
Attacks on Round-Reduced BLAKE

Li Ji and Xu Liangyu

Sony China Research Laboratory
{Ji.Li, Liangyu.Xu}@sony.com.cn

Abstract. BLAKE is a new hash family proposed for SHA-3. The core
of compression function reuses the core function of ChaCha. A round-
dependent permutation is used as message schedule. BLAKE is claimed
to achieve full diffusion after 2 rounds. However, message words can be
controlled on the first several founds. By exploiting properties of message
permutation, we can attack 2.5 reduced rounds. The results do not threat
the security claimed in the specification.

1 Description of BLAKE

The hash family of BLAKE [1] includes four instances BLAKE-28, BLAKE-32,
BLAKE-48, BLAKE-64.

BLAKE-28 and BLAKE-32 operate on 32-bit words and output 224 bits and
256 bits digest. BLAKE-48 and BLAKE-64 operate 64-bit words and output 384
bits and 512 bits digest.

We give a short description of BLAKE-32 with the same notations in [1].
The compression function of BLAKE-32 takes four values as inputs:

– A previous chain value (8 words) ht−1 = ht−1
0 , · · · , ht−1

7

– A message block (16 words) m = m0, · · · ,m15

– A salt (4 words) s = s0, · · · , s3
– A counter (2 words) t = t0, t1

The compression function is written as:

ht = compress(ht−1,m, s, t)

A 16-word state v0, · · · , v15 is initialized such that different inputs produce
different initial states, which is represented as 4× 4 matrix as follows:

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←


h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t1 ⊕ c5 t0 ⊕ c6 t1 ⊕ c7


After initialized, the state v is transformed by a round function, which com-

putes:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v11) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)



2

Where, Gi(a, b, c, d) is defined as

a← a+ b+ (mσr(2i) ⊕ cσr(2i+1)) (1)

d← (d⊕ a)≪16 (2)
c← c+ d (3)
b← (b⊕ c)≪12 (4)
a← a+ b+ (mσr(2i+1) ⊕ cσr(2i)) (5)

d← (d⊕ a)≪8 (6)
c← c+ d (7)
b← (b⊕ c)≪7 (8)

The same permutation σr(j) (0 ≤ j < 16) for message words and round
constants refers to Table 1.

Table 1. Message and Constants Permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

BLAKE-32 is recommended to iterates 10 rounds.
After the rounds sequence, the new chain value is extracted with the new

state, the salt and the feedforward of the initial chain value.

ht0 ← ht−1
0 ⊕ s0 ⊕ v0 ⊕ v8

ht1 ← ht−1
1 ⊕ s1 ⊕ v1 ⊕ v9

ht2 ← ht−1
2 ⊕ s2 ⊕ v2 ⊕ v10

ht3 ← ht−1
3 ⊕ s3 ⊕ v3 ⊕ v11

ht4 ← ht−1
4 ⊕ s0 ⊕ v4 ⊕ v12

ht5 ← ht−1
5 ⊕ s1 ⊕ v5 ⊕ v13

ht6 ← ht−1
6 ⊕ s2 ⊕ v6 ⊕ v14

ht7 ← ht−1
7 ⊕ s3 ⊕ v7 ⊕ v15



3

2 Observations on the Message Permutation of BLAKE

The round function of BLAKE reuses the core function of ChaCha [2]. One
BLAKE-32 round is equated to two ChaCha rounds in [1]. Each round of BLAKE
is composed of eight calls to the G function. Each round of ChaCha requires four
calls of G. One BLAKE-32 round is equated to two ChaCha rounds in [1]. We
call four calls of G like ChaCha’s one round as a half round of BLAKE.

Following, we show how to control some parts of the output hash value by
exploiting the characteristics on the message permutation.

2.1 Message Modification on 1.5 rounds

On the first 1.5 rounds, we have enough freedom to control two words of the
output hash value of the compression function.

Observation 1 It is obvious that we can control one of the four output variables
on the G function by modifying the value of mσr(2i+1).

According to the order of message permutation, given random message words
and fixed initial value as inputs, if we modify the value of m9, we can control the
value of state words v0 after G4 on the first one round. Similarly, if we modify
the values of m11, m13 and m15, the values of state words v12, v8 and v4 can be
controlled after G5, G6 and G7 on the first one round. Since all the inputs to
G0 on the first 1.5 rounds can be controlled, we always can control the output
of G0.

Table 2 lists these relations.

Table 2. Message Modification on the First 1.5 rounds

Init v0, v4, v8, v12 v1, v5, v9, v13 v2, v6, v10, v14 v3, v7, v11, v15

R 0.5 G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)

R 1 G4(v̂0, v5, v10, v11) G5(v1, v6, v11, ˆv12) G6(v2, v7, v̂8, v13) G7(v3, v̂4, v9, v14)
m̂9 m̂11 m̂13 m̂15

R 1.5 G0(v̂0, v̂4, v̂8, ˆv12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
m̂9 m̂13

That means we can control the values of h′0 and h′4 after the the first 1.5
rounds after the finalization.

h′0 ← ht−1
0 ⊕ s0 ⊕ v̂0 ⊕ v̂8

h′4 ← ht−1
4 ⊕ s0 ⊕ v̂4 ⊕ ˆv12

2.2 Message Modification on 2 rounds

Observation 2 When modifying the initial value ht−1
i (i = 0, · · · , 3), we can

keep these state words of v after the Gi function unaffected by modifying the
message words mσ0(2i).



4

Table 3 shows how to control the hash value h′0 by modifying the initial value
word h0 and message word m0 together.

Table 3. Message Modification on the First 2 rounds

Init v̂0, v4, v8, v12 v1, v5, v9, v13 v2, v6, v10, v14 v3, v7, v11, v15

ĥt−1
0

R 0.5 G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
m̂0

R 1 G4(v0, v5, v10, v11) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)

R 1.5 G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)

R 2 G4(v0, v5, v10, v11) G5(v̂1, v̂6, ˆv11, ˆv12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)
m̂0

Because the values of v0 and v8 are unaffected, according to the finalization:
h′0 ← ĥt−1

0 ⊕ s0⊕ v0⊕ v8, the output h′0 is changed by the value of ĥt−1
0 directly.

We can control the word of hash value h′0 after 2 rounds.

2.3 Message Modification on 2.5 rounds

By using message word m0 and m2 together, we can control the output value of
h′0 after 2.5 rounds.

Firstly, we select the value of ht−1
0 with the same method in the section 2.2.

Then, we can choose the value of m2 to control the value of v12 unaffected on
the second round according to the observation 2. The affection of changing m2

on the first 0.5 round will be patched by modifying the value of ht−1
1 . Table 4

shows the details.

Table 4. Message Modification on the First 2.5 rounds

Init v̂0, v4, v8, v12 v̂1, v5, v9, v13 v2, v6, v10, v14 v3, v7, v11, v15

ĥt−1
0 ĥt−1

1

R 0.5 G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
m̂0 m̂2

R 1 G4(v0, v5, v10, v11) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)

R 1.5 G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)

R 2 G4(v0, v5, v10, v11) G5(v̂1, v̂6, ˆv11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)
m̂0 m̂2

R 2.5 G0(v0, v4, v8, v12) G1(v̂1, v̂5, v̂9, ˆv13) G2(v̂2, v̂6, ˆv10, ˆv14) G3(v3, v7, v11, v15)
m̂0 m̂2

As the values of v0, v4, v8 and v12 are unaffected after the second round,
the output of G0 on the 2.5 round will also keep unaffected. According to the
finalization: h′0 ← ĥt−1

0 ⊕ s0 ⊕ v0 ⊕ v8, the word of h′0 is changed by the value of
ĥt−1

0 directly. We can control the word of hash value h′0 after 2.5 rounds.



5

Since we can control some words of the output hash value, the round reduced
variants of BLAKE can be attacked.

3 Attacks of BLAKE

3.1 Attacks on 1.5 rounds of BLAKE

Firstly, we explain how to do preimage attack and 2nd preimage attack based
on the observation in section 2.1.

Given fixed initial value ht−1 = ht−1
0 , · · · , ht−1

7 , hash value ht = ht0, · · · , ht7
and relevant salt s and counter t, we can do following calculations:

1. Set message words m = m0, · · · ,m15 randomly.
2. Set v(1.5)

0 randomly (where v(r)
i denotes the i-th word value of state v on

r-th round), calculate v(1.5)
8 according to v(1.5)

0 ⊕ v(1.5)
8 = ht0 ⊕ ht−1

0 ⊕ s0.
3. Set v(1.5)

4 randomly , calculate v(1.5)
12 according to v1.5

4 ⊕v
(1.5)
12 = ht4⊕ht−1

4 ⊕s0.
4. Calculate the reverse function of G0 and get

((v(1)
0 , v

(1)
4 , v

(1)
8 , v

(1)
12 )) = G−1

0 (v(1.5)
0 , v

(1.5)
4 , v

(1.5)
8 , v

(1.5)
12 ).

5. Calculate v′(1) = G0,···,7(ht−1,m, s, t) and record all immediate values of
state v in each step of G4,···,7.

6. Modify m9, m11, m13 and m15. The right m9 can be calculated from: m̂9 =
(a+b)⊕(v′(1)0 ⊕v(1)

0 )⊕c8, where a and b are relevant immediate values of G4

on the state v(1). Similarly, the right m̂11, m̂13 and m̂15 can be calculated
according to immediate values of G5, G6 and G7. Then the hash value h′

will be changed into h′0 = ht0 and h′4 = ht4.
7. Try above steps, until other 6 words hash value equate to the given value on
ht.

If considering of the padding scheme of BLAKE, m15 will be determined by
the length of message. We can modify message words m1, m3, m5 and m7 on
the 0.5 round instead. Then we can control v4 by controlling the inputs of G7.
h′0 and h′4 also can be controlled.

As a result, we get the preimage of given hash value. The complexity of the
preimage attack need the time complexity of 26×32 = 2192 for BLAKE-32. The
attack need a fixed size memory to store the immediate values of state, which
can be ignored. We can construct 2nd preimage attack by the similar method
and the same complexity.

Considering of collision attack, we can fix the two words of hash value h′0
and h′4 in advance. For the same initial values ht−1, we can find messages m
to output the same values on h′0 and h′4. Then we can use memoryless collision
searching to find collision on other 6 words of hash value. The collision attack
requires the time complexity of 23×32 = 296 for BLAKE-32 and trivial memory.



6

3.2 Attacks on 2 rounds of BLAKE

Firstly, we explain the free-start attacks on 2 rounds of BLAKE, then we extend
the free-start attacks to the situation with given initial values.

Given hash value ht = ht0, · · · , ht7, initial value ht−1, relevant salt s and
counter t, to find free-start preimage, we do following steps :

1. Set message words m = m0, · · · ,m15 randomly. (If consider the padding
scheme, m13, m14 and m15 should be set according to the padding scheme.)

2. Calculate the hash value of 2 rounds: h′ = compress2×R(ht−1,m, s, t).
3. Set the value of ĥt−1

0 according to ĥt−1
0 = ht−1

0 ⊕ h′0 ⊕ ht0.
4. Calculate the value of m̂0 by reversing G0 on the first 0.5 round:

ht−1
0 + ht−1

4 + (m0 ⊕ c1) = ˆht−1
0 + ht−1

4 + (m̂0 ⊕ c1)

⇒ m̂0 = (ht−1
0 + (m0 ⊕ c1)− ˆht−1

0 )⊕ c1.

5. Modify m0 to m̂0 and calculate h′ = compress2×R(h, m̂, s, t), then we can
get h′0 = ht0 again.

6. Try above steps, until left 7 words hash value equate to the given value on
ht.

As a result, we find the free-start preimage of given hash value. The free-start
preimage attack requires the time complexity 27×32 = 2224 for reduced 2 rounds
BLAKE-32 and trivial memory. Similarly, we can do free-start 2nd preimage
attack and free-start collision attack on reduced 2 rounds of BLAKE-32.

Considering of the version of BLAKE without salt, the free-start (2nd) preim-
age attack can be extended to (2nd) preimage attack by the method in [3]. The
attacks require the time complexity of 2241 and trivial memory.

3.3 Attacks on 2.5 rounds of BLAKE

On 2.5 rounds of BLAKE, we modify message words m0, m2 and initial value
words ht−1

0 and ht−1
2 . Given hash value ht = ht0, · · · , ht7 and relevant salt s and

counter t, do following calculations:

1. Set message words m = m0, · · · ,m15 randomly. (If consider the padding
scheme, m13, m14 and m15 should be set according to the padding scheme.)

2. Calculate the hash value of 2.5 rounds: h′ = compress2.5×R(ht−1,m, s, t)
and record the immediate value of v(2)

12 after G5 on the second round.
3. Set the value of ĥt−1

0 to ˆht−1
0 = ht−1

0 ⊕ h′0 ⊕ ht0.
4. Calculate the value of m̂0 by reversing G0 on the first 0.5 round: m̂0 =

(ht−1
0 + (m0 ⊕ c1)− ĥt−1

0 )⊕ c1.
5. Modify m0 to the values of m̂0 (ht−1

0 is set to the value of ĥt−1
0 ), calculate

G5 on the second round again and get new value of v′12.



7

6. Modify m2 to m̂2 according to:

v′12 = a′ + b′ + (m2 ⊕ c3)
v12 = a′ + b′ + (m̂2 ⊕ c3)

⇒ m̂2 = (v12 − v′12 + (m2 ⊕ c3))⊕ c3

7. Modify the value of ht−1
2 to ĥt−1

2 = ht−1
2 + (m2 ⊕ c3)− (m̂2 ⊕ c3).

8. Try above steps, until left 7 words of h′ equate to the given value on ht.

As a result, we get the free-start preimage of given hash value. The attacks
also can be extended to free-start 2nd preimage and free-start collision attack
with the same complexity in the section 3.2.

3.4 Complexities of Attacks

These attacks also can be used to attack other versions of BLAKE. Table 5
lists the complexities of these attacks. Appendix A explains how to use similar
method to attack one of toy versions of BLAKE [4].

Table 5. Attacks complexities on reduced round of BLAKE

Version Rounds free-start free-start collision (2nd) preimagecollision (2nd) preimage
1.5 rounds 280 2160 280 2160

BLAKE-28 2 rounds 296 2192 - 2209

2.5 rounds 296 2192 - 2209

1.5 rounds 296 2192 296 2192

BLAKE-32 2 rounds 2112 2224 - 2241

2.5 rounds 2112 2224 - 2241

1.5 rounds 2128 2256 2128 2256

BLAKE-48 2 rounds 2160 2320 - 2355

2.5 rounds 2160 2320 - 2355

1.5 rounds 2192 2384 2192 2384

BLAKE-64 2 rounds 2224 2448 - 2481

2.5 rounds 2224 2448 - 2481

4 Conclusion

Message permutation is a light weight message schedule and easy to implement.
It has been used to design many compression functions for iterated hash.

In this paper, we presented attacks on round-reduced BLAKE by message
modification techniques. We analyzed the properties of round function and mes-
sage permutation. Relevant attacks on reduced rounds were proposed. These
attacks show BLAKE has no enough diffusion in 2.5 rounds.



8

References

1. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: Sha-3 proposal blake. Sub-
mission to NIST (2008) http://131002.net/blake/blake.pdf.

2. Bernstein, D.J.: Chacha, a variant of salsa20 (2008) http://cr.yp.to/chacha.html.
3. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptogra-

phy. CRC Press (1996)
4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: Toy versions of blake (2009)

http://131002.net/blake/toyblake.pdf.

A Attacks on Round-Reduced FLAKE

FLAKE [4] is one the toy versions of the hash family of BLAKE. The compression
function of FLAKE makes no Feedforward, so the finalization of FLAKE-32 is
just:

ht0 ← v0 ⊕ v8
ht1 ← v1 ⊕ v9
ht2 ← v2 ⊕ v10
ht3 ← v3 ⊕ v11
ht4 ← v4 ⊕ v12
ht5 ← v5 ⊕ v13
ht6 ← v6 ⊕ v14
ht7 ← v7 ⊕ v15

Observation 3 For FLAKE, given initial value ht−1 = ht−1
0 , · · · , ht−1

7 and mes-
sage m = m0, · · · ,m15, We can choose 232−1 new values of m0 and modify m2,
ht−1

0 and ht−1
2 to keep the output word of hash value ht0 unchanged after 2.5

rounds.

The observation is obvious according to the finalization of FLAKE-32 and
the previous 2.5 rounds message modification.

Following we show how to construct free-start preimage attack on 2.5 re-
duced rounds by the observation. Other attacks can be constructed with similar
method.

Given hash value ht = ht0, · · · , ht7, we do calculations as follows:

1. Set ht−1 and message m = m0, · · · ,m15 randomly, try to find one (ht−1, m)
to make the output word h′0 = v0 ⊕ v8 = ht0. That needs to try about 232

times.
2. Searching 232 − 1 values of m0 and modify m2, ht−1

0 and ht−1
2 , then we find

232 − 1 new values of (ht−1, m) to output the h′0 = ht0. That means we can
find one (ht−1, m) to get one word hash value ht0 with the cost of O(1).

3. For left 7 words of hash value, repeat above steps 2196 times to find 2224

values of (ht−1, m). We can expect to find one value of (ht−1, m) to output
hash value ht.



9

The free-start preimage attack requires 2224 calculations and trivial memory.
We also can try to find inputs to make h′0, h′3, h′4 and h′7 equate to given

hash value words in the first step, then do message modification and find enough
inputs to get preimage. That requires the same complexity.

Similarly, we can free-start 2nd preimage attack, free-start collision attack.
Then free-start preimage and 2nd preimage attack can be extended to preimage
and 2nd preimage attack.

The attack results depend on the message permutation. For other toy versions
of BLAKE, the attacks will fail if the message permutation is changed into
identity.


