Applications. In Security and Privacy
in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, volume 2696
of LNCS, pages 1–15. Springer, 2002.

3. Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-
Box Cryptography and an AES Implementation. In Kaisa Nyberg and Howard M.
Heys, editors, Selected Areas in Cryptography, volume 2595 of LNCS, pages 250–
270. Springer, 2002.

4. Christophe Clavier. An Improved SCARE Cryptanalysis Against a Secret A3/A8
GSM Algorithm. In ICISS, volume 4812 of LNCS, pages 143–155. Springer, 2007.

5. Jean-Sébastien Coron. A New DPA Countermeasure Based on Permutation Tables.
In SCN’08, volume 5229 of LNCS, pages 278–292.

6. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie
Proposal: NOEKEON, 2000.

7. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. On
Noekeon, no!, 2001.

8. J-L Danger, S. Guilley, and P. Hoogvorst. High speed true random number gener-
ator based on open loop structures in FPGAs. Elsevier Microelectronics Journal,
doi: 10.1016/j.mejo.2009.02.004 2009.

9. Rémy Daudigny, Hervé Ledig, Frédéric Muller, and Frédéric Valette. Scare of the
des. In ACNS, pages 393–406, 2005.

10. Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis of
White Box DES Implementations. In Selected Areas in Cryptography, 14th Inter-
national Workshop, SAC 2007, volume 4876 of LNCS, pages 278–295. Springer,
2007.

11. S. Guilley, Ph. Hoogvorst, and R. Pacalet. Differential Power Analysis Model and
some Results. In Proceedings of WCC/CARDIS, pages 127–142, 2004.



12. Matthias Jacob, Dan Boneh, and Edward W. Felten. Attacking an Obfuscated
Cipher by Injecting Faults. In Security and Privacy in Digital Rights Management,
ACM CCS-9 Workshop, DRM 2002, volume 2696 of LNCS, pages 16–31. Springer,
2002.

13. Marc Joye, Pascal Paillier, and Berry Schoenmakers. On second-order differential
power analysis. In Josyula R. Rao and Berk Sunar, editors, CHES, volume 3659
of LNCS, pages 293–308. Springer, 2005.

14. Lars R. Knudsen and Havard Raddum. On Noekeon, 2001.
15. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO, volume

1666 of LNCS, pages 388–397.
16. Hamilton E. Link and William D. Neumann. Clarifying Obfuscation: Improving

the Security of White-Box DES. In ITCC (1), pages 679–684. IEEE Computer
Society, 2005.

17. Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Resis-
tant Software. In CHES, LNCS, pages 238–251. Springer-Verlag, 2000.

18. Wil Michiels, Paul Gorissen, and Henk D.L. Hollmann. Cryptanalysis of a Generic
Class of White-Box Implementations. In Selected Areas in Cryptography 2008,
15th International Workshop, SAC 2008, 2008.

19. Roman Novak. Side-channel attack on substitution blocks. In ACNS, pages 307–
318, 2003.

20. Denis Réal, Vivien Dubois, Anne-Marie Guilloux, Frédéric Valette, and M’hamed
Drissi. Scare of an unknown hardware feistel implementation. In CARDIS, pages
218–227, 2008.

21. Altera FPGA designer: http://www.altera.com/.
22. Lattice FPGA designer: http://www.latticesemi.com/.
23. Xilinx FPGA designer: http://www.xilinx.com/.
24. Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis of

White-Box DES Implementations with Arbitrary External Encodings. In Selected
Areas in Cryptography, 14th International Workshop, SAC 2007, volume 4876 of
LNCS, pages 264–277. Springer, 2007.


