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Abstract
EDON-R is one of the candidate hash functions for the ongoing NIST competition for the next cryptographic hash standard

called SHA-3. Its construction is based on algebraic properties of non-commutative and non-associative quasigroups of orders
2256 and 2512. In this paper we are giving some of our results in investigation of the randomness and regularity of reduced
EDON-R compression functions over quasigroups of order 28 and 216. Our experiments show that the Bellare-Khono balance
of EDON-R compression function is high. Actually, for the reduced EDON-R with quasigroups of order 28 we show that
the compression function is perfectly balanced, while with quasigroups of order 216 the Belare-Khono balance is µ(R16) =
0.99985.
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1 Introduction
Recently Gligoroski et.al submitted the hash function EDON-R [5] to the NIST hash competition [2]. With speeds of 5.77
cycles/byte and 3.15 cycles/byte on amd64 1401MHz Intel Core 2 Duo for EDON-R256 and EDON-R512 respectively, EDON-
R is the fastest hash function submitted to the competition [1]. This has generated a lot of attention in the cryptographic
community and much effort has therefore been put into breaking EDON-R. So far there have been various limited results.
Klima [7] showed the possibility of 2K multicollisions requiring K ∗ 2n/2 computations and access to 2n/2 units of memory.
Khovratovich et.al [6] noted the possibility of free-start collisions and used this to launch a preimage attack on EDON-R
requiring 22n/3 computations and access to 22n/3 units of memory. Later Gligoroski and Ødegård [4] disputed the validity of
the model in which the attack of Khovratovich et. al is compared to generic attacks. The latest result on EDON-R by Leurent
[8] showed the possibility of key recovery using 25n/8 operations when EDON-R is used as a special secret prefix MAC. Note
that all identified weaknesses of EDON-R are only present in the free start collision case. In general, the problem of free start
collisions can be addressed for instance by the Davies-Meier method for feed-forwarding of the chaining value.

The design of EDON-R is a double piped iterated compression function. As part of our cryptanalysis of the EDON-R hash
function we present here results from tests of randomness performed on EDON-R compression functions reduced in size.

Using the same theory as [5], we constructed an 8-bit EDON-R compression function. This construction is small enough
that we can test all 232 possible inputs of messages and chaining values. The distribution of the output was then compared to
what is expected from an ideal random function. In addition we tested to see if the function is regular.

Similarly, we also constructed a 16-bit EDON-R compression function. For 300 different chaining values chosen at random,
we tested all 232 possible message inputs. The distribution of the output was then compared to what is expected from an ideal
random function. We also used the results to compute the balance of the 16-bit compression function.

This paper is organized as follows. We first give the required Background in Section 2. In Section 3 and Section 4 we
construct and analyze 8-bit and 16-bit EDON-R respectively. Finally Section 5 concludes the paper.

2 Background
In this section we give the required mathematical background for this paper. The underlying structure of EDON-R are quasi-
groups of order 2kw where kw = 256 and 512 for EDON-R-256 and EDON-R-512 respectively.
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Figure 1: Schematic representation of the function Rkw. The diagonal arrows can be interpreted as quasigroup operations
between the source and the destination, and the vertical or the horizontal arrows as equality signs "=".

Definition 1 A quasigroup (Q, ∗) is an algebraic structure consisting of a nonempty set Q and a binary operation ∗ : Q2 → Q
with the property that each of the equations

a ∗ x = b
y ∗ a = b

(1)

has unique solutions x and y in Q.

The compression function Rkw of EDON-R is a series of quasigroup operations of the form

X ∗kw Y = π1,kw(π2,kw(X) + π3,kw(Y)), (2)

where the permutations πi,kw treat X,Y as vectors of k = 8 words of size w = 32, 64 bits. The permutation π1,kw is a simple
reordering of the variables. The permutations π2,kw and π3,kw are defined from two orthogonal Latin squares of size k = 8
(the same size as the vectors). For a detailed explanation of how these permutations are defined from the Latin squares we refer
the reader to [5].

Definition 2 A Latin square of size k is an k×k-matrix whose elements are the numbers 0, . . . , k−1 and each number appears
exactly one time in each row and each column.

The compression function is defined by repeated use of the quasigroup operation as shown in Figure 1. This gives the
following formula for the chaining values (B0,B1)

Rkw(C0,C1,A0,A1) = (B0,B1) (3)

where

B0 = A0 ∗ ((C1 ∗ (A1 ∗A0)) ∗C0)

B1 = (A0 ∗ ((C1 ∗ (A1 ∗A0)) ∗C0))∗
(((C1 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1))∗
((C1 ∗ (A1 ∗A0)) ∗C0)). (4)

Definition 3 A function is said to be regular if every possible output has 2m preimages for some m.

In [3] Bellare and Kohno looked at the connection between the “amount of regularity” of a hash function and the general
2n/2 bound for birthday attacks on hash functions of size n. Their conclusion was that 2n/2 was the lower bound only if the
hash function was regular, and that the actual lower bound can be significantly less depending on the regularity of the hash
function. Bellare and Khono introduced balance as a measure of regularity and used its properties to prove the relation between
balance and the expected number of trials in the birthday attack.
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L1 =




0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


 L2 =




0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2




Table 1: Two mutually orthogonal Latin squares used to define the permutations π2,8 and π3,8

Quasigroup operation of order 28

Input: X = (X0, X1, X2, X3) and Y = (Y0, Y1, Y2, Y3)
where Xi and Yi are 2–bit variables.
Output: Z = (Z0, Z1, Z2, Z3) where Zi are 2–bit variables.
Temporary 2–bit variables: T0, . . . , T7.

1.
T4 ← ROTL0(0x1 + X0 + X1 + X2;
T5 ← ROTL1( X0 + X1 + X3;
T6 ← ROTL0( X0 + X2 + X3;
T7 ← ROTL1( X1 + X2 + X3;

2.
T0 ← ROTL0(0x2 + Y0 + Y2 + Y3;
T1 ← ROTL1( Y1 + Y2 + Y3;
T2 ← ROTL0( Y0 + Y1 + Y2;
T3 ← ROTL1( Y0 + Y1 + Y3;

3.
Z3 ← T7 + T1;
Z2 ← T6 + T0;
Z0 ← T5 + T2;
Z1 ← T4 + T3;

Table 2: An algorithmic description of the quasigroup operation of order 28.

Definition 4 Let h : R → D be a function whose domain D and range R = {R1, . . . , Rr} have sizes d, r ≥ 2, respectively.
For i ∈ {1, . . . , r} let di = |h−1(Ri)| denote the size of the pre-image of Ri under h. The balance of h, denoted µ(h), is
defined as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]
(5)

where logr(·) denotes the logarithm in base r.

Note that Bellare and Khono showed that a Merkle-Damgård transform does not necessarily preserve balance. This means
that in addition to the balance of the compression function, the balance of the whole hash function should also be investigated
[3].

3 Analysis of 8-bit EDON-R
To test some of the properties of the functionRkw we constructed a small version using the same theory. Setting the size of the
vectors to w = 4 and the size of the words to k = 2, an 8-bit version was constructed using the two orthogonal Latin squares in
Table 1. Alternating between left rotation of 0 and 1 we arrived at the quasigroup operation in Table 2

One notable difference between this quasigroup operation and the ones defined in [5] is the missing XOR parts. The reason
for this difference is that here there is only one row below the line in the Latin squares used to define the permutations. So
instead of XORing the variables, they are permuted according to the rows (3, 2, 1, 0) and (1, 0, 2, 3).

3.1 Experiments and results for 8-bit EDON-R
We have now constructed a reduced EDON-R compression function R8 : 232 → 216 which is small enough to exhaustively go
trough all possible input values. To test some of the properties of this function we performed the following two experiments.
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l Min Max Mean IRF Difference %
0 23285 24108 23694,53 24109.16 1.72%
1 24007 25102 24538.69 24109.53 -1.78 %
2 11902 12624 12251.78 12054.77 -1.63 %
3 3704 4142 3936.85 4018.19 2.02 %
4 792 1046 919.00 1004.52 8.51 %
5 117 224 167.37 200.89 16.69 %
6 9 47 24,46 33.48 26.94 %
7 0 12 2.99 4.78 37.51 %
8 0 4 0.30 0.60 50.17 %
9 0 3 0.027 0.066 59.56 %
10 0 1 0.0015 0.0066 77.94 %
≥ 11 0 0 0 0.00066 100.00 %

Table 3: The distribution of the image of R8 for all possible pairs of chaining values. The second last columns show what
is expected for an ideal random function (IRF), while the first 3 columns show the result for R8. The last column show the
difference in percent between the IRF and the mean of R8.

Experiment 1 The first test we performed was on the number of collisions of the compression function. Holding the chaining
values (C0,C1) constant, we used all possible pairs (M0,M1) of messages as input to the compression function.

R8(C0,C1,M0,M1) = (B0,B1) (6)

The output (B0,B1) represented as a number between 0 and 216 − 1 was then tallied with respect to collisions. That is, we
counted the number of elements mapped to 0 times, the number of elements mapped to 1 times and so on. This was done for
all possible pairs of chaining values. The result was then compared to what is expected for an ideal random function (IRF).

IfR8 is an IRF each element in the image should be mapped to by the probability p = 2−16. This means that the an element
will be mapped to l times out of n with probability

P (l) =
(

n

l

)
pk(1− p)n−l, (7)

where n = 216. This means that expected number of elements mapped to l times is nP (l).

Result The result from this experiment is listed in Table 3 and shown in Figure 2. From the table we see that even the very
reduced R8 function has a distribution similar to an IRF. For l = 0, 1, 2, 3 the results are good with at most 2% difference from
an IRF. However the difference rapidly grows for bigger l. For all l the 95% confidence interval for the mean was outside what
is expected for an IRF. This means that the difference between R8 and an IRF is statistically significant. We also noticed some
other non-random behavior. Sorting the result according to the first chaining value C0 we see that all occurrences of 9 and 10
collisions are centered around certain values of C0. The same is not true if we sort with respect to C1. This means the first
chaining value has bigger influence on the final output then the second. Looking at the construction of the compression function
in Figure 1 this result is of course expected since the first chaining value is introduced earlier in the computation.

Experiment 2 The second test we performed was on the number of pre-images each element has under the compression
function. We exhaustively went trough all 232 possible input values and looked at how many times each element in the image
was mapped to.

Result The result from this experiment was that each element was mapped to exactly 216 times. This means that the function
R8 is regular according to Definition 3.

4 Analysis of 16-bit EDON-R
We also constructed a 16-bit version of Rkw by setting the size of the vectors to k = 8 and the wordsize to w = 2. For this
construction we used the same Latin squares as in the construction of EDON-R256 and 512. This means that the algorithmic
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Figure 2: A bar chart comparing the binomial distribution of an IRF with R8. The x-axis is how many times, l, an element is
mapped to, while the y-axis is the logarithm of how many elements is mapped to l times. The first bar is the IRF, the second
bar is the mean of R8, while the third and fourth bar are the minimum and maximum of R8 respectively.

description of the quasigroup operation of order 216 are very similar to the ones found in [5]. The only difference is that we
alternated between rotation of 0 and 1 instead of the rotations described for EDON-R256 and 512.

4.1 Experiment and results for 16-bit EDON-R
The compression function R16 : 264 → 232 is to big to go trough all possible input values. However we can still perform an
experiment on the distribution of the output similar to Experiment 1 in Section 3.

Experiment 3 Holding the chaining values (C0,C1) constant we used all possible pairs (M0,M1) of messages as input to
the compression function.

R16(C0,C1,M0,M1) = (B0,B1) (8)

The output (B0,B1) represented as a number between 0 and 232 − 1 was then tallied with respect to collisions. This test was
performed for 300 different pairs of chaining values chosen at random.

If R16 is an ideal random function, each element in the image should be mapped to by the probability p = 2−32. This
means that the an element will be mapped to l times out of n with probability

P (l) =
(

n

l

)
pk(1− p)n−l, (9)

where n = 232. Which means that expected number of elements mapped to l times is nP (l).

Result The result from this experiment is listed in Table 4. Note that, because of some inaccuracy1 in the computation of the
distribution of the ideal random function, the sum of the expected results for 0 to 14 is slightly more then 232. The expected
number of collisions larger then 15 is therefor listed as not available. Other approximations show this number to be in the order
of 10−3.

From the table we see that the compression function of 16-bit EDON-R has an output distribution very similar to an IRF. For
most values of l the difference between R16 and an IRF is much less then 1%. For l = 11, 12, 13 and 14 the difference is larger.
Some of the reason for this difference is that the probability for 11 or more mappings colliding is very small and the variance
for such collisions is therefor higher. This is also reflected in the 95% confidence intervals for the mean. For l = 1, . . . , 6 the
computed confidence intervals is outside what is expected for an IRF, while for l = 7, . . . , 14 the confidence intervals for the

1The number (1− 2−32)2
32−l could only be approximated using Mathematica 6.0.
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l Min Max Mean IRF Diff %
0 1579952990 1580105601 1580014613 1580030157 0.00098 %
1 1579915274 1580140186 1580047057 1580030350 -0.0011 %
2 789949319 790105082 790021531 790016352 -0.00066 %
3 263295979 263371739 263335106 263337413 0.00088%
4 65813150 65860809 65831618.77 65834545.53 0.0044%
5 13154784 13174678 13165622.68 13166934.63 0.010%
6 2190432 2198973 2194306.50 2194480.82 0.0079%
7 312150 314757 313445.75 313498.08 0.017%
8 38656 39803 39169.01 39187.43 0.047%
9 4139 4563 4349.83 4354.11 0.098%
10 361 491 433.45 435.41 0.45%
11 23 57 39.09 39.58 1.24%
12 0 10 3.46 3.30 -4.99%
13 0 3 0.26 0.25 -3.78%
14 0 1 0.017 0.018 8.041%
≥ 15 0 0 0 NA NA

Table 4: The distribution of the image of R16 for all possible pairs of chaining values. The second last columns show what
is expected for an ideal random function (IRF), while the first 3 columns show the result for R16. The last column show the
difference in percent between the IRF and the mean of R16.

mean contains what is expected for an IRF. This means that altough the output distribution ofR16 is very similar to an IRF they
are still significantly different.

Experiment 4 Because of the size of R16 we were not able to test wether the function is regular. We did however tally how
many times of the 300 ∗ 232 different input values each element was mapped to. The tally was used to compute the Bellare-
Khono balance of R16 as defined in Definition 4.

Result Computing the sum of the square of the number of preimages for each of the 232 possible output values we got the
number 387835522366350. This gives the following result for the balance.

µ(R16) = log232

[
(300 ∗ 232)2

387835522366350

]
= 0.99985 (10)

We will also quickly mention some other possibly interesting numbers from this experiment. The least amount of times a
number was mapped to was 194, while 413 was the most amount of times a number was mapped to (300 of course being the
average). The variance was σ2 = 299.9943.

The results for the regularity of R8 and the balance of R16 together with the analysis for delta deviations in our documen-
tation of EDON-R [5] are strong evidence that the balance is very high for Rkw in general. An open and interesting question is
for what k and w the function Rkw is completely regular.

5 Conclusion
We have shown that the reduced compression function R8 is regular and that its output distribution is similar to that of an ideal
random function. We have also shown that distribution of the output of R16 is very similar to an ideal random function, and
that the balance of R16 is high.

Comparing Table 3 and Table 4 we see that the amount of randomness drastically increases as we increase the size of the
range and the domain of the compression function. Intuitively we expect this trend to follow as we increase the size of the range
and the domain of the compression function even more.

Based on the results of this paper it is difficult to give a general prediction for the correlation between the size of the
compression function and its balance. It is possible that also R16 is completely regular, but unfortunately we do not have the
computer power to test this. Doing some tests on the balance of R256 and R512 would be quite interesting in this regard.
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Additionally, it is clear that our methodology of analyzing EDON-R by reducing the size of the variables and then investi-
gating the properties of such severely reduced function can be applied to all hash functions.
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