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Abstract. Hash functions are widely used in Cryptography, and hardware implemen-
tations of hash functions are of interest in a variety of contexts such as speeding up
the computations of a network server or providing authentication in small electronic
devices such as RFID tags. Provably secure hash functions, the security of which relies
on the hardness of a mathematical problem, are particularly appealing for security,
but they used to be too inefficient in practice. In this paper, we study the efficiency
in hardware of ZT’, a provably secure hash function based on the Zémor-Tillich hash
function. We consider three kinds of implementations targeting a high throughput and
a low area in different ways. We first present a high-speed implementation of ZT’ on
FPGA that is nearly half as efficient as state-of-the-art SHA implementations in terms
of throughput per area. We then focus on area reduction and present an ASIC imple-
mentation of ZT’ with much smaller area costs than SHA-1 and even than SQUASH,
which was specially designed for low-cost RFID tags. Between these two extreme im-
plementations, we show that the throughput and area can be traded with a lot of
flexibility. Finally, we show that the inherent parallelism of ZT’ makes it particularly
suitable for applications requiring high speed hashing of very long messages. Our work,
together with existing reasonably efficient software implementations, shows that this
variant of the Zémor-Tillich hash function is in fact very practical for a wide range of
applications, while having a security related to the hardness of a mathematical problem
and significant additional advantages such as scalability and parallelism.
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1 Introduction

Hash functions are widely used in cryptographic applications such as digital signatures schemes,
message authentication codes, commitment schemes or password storage. Typically, a hash
function is required to have nearly uniform output distribution and to be both preimage and
collision resistant: it must be computationally hard to find a preimage to a given randomly
chosen hash value, as well as to find two messages hashing to the same hash value. Addi-
tionally, a hash function is often required to behave “like a random function”. Due to the
importance of cryptographic hash functions, the SHA family was designed as a standard [2].



Hardware implementations of standard cryptographic hash functions like MD5 or SHA
have been achieved to accelerate computations in specific applications [14, 37, 23, 11, 19, 10].
As an example, a virtual network server typically uses a hash function both to verify the
identities of its clients (with a digital signature protocol) and the integrity of the messages
they send (with an authentication protocol). If the server has many clients, a cryptographic
hardware accelerator may help to quickly compute the hash values of many, potentially long
messages. For cost reasons, such an accelerator is often implemented in an FPGA rather than
an ASIC. Very compact ASIC implementations of hash functions are also required to provide
security for small low-cost devices such as low-power wireless sensors or RFID tags. However,
standard hash functions like SHA are not suited for lightweight applications [17, 5]. In many
RFID applications, collision resistance is not needed but preimage resistance is a sufficient
property, hence other hash functions like SQUASH [34] were specially designed, satisfying
preimage resistance but not collision resistance. If collision resistance is needed for compact
implementations, the authors of [5] recommend the use of block cipher-based hash functions
but they point out that this approach presents scalability problems.

Recently discovered vulnerabilities in SHA-1 [38] prompted NIST to launch a competition
for a new Secure Hash Algorithm [1] and underlined the need for secure and efficient hash
functions. Particularly appealing from a theoretical point of view, some hash functions are
provably secure, in the sense that their collision resistance relates to the hardness of some
mathematical problems [29, 12, 7, 36]. A good reduction to a simply formulated mathematical
challenge facilitates the evaluation process and increases the confidence once the function
has resisted the first cryptanalytic attempts. However, it has been a common believe in the
cryptographic community that provably secure hash functions cannot reach the efficiency
level of dedicated algorithms like SHA.

The Zémor-Tillich hash function was proposed by Tillich and Zémor at
CRYPTO’94 and remains essentially unbroken today [36, 33]. The collision and preimage
resistance of this function depend on the hardness of the representation and balance prob-
lems in a non-Abelian group. These kinds of problems are well-known in expander graphs
theory; for cyclic Abelian groups, they are equivalent to discrete logarithm problems [4] and
for generic groups, they are known to be hard [26, 15]. Although provably secure in the sense
of collision resistance, the Zémor-Tillich hash function would present several security issues
if it was used as a general-purpose hash function. A variant of this function was therefore
introduced by Petit, Veyrat and Quisquater [33] both to solve these issues and to speed up the
hash computation in software. It follows from a result of Petit, Quisquater, Tillich and Zémor
[32] that the collision resistance of this variant, after a small modification in the key gen-
eration algorithm, is equivalent to the collision resistance of the original function, resulting
in a provably secure hash function with the same level of collision resistance and with in-
creased efficiency and security. In software, the function is faster than or comparable to other
hash functions with provable security [20, 21, 13, 6, 9, 12], except the very efficient SWIFFT
algorithm [30]. It is currently 10-50 times slower than SHA [33], but the use of graphical
instructions such as SIMD should improve these performances greatly. In [36, 33], the authors
suggested that the Zémor-Tillich hash function and its variant would perform reasonably well
in hardware since the operations involved in the hash computation are very simple.

In this paper, we show that the provably secure hash function described in [33] is indeed
very interesting for a wide range of hardware implementations, including implementations that
focus on a high throughput per area, a small area, or a high speed efficiency metric. We first



provide a FPGA implementation reaching a throughput per slice about half as good as very
optimized FPGA implementations of SHA-1 and SHA-2 such as [10, 11, 19]. We then present
an ASIC implementation requiring much less area than any currently used hash function.
Particularly, our compact implementation requires less than half of the area of the lightweight
implementation of SHA-1 presented in [17] and even less than the SQUASH implementation
of [22]. Furthermore, the function allows developing designs that are very flexible in the
sense that they can be easily modified to produce different throughputs. Finally, we show
that the inherent parallelism of the function makes it particularly suitable for applications
requiring high-speed hashing of single long messages. Our work, together with reasonably
efficient existing software implementations described in [33], shows that the variant of the
Zémor-Tillich hash function proposed by Petit et al. is in fact very practical for a wide range
of applications, while having a security related to the hardness of a mathematical problem
and significant additional advantages such as scalability and parallelism.

This paper is organized as follows: Section 2 presents the Zémor-Tillich hash function and
its variant introduced by [33]; Section 3 describes a high-speed FPGA implementation that
is half as efficient as SHA in terms of area-time efficiency; Section 4 details a lightweight im-
plementation more compact than SHA and even than SQUASH; Section 5 discusses potential
uses of the parallelism of ZT’ for the high-speed hashing of very long messages and Section 6
concludes the paper.

2 A Variant of the Zémor-Tillich Hash

We now describe the Zémor-Tillich (ZT) hash function, following [36]. Let m = m1m2...mk

be the bit string representation of the message to be hashed. Let Pn(X) be an irreducible
polynomial of degree n and let us see the field F2n as F2[X]/(Pn(X)). Let A0 and A1 be the
following matrices

A0 =
(
X 1
1 0

)
A1 =

(
X X + 1
1 1

)
.

Define the following mapping

π : {0, 1} → {A0, A1}
0→ A0

1→ A1.

The hashcode of m is just the matrix product

hZT (m) := π(m1)π(m2)...π(mk)

where the arithmetic is made modulo Pn(X), that is in the field F2n . As for the parameter
size, Tillich and Zémor proposed to take n ∈ [130, 170].

The security of the ZT hash can be related to both algebraic and graph-theoretical prob-
lems [36, 7]. More exactly, it relies on the hardness of a balance and a representation problem
in a matrix group. Representation problems are equivalent to discrete logarithm problems in
cyclic Abelian groups [4] and they are known to be hard in generic groups [26, 15]. For non-
Abelian groups, representation problems are not known to reduce to any classical problem



in Cryptography but they have been long studied in the theory of expander graphs [25]. Re-
cent results in this field are still far from any explicit solution [27, 24]. The Zémor-Tillich has
remained essentially unbroken since its publication at CRYPTO’94. The attacks of Charnes
and Pieprzyk and of Steinwandt et al. only target particular parameters [8, 3, 35]. They are
discarded if n is prime and if the polynomial is well-defined to avoid the insertion of trap-
doors. Geiselmann’s attack [18] produces messages of expected length larger than 2n hence
it cannot be considered as practical. Recently, Petit et al. [32] have described collision and
preimage attacks of complexity 2n/2 that can be applied for all values of the parameters n
and Pn(X).

Although fundamentally unbroken in the sense of preimage and collision resistance, the
Zémor-Tillich hash function has two main security problems: it is invertible when short mes-
sages are hashed and it is malleable. The malleability property directly results from the
associativity of the matrix product: given the hash h(m) of an unknown message m, the hash
value of any message x1||m||x2 can easily be computed. As a consequence, the use of ZT hash
must be avoided in applications requiring some form of pseudo-randomness.

To solve these issues, Petit, Veyrat and Quisquater introduced ZT’, the variant of Zémor-
Tillich hash [33] described below. Their basic idea consists in XORing the result of the ZT
function with a constant and to consider the result as if it was the continuation of the original
message. Moreover, for efficiency purposes, they restricted the hash result to the first row of
the ZT hash result, halving therefore the computations. As a consequence, their variant is:

H(m) := hvec
ZT (m||σ(hvec

ZT (m)))

where hvec
ZT (m) is the concatenation of the entries (1, 1) and (1, 2) of hZT (m) computed with

the same parameters n and Pn(X), and σ : {0, ...22n − 1} → {0, ...22n − 1} : x→ x⊕ c. The
parameter c is some fixed constant the bits of which “look like random”; they suggest to use
c equal to the binary representation of pi.

As hvec
ZT (m1...mk+1) = hvec

ZT (m1...mk)Amk+1 , the two entries a and b of the function hvec
ZT

may be computed bit by bit with the formulae

(ak+1, bk+1) =
{

(ak, bk)A0 = (akX + bk, ak) if mk+1 = 0
(ak, bk)A1 = (akX + bk, akX + ak + bk) if mk+1 = 1 (1)

where the additions and the multiplications by X are in the field F2n ≈ F2[X]/(Pn(X)). The
initial vector (a0, b0) is set to (0, 1). In the following, we informally use the term final phase
to refer to the processing of the additional 2n bits of σ(hvec

ZT (m))).
It is shown in [32] that if the initial vector (a0, b0) is chosen randomly in F2

2n \ {(0, 0)} the
collision resistance of hvec

ZT is equivalent to the collision resistance of hZT . Therefore, our only
change with respect to the function of [33] is that the initial vector is no more fixed to (1, 0)
but can be more generally specified. The initial vector is chosen randomly in F2

2n \ {(0, 0)}
during the key generation process and is part of the key.

Using the results of [32], it is easy to check that the resulting variant of the ZT function,
which has an output size of 2n bits, is provably collision resistant up to 2n/2 bits and that
a collision attack with this complexity can indeed be mounted. It is also provably preimage
resistant up to n/2 bits, but as the preimage attack of [32] cannot compute preimages of
hvec

ZT with the very special form m||σ(hvec
ZT (m)), the actual security level of hvec

ZT is of 2n bits



today. In [33] the authors suggest using the following sparse irreducible polynomials Pn(X)
to improve efficiency in software:

n Polynomial
127 X127 +X + 1
251 X251 +X7 +X4 +X2 + 1
509 X509 +X8 +X7 +X3 + 1
1021 X1021 +X5 +X2 +X + 1
2039 X2039 +X10 +X9 +X8 +X7 +X5 +X4 +X2 + 1

These polynomials are safe with respect to the attacks developed in [18, 3, 35]. The value
n = 127, which has a security level comparable to SHA-1, could be considered as too small
for high security applications at the light of the attacks in [32]. We use the same polynomials
in our hardware implementations, although more general irreducible polynomials would not
decrease performances.

3 High-Speed Implementation

In this section, we describe a high-speed implementation of ZT’ on FPGA. High-speed im-
plementations are of interest in applications where several messages are to be hashed and a
high throughput is required, such as for virtual network servers. The throughput per area
metric makes sense here since the goal is to jointly minimize the execution time and the
area: if the throughput of the resulting implementation is too low, any superior throughput
can be reached by simply gathering several identical circuits. In the following, we first de-
scribe our architecture, then we compare our implementation performances to state-of-the-art
implementations of well-known hash functions, and we finally discuss possible improvements.

3.1 Proposed Architecture

The main feature of ZT’ is that it considers the bits of the message one after the other.
The dependency between the intermediary results of the hash function suggests an iterative
architecture where the message is processed one bit at the time. The efficiency can be improved
by processing s consecutive bits at each step, which amounts to partially unroll the main loop.
The optimal value for s (the unroll factor) is determined empirically. When processing one bit
of the message, the bits of the two entries a and b of the matrix can be efficiently computed
in parallel. Indeed, the operations involved in the hash function are simple: they essentially
consist in XOR operations between two or three operands and 1-bit left shifts (see Equation 1).
These bitwise operations allow computing the bits of a and b in parallel without decreasing
the frequency, which would not be the case it there was a carry propagation for instance.
The parallel approach is better than the serial one: the latter alternative would involve a
wordwise processing and would therefore require extra control logic to select and route the
appropriate words during the execution of the function, resulting in a lower throughput per
slice efficiency.

Our architecture is depicted in Figure 1. It is a partially unrolled architecture as described
in [28], which processes s bits per clock cycle. It is made of s identical cores connected in a
serial manner and of storage elements. Each core processes one message bit by achieving the
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Fig. 1. Overview of the proposed architecture of the variant of ZT on FPGA (left) and core details
(right).

operations corresponding to Equation 1. The s consecutive message bits, mi with 1 ≤ i ≤ s,
come from a w-bit shift register denoted d containing a word of the message to hash. The
partial results are stored in two n-bit registers, denoted a and b, and are used as inputs when
processing the next s bits of the message. They loop in the circuit until the end of the message
is reached. Then they are loaded in the block ram (BRAM) and are reused as if they were the
continuation of the message in the final phase. The BRAM also stores the message, denoted
m, and the pseudorandom constant c (a pi binary representation) by words of w = 32 bits.
The two output ports of the BRAM are connected to a w-bit XOR that is used to implement
the function σ, i.e., the XOR operation with c preceding the final phase. Before the final
phase, zero is outputted in place of c to route correctly the words of m to the core of the
circuit through the w-bit XOR gate.

The throughput achieved by our partially unrolled architecture can be approximated by
the product of s and the frequency if the processing of the final phase is negligible. This is
valid for sufficiently long messages with respect to the 2n additional bits of the final phase.
In the following of this section, we assume that the messages fulfill this condition.

The unroll factor s must be properly chosen in order to maximize the throughput per
slice. A small s ensures a large operation frequency together with a small occupied area.
Increasing s is interesting in the sense of the considered metric, since it is proportional to the
throughput of the circuit but only to the core which is only a fraction of the total area. On
the other hand, increasing s also adds logic operators to the longest path, resulting in a lower
maximum operating frequency. The optimal value for s was therefore found by an empirical
study.

3.2 Implementation Results

The function was implemented on the Xilinx Virtex-2 XC2V2000-6. ISE 8.2 was used for
synthesis and place and route. Testing and debugging were performed with Modelsim SE
6.1. The first implementation results determined the optimal unroll factor s. As shown in
Table 1 for the function with n = 127, the highest throughput per slice was obtained with
s = 5. This was also the case for the other parameters that we investigated, n = 251 and
509. In the following, the implementation results are therefore given for s = 5. We point out
that the evolution of the area and the frequency in function of s in Table 1 is not as regular
as one would expect when considering the unrolled architecture of Figure 1. This is due to



the underlying structure of the Virtex-2 FPGA that uses 4-input look-up tables (LUT). The
optimal value for the unroll factor is likely to differ on other types of FPGAs, such as the
6-input LUT based Virtex 5.

Table 1. Implementation results of ZT’-127 in function of the unroll factor s.

Unroll Factor Area [Slices] Frequ. [Mhz] Through. [Mbits] Through/Area
s [Mbits / Slice]

1 262 220 220 0.84
2 377 215 430 1.14
3 515 185 555 1.08
4 596 170 680 1.14
5 597 160 800 1.34
6 647 130 780 1.21
7 794 120 840 1.06
8 901 110 880 0.98

The implementation results concerning the first three values of the n parameter (127, 251
and 509) are given in Table 2. The impact of n on the frequency is moderate as increasing
n does not add logic operators to the longest path (as s does). The small frequency drop is
likely due to larger routing delays.

Table 2. Implementation results for ZT’(with s = 5).

n Area [Slices] Frequ. [Mhz] Through. [Mbits] Through/Area
[Mbits / Slice]

127 597 160 800 1.34
251 1044 140 700 0.67
509 1850 135 675 0.37

In Table 3, we compare these results to the very optimized implementations of SHA pro-
posed in [11] and [10] representing the current state-of-the-art in terms of achieved throughput
per occupied area. The results show that the performances of ZT’ and of SHA in terms of
throughput per slice are in the same order. At comparable level of collision resistance, our im-
plementations of ZT’-127, ZT’-251 and ZT’-509 are about half as efficient as state-of-the-art
implementations of SHA-1, SHA-256 and SHA-512 respectively.

3.3 Future Improvements

Our implementations already reach the level of performances of SHA, but we believe that
they can be further improved by introducing pipeline stages between the s cores. This tech-
nique should allow increasing the operating frequency while still processing s bits per clock
cycle, these bits being from different messages this time. This would significantly increase the



Table 3. Comparison of the performances of the high-speed implementations of ZT’ with SHA. The
collision resistance of the hash functions is also given. The FPGA used is the Virtex-2 XC2V for all
designs except for SHA-1 that was implemented on the Virtex-2 Pro XC2VP30-7.

Collision Area Frequ. Through. Through/Area

Resistance [Slices] [Mhz] [Mbps] [Mbps / Slice]

SHA-1 [11] 263 533 230 1435 2.7

ZT’-127 264 597 160 800 1.34

SHA-256 [10] 2128 797 150 1184 1.49

ZT’-251 2126 1044 140 700 0.67

SHA-512 [10] 2256 1666 121 1534 0.92

ZT’-509 2255 1850 135 675 0.36

throughput at a relatively small area cost, i.e., mainly a 2n-bit register per pipeline stage.
Since the designs with large s leave many slices of the Virtex 2 FPGA with unused flip-flops,
the cost of additional pipeline stages could even be much lower, depending on the routing
constraints. In theory, a single pipeline stage could increase the frequency of the design of
ZT’-127 with s = 8 (110 MHz, see Table 1) to the frequency of the design with s = 4 (170
MHz, see Table 1), resulting in a throughput of roughly 1300 Mbps in place of 880, i.e.,
roughly 50% improvement.

The control part of the pipelined architecture will be more complicated in the case of
messages of different sizes as ZT’ does not process the message by fixed size blocks. Indeed,
when one message in the pipeline will come to the processing of the final phase or when
it will be fully hashed, the computations for all messages will be irregularly interrupted. In
applications where the message sizes are integer multiples of some block size, the control of
the pipelined architecture is simplified as the interruptions for the final phase and the final
result happen at the same processing steps for each block.

4 Lightweight Implementation

In this section, we study an architecture of ZT’ minimizing the area, which is of interest in
area-constrained environments such as RFID tags. As shown in Table 1, ZT’-127 with s = 1
(i.e., not unrolled) already occupies a relatively small area: we now modify this architecture
to focus on the area reduction.

Figure 2 presents the architecture of our lightweight implementation of ZT’. The first main
change introduced consists in computing the entries a and b one bit at the time instead of all
bits in parallel in order to save area by replacing n-bit gates by 1-bit ones (this is illustrated
on the figure with the presence of the j suffix, with 0 ≤ j ≤ n− 1). Therefore, processing one
message bit mi takes n clock cycles instead of one previously.

The second main change involves the storage elements. For lightweight implementations,
large blocks of memory like BRAM are no longer available and they are therefore replaced by
two registers (labeled a+ c and b+ c) that store the result of the XOR operation between the
intermediary result and the constant c, which is hardcoded. The outputs of these registers
are used as the continuation of the message during the final phase. This architecture assumes
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Fig. 2. Proposed lightweight architecture of the variant of ZT

that the message is loaded in the circuit one bit at the time and therefore does not require a
dedicated storage element. The four n-bit registers in this architecture are shift registers that
do not have a parallel load since the circuit operates on 1-bit signals. Their 1-bit inputs and
outputs are represented as wires respectively at their tops and bottoms. At each clock cycle,
the register a outputs two bits a(j − 1) and a(j), the register b gives b(j) and both registers
take as inputs the two bits computed by the circuit. The registers a+ c and b+ c also input
these bits but only after a XOR operation with the constant bits c(n + j) and c(j). During
the final phase, the output of the register b+ c is redirected toward the register a+ c, which
provides the bits of the continuation of the message. At the end of the final phase, the hash
values, stored in the registers a and b, are also retrieved one bit at the time.

The latency of this circuit when hashing a message m containing k bits is (k+ 2n).n clock
cycles. The corresponding throughput cannot be approximated any more by leaving aside the
processing of the additional 2n bits of the final phase since the messages are likely to be small
in the context of lightweight implementations. In the following, it is computed based on the
formula of the latency given above with k = 512, i.e., assuming consecutive messages of 512
bits. This size is arbitrary as there is no fixed block size in the ZT’ function.

The design was synthesized using Synopsys Design Analyzer version Y-2006.06 with the
CMOS65 library of STMicroelectronics. To provide a comparison with the architecture of the
preceding section, it was also implemented on FPGA. For n=127, it requires only 73 slices
with a frequency of 145 MHz. This particularly small area requirement is due to the use
of compact SRL16 registers to implement the shift registers (with no parallel load), which
significantly diminishes the number of slices used.

Table 4 summarizes the results concerning ZT’ and other hash functions (based on the
comparison performed in [5]). Results concerning the AES block cipher are also given as
a reference. The results for SQUASH are based on the estimate performed in [22], which
describes a lightweight implementation on the Xilinx Virtex-4 LX FPGA. This estimate must
be seen as an upper bound. Finally, we also synthesized the designs ZT’-127 and ZT’-251 with
s = 1 of the preceding section to evaluate the area reduction obtained with our lightweight
design. Although the implementations listed in Table 4 involve different logic processes, the



comparison is fair since the throughput is given at a fixed frequency and the area is expressed
in terms of Gate Equivalents (GE).

Table 4. Comparison of the performances of the lightweight implementation of ZT’ with other hash
functions and the AES block cipher.

Output Through. at Through/Area Logic Area
size 100kHz [kbps] [bps/GE] process [GE]

MD5 [17] 128 83.7 10 0.13µm 8400
SHA-1 [17] 160 40.2 4.9 0.35µm 8120

SHA-256 [17] 256 45.4 4.2 0.35µm 10868
SQUASH [22] 32 < 0.1 < 0.02 estimate <6000
AES-128 [16] 128 12.4 3.7 0.35µm 3400

DM-PRESENT-80 [5] 64 14.6 9.1 0.18µm 1600
H-PRESENT-128 [5] 128 11.5 4.9 0.18µm 2330
ZT’-127 (lightweight) 254 0.52 0.18 65nm 2945
ZT’-251 (lightweight) 502 0.20 0.04 65nm 5517

ZT’-127 (s = 1) 254 66.7 17.8 65nm 3752
ZT’-251 (s = 1) 502 66.7 9.2 65nm 7267

ZT’ is very efficient in terms of occupied area with respect to current hash functions. Both
its lightweight and high-speed (with s = 1) versions with the smallest parameter n= 127
outperform the hash functions SHA-1 and MD5. Lightweight ZT’-127 is a little smaller than
the state-of-the-art implementation of the AES block cipher proposed in [16]. It is however a
little less compact than H-PRESENT-128, the hash function recently proposed in [5], based on
the block cipher PRESENT. The area requirements and collision resistances of ZT’ and SHA
are compared in Table 5, illustrating the lower area costs for ZT’ at a comparable collision
resistance. At comparable levels of collision resistance, ZT’-127 requires roughly one third of
the area of SHA-1 while ZT’-251 needs half of the area of SHA-256.

Table 5. Comparison of the collision resistance
and area cost of the lightweight implementation
of ZT’ with SHA.

Collision Area

Resistance [GE] (rel.)

SHA-1 [17] 263 8120 (2.8)

ZT’-127 (light.) 264 2945 (1)

SHA-256 [17] 2128 10868 (2)

ZT’-251 (light.) 2126 5517 (1)

Table 6. Comparison of the preimage resistance
and area cost of the lightweight implementation
of ZT’ with preimage-resistant hash functions.

Preimage Area

Resistance [GE] (rel.)

SQUASH [22] 232 <6000 (3.8)

ZT’-127 (light.) ∈ [264, 2254] 2945 (1.8)

DM-PRESENT-80 [5] 264 1600 (1)

For some applications, collision resistance is not required and a moderate level of security
is sufficient (64-bit or 80-bit security) [34]: for example, many RFID authentication protocols
only rely on preimage resistance. ZT’ turns out to be a very interesting candidate for these



applications. As shown in Table 6, its lightweight version with n = 127 is twice as small as the
upper bound given for SQUASH and about twice as large as the function DM-PRESENT-
80 [5] based on the compact block cipher PRESENT. However, the comparison with DM-
PRESENT-80 is not very fair since the preimage resistance of ZT’-127 today seems to be
2254 instead of its 264 “provable part” as explained in Section 2. Parameter four times smaller
should therefore be considered in the comparison, resulting in an area cost of the lightweight
ZT’ equivalent or smaller than DM-PRESENT-80, and possibly even smaller than 1000 GE.
It should therefore easily fit in the 2000 GE available for security in low-cost RFID tags, as
stated in [5].

As pointed out above, our first implementation of ZT’-127 with s = 1 already occu-
pies a small area. In practice, this implementation will probably be more suitable for area-
constrained applications than the lightweight version presented in this section. As our design
choice here was to minimize the area, our implementation has a low throughput implying
a long latency and an important energy consumption. However, the flexibility of the ZT’
function allows raising the throughput easily by increasing the number of bits of a and b pro-
cessed in parallel at the cost of little additional logic. The two extreme points of this tradeoff
between area and throughput are our first implementation with s = 1 and our lightweight
implementation; the first one has a throughput 128 times as high for only 30% more area. The
optimal point in practice will probably be closer to the the first one but the results of this
section may be understood as a lower bound for area. Wherever the tradeoff is set, our results
show that ZT’ is a very interesting hash function in the context of lightweight applications.

5 Very Fast Hashing of Long Messages Using Parallelism

If only one (long) message needs to be hashed, the usual throughput per area metric looses
sense since replicating hardware to process more messages in parallel is pointless. For example,
a large data server may need to compute the hash value of its content to guaranty its integrity,
and update this hash value every time a legitimate user modifies the data. For this application,
a hardware implementation will need to primarily satisfy a time constraint before caring about
area. In this section, we point out that ZT’ is very well-suited for such an application since
its first round can be computed in parallel. Indeed, for any m1,m2, ...mN ∈ {0, 1}∗, we have

hvec
ZT (m1||m2||...||mN ) = hvec

ZT (m1)hZT (m2)...hZT (mN ).

Moreover, as the matrix version of Zémor-Tillich can be implemented as two vectorial versions
starting from (1, 0) and (0, 1), the computation can be easily distributed into 2N−1 computing
units using our architecture of Section 3 (possibly with a different s value). The exploitation of
the parallelism has two costs: first, the total computation cost of the 2N−1 computing units is
2N−1

N times the computation cost of one single unit in a serial mode (it is nearly doubled when
N is large). Second, N − 1 vector by matrix multiplications must be performed at the end to
combine the partial hash values, requiring 4(N − 1) full modular multiplications. Depending
on the exact size of the messages, it might be more efficient to use hardware/software co-
design consisting in computing partial products in hardware and using software to combine
them and compute the final phase: this technique will be investigated in a further work. We
point out that unlike other hash functions, the inherent parallelism of ZT’ allows trading area
for speed in the hash computation of one single message.



6 Conclusion

In this work, we studied the efficiency in hardware of the provably secure hash function based
on Zémor-Tillich introduced by Petit et al. [33]. In particular, we presented a high-speed
FPGA implementation, we provided an ASIC implementation focusing on reducing the area
costs, and we discussed how to compute the hash value of long messages.

Our results show that this function exhibits high performances in a wide range of im-
plementation contexts, which is usually unexpected from a hash function with an algebraic
structure. The efficiency of our high-speed FPGA implementation is about one half of the
efficiency of very optimized SHA implementations and it could be further optimized by in-
troducing pipeline. Our lightweight ASIC implementation requires less area than currently
used hash functions such as SHA-1 or CBC-AES and even than SQUASH, which was spe-
cially designed for low-cost RFID tags. For protocols that only rely on preimage resistance,
it should easily fit in the 2000 GE available for security in low-cost RFID tags, as stated
in [5]. Finally, the inherent parallelism of the function makes it an ideal candidate for hashing
long messages very quickly. Besides the hardware implementations considered, we stress that
other tradeoffs between area and throughput for differently constrained applications can also
be easily achieved. The lower software performances with respect to SHA may not have too
much practical consequences because the hash function computation [33] still outperforms
by far the asymmetric cryptographic operations used in many protocols. Moreover, applica-
tions requiring high performance hashing can resort to more efficient processing units such
as graphical accelerators or typically to hardware implementations.

Our work, together with reasonably efficient existing software implementations described
in [33], shows that the variant of the Zémor-Tillich hash function proposed by Petit et al.
is in fact very practical for a wide range of applications, while having significant advantages
over dedicated and block cipher-based hash functions including scalability, parallelism and a
collision resistance reducing to the hardness of a mathematical problem.
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