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Abstract

A leakage-resilient cryptosystem remains secure even if arbitrary, but bounded, information
about the secret key (or possibly other internal state information) is leaked to an adversary.
Denote the length of the secret key by n. We show a signature scheme tolerating (optimal)
leakage of up to n − nǫ bits of information about the secret key, and a more efficient one-time
signature scheme that tolerates leakage of (1

4
− ǫ) ·n bits of information about the signer’s entire

state. The latter construction extends to give a leakage-resilient t-time signature scheme. All
these constructions are in the standard model under general assumptions.

1 Introduction

Proofs of security for cryptographic primitives traditionally treat the primitive as a “black box”
which an adversary is able to access in a relatively limited fashion. For example, in the usual
model for proving security of signature schemes an adversary is given the public key and allowed to
request signatures on any messages of its choice, but is unable to get any other information about
the secret key or any internal randomness or state information used during signature generation.

In real-world implementations of cryptographic primitives, on the other hand, an adversary
may be able to recover a significant amount of additional information not captured by standard
security models. Examples include information leaked by side-channel cryptanalysis [18, 19], fault
attacks [6, 4], or timing attacks [5], or even bits of the secret key itself in case this key is improperly
stored or erased [16]. Potentially, schemes can also be attacked when they are implemented using
poor random number generation [25] (which can be viewed as giving the adversary additional
information on the internal state, beyond that which would be available were the output truly
random), or when the same key is used in multiple contexts (e.g., for decryption and signing).

In the past few years cryptographers have made tremendous progress toward modeling security
in the face of such information leakage [22, 31], and in constructing leakage-resilient cryptosystems
secure even in case such leakage occurs. (There has also been corresponding work on reducing
unwanted leakage by, e.g., building tamper-proof hardware; this is not the focus of our work.)
Most relevant to the current work is a recent series of results [11, 1, 28, 10, 32, 23, 2] showing
cryptosystems that guarantee security even when arbitrary information about the secret key is
leaked (under suitable restrictions); we discuss this work, along with other related results, in fur-
ther detail below. This prior work gives constructions of stream ciphers [11, 28] (and hence stateful
symmetric-key encryption and MACs), symmetric-key encryption schemes [10], public-key encryp-
tion schemes [1, 32, 23], and signature schemes [2] achieving various notions of leakage resilience.
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Most prior work has focused on primitives for ensuring secrecy. The only work of which we are
aware that deals with authenticity is that of Alwen et al. [2] which shows, among other results,
leakage-resilient signature schemes based on number-theoretic assumptions in the random oracle
model that tolerate leakage of up to half the secret key.1 In this work, we give constructions of
leakage-resilient signature schemes based on general assumptions in the standard model; our first
construction tolerates (optimal) leakage of all but nǫ bits of information. We postpone a more
thorough discussion of our results until after we define leakage resilience in more detail.

1.1 Modeling Leakage Resilience

We provide a brief overview of the framework in which leakage resilience is defined (specialized to
signatures), providing a discussion of previous related work along the way.

At a high level, definitions of leakage resilience take the following form: Begin with a “stan-
dard” security notion (e.g., existential unforgeability under adaptive chosen message attacks [14])
and modify this definition by allowing the adversary to (adaptively) specify a series of leakage func-
tions f1, . . .. The adversary, in addition to getting whatever other information is specified by the
original security definition, is given the result of applying fi to the secret key and possibly other
internal state of the honest party (e.g., the signer). We then require that the adversary’s success
probability — in the case of signature schemes, the probability with which it can output a forged
signature on a previously unsigned message — remain negligible. It should be clear that this is a
general methodology that can be applied to many different primitives.

The exact model is then determined by the restrictions placed on the leakage function(s) fi.
We may distinguish the following possibilities:

Limited or arbitrary information A first issue to be resolved is whether the {fi} are allowed
to be arbitrary (polynomial-time computable) functions, or whether they are restricted to be in
some more limited class. Early work considered the latter case, for example where the adversary is
restricted to learning specific bits of the secret key [8], or the values on specific wires of the circuit
implementing the primitive [17]. More recent work [11, 1, 28, 10, 32, 23, 2] allows arbitrary {fi}.

Bounded or unbounded information leakage. Let n denote the length of the secret key. If
the secret key does not change over time, and the {fi} are allowed to be arbitrary, then security in
the traditional sense cannot be achieved once the total length of the leakage — that is, the outputs
of all the {fi} — is n bits or more. For the case of signatures, the length of the leakage must also
be less than the signature length. This inherent restriction is used in [1, 32, 23]. (Alwen et al. [2]
do not impose this restriction, but as a consequence can only achieve a weaker notion of security.)

One can avoid this restriction, and potentially tolerate an unbounded amount of leakage overall,
if the secret key is updated over time; even in this case, one must somehow limit the amount
of leakage between successive key updates. This approach to leakage resilience was considered
in [11, 28] in the context of stateful symmetric-key primitives.

One can also avoid imposing a bound on the leakage by restricting the {fi}, as discussed next.

Computational min-entropy of the secret key. If the leakage is shorter than the secret key
(as discussed above), then the secret key will have high min-entropy conditioned on the leakage.
This setting is considered in [1, 23, 32, 2], and is also enforced on a per-period basis in the work

1The results of [2] were obtained independently of our own work. Also, the primary focus of [2] was on identification
schemes in the bounded retrieval model.

2



of [11, 28] (i.e., the leakage per time period is required to be shorter than the secret key). More
recent work [10, 32] shows schemes that remain secure for leakage of arbitrary length, as long as
the secret key remains exponentially hard to compute given the leakage (but even if the secret
key is fully determined by the leakage in an information-theoretic sense). A drawback of this
guarantee is that given some collection of functions {fi} (say, as determined experimentally for
some particular set of side-channel attacks) there is no way to tell, in general, whether they satisfy
the stated requirement or not. Furthermore, existing results in this direction currently require
super-polynomial hardness assumptions.

Inputs to the leakage functions. A final consideration is the allowed inputs of the leakage
functions. Work of [11, 28] assumes, following [22], that only computation leaks information; this
is modeled by letting each fi take as input only those portions of the secret key that are accessed
during the ith phase of the scheme. Halderman et al. [16], however, show that memory contents can
be leaked even when they are not being accessed. Motivated (in part) by this result, the schemes
of [1, 10, 32, 23, 2] allow the {fi} to take the entire secret key as input at all times.

For the specific primitives considered in [11, 1, 28, 10, 32, 23], the secret key sk is the only
internal state maintained by the party holding the secret key, and so allowing the {fi} to depend
on sk is (almost) the most general choice.2 For signature schemes, however, any randomness used
during signing might also be leaked to an adversary. The strongest definition of leakage resilience
is thus obtained by allowing the {fi} to depend on all the state information used by the honest
signer during the course of the experiment.

All these variants may be meaningful depending on the particular attacks one is trying to model.
Memory attacks [16, 1], which probe long-term secret information during a time when computation
is not taking place, can be faithfully modeled by allowing the leakage functions to take only sk
as input. On the other hand, side-channel attacks that collect information while computation is
occurring might be more accurately captured by allowing the leakage functions to take as input
only those portions of the internal state that are actively be accessed.

1.2 Our Results

With the preceding discussion in mind, we can now describe our results in further detail. In all
cases, we allow the leakage function(s) to be arbitrary as long as the total leakage is bounded as
some function of the secret key length n; recall that such a restriction on the leakage is essential if
the secret key is unchanging, as it is in all our schemes. Our results can be summarized as follows:

1. We show a construction of a leakage-resilient signature scheme in the standard model, based
on general (as opposed to number-theoretic) assumptions. This scheme tolerates leakage of
n− nǫ bits of information about the secret key for any ǫ > 0, which is optimal (unless one is
willing to make super-polynomial hardness assumptions).

2. We also construct a leakage-resilient one-time signature scheme in the standard model. In
contrast to the previous result, this scheme is more efficient and can be based on the minimal
assumption that one-way functions exist; it also tolerates leakage that may depend on the
entire state of the signer throughout the experiment. (This follows from the fact that signing

2More generally, one could also allow the {fi} to depend on the randomness used to generate the (public and) secret
key(s); this possibility is mentioned in [23, Section 8.2]. (For the specific schemes considered in [11, 1, 28, 10, 32, 23],
however, this makes no substantive difference.)
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is deterministic.) Here security holds only as long as the leakage is bounded by (1
4 − ǫ) · n

bits, for any ǫ > 0. This construction extends to give an t-time signature scheme tolerating
leakage of Θ(n/t2) bits.

In the appendix, we also discuss an efficient scheme in the random oracle model that is secure
as long as the leakage is bounded by (1

2 − ǫ) · n bits for any ǫ > 0. This scheme was discovered
independently by Alwen et al. [2]. Our analysis offers some advantages as compared to theirs; see
the appendix for further discussion. (We include the result for completeness, but do not claim any
significant novelty with regard to the existing work of [2].)

1.3 Overview of Our Techniques

Our constructions all rely on the same basic idea. Roughly, we consider signature schemes with
the following properties:

• A given public key pk corresponds to a set Spk of exponentially many secret keys. Furthermore,
given (sk, pk) with sk ∈ Spk it remains hard to compute any other sk′ ∈ Spk.

• The secret key sk used by the signer has high min-entropy (at least in a computational sense)
even for an adversary who observes signatures on messages of its choice. (For our one-time
scheme, this is only required to hold for an adversary who observes a single signature.)

• A signature forgery can be used to compute a secret key in Spk.

To prove that any such signature scheme is leakage resilient, we show how to use an adversary
A attacking the scheme to find distinct sk, sk′ ∈ Spk given (sk, pk) (in violation of the assumed
hardness of doing so). Given (sk, pk), we simply run A on input pk and respond to its signing
queries using the given key sk. Leakage queries can also be answered using sk. If the adversary
forges a signature, we extract some sk′ ∈ Spk; it remains only to show that sk′ 6= sk with high
probability. Let n = log |Spk| be the (computational) min-entropy of sk conditioned on pk and the
signatures seen by the adversary. (We assume that all secret keys in Spk are equally likely, which
will be the case in our constructions.) A standard argument shows that if the leakage is bounded
by ℓ bits, then the conditional min-entropy of the secret key is still at least n − ℓ − t bits except
with probability 2−t. So as long as the leakage is bounded away from n, with high probability
the min-entropy of sk conditioned on A’s entire view is still at least 2. But then sk′ 6= sk with
probability at least 1/2. This concludes the outline of the proof. We remark, however, that various
subtleties arise in the formal proofs of security.

Some existing signature schemes in the random oracle model already satisfy the requirements
stated above. In particular, these include schemes constructed using the Fiat-Shamir transform [12]
applied to a witness-indistinguishable Σ-protocol where there are an exponential number of wit-
nesses corresponding to a given statement. Concrete examples include the signature schemes of
Okamoto [26] (extending the Schnorr [30] and Guillou-Quisquater [15] schemes) based on the dis-
crete logarithm or RSA assumptions, as well as the signature scheme of Fischlin and Fischlin [13]
(extending the Ong-Schnorr [27] scheme) based on the hardness of factoring. This class of schemes
was also considered by Alwen et al. [2]. See Appendix A for further discussion.

We are not aware of any existing signature scheme in the standard model that meets our require-
ments. We construct one as follows. Let H be a universal one-way hash function (UOWHF) [24]
mapping n-bit inputs to nǫ-bit outputs. The secret key of the signature scheme is x ∈ {0, 1}n, and
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the public key is (y = H(x), pk, r) where pk is a public key for a CPA-secure public-key encryp-
tion scheme, and r is a common reference string for an unbounded simulation-sound NIZK proof
system [29, 9]. A signature on a message m consists of an encryption C ← Encpk(m‖x) of both
m and x, along with a proof π that C is an encryption of m‖x′ with H(x′) = y. Observe that,
with high probability over choice of x, there are exponentially many pre-images of y = H(x) and
hence exponentially many valid secret keys; furthermore, finding another such secret key sk′ 6= sk
requires finding a collision in H. Details are given in Section 3.

Our leakage-resilient one-time signature scheme is constructed using a similar idea, applied to
the Lamport signature scheme [21]. That is, the secret key is {(xi,0, xi,1)}

k
i=1 and the public key

is {(yi,0, yi,1)}
k
i=1 where k is the message length and yi,b = H(xi,b) for H a UOWHF as above.

Once again, there are exponentially many secret keys associated with any public key and finding
any two such keys yields a collision in H. Adapting the standard Lamport scheme in this way
yields a signature scheme secure against leakage if n1−ǫ bits. By encoding the message using an
error-correcting code with high minimum distance, it is possible to “boost” the leakage resilience to
(1
4−ǫ) ·n bits. Finally, using cover-free families this approach extends also to give a leakage-resilient

t-time signature scheme. These constructions are all described in Section 4.

2 Definitions and Preliminaries

We provide a formal definition of leakage resilience for signature schemes, and state a technical
lemma that will be used repeatedly in our ananlsis. We denote the security parameter by k, and
let ppt stand for “probabilistic polynomial time”.

2.1 Definitions

Definition 1 A signature scheme is a tuple of ppt algorithms (Gen, Sign, Vrfy) such that:

• Gen is a randomized algorithm that takes as input 1k and outputs (pk, sk), where pk is the
public key and sk is the secret key.

• Sign is a (possibly) randomized algorithm that takes as input the secret key sk, the public
key pk, and a message m, and outputs a signature σ. We denote this by σ ← Signsk(m),
leaving the public key implicit.3

• Vrfy is a deterministic algorithm that takes as input a public key pk, a message m, and a
purported signature σ. It outputs a bit b indicating acceptance or rejection, and we write
this as b := Vrfypk(m,σ).

It is required that for all k, all (pk, sk) output by Gen(1k), and all messages m in the message space,
we have Vrfypk(m,Signsk(m)) = 1. ♦

Our definition of leakage resilience is the standard notion of existential unforgeability under
adaptive chosen-message attacks [14], except that we additionally allow the adversary to specify
arbitrary leakage functions {fi} and obtain the value of these functions applied to the secret key
(and possibly other state information).

3Usually, one assumes without loss of generality that the public key is included as part of the secret key. Since we
measure leakage as a function of the secret-key length, however, we seek to minimize the size of the secret key.
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Definition 2 Let Π = (Gen, Sign, Vrfy) be a signature scheme, and let λ be a function. Given an
adversary A, define the following experiment parameterized by k:

1. Choose r ← {0, 1}∗ and compute (pk, sk) := Gen(1k; r). Set state := {r}.

2. Run A(1k, pk). The adversary may then adaptively access a signing oracle Signsk(·) and a
leakage oracle Leak(·) that have the following functionality:

• In response to the ith query Signsk(mi), this oracle chooses random ri ← {0, 1}
∗, com-

putes σi := Signsk(mi; ri), and returns σi to A. It also sets state := state ∪ {ri}.

• In response to the ith query Leak(fi) (where fi is specified as a circuit), this oracle gives
fi(state) to A. (To make the definition meaningful in the random oracle model, the {fi}
are allowed to be oracle circuits that depend on the random oracle H.)

The {fi} can be arbitrary, subject to the restriction that the total output length of all
the fi is at most λ(|sk|).

3. At some point, A outputs (m,σ).

We say A succeeds if (1) Vrfypk(m,σ) = 1 and (2) m was not previously queried to the Signsk(·)

oracle. We denote the probability of this event by Pr[Succ
λ-leakage∗
A,Π (k)]. We say Π is fully λ-leakage

resilient if Pr[Succ
λ-leakage∗
A,Π (k)] is negligible for every ppt adversary A.

If state is not updated after each signing query (and so always contains only the randomness

r used to generate the secret key), we denote the probability of success by Pr[Succ
λ-leakage
A,Π (k)] and

say Π is λ-leakage resilient if Pr[Succ
λ-leakage
A,Π (k)] is negligible for every ppt adversary A. ♦

Leakage resilience in the definition above corresponds to the memory attacks of [1] (except that
we allow the leakage to depend also on the random coins used to generate the secret key). Other
variations of the definition are, of course, also possible: state could include only sk (and not the
random coins r used to generate it), or could include only the most recently used random coins ri.

2.2 A Technical Lemma

Let X be a random variable taking values in {0, 1}n. The min-entropy of X is given by

H∞(X)
def
= min

x∈{0,1}n

{− log2 Pr[X = x]}.

The conditional min-entropy of X given an event E is defined as:

H∞(X | E)
def
= min

x∈{0,1}n

{− log2 Pr[X = x | E]}.

Lemma 1 Let X be a random variable with H
def
= H∞(X), and fix δ ∈ [0,H]. Let f be an arbitrary

function with range {0, 1}λ, and set Y
def
=

{

y ∈ {0, 1}λ | H∞(X | y = f(X)) ≤ H −∆
}

. Then

Pr[f(X) ∈ Y ] ≤ 2λ−∆.
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In words: the probability that knowledge of f(X) decreases the min-entropy of X by ∆ or more
is at most 2λ−∆. Put differently, the min-entropy of X after observing the value of f(X) is greater
than H ′ except with probability at most 2λ−H+H′

.

Proof Fix y ∈ {0, 1}λ and x ∈ {0, 1}n with f(x) = y. Since

Pr[X = x | y = f(X)] =
Pr[X = x]

Pr[y = f(X)]
,

we have that y ∈ Y only if Pr[y = f(X)] ≤ 2−∆. The fact that the range of f is {0, 1}λ means that
|Y | ≤ 2λ, and it follows that Pr[f(X) ∈ Y ] ≤ 2λ−∆ as claimed.

3 A Leakage-Resilient Signature Scheme

We construct a leakage-resilient signature scheme in the standard model, following the intuition
described in Section 1.2. Let (GenH ,H) be a UOWHF [24] mapping n-bit inputs to 1

2 · n
ǫ-bit

outputs for n = poly(k) and ǫ ∈ (0, 1); we assume that finding second pre-images is hard even
given the randomness used to generate the hash key. (Standard constructions of UOWHFs have
this property.) Let (GenE,Enc,Dec) be a CPA-secure, dense4 public-key encryption scheme, and
let (ℓ,P,V,S1,S2) be an unbounded simulation-sound NIZK proof system [9] for the following
language L:

L = {(s, y, pk,m,C) : ∃x, ω s.t. C = Encpk(x;ω) and Hs(x) = y} .

The signature scheme is defined as follows:

Key generation: Choose random x ← {0, 1}n and compute s ← GenH(1k). Obliviously sample
a public key pk for the encryption scheme, and choose a random string r ← {0, 1}ℓ(k). The
public key is (s, y := Hs(x), pk, r) and the secret key is x.

Signing: To sign message m using secret key x and public key (s, y, pk, r), first choose random
ω and compute C := Encpk(x;ω). Then compute π ← Pr((s, y, pk,m,C), (x, ω)); i.e., π is a
proof that (s, y, pk,m,C) ∈ L using witness (x, ω). The signature is (C, π).

Verification: Given a signature (C, π) on the message m with respect to the public key (s, y, pk, r),
output 1 iff Vr((s, y, pk,m,C), π) = 1.

Theorem 1 Under the stated assumptions, the signature scheme above is (n−nǫ)-leakage resilient.

Proof (Sketch) Let Π denote the scheme given above, and let A be a ppt adversary with

δ = δ(k)
def
= Pr[Succ

λ-leakage
A,Π (k)]. We consider a sequence of experiments, and let Pri[·] denote the

probability of an event in experiment i. We abbreviate Succ
λ-leakage
A,Π (k) by Succ.

Experiment 0: This is the experiment of Definition 2. Given the public key (s, y, pk, r) defined by
the experiment, Succ denotes the event that A outputs (m, (C, π)) where Vr((s, y, pk,m,C), π) = 1
and m was never queried to the signing oracle. By assumption, we have Pr0[Succ] = δ.

4This means it is possible to sample a public key “obliviously,” without knowing the corresponding secret key.
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Experiment 1: We introduce the following differences with respect to the preceding experiment:
when setting up the public key, we now generate the common random string r of the simulation-
sound NIZK by computing (r, τ) ← S1(1

k). Furthermore, signing queries are now answered as
follows: to sign m, generate C ← Encpk(x) as before but compute π as π ← S2((s, y, pk,m,C), τ).

It follows from the (adaptive) zero-knowledge property of (ℓ,P,V,S1,S2), that the difference
|Pr1[Succ]− Pr0[Succ]| must be negligible.

Experiment 2: We modify the preceding experiment in the following way: to answer a signing
query for a message m, compute C ← Encpk(0

n) (and then compute π as in Experiment 1). CPA-
security of the encryption scheme implies that |Pr2[Succ]− Pr1[Succ]| is negligible.

Experiment 3: We now change the way the public key is generated. Namely, instead of obliviously
sampling the encryption public key pk we compute it as (pk, sk)← GenE(1k). Note that this is only
a syntactic change and so Pr3[Succ] = Pr2[Succ]. (This assumes perfect oblivious sampling; if an
obliviously generated public key and a legitimately generated public key are only computationally
indistinguishable, then the probability of Succ is affected by a negligible amount.)

Given the public key (s, y, pk, r) defined by the experiment, let Ext be the event that A outputs
(m, (C, π)) such that Succ occurs and furthermore Hs(Decsk(C)) = y. Unbounded simulation
soundness of the NIZK proof system implies that |Pr3[Ext]− Pr3[Succ]| is negligible. (Note that by
definition of L the message m is included as part of the statement being proved, and so if A did not
request a signature on m then it was never given a simulated proof of the statement (s, y, pk,m,C).)

To complete the proof, we show that Pr3[Ext] is negligible. Consider the following adversary B
finding a second-preimage in the UOWHF: B chooses random x← {0, 1}n and is given key s (along
with the randomness used to generate s). B then runs Experiment 3 with A. In this experiment all
signatures given to A are simulated (as described in Experiment 3 above); furthermore B can easily
answer any leakage queries made by A since B knows a legitimate secret key. (Recall that here we
allow the leakage functions to be applied only to [the randomness used to generate] the secret key,
but not to any auxiliary state used during signing.) If event Ext occurs when A terminates, then

B recovers a value x′ def
= Decsk(C) for which Hs(x

′) = y = Hs(x); i.e., B recovers such an x′ with
probability exactly Pr3[Ext]. We now argue that x′ 6= x with high probability.

The only information about x revealed to A in Experiment 3 comes from the value y included
in the public key and the leakage queries asked by A; these total at most 1

2 ·n
ǫ +(n−nǫ) = n− 1

2 ·n
ǫ

bits. Using Lemma 1 with ∆ = H∞(x) = n, the probability that H∞(x | A’s view) = 0 (i.e., the
probability that x is uniquely determined by the view of A) is at most 2−nǫ/2, which is negligible.
When the conditional min-entropy of x is greater than 0 there are at least two (equally probable)
possibilities for x and so x′ 6= x with probability at least 1

2 . Taken together, the probability that B
recovers x′ 6= x with Hs(x

′) = Hs(x) is at least

1

2
·
(

Pr3[Ext]− 2−nǫ/2
)

.

We thus see that if Pr3[Ext] is not negligible then B violates the security of the UOWHF with
non-negligible probability, a contradiction.

4 A Fully Leakage-Resilient One-Time Signature Scheme

In this section we describe constructions of fully leakage-resilient one-time and t-time signature
schemes. These results are incomparable to the result of the previous section: on the positive side,
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here we achieve full leakage resilience as well as better efficiency; on the downside, the schemes
given here are only secure when the adversary obtains a bounded number of signatures, and the
leakage that can be tolerated is lower.

We describe a basic one-time signature scheme, and then present an extension that tolerates
leakage of information up to a constant fraction of the secret key length. Let (GenH ,H) be a
UOWHF mapping kc-bit inputs to k-bit outputs for some c > 1. (As before, we assume H is
secure even given the randomness used to generate the hash key.) Our basic scheme is a variant on
Lamport’s signature scheme [21], using H as the one-way function:

Key generation: Choose random xi,0, xi,1 ← {0, 1}
kc

for i = 1, . . . , k, and generate s← GenH(1k).
Compute yi,b := Hs(xi,b) for i ∈ {1, . . . , k} and b ∈ {0, 1}. The public key is (s, {yi,b}) and
the secret key is {xi,b}.

Signing: The signature on a k-bit message m = m1, . . . ,mk consists of the k values x1,m1
, . . . , xk,mk

.

Verification: Given a signature x1, . . . , xk on the k-bit message m = m1, . . . ,mk with respect to

the public key (s, {yi,b}), output 1 iff yi,mi

?
= Hs(xi) for all i.

It can be shown that the above scheme is fully n(c−1)/(c+1)-leakage resilient (as a one-time
signature scheme), where n = 2kc+1 denotes the length of the secret key. (We omit the proof, since
we will prove security for an improved scheme below.) Setting c appropriately, the above approach
thus tolerates leakage n1−ǫ for any desired ǫ > 0. Note that the bound on the leakage is essentially
tight, since an adversary who obtains the signature on the message 0k and then leaks the value x1,1

(which is only kc = (n/2)c/(c+1) bits) can forge a signature on the message 10k−1.

Tolerating leakage linear in the secret key length. An extension of the above scheme allows
us to tolerate greater leakage: specifically, we apply Lamport’s scheme to a high-distance encoding
of the message. Details follow.

If A is a k × ℓ matrix over {0, 1} (viewed as the field F2), then A defines a (linear) error-
correcting code C ⊂ {0, 1}ℓ where the message m ∈ {0, 1}k (viewed as a row vector) is mapped
to the codeword m · A. It is well known that for every ǫ > 0 there exists a constant R such that
choosing A ∈ {0, 1}k×Rk uniformly at random defines a code with relative minimum distance 1

2 − ǫ,
except with probability negligible in k. (We will not need efficient decodability.)

Fix a constant ǫ ∈ (0, 1) and let R be as above; set ℓ = Rk. Let (GenH ,H) be a UOWHF
mapping ℓin-bit inputs to k-bit outputs where ℓin = 2k/ǫ. The signature scheme is defined as
follows:

Key generation: Choose random A ∈ {0, 1}k×ℓ and xi,0, xi,1 ← {0, 1}
ℓin for i = 1, . . . , ℓ. Generate

s ← GenH(1k). Compute yi,b := Hs(xi,b) for i ∈ {1, . . . , ℓ} and b ∈ {0, 1}. The public key is
(A, s, {yi,b}) and the secret key is {xi,b}.

Signing: To sign a message m ∈ {0, 1}k , first compute m̄ = m · A ∈ {0, 1}ℓ. The signature then
consists of the ℓ values x1,m̄1

, . . . , xℓ,m̄ℓ
.

Verification: Given a signature x1, . . . , xℓ on the message m with respect to the public key

(A, s, {yi,b}), first compute m̄ = m ·A and then output 1 iff yi,m̄i

?
= Hs(xi) for all i.

Theorem 2 If H is a UOWHF then the scheme above is a one-time signature scheme that is fully
(1
4 − ǫ) · n-leakage resilient, where n = 2ℓ · ℓin denotes the length of the secret key.

9



Proof Let Π denote the scheme given above, and let A be a ppt adversary with δ = δ(k)
def
=

Pr[Succ
λ-leakage∗
A,Π (k)]. We construct an adversary B breaking the security of H with probability at

least (δ − negl(k))/4ℓ, implying that δ must be negligible.
B chooses random A ∈ {0, 1}k×ℓ and xi,0, xi,1 ← {0, 1}

ℓin for i = 1, . . . , ℓ; we let X = {xi,b}
denote the set of secret key values B chooses and observe that H∞(X ) = 2ℓ · ℓin. Next, B selects a
random b∗ ∈ {0, 1} and a random index i∗ ∈ {1, . . . , ℓ}, and outputs xi∗,b∗ ; it is given in return a
hash key s. Then B computes yi,b := Hs(xi,b) for all i, b and gives the public key (A, s, {yi,b}) to A.
B answers the signing and leakage queries of A using the secret key {xi,b} that it knows. Since

this secret key is distributed identically to the secret key of an honest signer, the simulation for A
is perfect and A outputs a forgery with probability δ.

Let m̄ denote the encoding of the message m whose signature was requested by A. The infor-
mation A has about X consists of: (1) the signature (x1,m̄1

, . . . , xℓ,m̄ℓ
) it obtained; (2) the values

{yi,1−m̄i
}ℓi=1 from the public key and (3) the answers to the leakage queries asked by A. Together,

these total ℓ · ℓin + ℓk + (1
4 − ǫ) · 2ℓ · ℓin bits. By Lemma 1, it follows that H∞(X | A’s view) >

(1
2 + ǫ) · ℓ · ℓin except with probability at most

2(ℓ·ℓin+ℓk+( 1

2
−2ǫ)ℓ·ℓin)−2ℓ·ℓin+( 1

2
+ǫ)·ℓ·ℓin = 2ℓk−ǫℓ·ℓin,

which is negligible.
Assuming H∞(X | A’s view) > (1

2 + ǫ) · ℓ · ℓin, there is no set I ⊆ [ℓ] with |I| ≥ (1
2 − ǫ) · ℓ for

which the values {xi,1−m̄i
}i∈I are all fixed given A’s view. To see this, assume the contrary. Then

H∞(X | A’s view) ≤
∑

i6∈I

H∞(xi,1−m̄i
| A’s view) ≤

(

1

2
+ ǫ

)

ℓ · ℓin,

in contradiction to the assumed bound on the conditional min-entropy of X .
Let (m∗, (x∗

1, . . . , x
∗
ℓ )) denote the forgery output by A, and let m̄∗ = m∗ ·A denote the encoding

of m∗. Let I be the set of indices where m̄ and m̄∗ differ; with all but negligible probability over
choice of the matrix A it holds that |I| ≥ (1

2 − ǫ) · ℓ and so we assume this to be the case. By
the argument of the previous paragraph, it cannot be the case that the {xi,1−m̄i

}i∈I are all fixed
given A’s view. But then with probability at least half we have x∗

i 6= xi,m̄∗

i
for at least one index

i ∈ I. Assuming this to be the case, with probability at least 1/2ℓ this difference occurs at the
index (i∗, b∗) guessed at the outset by B; when this happens B has found a collision in H for the
given hash key s. Putting everything together, we see that B finds a collision in H with probability
at least (δ − negl(k)) · 1

2 ·
1
2ℓ , as claimed.

A t-time signature scheme. The idea above can be further extended to give a fully leakage
resilient t-time signature scheme using cover-free families. We follow the definition of [20].

Definition 3 A family of non-empty sets S = {S1, . . . , SN}, where Si ⊂ U , is (t, 1
2)-cover-free if

for all S, S1, . . . , St ∈ S it holds that
∣

∣S \ ∪t
i=1Si

∣

∣ ≥ |S|/2. ♦

Kumar et al. [20] show an explicit construction that, for any t and k, yields a (t, 1
2)-cover free

family S = {S1, . . . , SN} where the number of sets is N = Ω(2k), the size of each set is |Si| = O(kt),
and the universe size is |U | = O(kt3). If we let f : {0, 1}k → S denote an injective map, we obtain
the following scheme:
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Key generation: Set ℓ = O(kt3) and ℓin = 8t2k. Choose xi ← {0, 1}
ℓin for i = 1, . . . , ℓ. Generate

s ← GenH(1k), and compute yi := Hs(xi) for i ∈ {1, . . . , ℓ}. The public key is (s, {yi}
ℓ
i=1)

and the secret key is {xi}
ℓ
i=1.

Signing: To sign a message m ∈ {0, 1}k , first compute f(m) = Sm ∈ S. The signature then
consists of {xi}i∈Sm

.

Verification: Given a signature {xi} on the message m with respect to the public key (s, {yi,b}),

first compute Sm = f(m) and then output 1 iff yi
?
= Hs(xi) for all i ∈ Sm.

A proof of the following proceeds along exactly the same lines as the proof of Theorem 2:

Theorem 3 If H is a UOWHF then the scheme above is a t-time signature scheme that is fully
Θ(n/t2)-leakage resilient, where n = ℓ · ℓin denotes the length of the secret key.
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A Fully Leakage-Resilient Signatures in the Random Oracle Model

For completeness, we describe a construction of a fully leakage-resilient signature scheme in the
random oracle model that was discovered independently by [2]. Although the schemes are identical
in both works, we note two differences in the analysis: first, we make explicit the fact that the
leakage can depend on all the state information of the signer; second, we allow leakage queries to
depend on the random oracle.

For concreteness, we exemplify the approach using (a variant of) the Okamoto-Schnorr signature
scheme [30, 26], thus basing security on the discrete logarithm assumption. The same ideas can
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also be applied to obtain schemes based on the RSA [15, 26] or factoring [27, 13] assumptions (but
see the remark at the end of this section).

Let G be a group generation algorithm that on input 1k outputs (G, q) where q is a k-bit prime
and G is a cyclic group of order q. We assume group operations in G are efficient, and that a random
element of G can be sampled “obliviously”: i.e., there is an efficient algorithm sampG generating
random elements of G with the property that, given g ∈ G, one can sample uniformly from the
set of coins ω for which g := sampG(ω).5 (We leave sampG implicit from now on.) This implies in
particular that (assuming the discrete logarithm problem is hard in the first place) it is possible to
generate a random element of G without learning its discrete logarithm.

Our signature scheme is parameterized by an integer ℓ, and is defined as follows:

Key generation: Compute (G, q) ← G(1k) and choose random g1, . . . , gℓ ← G and random
x1, . . . , xℓ ← Zq. Set h :=

∏

i g
xi

i . The public key is (G, q, g1, . . . , gℓ, h) and the secret
key is (x1, . . . , xℓ). We also assume a random oracle H : {0, 1}∗ → Zq.

Signing: Signatures are perfectly witness-indistinguishable proofs of knowledge of a representa-
tion of h with respect to the basis (g1, . . . , gℓ), turned into signatures using the Fiat-Shamir
transformation. In detail: to sign message m using secret key (x1, . . . , xℓ) and public key
(G, q, g1, . . . , gℓ, h), the signer chooses random r1, . . . , rℓ ← Zq and computes A :=

∏

i g
ri

i . It
then sets c := H(A,m), and outputs the signature (A, cx1 + r1, . . . , cxℓ + rℓ).

Verification: Given a signature (A,α1, . . . , αℓ) on the message m with respect to the public key

(G, q, g1, . . . , gℓ, h), compute c := H(A,m) and output 1 iff
∏

i g
αi

i
?
= hc ·A.

Before proving security, we formally state the discrete logarithm assumption as well as an
equivalent assumption we will use in our proof.

Definition 4 Let G be as above. We say the discrete logarithm problem is hard for G if the
following is negligible for all ppt algorithms A:

Pr
[

(G, q)← G(1k); g, h← G;x← A(G, q, g, h, ω) : gx = h
]

,

where ω denotes the randomness used to generate G, q, g, h. (Note that by our assumption on
sampG, the coins used to generate g, h are extraneous.) ♦

We stress that the above definition requires hardness to hold even against adversaries given the
randomness used to generate the problem instance. (For concrete G used in practice, this additional
randomness does not seem to make the problem any easier.)

Definition 5 Let G be as above. We say the ℓ-representation problem is hard for G if the following
is negligible for all ppt algorithms A:

Pr

[

(G, q)← G(1k); g1, . . . , gℓ ← G;
(x1, . . . , xℓ), (x

′
1, . . . , x

′
ℓ)← A(G, q, g1, . . . , gℓ, ω)

:
∏

i

gxi

i =
∏

i

g
x′

i

i

∧

~x 6= ~x′

]

,

where ω denotes the randomness used to generate G, q, g1, . . . , gℓ. ♦

Hardness of the discrete logarithm problem for G implies hardness of the ℓ-representation prob-
lem [7, 3] (for any polynomial ℓ). This implication carries over to our setting (where the randomness

5This property holds for concrete examples G used in practice.
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used to generate the instance is given to the adversary) given our assumption that elements in G

can be sampled without knowledge of their.

Theorem 4 If the discrete logarithm problem is hard for G, then for any ǫ > 0 the signature
scheme above is

(

1
2 −

1
2ℓ − ǫ

)

· n-leakage resilient, where n denotes the length of the secret key.
Thus, for any desired 1 > ǫ′ > 0, setting ℓ > 1/ǫ′ (and taking ǫ = ǫ′/2) gives a scheme that is

(1
2 − ǫ′) · n-leakage resilient.

Proof Let A be a probabilistic polynomial-time adversary attacking the scheme in the sense of
Definition 2. We let qH be a bound on the total number of hash queries asked throughout the entire
experiment; such queries can be made directly by A and can also occur in the course of answering
signing or leakage queries. Denote the success probability of A by δ = δ(k).

We make a number of assumptions about A without loss of generality. First, we assume that
if A outputs (m,σ = (A,α1, . . . , αℓ)) then (1) A at some point queried H(A,m) and (2) A never
requested a signature on m. Second, for any leakage query Leak(fi) we assume fi(state) makes
the same number of H-oracle calls regardless of the value of state (this can always be ensured by
adding dummy queries, as needed).

We construct a probabilistic polynomial-time algorithm B solving the ℓ-representation problem.
Algorithm B proceeds as follows: on input (G, q, g1, . . . , gℓ, ω), it chooses random x1, . . . , xℓ and
computes h :=

∏

i g
xi

i . It gives the public key pk = (G, q, g1, . . . , gℓ, h) to A and runs the entire
experiment of Definition 2, simulating the random oracle for A. Note that B can run the entire
experiment easily since it knows a legitimate secret key (x1, . . . , xℓ) corresponding to pk.

When A terminates, B examines A’s output (m,σ = (A,α1, . . . , αℓ)); we call the execution of A
to this point the first run of A. If Vrfypk(m,σ) = 1, then B rewinds to the point in the experiment
where the hash query H(A,m) = c was first made; note that this may occur either as a result of
a direct H-query made by A, or during the course of answering a Leak query. B then chooses a
fresh random value c′ for the result of H(A,m), and re-runs the experiment from that point; we
will refer to the execution of A from this point to termination as the second run of A. During
the second run of A, signing queries are answered using fresh randomness but H-oracle queries are
answered consistently with the first run of A. (I.e., if a hash query is made during the second run
of A that was also made during the first run of A, the same answer chosen during the first run is
used in the second run. Any new hash queries are answered using fresh randomness.) We say B
succeeds if, in this second run, A terminates with output (m,σ′ = (A,α′

1, . . . , α
′
ℓ)) where σ′ is also

a valid signature on m.
If B succeeds and also c′ 6= c, then B computes (in the standard way [26]) values (x′

1, . . . , x
′
ℓ) such

that
∏

i g
x′

i

i = h. By definition, B solves the representation problem if (x′
1, . . . , x

′
ℓ) 6= (x1, . . . , xℓ).

The following two claims complete the proof of the theorem.

Claim 1 Pr[B succeeds] ≥ δ2/qH .

Proof Consider all possible states during the execution of A in the experiment of Definition 2
where a new hash query is made, and for any such state i let hi denote the hash query made at
that state. If an execution of A terminates with a valid forgery (m,σ = (A,α1, . . . , αℓ)), say that
state i is associated with the forgery if hi = (m,A).

For any state i where a new hash query is made, let ai be the probability that this state is
reached in the experiment of Definition 2, where this probability is over the entire specification of

15



the random oracle H (except for the value of H(hi), which does not affect the probability since the
query hi is being made for the first time in state i) as well as the randomness of A, the randomness
used to generate the public key, and the randomness used to answer any signing queries made up to
that point. For the same state i, let bi be the probability that, starting from state i, the execution
of A terminates with a successful forgery associated with i. This probability is over the value of
H(hi) and the randomness used to answer any signing queries made after this point. Since every
successful forgery is associated with a unique state of A, we have

∑

i ai · bi = δ, the overall success
probability of A. Furthermore, we have

∑

i ai = E[number of hash queries made by A] ≤ qh.
By construction of B, we have Pr[B succeeds] =

∑

i ai · (bi)
2. Using Jensen’s inequality:

∑

i

ai · (bi)
2 ≥

∑

i

ai ·

(∑

i ai · bi
∑

i ai

)2

≥
δ2

∑

i ai
≥ δ2/qH ,

completing the proof of the claim.

Claim 2 The probability that B solves the representation problem is at least

1

2
·
(

Pr[B succeeds]− 1/q − qH/q2ǫℓ
)

.

Proof When B succeeds, there are two bad events that can prevent B from solving the represen-
tation problem. First, it may be the case that c′ = c; this happens with probability 1/q. Second, it
may be the case that the extracted representation ~x′ = (x′

1, . . . , x
′
ℓ) is equal to the original repre-

sentation ~x = (x1, . . . , xℓ). We show that except with probability at most qH/q2ǫℓ, the min-entropy
of ~x conditioned on the view of A (in both its runs) is greater than 0; given this, the probability
that ~x′ 6= ~x is at least 1/2 and the claim follows.

Let λ =
(

1
2 −

1
2ℓ − ǫ

)

· ℓ · log q, an upper bound on the number of leaked bits in each run of A.
The public key pk constrains ~x to lie in an (ℓ−1)-dimensional vector space, and it is well-known [26]
that signature queries do not further constrain ~x. Thus, the min-entropy of ~x conditioned on the
public key and the observed signatures is (ℓ− 1) · log q bits. The views of A in its two runs contain
only the following additional information about ~x: at most 2 · λ bits from the leakage functions
(i.e., λ bits in each view), and log qH bits indicating the relevant state associated with the first
forgery (cf. the proof of Claim 1).6 Applying Lemma 1, we see that the conditional min-entropy of
~x is greater than 0 except with probability at most

22λ+log qh−(ℓ−1)·log q ≤ qH · q
−2ǫℓ.

The claim follows.

Taking the two claims together, we see that if A succeeds with probability δ then B solves the
representation problem with probability at least

1

2
·
(

δ2/qH − 1/q − qH/q2ǫℓ
)

.

6Note that this information may not be evident from A’s view. For example, consider the leakage query f1 defined
as follows: “if x1 = 0 then query H(A,m) (otherwise do nothing); in any case, return the first bit of x2.” If A later
queries H(A,m) and eventually outputs a forgery (A, . . .) on m, then the state associated with this forgery depends
on ~x and cannot be determined solely from the view of A.

16



Since qH is polynomial, ǫ > 0 is a constant, and 1/q is negligible, the above is non-negligible
whenever δ is. This completes the proof of the theorem.

It is an interesting open question to improve the tightness of the security reduction.

Remark: instantiating this approach using factoring-based assumptions. As noted at the
beginning of this section, the same approach as above can also be applied to obtain leakage-resilient
schemes based on the RSA [15, 26] or factoring [27, 13] assumptions. In these cases, however, we
must either (1) restrict the leakage functions to apply only to those values used by the signer
after the key generation phase (i.e., the secret key and all state variables used to sign, but not the
random coins used to generate the secret/public key), or (2) generate the modulus N via oblivious
sampling, leading to a significant loss in efficiency.
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