
Pseudo-Random Functions and Parallelizable Modes of
Operations of a Block Cipher

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. This paper considers the construction and analysis of pseudo-random functions (PRFs) with
specific reference to modes of operations of a block cipher. In the context of message authentication
codes (MACs), earlier independent work by Bernstein and Vaudenay show how to reduce the analysis of
relevant PRFs to some probability calculations. In the first part of the paper, we revisit this result and
use it to prove a general result on constructions which use a PRF with a “small” domain to build a PRF
with a “large” domain. This result is used to analyse two new parallelizable PRFs which are suitable
for use as MAC schemes. The first scheme, called iPMAC, is based on a block cipher and improves
upon the well-known PMAC algorithm. The improvements consist in faster masking operations and
the removal of a design stage discrete logarithm computation. The second scheme, called VPMAC,
uses a keyed compression function rather than a block cipher. The only previously known compression
function based parallelizable PRF is called the protected counter sum (PCS) and is due to Bernstein.
VPMAC improves upon PCS by requiring lesser number of calls to the compression function.
The second part of the paper takes a new look at the construction and analysis of modes of operations for
authenticated encryption (AE) and for authenticated encryption with associated data (AEAD). Usually,
the most complicated part in the security analysis of such modes is the analysis of authentication
security. Previous work by Liskov, Rivest and Wagner and later Rogaway had suggested that this
analysis is simplified by using a primitive called a tweakable block cipher (TBC). In contrast, we take
a direct approach. We prove a general result which shows that the authentication security of an AE
scheme can be proved from the privacy of the scheme and by showing a certain associated function
to be a PRF. Two new AE schemes PAE and PAE-1 are described and analysed using this approach.
In particular, it is shown that the authentication security of PAE follows easily from the security of
iPMAC. As a result, no separate extensive analysis of the authentication security of PAE is required.
An AEAD scheme can be obtained by combining an AE scheme and an authentication scheme and
it has been suggested earlier that a TBC based approach simplifies the analysis. Again, in contrast
to the TBC based approach, we take a direct approach based on a simple masking strategy. Our idea
uses double encryption of a fixed string and achieves the same effect of mask separation as in the
TBC based approach. Using this idea, two new AEAD schemes PAEAD and PAEAD-1 are described.
An important application of AEAD schemes is in the encryption of IP packets. The new schemes of-
fer certain advantages over previously well known schemes such as the offset codebook (OCB) mode.
These improvements include providing a wider variety of easily reconfigurable family of schemes, a small
speed-up, a smaller size decryption algorithm for hardware implementation and uniform processing of
only full-block messages.
Keywords: pseudo-random function, message authentication, protected counter sum, PMAC,
encryption, authentication, authenticated encryption, authenticated encryption with as-
sociated data, OCB.

1 Introduction

A block cipher is a basic cryptographic primitive. Formally, it is a map E : K ×M → M, where
K is the set of keys and M is the set of messages. For every K ∈ K, EK : M → M, defined as

EK(·) ∆= E(K, ·), is a bijection and hence a permutation of M. In practical applications, M =
{0, 1}n for some fixed positive integer n and similarly, K also consists of fixed length binary strings.
Well known examples are DES and AES [10].

The security model of a block cipher is that of a pseudo-random permutation (PRP) family [22].
Informally, this means that an adversary should not be able to distinguish the block cipher from a
uniform random permutation of {0, 1}n. This is formalized in the following manner. The adversary
A is given an oracle, which takes as input an n-bit string and also returns an n-bit string as output.
A makes several queries to the oracle and finally outputs a bit b. Suppose a key K is chosen
uniformly at random from K and the oracle is instantiated by EK() and let p1 be the probability
that A outputs 1 in this case. Similarly, let p0 be the probability that A outputs 1 when the oracle is
instantiated using a uniform random permutation. Then the advantage of A in attacking the PRP-
property of the block cipher is given by |p1 − p0|. This advantage is parametrized by the number
of queries that A makes and the run-time of A. A stronger notion is that of strong pseudo-random
permutation (SPRP), where A is also provided the inverse oracle.

A related general notion is that of a pseudo-random function (PRF). Let f be a random (but,
not necessarily uniform random) function from a set X to a set Y, where X and Y are finite non-
empty sets. The set X is usually the set of all binary strings of some maximum length. Considering
X to be the set of all binary causes a technical difficulty. We will be interested in (uniform) random
functions from X to Y. If X is finite, then the set of all such functions is also finite and we are
dealing with a discrete probability space. If, on the other hand, X is the set of all binary strings,
then the set of all functions from X to Y is uncountable which leads us into non-discrete probability
spaces. To avoid this issue and also because of the fact that in any conceivable situation, there will
be a practical upper bound on the length of a string in X (such as 264), we consider X to be a
finite set.

Let A be an adversary which has an oracle. The oracle takes as input an element of X and
returns as output an element of Y. As before, instantiate the oracle in two ways; either with f
or with a uniform random function from X to Y and let the corresponding probabilities of A
outputting 1 be p1 and p0. Then the advantage of A in attacking the PRF-property of f is defined
to be |p1−p0|. The PRF-advantage is parametrized by the number of queries made and the run-time
of the adversary.

A block cipher by itself can handle only n-bit strings. Applications require the authentication of
long and possibly variable length strings. Authentication of a long string requires several invocations
of the block cipher. Proper methods of doing this are called modes of operations. In this work, we
consider modes of operations of a block cipher for the tasks of authentication and authenticated
encryption with the option of authenticating an additional associated data.

Authentication. The sender and the receiver share a common secret key K. Given a message x,
the sender uses K to generate a tag, called a message authentication code (MAC), and sends (x, tag)
to the receiver. The receiver uses K to verify that (x, tag) is a properly generated message-tag pair.
In most cases, verification is simply to regenerate the tag on x and compare to the received value.

An attack on a MAC scheme amounts to forging a message-tag pair, i.e., to find a valid pair
which was not generated by the tag generation algorithm. An attacker (also called an adversary) is
said to be successful if he can indeed generate such a pair. It is usually assumed that the adversary
can obtain some tags on messages of his choosing. In other words, the adversary is allowed to ask the
sender to authenticate some messages (chosen by the adversary) and provide the corresponding tags
to the adversary. This is modelled by considering the tag generation algorithm to be instantiated by

2

a secret key (unknown to the adversary) and provided as an oracle to the adversary. The adversary
interacts with this oracle by providing messages and obtains the corresponding tags. At the end of
the interaction, the adversary outputs a “new” pair (x, tag), i.e., this (x, tag) does not equal any
(xi, tagi), where tagi was returned by the oracle on query xi. The adversary is successful if (x, tag)
passes the verification of the MAC scheme.

Intuitively, given a PRF f which outputs n-bit strings, it is easy to construct a basic authen-
tication scheme: given a message x, the tag is tag = f(x) and verification is done by regenerating
the tag. There are efficient known constructions of PRFs including one [15] which has been stan-
dardized by NIST [11]. This is a sequential algorithm which is based on the cipher block chaining
(CBC) mode of operation.

Security of CBC-MAC has been analysed in several papers [2, 25, 39, 31]. An improved analysis
by Bellare, Pietrzak and Rogaway [4] showed a bound of mq2

2n (12 + 8m3

2n) for messages with the
prefix property, where m is the maximum number of n-bit blocks in any query. The dominating
term in this expression is mq2/2n, which improves upon the previous bound of m2q2/2n. In fact, the
importance of the work in [4] is that it was the first paper to prove a bound of the type mq2/2n for
some PRF construction. Such bounds are usually called “beyond birthday bound” security. More
recent work on CBC-type construction appears in [29].

A parallel MAC scheme called protected counter sum (PCS) was described by Bernstein [6].
This scheme uses a keyed compression function as its building block and cannot be replaced by a
block cipher. Black and Rogaway [8] and later Rogaway [35] described block cipher based methods
for parallel message authentication. The scheme in [8] was called PMAC and the one in [35] was
called PMAC1; currently, the scheme in [35] itself is called PMAC. The construction in [35] is
based on an efficient construction of tweakable block cipher (TBC) family [21]. Chakraborty and
Sarkar [9] generalised the TBC construction in [35] and hence obtained several variants of PMAC.

The bound on the advantage of PMAC forgery was shown to be cσ2/2n, for some constant c,
where σ is the total number of n-bit blocks provided by the adversary in all its queries. Following
the work in [4], this bound was improved by Minematsu and Matsushima [27] to a constant times
mq2/2n, where m is the maximum of the lengths of all the queried messages. Nandi and Mandal [30]
showed a bound of (5qσ − 3.5q2)/2n for PMAC. Bounds of the type qσ/2n are also called beyond
birthday bound.

Authenticated encryption with associated data. Packet switched networks communicate
among various nodes using packets. Examples are the internet protocol version 4 (IPv4) which is
widely deployed and the later IPv6. A typical packet structure consists of two sections – a header
section and a data section. In IPv4, the header (without options) consists of 20 bytes, while the data
section could be up to 65,535 bytes. The maximum transmission unit (MTU) could be smaller, for
example, the MTU of ethernet is 1500 bytes. If 20 bytes are used for header, then the MTU for data
comes to 1480 bytes, so that a 65,535-byte IPv4 packet will be broken up into d65535/1480e = 45
ethernet packets. More details can be found from [14].

The problem that concerns us is the need for secure communication of such packets. The data
needs to be encrypted so that it becomes inaccessible to unauthorized persons. But, this is not
enough. It is also required to ensure that any tampering of the encrypted data can be detected.
This is called authentication and the security requirement on the data is both encryption and
authentication. The header, however, cannot be encrypted as then the packet cannot be forwarded
by intermediate routers. On the other hand, it is usually required to ensure that the header is
authenticated, so that any tampering of the header can be detected by the receiver.

3

Abstracting to a more general setting, the requirement of both encrypting and authenticating
a binary string is called authenticated encryption (AE). If additionally another string needs to
be authenticated but not encrypted, then the problem is called authenticated encryption with
associated data (AEAD). The basic idea of AE was known to designers earlier but, the formal
security model of AE schemes was proposed in [3, 18]. The formal security security model for
AEAD schemes was introduced in [34].

Intuitively, authenticated encryption can be achieved by making two passes over the data – the
first pass encrypts the data, while the second pass authenticates it. Somewhat surprisingly, it can be
shown that a single pass over the data is sufficient to achieve both encryption and authentication.
This results in significant gain in efficiency compared to two-pass schemes. The first single-pass
scheme was reported by Jutla [16] and independently by Gligor and Donescu [12]. Later work [36,
35, 32, 33] led to an efficient algorithm called OCB. (There are actually two versions of OCB and
the version in [32, 33] is currently called OCB and is the one that we will actually refer to.) The
work [35, 32] also shows how to efficiently handle associated data by combining with the PMAC
algorithm. So, OCB currently refers to an AEAD scheme. This OCB version is based upon TBCs
presented in [32]. This class of TBCs was generalised in [9] and provides a family of AEAD schemes
of which OCB is a special case.

The currently known single-pass algorithms are covered by intellectual property claims. Some-
what unfortunately, this has resulted in the scientifically backward step of publishing two-pass
algorithms [5, 23, 26] after one-pass algorithms had already become known. A two-pass algorithm
has been adopted as a standard [1] by the NIST of USA.

1.1 Our Contributions

We make several contributions to the design and analysis of PRFs in the context of modes of
operations of a block cipher for the tasks of authentication and authenticated encryption with
associated data.

Analysis of fixed output length PRFs. A useful result for upper bounding PRF-advantage
was proved by Bernstein [6] and Vaudenay [40]. Let Y = {0, 1}n and f : X → Y be a random
function and U is a “large” subset of Yq for some positive integer q. For distinct x1, . . . , xq ∈ X and
(y1, . . . , yq) ∈ U , Pr[f(x1) = y1, . . . , f(xq) = yq] is called a q-interpolation probability [6]. In [40],
it has been proved that if the “interpolation probabilities” of f can be lower bounded on a “large”
subset of Yq, then the advantage of f as a PRF can be upper bounded. The special case where the
subset U equals Yq has been proved in [6]. We slightly modify this result so as to include a length
function λ on X . In applications, for x ∈ X , λ(x) would be the number of n-bit blocks into which
x is formatted. This makes it easier to apply the result to concrete settings.

Suppose f = π ◦ f (π)
1 , where π is a uniform random permutation; f (π)

1 invokes π a finite number
of times and the entire randomness of f1 arises from the invocations of π. Such random functions
f are typical of many well known constructions of MAC schemes. A general class of constructions
considered in [17, 28] uses a directed acyclic graph (DAG) as the underlying combinatorial structure.
The class of functions considered here cover the class of DAG-based constructions.

We consider this in the more general setting where f = ρ ◦ f (ρ)
1 , with ρ being either a uni-

form random permutation or a uniform random function. Suppose x and x′ are two inputs to
f ; U1, . . . , Um and U ′1, . . . , U

′
m′ are the inputs to the invocations of ρ during the computations of

4

Z = f1(x) and Z ′ = f1(x′) respectively. We define three events: collision (Coll), i.e., Z = Z ′; self-
disjoint (Self-Disjoint), i.e., ∧mi=1(Z 6= Ui); and pairwise-disjoint (Pairwise-Disjoint), i.e., (∧mi=1(Z ′ 6=
Ui) ∧ (∧m′i=1(Z 6= U ′i)). We show that if the probabilities of Coll, Self-Disjoint and Pairwise-Disjoint
are all small, then the PRF-advantage of f is also small. The result is useful, since it reduces the
task of bounding the PRF-advantage of f to that of bounding the probabilities of certain events
for f1.

Efficient masking functions. Many block cipher based modes of operations use masks. These
masks are XORed to inputs before applying the block cipher. The number of masks required is
approximately equal to the number of block cipher invocations. Masks are usually generated in
sequence and require considerably less time compared to a block cipher invocation. Nonetheless,
the generation of the masks can require about 3 to 5% of the total time to process a message.

Efficient mask generation technique uses finite field arithmetic. Let τ(x) be a primitive polyno-
mial of degree n over IF2 = GF (2) and let IF2n = IF2[x]/(τ(x)). For an element β(x) ∈ IF2n , the
map i 7→ xiβ(x) mod τ(x) is the so-called powering-up map used in [35] and other papers [8, 15,
11, 41].

We define a general notion of masking function and identify certain properties that are required
to prove the correctness of the constructions given in this paper. (These same properties are also
required in the other works, though, they have not been identified as such.) Suitable masking
functions can be constructed from a linear map ψ : IF2n → IF2n whose minimal polynomial over IF2

is primitive. The powering map can be seen as one particular example of this general formulation.
Using a tower field representation of IF2n , it is possible to obtain more efficient masking functions.
These correspond to what are called word oriented linear feedback shift registers (LFSRs).

We provide specific examples of word oriented LFSRs for different values of n. Software im-
plementation of the powering up method and word oriented LFSRs show that the latter is about
two times faster. The new modes of operations that we design use masking based on word oriented
LFSRs. As a result, the constructions are faster than those that use the powering-up method. In
particular, the new authentication scheme iPMAC is faster than PMAC and the new AEAD schemes
PAEAD and PAEAD-1 are faster than OCB. We note, however, that with the currently reported
best speeds of AES-128 [24, 7], the speed improvements are small (about 1 to 2%). But, these im-
provements are achieved at no additional trade-offs and since the algorithms are likely to be heavily
used, even small speed improvements are worthwhile. Further, Intel plans to incorporate AES-128
instructions as processor instructions [13], which will significantly increase the speed of AES-128
encryption and decryption. In this eventuality, the proportional speed-up of using word-oriented
LFSRs may be about 5% compared to using the powering-up map.

Avoiding the tweakable block cipher approach. Building on the work of Liskov, Rivest and
Wagner [21], it has been argued Rogaway [35] that the notion of tweakable block ciphers simplify
the construction and analysis of modes of operations of block ciphers. While this is true to a
certain extent, it comes with a certain drawback. The construction of PMAC and OCB in [35] uses
the notion of TBCs. This approach requires the computation of certain discrete logarithms in the
design stage. For PMAC and OCB, it is required to compute the discrete logarithm of (x⊕ 1) and
(x2 ⊕ x ⊕ 1) in the field represented by the primitive polynomial τ(x) of degree n over IF2. For
n = 64 and 128, these values are given in [35] for a specific τ(x); for n = 256, computing these will
take a few hours and is not convenient.

5

Apart from the inconvenience, this affects the reconfigurability of the design. If the specific
τ(x) given in [35] is desired to be changed, then the discrete logarithms must be recomputed.
A similar difficulty is faced in [41], where the tweak based approach is used for n = 512. Since
computing discrete logarithms in IF2512 is very difficult, a bypass is adopted by using tweaks from
different subgroups. It should be noted that it is possible to avoid discrete logarithm computations
while keeping within the ambit of tweakable block cipher approach [9]. However, then the masking
operations become slower. The task of avoiding the discrete logarithm computations and achieving
faster masking compared to PMAC and OCB has not been achieved earlier.

We completely avoid the tweakable block cipher approach. Our construction of iPMAC uses a
simple masking technique which does not require the notion of tweaks. A mask is used to distinguish
whether the last block has been padded or not. PMAC also does the same, but, the masks are built
using the tweak-based approach. In contrast, our approach is direct.

An AE scheme takes as input a pair (N,P) and produces as output (C, tag). Here N is a nonce
and tag authenticates the message P . Further, given N and C, P is uniquely determined. Showing
that an AE scheme achieves privacy is usually quite easy. In previous works on AE schemes [16,
12, 36], the main difficulty had been to show that the scheme achieves secure authentication. The
TBC based approach in [35] simplified this task.

We prove a general result for AE schemes which states that if the scheme satisfies privacy and
if the associated function taking (N,C) to tag is a PRF, then the scheme achieves authentication.
This result greatly simplifies the analysis of authentication of AE schemes. In particular, this result
is used to show the authentication security of two new AE schemes PAE and PAE-1. For PAE, we
show that the authentication security follows from the PRF-property of a simple modification of
iPMAC. Having already proved that iPMAC is a PRF, the authentication security of PAE is obtained
as a simple corollary. In contrast, the TBC based approach in [35] requires separate proofs for the
authentication security of OCB and the PRF-property of PMAC.

A consequence of the relation between the authentication security of PAE and (the modification
of) iPMAC is to provide a simple answer to a question attributed to Rivest in [34] as to whether it is
possible to obtain an authentication scheme from an AE scheme. The decryption algorithm for PAE
can be used for this purpose. The essential idea is to consider the message to be authenticated to
be a ciphertext and run the decryption algorithm of PAE on it, returning the tag that is generated.

Our approach to construction of AEAD schemes also avoids the tweakable approach. But, at a
higher level of abstraction, it uses the same idea as that in [35]. The basic idea is to combine an
AE and an authentication scheme: OCB and PMAC are combined in [35], whereas we combine the
new constructions iPMAC and PAE or PAE-1. The combination is secure if it can be ensured that
the set of inputs to the block cipher in the AE part is disjoint from the set of inputs to the block
cipher in the authentication part. In [35], suitable disjoint tweak spaces are used to ensure this. In
contrast, we use a simple mask separation strategy to ensure that with high probability any mask
used in the PAE part is distinct from a mask used in the iPMAC part.

One consequence of not requiring the tweak based approach is to avoid the the discrete log
computations required in [35]. As a consequence, we obtain a family of easily reconfigurable modes
of operations. In our approach, the masks are generated using a tower field representation of IF2n .
Simply changing this field representation provides a different construction with the same security
and efficiency.

Constructions of parallelizable MAC schemes. We describe iPMAC which is a new paral-
lelizable construction using a uniform random permutation of {0, 1}n. An extension called VPMAC

6

is also described. VPMAC uses a uniform random function which maps ` bits to n bits with ` ≥ n.
Various features of the new and earlier parallelizable constructions are shown in Table 1.

Table 1. Features of the new and previous parallelizable constructions of PRFs suitable for MAC schemes.

scheme perm? bound # invoc

PMAC [35] yes 5qσ−3.5q2

2n [30] 1 + dlen(x)/ne

PCS [6] no q(q−1)

2n+1 [6] 1 + dlen(x)/ne

iPMAC yes (7q+2)σ
2n 1 + dlen(x)/ne

VPMAC no (6q+2)σ
2n 1 + dlen(x)/`e

The PRF-bound that we obtain for iPMAC is similar to that obtained in [27, 30] for PMAC. As
already mentioned, the advantages of iPMAC over PMAC are the faster masking operations and
the removal of design stage discrete logarithm computations.

From the table, it is clear that VPMAC requires lesser number of invocations compared to PCS.
The bound for PCS, on the other hand, is better. This is due to the fact that in PCS certain
collisions do not happen at all, whereas in VPMAC these collisions are only probabilistically ruled
out. Yasuda [41] describes a sequential construction of a PRF using a uniform random ρ with the
restriction that ` ≥ 2n. The number of invocations required to process a message x is approximately
len(x)/n which is the same as that of PCS and so is slower than VPMAC. The security bound on
the other hand, is of the form mq2/22n+1 which is better than that of PCS and VPMAC.

Used with a uniform random permutation π : {0, 1}n → {0, 1}n, bounds of the type qσ/2n or
mq2/2n are called beyond birthday bound security. The “beyond” refers to the numerator of the
expression which is of the type qσ ormq2 instead of σ2 or q2m2 which would be the so-called birthday
bound security. If, however, the construction uses a uniform random function ρ : {0, 1}` → {0, 1}n
with ` > n, then there is scope for some ambiguity as to what may be called “beyond birthday
bound”. This specifically refers to what the denominator should be. Since the size of the tag is still
n bits, one may say that bounds of the type qσ/2n or mq2/2n are still beyond the birthday bound.
Viewed in this manner, both PCS and VPMAC provide bounds of this type. On the other hand, a
bound of the type mq2/22n+1 obtained in [41] is even better. It must be noted though, that such
a bound is obtained at the cost of efficiency, i.e., len(x)/n invocations of ρ compared to len(x)/`
invocations of ρ as required in VPMAC. So [41] achieves better bound at the cost of efficiency.
In absolute terms, the security bound for VPMAC is good enough for practical purposes and is
comparable to the bounds obtained for PMAC. We believe that VPMAC strikes a good balance
between security and efficiency. Further, VPMAC is a parallelizable scheme using a compression
function, the construction of which was posed as an open problem in [41].

Parallelizable schemes for authenticated encryption with associated data. The two new
AE schemes show different ways of achieving authentication. Their combination with iPMAC pro-
vides the two new AEAD schemes. These new AE and AEAD schemes offer certain advantages
over OCB and also over other previous (single-pass) modes [16, 12].

1. As mentioned earlier, faster masking operations and avoiding design stage discrete logarithm
computations are two issues.

7

2. For PAE and PAEAD, encryption requires both EK and E−1
K while decryption requires only

E−1
K ; for PAE-1 and PAEAD-1, encryption requires only EK while decryption requires both EK

and E−1
K . In this aspect, OCB is similar to the second strategy. Consider an application, where

a central office encrypts a message containing a set of instructions and sends them to mobile
sales-persons who only need to decrypt and follow the instructions. Such a salesperson does
not need to encrypt any message. Further, suppose that the mobile clients are implemented
in smart cards which have limited resources. It is then advantageous to have a scheme whose
decryption algorithm requires lesser hardware space for implementation. For such an application,
PAEAD is preferrable to OCB, since the decryption algorithm of PAEAD requires only E−1

K to
be implemented, while, the decryption algorithm of OCB requires both EK and E−1

K . If, on
the other hand, some application requires the opposite, i.e., small hardware for encryption,
then PAEAD-1 (and OCB) would be preferrable to PAEAD. Thus, compared to OCB, the new
constructions provide a wider flexibility in designing applications.

3. For messages whose lengths are multiples of n, the new schemes do not distinguish between
intermediate blocks and the last block. All blocks are processed in the same manner. The
distinction arises only when the last block is less than n bits long. OCB, on the other hand,
processes the last block in a different manner irrespective of its length. For most applications,
the lengths of the messages are powers of 2 while the block length n is also a lower power of 2
and so the block length divides the message lengths. For such applications, since all blocks are
processed in exactly the same manner, the implementation, especially in hardware, of the new
schemes will be simpler compared to OCB.

Note. In this paper, “random” does not necessarily mean “uniform random”. When required, we
will explicitly mention the uniformity condition.

2 Basic Definitions and Results

We will be studying functions from a finite non-empty set X to a finite non-empty set Y. For
example, X could be the set of all binary strings of lengths between 0 and 264 and Y could be the
set of all binary strings of length 128. Given a function f : X → Y and binary strings str1, . . . , strk,
we will often write f(str1, . . . , strk) to denote f(str1|| . . . ||strk). Define χq(X) to be

χq(X) = {(x1, . . . , xq) ∈ X q : xi 6= xj , 1 ≤ i < j ≤ q}. (1)

In other words, χq(X) consists of all (x1, . . . , xq) such that x1, . . . , xq are distinct elements of X .
Let ρ be a function from X to Y and q be a positive integer. The natural extension of ρ to a

function from X q to Yq obtained by applying ρ to each component will be denoted by ECBρ, i.e.,
for any x = (x1, . . . , xq) ∈ X q,

ECBρ(x) = ECBρ(x1, . . . , xq) = (ρ(x1), . . . , ρ(xq)). (2)

Note. The number of elements in a set X will be denoted by #X and the length of a binary string
x will be denoted by len(x).

Definition 1. A set U is said to be a δ-large subset of a set X , if U is a subset of X and #U ≥
δ ×#X .

8

Let λ be a function from X to non-negative integers, i.e., we associate a non-negative integer
with each element of X . In our applications, the set X will consist of binary strings and for x ∈ X ,
λ(x) will denote the number of n-bit blocks (counting partial blocks) into which x can be divided, for
some fixed positive integer n. For the moment, however, we will not be requiring this interpretation.
We will simply call λ to be a length function on X . Given x = (x1, . . . , xq) ∈ X q, we define
λ(x) =

∑q
i=1 λ(xi).

Let m ≥ q ≥ 1. The following two functions will be useful later.

p(m, q) = m(m− 1)(m− 2) · · · (m− (q − 1))
r(m, q) =

(
1− 1

m

) (
1− 2

m

)
· · ·
(
1− q−1

m

)
.

}
(3)

Proposition 1. Let m ≥ q ≥ 1. Then
1

p(m, q)
≥ 1
mq

and
p(m, q)
mq

= r(m, q) ≥ 1− q(q − 1)
2m

.

Proof. The bound on p(m, q) is obvious and the bound on r(m, q) follows on noting that (1 −
a/m)(1− b/m) ≥ (1− (a+ b)/m). ut

Corollary 1. For a finite nonempty set X , #χq(X) = p(#X , q) ≥
(

1− q(q − 1)
2#X

)
(#X)q. Conse-

quently, χq(X) is a
(
1− q(q−1)

2#X

)
-large subset of X q.

Also, we will require the following result.

Lemma 1. Let m1, . . . ,mq be non-negative integers and σ =
∑q
i=1mi. Then

1.
∑

1≤i<j≤q
min(mi,mj) ≤

∑
1≤i<j≤q

max(mi,mj) ≤ qσ.

2.
∑

1≤i<j≤q
(mi +mj) ≤ 2qσ.

Proof. Without loss of generality suppose that m1 ≥ m2 ≥ · · · ≥ mq.∑
1≤i<j≤q

max(mi,mj) =
q∑
i=1

q∑
j=i+1

max(mi,mj)

= (q − 1)m1 + (q − 2)m2 + · · ·+mq−1

≤ q
q∑
i=1

mi

= qσ.

Point (2) follows on noting that mi +mj ≤ 2 max(mi,mj). ut
Our main object of study are random functions from X to Y. Let YX denote the set of all

functions from X to Y. By a uniform random function ρ from X to Y we will mean an element
of YX chosen uniformly at random. A more convenient way to view ρ is the following. For any
x ∈ χq(X), ECBρ(x) is uniformly distributed over Yq, i.e., in other words, the outputs of ρ on
distinct inputs are independent and uniformly distributed. If X = Y, then we can talk about a
permutation π of Y, which is a bijection π : Y → Y. By a uniform random permutation, we will
mean a permutation chosen uniformly at random from the set of all permutations of Y. Again, this
means that for any x ∈ χq(X), ECBπ(x) is uniformly distributed over χq(Y). Examples of random
(but not uniform random) functions can be obtained: let Y be a finite field and X = Y2; choose
a uniform random α ∈ Y and define ρ : X → Y as ρ(a0, a1) = a1α + a0. Then ρ is also a random
function but not a uniform random function.

9

2.1 Information Theoretic Versus Computational Security

Let E : K×{0, 1}n → {0, 1}n be an n-bit block cipher. Let π be a uniform random permutation of
{0, 1}n. For practical applications, the encryption and authentication functions will be constructed
using a block cipher EK . On the other hand, following the information theoretic approach, we
will analyse such constructions by replacing EK with π. Consequently, the constructions below
will be described in terms of a uniform random permutation π. These are easily translated into
descriptions using EK by simply replacing the occurrences of π by EK (and the occurrences of
π−1 by E−1

K). The consequent effect on security will be an additive degradation of security by an
amount which is equal to the computational advantage of an adversary in distinguishing EK from
π (or of distinguishing (EK , E−1

K) from (π, π−1)).
It is to be noted that the randomness of EK comes from the uniform random choice of K while

π is a uniform random permutation of {0, 1}n. This difference of randomness can be easily detected
by a computationally unbounded adversary. Hence, to obtain a meaningful notion in this case, we
need to bound the computational power of an adversary in distinguishing between EK and π. A
block cipher EK() is said to be a pseudo-random permutation (PRP) if a computationally bounded
adversary has negligible advantage in distinguishing EK from π; EK() is said to be a strong pseudo-
random permutation (SPRP) if a computationally bounded adversary has negligible advantage in
distinguishing (EK , E−1

K) from (π, π−1)). See [35] for details.
For the information theoretic analysis, we will consider computationally unbounded adversaries

and consequently, without loss of generality, we consider such adversaries to be deterministic algo-
rithms. (This approach has been used earlier [40, 6].)

Many practical modes of operations of block ciphers are analysed in two steps.

1. First analyse the scheme by replacing the block cipher with a uniform random permutation.
This provides a bound on the PRF-advantage of an adversary. The bound on the advantage is
information theoretic, i.e., it does not depend on the run-time of the adversary. In other words,
the adversary is considered computationally unbounded and is only limited by the number of
queries it can make. This forms the difficult part of the entire analysis.

2. Now, consider a block cipher instead of the uniform random permutation. Then, it is easy to
show that the advantage obtained in Step 1 degrades by an additive term which is the advantage
of the block cipher as a PRP or as an SPRP.

Suppose that instead of a block cipher, a keyed compressing function is used to construct the
PRF [6]. A similar two-step approach can be used; analysis is done using a uniform random function
instead of the keyed function. In the second step, the advantage is adjusted by an additive term to
reflect the strength of the keyed function as a PRF.

In view of this, in our analyses, we will only consider the first step above. In other words, we
will be analysing modes of operations which uses a uniform random permutation instead of a block
cipher. Similarly, constructions using a keyed compressing function will be analysed with a uniform
random function instead of the keyed function.

2.2 Notation

We provide below some of the notation that will be frequently used: n will denote the block size of
the underlying uniform random permutation (or the block cipher) and q will denote the number of
queries made by an adversary. Given a binary string X, the notation Firstr(X) denotes the r bits
of X from the left, i.e., the r most significant bits of X.

10

String parsing is done as shown in Table 2. Given a string (message) X of length len(X) ≥ 0
bits, formatting into l-bit blocks with l ≥ 1, is done by calling Format(X, l). This defines the values
of m and r and returns X1, . . . , Xm. If r = l, then the last block is a full block and if r < l, then
the last block is a partial block which has been padded to obtain a full block.

Table 2. Padding and formatting of a string X. This also defines the values of m and r from len(X) and l.

Format(X, l)
1. write len(X) = (m− 1)l + r, where 1 ≤ r ≤ l;
2. if r < l, then set pad(X) = X||10l−r−1;
3. else set pad(X) = X;
4. format pad(X) into m blocks X1, . . . , Xm each of length n;
return (X1, . . . , Xm).

Note that the map X 7→ Format(X, l) for l > 1 is not an injective map. Non-injectivity arises
due to strings of the following type: X is a string of length il (for some i ≥ 1) ending with 10j (for
some 0 ≤ j ≤ l−2) and X ′ is the prefix of X of length il−j−1. Then Format(X, l) = Format(X ′, l).
On the other hand, the function⋃

i≥1

{0, 1}i \
⋃
i≥1

{0, 1}il
 Format7−→

⋃
i≥1

{0, 1}il

is an injective function. So, the only way in which X and X ′ may map to the same string under
Format is when l divides the length of one but not the length of the other. In our construction, we
take care of this difference by using suitable masks.

Later we will consider an adversary making several multi-block queries. Quantities corresponding
to the s-th query are denoted by the superscript (s); for example, length of the s-th query is
`(s); number of blocks is m(s); length of the last block is r(s); nonce is N (s); message blocks are
P

(s)
1 , . . . , Pm(s)−1, Pm(s) ; ciphertext blocks are C

(s)
1 , . . . , Cm(s)−1, Cm(s) ; tag is tag(s). Similarly for

the internal variables.

2.3 Interpolation and Collision Probabilities

Let X and Y be sets and f be a random function from X to Y. For x ∈ χq(X) and y ∈ Yq, the
probability Pr[ECBf (x) = y] = Pr[f(x1) = y1, . . . , f(xq) = yq] has been called a q-interpolation
probability in [6].

Definition 2. Let f : X → Y be a random function and λ be a length function on X . Let U be a
subset of Yq. We will say that the function f is (q, σ, δ)-interpolating on U with respect to λ if for
all x ∈ χq(X) with λ(x) ≤ σ and for all y ∈ U ,

Pr[ECBf (x) = y] ≥ δ/#U.

Here δ could possibly depend on q and σ.

A collision for a function f consists of two distinct elements x and x′ in the domain of f such
that f(x) = f(x′).

11

Definition 3. Let f be a random function with domain X .

1. Let x 6= x′ be elements of X . The event Collf (x, x′) is defined to be the event f(x) = f(x′).
When f is clear from the context, then we will omit the subscript f .

2. For x ∈ χq(X), we define the collision bound CBf (x) to be

CBf (x) =
∑

1≤i<j≤q
Pr[f(xi) = f(xj)].

An immediate consequence of this definition is the following result.

Lemma 2. Let f : X → Y be a random function and x ∈ χq(X). Then

Pr[ECBf (x) ∈ χq(Y)] ≥ 1− CBf (x). (4)

Proof. Let y = (y1, . . . , yq) = ECBf (x) = (f(x1), . . . , f(xq)). Then

Pr

 ∨
1≤i<j≤q

(yi = yj)

 ≤ ∑
1≤i<j≤q

Pr [(yi = yj)] = CBf (x)

and

Pr [y ∈ χq(Y)] = Pr

 ∧
1≤i<j≤q

(yi 6= yj)

 = 1− Pr

 ∨
1≤i<j≤q

(yi = yj)

 ≥ 1− CBf (x).

ut
We define two kinds of collision resistance for f , depending on whether the collision probability

depends on the length function or not.

Definition 4. Let f be a random function with domain X and λ be a length function on X .

1. f is said to be ε-CR, if for any two distinct x, x′ ∈ X , Pr[Collf (x, x′)] ≤ ε, for some constant ε.
2. f is said to be ε-CR with respect to λ, if for any two distinct x, x′ ∈ X , Pr[Collf (x, x′)] ≤

ε×max(λ(x1), λ(x2)), for some constant ε.

The following result shows the intuitively clear fact that if collisions are unlikely for a random
function f , then it behaves like an injective function, i.e., with high probability distinct inputs are
mapped to distinct outputs.

Lemma 3. Let q and σ ≥ q be positive integers; and f : X → Y be a random function and λ be a
length function on X . Let x ∈ χq(X) and σ = λ(x).

1. If f is ε-CR, then Pr[ECBf (x) ∈ χq(Y)] ≥
(
1− q(q−1)ε

2

)
.

2. If f is ε-CR with respect to λ, then Pr[ECBf (x) ∈ χq(Y)] ≥ (1− εqσ) .

Proof. We obtain bounds on CBf (x) and then the results follow from Lemma 2. In the first case,
it is easily seen that CBf (x) ≤ (q(q − 1)ε)/2. For the second case, we have

CBf (x) ≤
∑

1≤i<j≤q
Pr [f(xi) = f(xj)]

≤
∑

1≤i<j≤q
εmax(λ(xi), λ(xj))

≤ εqσ.

12

The last inequality follows from Lemma 1. ut
It may be noted that having low collision probabilities does not imply high interpolation prob-

abilities. For example, let IF be a finite field and fα be a random function mapping IF2 to IF by
(a0, a1) 7→ a0 + αa1, where α is a uniform random element of IF. Then it is easy to show that fα
has low collision probabilities whereas the value of fα on two distinct inputs uniquely determines
α and hence interpolation probabilities for q > 2 cannot be lower bounded.

2.4 Adversarial Model

In the information theoretic approach, there is no bound on the computation time of an adversary.
So, as mentioned earlier, we consider the adversary to be a deterministic algorithm. The adversary
interacts with an oracle and outputs a bit. The oracle takes as input an element of a set X and
produces as output an element of a finite non-empty set Y. The adversary A makes q queries to
the oracle and then produces its output. Without loss of generality, we will make the assumption
that the adversary never repeats a query.

Since A is deterministic, the behaviour of A can be described by a sequence of functions
Φ1, Φ2, . . . , Φq and another function Φ. The function Φ1() does not take any input and produces
x1 ∈ X as output. This is the first input provided by A to the oracle and gets back y1 in return;
A then computes x2 = Φ2(y1) as its second input and gets back y2; in the general case, A com-
putes xi = Φi(y1, . . . , yi−1) as its i-th oracle input and gets back yi. Since no query is repeated,
x = (x1, . . . , xq) ∈ χq(X).

Finally, the function Φ takes as input (y1, . . . , yq) and produces as output a bit, which is taken
to be the output of A. Note that the functions Φ1, . . . , Φq and Φ do not depend on the oracle. We
will use the notation ΦA1 , Φ

A
2 , . . . , Φ

A
q and ΦA when we wish to emphasize the association of the

functions to the adversary A. Denote by Pr[AF → 1] the probability that A outputs 1, when the
oracle is f . The probability is over the randomness of f since A itself is deterministic. Formally,

Pr[Af → 1] =
∑

(y1,...,yq)∈Yq
Pr[(f(ΦA1 ()) = y1) ∧ (f(ΦA2 (y1)) = y2)

∧ · · · ∧ (f(ΦAq (y1, . . . , yq−1)) = yq) ∧ (ΦA(y1, . . . , yq) = 1)]

=
∑

(y1,...,yq)∈Acc(A)

Pr[(f(ΦA1 ()) = y1) ∧ (f(ΦA2 (y1)) = y2)

∧ · · · ∧ (f(ΦAq (y1, . . . , yq−1)) = yq)]

where

Acc(A) = {(y1, . . . , yq) : ΦA(y1, . . . , yq) = 1}. (5)

The set Acc(A) is the set of (y1, . . . , yq) which result in A producing 1 as output. This set does not
depend on f and is determined entirely by A.

Suppose that the oracle is instantiated twice by two random functions f and g both mapping
X to Y. Then the advantage of A in distinguishing between f and g is defined to be

AdvA,(f,g) = Pr[Af → 1]− Pr[Ag → 1]. (6)

13

If g is a uniform random function from X to Y, then the advantage will be denoted by Advprf
f (A).

For positive integers q and σ, we define Advprf
f (q, σ) to be the maximum advantage of any ad-

versary which makes at most q distinct queries x1, . . . , xq such that
∑q
i=1 λ(xi) ≤ σ. The quantity

Advprf
f (q, σ) is the PRF-advantage of f against any (q, σ)-bounded adversary.

Note that Advprf(q, σ) is always non-negative even though Advprf
f (A) can be negative for

some adversaries. This is easily seen as follows. Suppose A is an adversary for which Pr[Af ⇒ 1] ≤
Pr[Af∗ ⇒ 1], and let A′ be the adversary which returns the complement of the bit produced by A.
Then

Advprf
f (A′) = Pr[A′f ⇒ 1]− Pr[A′f∗ ⇒ 1]

= (1− Pr[Af ⇒ 1])− (1− Pr[Af∗ ⇒ 1])
= Pr[Af∗ ⇒ 1]− Pr[Af ⇒ 1]
≥ 0.

Proposition 2. Let f be a random function from X to Y. Let g : Y → Z be a regular function,
i.e., for any two z1, z2 ∈ Z, #g−1(z1) = #g−1(z2). Define h ∆= g ◦ f , so that h(x) = g(f(x)). Then

Advprf
f (q, σ) = Advprf

h (q, σ).

Proof. Let f∗ be chosen uniformly at random from X to Y and h∗ = g ◦ f∗. Then h∗ is a uniform
random function from X to Z. Let A be an algorithm which distinguishes h from h∗. Using A we
can build an algorithm B which distinguishes f from f∗. Any query made by A is processed by
B by first asking its own oracle and then applying g on the output. Finally, B outputs whatever
A outputs. If B’s oracle is f , then A interacts with h, while if B’s oracle is f∗, then A interacts
with h∗. From this it easily follows that Advprf

h (A) = Advprf
f (B). Further, the query complexities

of both A and B are the same. Thus, maximising both sides on the query complexity gives us the
desired result. ut

Of special interest is the situation when Y = {0, 1}n and g truncates its input to produce a t-bit
output. This corresponds to the situation when an n-bit message authentication tag is truncated to
produce a t-bit tag. Proposition 2 shows that the PRF-advantage of the function with the truncated
output does not change from that of the original function.

Vaudenay proved a useful result (Lemma 22 in [40]) which reduces the task of bounding the
advantage of an adaptive adversary to that of a probability calculation. A special version of this
result was given by Bernstein (Theorem 3.1 in [6]) with a different proof. Theorem 1 below is a
restatement of Vaudenay’s result in a form suitable for our requirement. The ideas given in the
proof below are from [40, 6]; we provide more details.

Theorem 1. Let q and σ ≥ q be positive integers; f be a random function from a set X to a
set Y; and λ be a length function on X . Suppose that U is a (1 − ε1)-large subset of Yq and f is
(q, σ, 1− ε2)-interpolating on U with respect to λ. Then,

Advprf
f (q, σ) ≤ ε1 + ε2.

14

Note. Here ε2 could depend on q and σ and in our applications later, it indeed does.
Proof. For any adversary A, let V = Acc(A), where Acc(A) is as defined in (5). Then V is the
subset of Yq such that if A receives any y ∈ V as reply to the oracle queries, then A outputs 0, i.e.,
V = {y ∈ Yq : ΦA(y) = 0}. As noted earlier, V is independent of the function f and depends only
on the adversary A. Then for any random function f ,∑

y∈V
Pr[ECBf (x) = y] +

∑
y/∈V

Pr[ECBf (x) = y] = 1. (7)

Also,

Pr[Af → 1] =
∑
y/∈V

Pr[ECBf (x) = y] and similarly, Pr[Af∗ → 1] =
∑
y/∈V

Pr[ECBf∗(x) = y]. (8)

Here f∗ is a uniform random function from X to Y. So,

Adv(A) = Pr[Af → 1]− Pr[Af∗ → 1]
(8)
=
∑
y/∈V

Pr[ECBf (x) = y]−
∑
y/∈V

Pr[ECBf∗(x) = y]

(7)
=
∑
y∈V

(Pr[ECBf∗(x) = y]− Pr[ECBf (x) = y])

=
∑

y∈V,y∈U
(Pr[ECBf∗(x) = y]− Pr[ECBf (x) = y])

+
∑

y∈V,y/∈U
(Pr[ECBf∗(x) = y]− Pr[ECBf (x) = y]) . (9)

Since f is (q, σ, 1 − ε2)-interpolating on U with respect to λ, we have that for all x ∈ χq(X) with
λ(x) ≤ σ and for all y ∈ U ,

Pr[ECBf (x) = y] ≥ (1− ε2)/(#U) ≥ (1− ε2)/(#Y)q. (10)

The function f∗ is a random function from X to Y, and hence, for all x ∈ χq(X) and for all y ∈ Yq,
Pr[ECBf∗(x) = y] = 1/(#Y)q. Using this and (10) we have for all x ∈ χq(X) and for all y ∈ U ,

Pr[ECBf∗(x) = y]− Pr[ECBf (x) = y] ≤ ε2 Pr[ECBf∗(x) = y].

Consequently,∑
y∈V,y∈U

(Pr[ECBf∗(x) = y]− Pr[ECBf (x) = y]) ≤ ε2
∑

y∈V,y∈U
Pr[ECBf∗(x) = y] ≤ ε2. (11)

By the fact that U is a (1− ε1)-large subset of Yq, (#Y)q − (#U) ≤ ε1(#Y)q, and so,∑
y∈V,y/∈U

(Pr[ECBf∗(x) = y]− Pr[ECBf (x) = y]) ≤
∑

y∈V,y/∈U
Pr[ECBf∗(x) = y]

=
∑

y∈V,y/∈U

1
(#Y)q

≤ (#Y)q − (#U)
(#Y)q

≤ ε1. (12)

15

Substituting (11) and (12) in (9) gives the desired inequality. ut
Informally, Theorem 1 states that if f has high interpolation probability on a large subset U of

Yq, then f is a PRF.

Note. In many situations, it is difficult to directly lower bound an interpolation probability of the
form Pr[f(x1) = y1, . . . , f(xq) = yq]. Instead, it turns out to be easier to lower bound Pr[E] and
Pr[f(x1) = y1, . . . , f(xq) = yq|E], where E is a suitably chosen event. Usually, E stands for the event
that there are no internal collisions. Suppose that Pr[E] ≥ 1− ε2,1 and Pr[f(x1) = y1, . . . , f(xq) =
yq|E] ≥ 1− ε2,2, then Pr[f(x1) = y1, . . . , f(xq) = yq] ≥ 1− ε2 where ε2 = ε2,1 + ε2,2.

2.5 Pseudo-Random Functions and Message Authentication

Suppose that the output of f on any input is a t-bit string. Then the function f can be used to
authenticate a message x using a t-bit tag. The authenticity of f is defined as follows. The adversary
has access to f as an oracle and can submit queries in an adaptive manner. Finally, A outputs a
“forged” pair (x, y) and is said to be successful if f(x) = y. The pair (x, y) must not be equal to
any previous pair (xi, yi), where xi was the i-th query and yi was the corresponding response.

By (x, y)← Af we denote the event that A produces (x, y) as output after interacting with f .
The event succ(A) denotes the event (((x, y) ← Af) ∧ (f(x) = y)). Since f is a function, x = xi
implies that f(x) = f(xi). So, if x = xi but y 6= yi, then the forgery (x, y) is clearly invalid.
Therefore, for a valid forgery saying that (x, y) is not equal to (xi, yi) is equivalent to saying that
x 6= xi. The advantage of A in breaking the authenticity of f is defined to be

Advauth
f (A) = Pr[succ(A)] = Pr[((x, y)← Af) ∧ (f(x) = y)]. (13)

As in the case of PRF, we define Advauth
f (q, σ) to be the maximum of Advauth

f (A) taken over
all adversaries making at most q queries and having query complexity at most σ. In this case, the
query complexity also counts the number of blocks in the forgery attempt.

Proposition 3. Let f be a random function chosen from X to Y where Y = {0, 1}t, t > 0. Then

Advauth
f (q, σ) =

1
2t

+ Advprf
f (q, σ).

Proof. If A is an adversary attacking the authenticity property of f , then we can use A to construct
an adversary B attacking the PRF-property of f . B has access to either f or f∗, where f∗ is a uniform
random function from X to Y.
B runs A and responds to all queries from A using its own oracle. At the end, A outputs

the forgery (x, y); B now makes one more call to its oracle and receives y′; if y = y′, then B
outputs 1, else B outputs 0. Clearly, the query complexities of both A and B are equal. Also,
Pr[Bf ⇒ 1] = Pr[(x, y) ← Af : f(x) = y]. Since x is a “new” value and f∗ is a uniform random
function Pr[Bf∗ ⇒ 1] = 1/2t. Now

Advprf
f (B) = Pr[Bf ⇒ 1]− Pr[Bf∗ ⇒ 1]

= Pr[(x, y)← Af : f(x) = y]− 1
2t

= Advauth
f (A)− 1

2t
.

16

So, Advauth
f (A) = Advprf

f (B) + 1/2t and maximising both sides on the query complexity gives us
the desired result. ut

The advantage of Proposition 3 is that it allows us to concentrate on proving the PRF-property
of a random function, from which the authenticity property automatically follows.

A combination of Propositions 2 and 3 simplifies reasoning about certain situations. Suppose
that f is a function which produces an n-bit output. This output is truncated to t bits and let
the resulting function be h; further, suppose h is used for message authentication. Then we have
Advauth

h (q, σ) = 1/2t + Advprf
f (q, σ). Thus, to show that h provides good authentication, it is

sufficient to show that f is a good PRF.
For message authentication applications, we will be interested in X to be the set of all binary

strings of lengths between 0 and some maximum value (say L), i.e., X = ∪Li=0{0, 1}i. (Here L will
be large enough to cover practical sized messages; for example L = 264 is a possible value.) A
PRF whose domain is X can handle the empty string as well as small strings. One can also put a
restriction on the minimum length (say n) of a string. The following simple result shows that given
a PRF over such a restricted domain, it is easy to obtain a PRF without such a restriction.

Proposition 4. Let Y be a finite non-empty set of binary strings and f : ∪L+n
i=n {0, 1}i → Y, where

the length function λ formats a binary string into n-bit blocks with possibly one partial block at the
end. For any fStr ∈ {0, 1}n, define the function g : ∪Li=0{0, 1}i → Y as

g(x) = f(fStr, x).

Then Advg(q, σ) ≤ Advf (q, σ + q).

Proof. If x1, . . . , xq are q distinct binary strings with 0 ≤ len(xi) ≤ L, then (fStr, x1), . . . , (fStr, xq)
are also q distinct binary strings with n ≤ len(fStr, xi) ≤ L + n. So, given an adversary for f , one
easily constructs an adversary for g. If the adversary for g has query complexity σ, then clearly
the adversary for f has query complexity q + σ, corresponding to the fStr that has to be given as
initial n bits of each of the q queries. ut

For constructing PRFs, Proposition 4 is helpful in the following manner. First construct a PRF
f which can handle strings of lengths n or more (up to L+ n). Then use Proposition 4 to convert
it into a PRF g which handles strings of lengths between 0 and L. This may seem simple at this
point. But, later we will find this to be quite convenient in analysing the relation between PRFs
and authentication of AE schemes.

3 Domain Extenders

Many constructions use only a block cipher and the output of f1 is obtained by invoking a block
cipher several times. Such functions can be viewed as a composition of the type f = f2 ◦ f1, where
f2 is a uniform random permutation and f1 is built using f2. When considered as keyed functions,
f will have a single key which is the key for f2.

More generally, suppose that we are given a random function ρ which maps from a set U to Y.
Using ρ, we wish to construct another random function f which maps from a set X to Y, where
X is larger than U . In other words, we wish to extend the domain from U to X . To capture such
constructions, we have the following definition.

Definition 5. Let ρ : U → Y be a random function. A function f : X → Y is said to be a domain
extender for ρ if f = ρ ◦ f (ρ)

1 , where f1 : X → U and f1 satisfies the following conditions.

17

1. On any input, f1 invokes ρ a finite number of times.
2. The only randomness involved in computing f1 comes from the invocations of ρ.

When ρ is clear from the context, we will write f1 instead of f (ρ)
1 . We associate a canonical length

function λ to X . For every x in X , λ(x) denotes the total number of times ρ is invoked to compute
the final output of f .

We wish to compute Pr[ECBf (x) = y], where x ∈ χq(X) and y ∈ Yq. Here f1 and ρ “interact”
and hence we need to account for such possibilities. To this end, we make the following definition.

Definition 6. Let ρ : U → Y be a random function and f = ρ◦f1 be a map from X to Y satisfying
Definition 5. For x, x′ ∈ X with x 6= x′, let Z = f1(x), Z ′ = f1(x′); λ(x) = m+ 1, λ(x′) = m′ + 1;
and let U1, . . . , Um and U ′1, . . . , U

′
m be the inputs to the different invocations of ρ in the computation

of f1(x) and f1(x′) respectively.

1. Define Self-Disjoint(x) to be the event
∧m
i=1(Z 6= Ui).

2. Define Pairwise-Disjoint(x, x′) to be the event
(∧m

i=1(Z ′ 6= Ui) ∧
∧m′
j=1(Z 6= U ′i)

)
.

Definition 7. Continuing with Definition 6, we say that f1 is (ε1, ε2)-disjoint with respect to λ, if
for all pairs of distinct x, x′ ∈ X ,

Pr[Self-Disjoint(x)] ≤ ε1(λ(x)) and Pr[Pairwise-Disjoint(x, x′)] ≤ ε2(λ(x) + λ(x′)).

Note that the notion of disjointness is defined for f1 rather than for f .
We now prove the main result on domain extenders. In the result below, we consider ρ to be

either a uniform random function or a uniform random permutation. The more general case is when
we have lower bound on the interpolation probabilities of ρ. A result of this type can be proved as
in the result below; but, such a result is of less practical interest.

Theorem 2. Let ρ : U → Y be a random function and f = ρ ◦ f1 be a map from X to Y satisfying
Definition 5. Suppose that f1 is ε-CR with respect to the length function λ and also (ε1, ε2)-disjoint
with respect to λ. Then for positive integers q and σ ≥ q the following holds.

1. If ρ is a uniform random function, then

Advf (q, σ) ≤ σ(qε+ ε1 + 2qε2).

2. If U = Y and ρ is a uniform random permutation, then

Advf (q, σ) ≤ σ(qε+ ε1 + 2qε2) +
qσ

#Y
.

Proof. Let x = (x1, . . . , xq) ∈ χq(X) with mi + 1 = λ(xi). Then σ = q +
∑q
i=1mi. Set Zi = f1(xi)

and let Ui,1, . . . , Ui,mi be the inputs to ρ in the computation of Zi. Let Distinct(x) and Disjoint(x)
be the events

Distinct(x) =
∧

1≤i<j≤q
(Zi 6= Zj) (14)

and

Disjoint(x) =
q∧
i=1

q∧
j=1

mj∧
k=1

(Zi 6= Uj,k). (15)

18

The event Distinct(x) is the event ECBf1,q(x) ∈ χq(U). Using the fact that f1 is ε-CR with respect
to λ and Lemma 3,

Pr
[
Distinct(x)

]
≤ qσε. (16)

We compute

Pr
[
Disjoint(x)

]
= Pr

 q∨
i=1

q∨
j=1

mj∨
k=1

(Zi = Uj,k)



= Pr

[q∨
i=1

mi∨
k=1

(Zi = Ui,k)

]
+ Pr

 q∨
i=1

q∨
j=1,

j 6=i

mj∨
k=1

(Zi = Uj,k)


≤

q∑
i=1

Pr

[
mi∨
k=1

(Zi = Ui,k)

]
+ Pr

 q∨
i=1

q∨
j=i+1

(mj∨
k=1

(Zi = Uj,k) ∨
mi∨
k=1

(Zj = Ui,k)

)
≤

q∑
i=1

Pr
[
Self-Disjoint(xi)

]
+

q∑
i=1

q∑
j=i+1

Pr

[(mj∨
k=1

(Zi = Uj,k) ∨
mi∨
k=1

(Zj = Ui,k)

)]

≤
q∑
i=1

Pr
[
Self-Disjoint(xi)

]
+

q∑
i=1

q∑
j=i+1

Pr
[
Pairwise-Disjoint(xi, xj)

]
. (17)

Since f1 is (ε1, ε2)-disjoint with respect to λ, we have

Pr
[
Self-Disjoint(xi)

]
≤ ε1λ(xi) and Pr

[
Pairwise-Disjoint(xi, xj)

]
≤ ε2(λ(xi) + λ(xj)).

Using (17),

Pr
[
Disjoint(x)

]
≤

q∑
i=1

Pr
[
Self-Disjoint(xi)

]
+

q∑
i=1

q∑
j=i+1

Pr
[
Pairwise-Disjoint(xi, xj)

]

≤ ε1
q∑
i=1

λ(xi) + ε2

q∑
i=1

q∑
j=i+1

(λ(xi) + λ(xj))

≤ ε1σ + 2ε2qσ. (18)

Lemma 1 is used in the last line. Combining (16) and (18),

Pr[Distinct ∧ Disjoint] = 1− Pr
[
Distinct ∨ Disjoint

]
≥ 1− Pr

[
Distinct

]
− Pr

[
Disjoint

]
≥ 1− σ(qε+ ε1 + 2qε2). (19)

Let y ∈ Yq. Then,

Pr[ECBf (x) = y] ≥ Pr[(ECBf (x) = y) ∧ (Distinct ∧ Disjoint)]
= Pr[ECBf (x) = y|(Distinct ∧ Disjoint)]× Pr[Distinct ∧ Disjoint]
≥ (1− σ(qε+ ε1 + 2qε2))× Pr[ECBf (x) = y|(Distinct ∧ Disjoint)]. (20)

19

The event “Distinct∧Disjoint” means that the random variables Z1, . . . , Zq have distinct values and
they are different from any previous inputs to ρ obtained during the computations of Zi = f1(xi).
In other words, the event “Distinct∧Disjoint” ensures that the set {Z1, . . . , Zq} is a set of q “new”
values in the domain of ρ.

If ρ is a uniform random function, then ECBρ(Z1, . . . , Zq) is uniformly distributed over Yq. If ρ
is a uniform random permutation, then the situation is more complicated. We consider these two
cases separately.

1. If ρ is a uniform random function, then for any y ∈ Yq, Pr[ECBf (x) = y|(Disjoint∧Distinct)] =
1/(#Y)q and so,

Pr[ECBf (x) = y] ≥ 1
#Yq

× (1− σ(qε+ ε1 + 2qε2)).

This lower bounds the interpolation probabilities of f . Now, applying Theorem 1,

Advf (q, σ) ≤ σ(qε+ ε1 + 2qε2).

2. Suppose that ρ is a uniform random permutation of Y. Let Vi,j = ρ(Ui,j) and define V =
∪qi=1{Vi,1, . . . , Vi,mi}. Fix y = (y1, . . . , yq) ∈ χq(Y). Let Allowed(y) be the event ∧qk=1(yk /∈ V).
Since ρ is a uniform random permutation, for any yk, Pr[yk = Vi,j] = 1/#Y. Note that σ =
q +

∑q
i=1mi.

Pr[Allowed(y)] = Pr

[q∧
k=1

(yk /∈ V)

]
= 1− Pr

[q∨
k=1

(yk ∈ V)

]

≥ 1−
q∑

k=1

Pr[yk ∈ V]

= 1−
q∑

k=1

Pr

 q∨
i=1

mi∨
j=1

(yk = Vi,j)


≥ 1−

q∑
k=1

q∑
i=1

mi∑
j=1

Pr[yk = Vi,j]

= 1− q(σ − q)
#Y

.

Let us consider when can ρ(Zk) be equal to yk. Suppose that Allowed(y) does not occur, i.e.,
there is a yk which is equal to some Vi,j . Then ρ(Zk) = yk implies that Zk = Ui,j . The last event
cannot happen if Disjoint occurs. So,

Pr[ECBf (x) = y|(Disjoint ∧ Distinct ∧ Allowed(y))] = 0.

On the other hand, if both (Disjoint ∧ Distinct) and Allowed(y) occur, then

Pr[ECBf (x) = y|(Disjoint ∧ Distinct ∧ Allowed(y))] =
1

p(#Y − (σ − q), q)
≥ 1

(#Y)q
.

Now, for any y ∈ χq(Y),

Pr[ECBf (x) = y|(Disjoint ∧ Distinct)] ≥ 1
(#Y)q

× Pr[Allowed(y)]

≥ 1
(#Y)q

(
1− q(σ − q)

#Y

)
.

20

This gives

Pr[ECBf (x) = y] ≥ 1
(#Y)q

(
1− q(σ − q)

#Y

)
× (1− σ(qε+ ε1 + 2qε2))

≥ 1
(#Y)q

(
1− σ(qε+ ε1 + 2qε2)− q(σ − q)

#Y

)
.

Again, applying Theorem 1,

Advf (q, σ) ≤ σ(qε+ ε1 + 2qε2) +
q(σ − q)

#Y
+
q(q − 1)

2#Y
≤ σ(qε+ ε1 + 2qε2) +

qσ

#Y
.

This completes the proof of the result. ut
A simpler variant of Theorem 2 is given by the following result. The difference to Theorem 2 is

the condition on collision resistance. In this case, collision resistance does not depend on the length
function λ.

Theorem 3. Let π : T → Y be a uniform random permutation and f = π ◦ f1 be a map from X to
Y satisfying Definition 5. Suppose that f1 is ε-CR and it is (ε1, ε2)-disjoint with respect to λ. Then
for positive integers q and σ ≥ q

Advf (q, σ) ≤ q(q − 1)ε
2

+ σ(ε1 + 2qε2) +
qσ

#Y
.

The advantage of Theorems 2 and 3 is that they reduce the problem of upper bounding the
PRF-advantage for f to computing certain probabilities. These can be done using purely combina-
torial/probabilistic methods.

4 Masking Functions

In the constructions to be described, we will be making use of linear functions with certain prop-
erties. Let IF2n = GF (2n) be the Galois field of 2n elements. For the moment, we do not consider
any particular representation of this field. The issue of field representation will be discussed later.

Let ψ : IF2n → IF2n be a linear function. The iterates ψk, k ≥ 0 are defined in the usual manner.
Let n1 divide n, so that IF2n1 is a subfield of IF2n . The minimal polynomial of ψ over IF2n1 is defined
to be the minimum degree monic polynomial τ(x) ∈ IF2n1 [x] such that τ(ψ) = 0, i.e., τ annihilates
ψ. Note that the coefficients of τ(x) are in the field IF2n1 . Given ψ, we define another function
φ : IF2n × {0, 1, . . . , 2n − 2} → IF2n as

φ(β, i) = ψi(β) (21)

and we use the notation φβ(i) ∆= φ(β, i).

Definition 8. We say that the function φ defined in (21) is a proper masking function if it satisfies
the following properties.

1. For any α ∈ IF; any non-negative integer k with 0 ≤ k ≤ 2n − 2; and a uniform random β ∈ Y;
Pr[φβ(k) = α] = 1/2n.

21

2. For any α ∈ IF; integers k1, k2 with 0 ≤ k1 < k2 ≤ 2n − 2; and a uniform random β ∈ IF;
Pr[φβ(k1)⊕ φβ(k2) = α] = 1/2n.

3. For any α ∈ IF; integers k1, k2 with 0 ≤ k1, k2 ≤ 2n − 2; and uniform random (β1, β2) ∈ χ2(IF),
Pr[φβ1(k1)⊕ φβ2(k2) = α] = 1/(2n − 1).

There is a very general class of functions satisfying Definition 8.

Proposition 5. Let ψ : IF2n → IF2n be a linear function whose minimal polynomial τ(u) over IF2

is of degree n and is primitive over IF2. Then φ defined in (21) satisfies Definition 8.

Note. The lemma does not insist on any particular representation of IF2n . In particular, IF2n can
have a tower field representation. The condition is that whatever be the representation of IF2n , its
minimal polynomial over IF2 should be of degree n and primitive.
Proof. Since τ(u) is primitive over GF (2) and is of degree n, it follows that ψ is invertible and so
for every non-negative integer k, ψk is also invertible. The first point follows from this observation.

For 0 ≤ i < j ≤ 2n − 2, define ηi,j : IF2n → IF2n as

ηi,j(γ) = ψi(γ)⊕ ψj(γ) = φγ(i)⊕ φγ(j).

The second point will follow if we can show that ηi,j is a bijection. For this, it is sufficient to show
that ηi,j is an injection. So, suppose that γ and γ′ are distinct elements of IF2n and let, if possible,
ηi,j(γ) = ηi,j(γ′). Set δ = γ ⊕ γ′ and note that since γ 6= γ′, we have δ to be non-zero. Then

0 = ηi,j(γ)⊕ ηi,j(γ′)
= ψi(γ)⊕ ψj(γ)⊕ ψi(γ′)⊕ ψj(γ′)
= (ψi ⊕ ψj)(δ). (22)

For any non-zero element ν of IF2n , define mν(u) to be the minimal degree polynomial such that
(mν(ψ))(ν) = 0. Since τ(u) is the minimal polynomial of ψ it follows that τ(ψ) = 0, i.e., τ(ψ) maps
all elements of IF2n to 0. As a result, (τ(ψ))(ν) = 0. By the minimality of mν(u) it follows that
mν(u) divides τ(u). But, τ(u) is irreducible and so mν(u) = τ(u).

Consider the minimal polynomial mδ(u) of δ. Since δ is non-zero, by the above argument, we
have mδ(u) = τ(u). Also, from (22), it follows that τ(u) = mδ(u) divides ui ⊕ uj = ui(1 ⊕ uj−i)
(assuming without loss of generality that i < j). Since τ(u) is primitive, it does not divide ui and
so τ(u)|(1⊕ uj−i). It is well known that if τ(u) is a primitive polynomial of degree n, then it does
not divide 1⊕ ui for any i with 0 < i < 2n − 1 (see for example [20]). Since 0 ≤ i < j < 2n − 1, we
have 0 < j − i < 2n−1 and hence, τ(u)|(1⊕ uj−i) contradicts the primitivity property of τ(u). This
shows that ηi,j is a injection.

For the third point, consider the map ζk1,k2 : IF2
2n → IF2n which takes (β1, β2) to ψk1(β1) ⊕

ψk2(β2) = φβ1(k1) ⊕ φβ2(k2). We count the number of pre-images of α ∈ IF2n for ζk1,k2 . For every
value of β1, β2 = ψ−k2(ψk1(β1) ⊕ α) is unique. Hence, there are 2n pre-images for any α. Since
(β1, β2) is uniformly distributed over χ2(IF2n), the result follows. ut

There are known examples of ψ which satisfy Proposition 5.

Powering up method. Let τ(u) be a primitive polynomial of degree n over GF (2) and define
ψ : IF2n → IF2n as ψ : β 7→ uβ mod τ(u) and so ψk : β 7→ ukβ mod τ(u). The minimal polynomial
of ψ is clearly τ(u) which by definition is primitive over IF2n . This strategy is quite common and
has been used in many papers [8, 35, 15, 11, 41].

22

Word oriented LFSR. Faster instantiations can be obtained using a tower field representation
of IF [37]. Let n = n1 × n2 and let ρ(α) be an irreducible polynomial of degree n1 which is used to
define IF2n1 over IF2, i.e., IF2n1 = IF2[α]/(ρ(α)). Let µ(x) = xn2 ⊕ tn2−1x

n2−1 ⊕ · · · ⊕ t1x⊕ t0, with
tn2−1, . . . , t0 ∈ IF2n1 be a primitive polynomial over IF2n1 which is used to define IF2n over IF2n1 .
The field IF2n can be represented by the polynomial basis {1, x, x2, . . . , xn2−1} with multiplication
done modulo µ(x).

Define a map ψ : IFn2
2n1 → IFn2

2n1 , with (bn2−1, . . . , b0) = ψ(an2−1, . . . , a0) as follows.

bi = ai+1 if 0 ≤ i ≤ n2 − 2;
bn2−1 = t0an2−1 ⊕ · · · ⊕ tn2−1a0.

}
(23)

This defines an LFSR over IF2n1 . The minimal polynomial of ψ is µ(x) which is in IF2n1 [x] and is
primitive. To show that Proposition 5 is satisfied, we need to show that the minimal polynomial of
ψ over IF2 is also primitive and of degree n. The result below is actually more general than what
is required. From this result, it easily follows that ψ satisfies Proposition 5.

Lemma 4. Let n = n1 × n2, ρ(α) be an irreducible polynomial of degree n1 over IF2 and IF2n1 =
IF2[α]/(ρ(α)). Further, let ψ : IF2n → IF2n be a linear map whose minimal polynomial, µ(x), over
IF2n1 is primitive and of degree n2. Then the minimal polynomial of ψ over IF2n is of degree n and
is primitive over IF2.

Note. The lemma does not assume ψ to be an LFSR map. The condition states that ψ can be
any linear map defined using the tower field representation of IF2n and whose minimal polynomial
over the intermediate field is primitive.
Proof. Suppose that IF2n1 is represented by the polynomial basis {1, α, α2, . . . , αn1−1} over IF2.
Then any element γ in IF2n1 can also be considered to be a polynomial γ(α) over IF2 whose degree
is less than n1. Further, for any β ∈ IF2n1 , the “multiply-by-β” map from IF2n1 to IF2n1 given by
γ(α) 7→ β(α)γ(α) mod ρ(α) can be represented by an (n1 × n1) matrix Mβ over IF2 which maps
IFn1

2 to IFn1
2 .

Fix the polynomial basis {1, x, x2, . . . , xn2−1} of IF2n over IF2n1 . Then the map ψ is given by
an n2 × n2 matrix B = ((βi,j)) over IF2n1 , so that each βi,j is an element of IF2n1 . Since the
minimal polynomial µ(x) of ψ is primitive and of degree n2, it follows that for any non-zero vector
δ = (δ0, . . . , δn2−1) ∈ IFn2

2n1 , the sequence δ, δB, δB2, . . . has period 2n1n2 − 1 = 2n − 1.
From B construct an n×n matrix C by replacing each βi,j by the matrix Mβi,j representing the

“multiply-by-βi,j” map. It then follows that for any k ≥ 0, Ck is obtained from Bk using the same
procedure. Each δi can be considered to be an element of IFn1

2 , so that δ can be considered to be
an element of IFn2 . So we can talk of the product δCk for k ≥ 0. Then the sequence δ, δC, δC2, . . . is
exactly the sequence δ, δB, δB2, . . . and hence is of period 2n − 1. This can only happen when the
minimal polynomial of C over IF2 is primitive and of degree n. But, the minimal polynomial of C
over IF2 is also the minimal polynomial of ψ over IF2, which proves the result. ut

We implemented extension field arithmetic to generate suitable pairs of (ρ(α), µ(x)). For differ-
ent values of n, Table 3 provides examples of pairs of polynomials which can be used to define ψ
as word oriented LFSRs.

Efficiency improvement over powering method. We implemented both the powering method
and the word oriented LFSR method on Intel Core 2 DuoProcessor P8700 (2.53 GHz) running
Fedora Release 11. For word oriented LFSRs, we took the intermediate field to be IF232 . The results

23

for different values of n are shown in Table 4. This shows that implementation using word-oriented
LFSRs is about twice as fast as that using the powering method.

Effect on modes of operations. A mode of operation will typically have one block cipher call
and one application of φ per n-bit block. The dominant time will be the time for the block cipher
call. Faster masking, though, will provide some overall speed-up.

To get an idea of this speed-up for n = 128, let us consider the values of 0.19 cycles/byte and
0.32 cycles/byte respectively for word oriented LFSR and powering up, as given in Table 4. The
reported speeds of AES-128 on different platforms are quite varied. The best reported speed for
Intel Core 2 Duo is 9.2 cycles/byte for a bit-slice implementation [24] to about 10.6 [7]. Assuming
10 cycles/byte for AES-128, the speed-up obtained by using word-oriented LFSR will be about 1
to 2%. Admittedly, this is not much. But, it is to be noted that there are no trade-offs involved
and for algorithms which are likely to be heavily used it might be worthwhile to go for even small
improvements in efficiency.

Related to this is the issue of Intel proposing to implement AES-128 instructions as processor
instructions starting from a processor called Westmere [13]. This will significantly increase the speed
of AES-128 and possibly bring down the time to 2 or 3 cycles/byte. In such a scenario, the speed
improvement of 0.17 cycles/byte can be expected to lead to about 5% speed-up.

Table 3. Examples of IF2n represented as a tower field.

n1 n2 n = n1 × n2 ρ(α) µ(x)

32 2 64 α32 + α31 + α16 + α2 + 1 x2 + x+ α

16 5 80 α16 + α14 + α11 + α7 + 1 x5 + x2 + α

96 3 96 α32 + α26 + α22 + α7 + 1 x3 + x+ α

32 4 128 α32 + α27 + α25 + α5 + 1 x4 + x3 + x+ α

16 8 128 α16 + α10 + α9 + α6 + 1 x8 + x3 + x+ α

8 16 128 α8 + α7 + α3 + α2 + 1 x16 + x7 + x+ α

32 8 256 α32 + α25 + α14 + α13 + 1 x8 + x7 + x5 + x1 + α

32 12 384 α32 + α26 + α20 + α11 + 1 x12 + x3 + x1 + α

32 16 512 α32 + α15 + α10 + α1 + 1 x16 + x3 + x2 + α

Table 4. Speed comparison between powering method and word oriented LFSR. The figures in the first row are the
different values of n and the values in the other two rows are given in cycles per byte.

method 128 192 256 384 512

powering 0.32 0.29 0.28 0.28 0.28

WLFSR 0.19 0.17 0.10 0.10 0.10

Notes.

1. The security of the constructions to be described later do not depend on the actual implemen-
tation of ψ. Only the properties given by Definition 8 will be used.

2. In both the representations of IF2n discussed above (i.e., either as IF2[x]/(τ(x)) or as a tower
field), an element of IF2n can be naturally considered to be an n-bit string. This will be assumed
without further mention.

24

5 New Parallelizable Constructions of Pseudo-Random Functions

The basic idea of parallelizing is to apply a permutation π separately on (masked) blocks and then
XOR the outputs together and apply π on this XOR. Though simple in principle, this idea needs
to be worked out carefully. PCS [6] and PMAC [8, 35] are based on this principle. PCS uses a
compressing function, whereas PMAC uses a permutation.

5.1 iPMAC

Let π be a uniform random permutation of {0, 1}n and φ be a function satisfying Definition 8.
For any binary string x with len(x) ≥ n, let (str, P1, . . . , Pm) be the output of Format(x, n) and
λ(x) = m. Here str is an n-bit string and (P1, . . . , Pm) is of length greater than or equal to zero.
Let γ = π(str) and δ = π(γ). The function iPMACπ is a map

iPMACπ : x 7→ Cm

where Ci = π(Di) for 1 ≤ i ≤ m and

Di =



Pi ⊕ φγ(i) 1 ≤ i ≤ m− 1;
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm i = m, r = n;
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ φγ(m) i = m, r < n;
δ ⊕ P1 i = m = 1, r = n;
δ ⊕ P1 ⊕ φγ(1) i = m = 1, r < n.

(24)

Notes.

1. The range of iPMAC is Y = {0, 1}n. From the manner iPMAC processes its input, there is no
restriction on the length. We put a bound of 2n/2 on the maximum length of any input. The
bound on the PRF-advantage of iPMAC that we obtain later becomes meaningless for strings
beyond this length. So, formally, iPMAC is a map

iPMAC :
2n/2⋃
i≥n
{0, 1}i → {0, 1}n.

2. The function iPMACπ accepts strings of length at least n bits. By fixing the first n bits of the
input to a string fStr, we obtain a function which can handle strings of length greater than
or equal to zero. By a slight abuse of notation, we denote this function by iPMACπ,fStr. Later
we show that iPMACπ is a PRF and then using Proposition 4, we obtain the PRF-bound for
iPMACπ,fStr. The function iPMACπ,fStr can be used to obtain a MAC algorithm as described in
Propositions 2 and 3.

3. To process (str, P1, . . . , Pm) iPMACπ requires (m+ 1) applications of π if m > 1; and 3 applica-
tions of π if m = 1. One application of π to str produces γ and there are m other applications;
if m = 1, then one application of π to γ produces δ.

4. In iPMACπ,fStr, the first n bits are fixed and so are γ and δ. Thus, the values of γ and δ can
be computed once per session and cached. Further, the value of δ is required only if strings of
lengths at most n bits are required to be processed in a session. Otherwise, this value need not
be computed at all.

25

5. The mask δ is used to distinguish between strings of lengths at most n and strings of greater
lengths. Masking the first (m− 1) blocks by φγ(1), . . . , φγ(m− 1) ensures that with high proba-
bility the corresponding inputs to π are distinct. The masking or not of the last block by φγ(m)
separates strings whose lengths are not multiples of n from strings whose lengths are multiples
of n.

Processing of a 4-block message using iPMAC is shown in Figure 1. The same figure also describes
the processing of a 4-block message using PMAC. The difference is in the interpretation of Λ.

π π π π

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - - �Γ1 Γ2 Γ3 Λ sum

? ? ? ?

P1 P2 P3 P4

C1 C2 C3 tag

Fig. 1. Tag generation using iPMAC Here Γi = φγ(i); Λ = 0n if the last block is full and Λ = φγ(4) if the last block
has been padded; and sum = C1 ⊕ C2 ⊕ C3.

iPMAC. If the last block is full, then Λ = 0n and if the last block is partial (and padded), then
Λ = φγ(m).

PMAC. For n = 128, if the last block is full, then Λ = um(u⊕ 1)R mod τ(u) and if the last block
is partial (and padded), then Λ = (u2 ⊕ u ⊕ 1)umR mod τ(u). The map m 7→ um mod τ(u) is
called the powering-up map [35]. For this scheme to be secure, the discrete logarithms of (u⊕1)
and (u2 ⊕ u ⊕ 1) to the base u have to be “large”. The actual values depend on τ(x) and for
n = 128 and the choice of τ(x) to be the first lexicographically first primitive polynomial the
values are given in [35]. Changing τ(x) will require a re-computation of the discrete logarithm
to ensure that it is “large”; for n = 256, computing the discrete logarithms will take a few hours
and is not convenient

There are two advantages of iPMAC over PMAC. For one thing, iPMAC avoids the discrete
logarithm computation required during the design stage. As a result, it is possible to simply change
the field representation and obtain a distinct algorithm. So, iPMAC can be seen as providing an
easily reconfigurable family of algorithms. The second advantage is the faster masking operations.
The description of iPMAC does not depend on the actual choice of φ. As a result, one can use a tower
representation of the underlying field and a word-oriented LFSR to instantiate φ (see Section 4).

Security. The security analysis of iPMAC is done using the general approach of domain extenders.
Let iPHASH be the map which takes x 7→ Dm. Following the approach outlined in Section 3, it is
sufficient to bound the collision and disjointness probabilities of iPHASH. But, first let us consider
this a little informally.

Suppose that q queries are made and let us take a look at the different inputs and outputs of π
arising out of these queries. These can be tabulated as follows.

26

Inputs:
str(s), γ(s)

D
(s)
1 = P

(s)
1 ⊕ δ(s) if (m(s) = 1 and r(s) = n);

D
(s)
1 = P

(s)
1 ⊕ δ(s) ⊕ Γ (s)

1 if (m(s) = 1 and r(s) < n);

D
(s)
1 = P

(s)
1 ⊕ Γ (s)

1 , . . . , D
(s)

m(s)−1
= P

(s)

m(s)−1
⊕ Γ (s)

m(s)−1
,

D
(s)

m(s) = C
(s)
1 ⊕ · · · ⊕ C

(s)
ms−1 ⊕ P

(s)

m(s)

 if (m(s) > 1 and r(s) = n);

D
(s)
1 = P

(s)
1 ⊕ Γ (s)

1 , . . . , D
(s)

m(s)−1
= P

(s)
ms−1 ⊕ Γ

(s)

m(s)−1
,

D
(s)

m(s) = C
(s)
1 ⊕ · · · ⊕ C

(s)
ms−1 ⊕ P

(s)

m(s) ⊕ Γ
(s)

m(s)

 if (m(s) > 1 and r(s) < n).

Outputs:
γ(s), δ(s), C

(s)
1 , . . . , C

(s)

m(s) .

Note Γ (s)
i = φγ(s)(i). The formal analysis will be to show that the probability of D(s)

ms and D
(t)

m(t)

being equal is small and also that the probability of any D(s)
ms being equal to any of the other inputs

to π is also small. The form of the D(s)
ms ’s show that this is indeed to be expected if we assume that

γ(s), δ(s) and the C(s)
i are independent and uniform random n-bit strings. (Since π is a permutation,

these will not be independent and this will be taken care of in the analysis below.)
Note that for m(s) = 1, the use of δ(s) is quite crucial, as otherwise, one can achieve a trivial

collision by setting P
(s)
1 to be equal to str(s). (This point was missed in an earlier version of this

paper.)
The next few lemmas state the required bounds on the collision and disjointness probabilities

of iPHASH.

Lemma 5. Let x and x′ be two distinct messages with m = λ(x) and m′ = λ(x′), which are
mapped to Dm and D′m′ under iPHASH. Assume that m + m′ − 3 ≤ 2n. Then Pr[Dm = D′m′] ≤
(m+m′)/2n ≤ 2 max(m,m′)/2n.

Proof. From the definition of the domain of iPMAC, m,m′ ≤ 2n/2 so that m+m′−3 ≤ 2n. Assume
without loss of generality that m ≥ m′. First suppose str = str′ as this is the more difficult case.
In this case, γ = γ′ and δ = δ′. We will denote these masks as γ and δ and the derived masks as
Γi. We start by assuming that both m and m′ are greater than one. The case when at least one of
them is one is considered later. There are four cases depending on whether r and r′ are less than
n or equal to n.

Case r = n, r′ = n: Since x 6= x′, let j be the first index such that either (1 ≤ j ≤ m′ and Pj 6= P ′j)
or (j = m′ + 1 and Pi = P ′i for 1 ≤ i ≤ m′).

If j = m = m′, then Pi = P ′i for 1 ≤ i ≤ m′ − 1 and so Ci = C ′i for 1 ≤ i ≤ m − 1. So,
Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm 6= C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m = D′m′ and Pr[Dm = D′m′] = 0.

If j = m = m′ + 1, then Pi = P ′i for 1 ≤ i ≤ m′ − 1 and so Ci = C ′i for 1 ≤ i ≤ m′ − 1. So,

Dm ⊕D′m′ = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′
= Cm−1 ⊕ Pm ⊕ P ′m′

Since Cm−1 is the output of π, it is uniformly distributed over Y and hence, the last expression is
zero with probability 1/2n.

27

So, we can assume that either (m > m′ + 1, j = m′ + 1) or (1 ≤ j ≤ m′ and m > m′).
In either case, Dj = φγ(j) + Pm. We claim that with high probability Dj is different from
D1, . . . , Dj−1, Dj+1, . . . , Dm−1 and D′1, . . . , D

′
m−1. To see this, first note that Di = Pi ⊕ φγ(i),

1 ≤ i ≤ m− 1; and D′k = P ′k ⊕ φγ(k), 1 ≤ k ≤ m′ − 1. Let E be the event

E :

m−1∧
i=1,

i 6=j

(Dj 6= Di)

 ∧
m′−1∧

i=1

(Dj 6= D′i)

 .
In other words, the event E happens when Dj is distinct from all other Di’s and is also distinct
from D′1, . . . , D

′
m′−1. We first show that E occurs with high probability.

Pr[E] = 1− Pr[E]

≥ 1−
m−1∑
i=1,

i 6=j

Pr[Dj = Di]−
m′−1∑
i=1

Pr[Dj = D′i].

If j < m′, then since Pj 6= P ′j , Dj = Pj ⊕ φγ(j) 6= P ′j ⊕ φγ(j) = D′j so that Pr[Dj = D′j] = 0. In
all other cases, the individual probabilities of either Dj = D′i or Dj = Di for i 6= j are 1/2n by the
properties of φ given in Definition 8. So,

Pr[E] ≥
(

1− m+m′ − 3
2n

)
.

We have

Pr[Dm 6= D′m′] ≥ Pr[(Dm 6= D′m′) ∧ E]
= Pr[(Dm 6= D′m′)|E] Pr[E]

≥ Pr[(Dm 6= D′m′)|E]×
(

1− m+m′ − 3
2n

)
Consider the event ((Dm 6= D′m′)|E). Since π is a permutation and Dj is distinct from all other Dis
and D′1, . . . , D

′
m′−1, we have that Cj is distinct from all other Cis and C ′1, . . . , C

′
m′−1.

Since r = r′ = n, we have

Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm
D′m′ = C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ .

Consider the set of random variables.

{C1, . . . , Cj−1, Cj+1, . . . , Cm−1, C
′
1, . . . , C

′
m′−1}.

Some of the random variables in these set can be equal. We are interested in a subset of random
variables taking equal values only if the number of elements in this subset is odd. Let there be t ≥ 0
such subsets and Q1, . . . , Qt be random variables where each Qi is the XOR of the random variables
in each subset. Note that t ≤ m+m′−3. So, Dm⊕D′m′ = 0 implies that Cj⊕Q1⊕. . .⊕Qt = Pm⊕P ′m′
for some t ≥ 0 and (Cj , Q1, . . . , Qt) is distributed uniformly over χt+1(Y).

28

1. If t = 0, then Pr[Dm 6= D′m′ |E] = Pr[Cj 6= Pm ⊕ P ′m′] = (1− 1/2n).
2. If t = 1 and Pm = P ′m′ , then Pr[Dm 6= D′m′ |E] = Pr[Cj 6= Qt] = 1.
3. In all other cases, Pr[Dm 6= D′m′ |E] = Pr[Cj ⊕ Q1 ⊕ · · · ⊕ Qt 6= Pm ⊕ P ′m′] ≥ 1 − 1/(2n − t) ≥

1− 1/(2n − (m+m′ − 3)) ≥ 1− 2/2n (assuming m+m′ − 3 ≤ 2n).

Thus, the inequality, Pr[Dm 6= D′m′ |E] ≥ 1− 2/2n holds for all t.
From this we have Pr[Dm 6= D′m′] ≥ (1−(m+m′−1)/2n) and so Pr[Dm = D′m′] ≤ (m+m′)/2n.

Case r < n, r′ < n: In this case, we have

Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ φγ(m)
D′m′ = C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ ⊕ φγ(m′).

If m = m′, then the terms involving φ cancel out and the analysis is exactly the same as that for
the case r = r′ = n. (If r 6= r′, then Format ensures that the last blocks are distinct, i.e., Pm 6= P ′m′ .
If Pm = P ′m′ (and so necessarily r = r′), then there is an i with 1 ≤ i ≤ m′− 1, such that Pi = P ′i .)

So suppose m > m′. Let E be the event that str is not equal to any of D1, . . . , Dm−1 or
D′1, . . . , D

′
m′−1. The probability of E is at least 1 − (m + m′ − 2)/2n. In a manner similar to the

previous case, it can be shown Pr[Dm 6= D′m′ |E] ≥ 1− 2/2n so that we again have Pr[Dm 6= D′m′] ≤
(m+m′)/2n.

Cases (r = n, r′ < n) and (r < n, r′ = n): Both the cases are similar and we consider only r = n
and r′ < n. In this case, we have

Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ φγ(m)
D′m′ = C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ .

It is possible that m = m′ and Pi = P ′i for 1 ≤ i ≤ m even though x 6= x′. This happens when
x = pad(x′) 6= x′. Then, Dm ⊕D′m′ = φγ(m) which is equal to 0 with probability 1/2n. If m > m′

or Pi 6= P ′i for some 1 ≤ i ≤ m′, then an analysis similar to the previous case shows the desired
result.

Now we consider the two case which were left out earlier: str = str′ but one of m or m′ is 1; and
the case when str 6= str′.

str = str′ and one of m or m′ is 1. If m = m′ = 1, then D1 ⊕D′1 = P1 ⊕ P ′1. By the restriction
that queries must be distinct, it follows that Pr[D1 = D′1] = 0. If m′ = 1 and m > 1, then
D′1 = Dm ⊕ P ′1 ⊕ δ and Dm = C1 ⊕ · · · ⊕Cm−1 ⊕ Pm ⊕ Λ, where Λ is either 0n or Γm according as
r = n or r < n. In either case, δ is not involved in the expression for Dm. A simple computation
now shows that Pr[Dm = D′1] ≤ 2m/2n.

str 6= str′. This is simpler than the case str = str′, since in this case (γ, γ′) is uniformly distributed
over χ2(Y). The following two facts can be noted.

1. For any i, j, and any n-bit string arb, Γi⊕Γ ′j = arb is the same as φγ(i)⊕φγ′(j) = arb and from
Definition 8, the probability of the last event is 1/(2n − 1).

2. The event δ = δ′ occurs if and only if γ = γ′ and so in this case, the probability of δ = δ′ is 0.

29

These two observations directly show that Pr[Dm = D′m′] ≤ 2/2n for all cases other than the case
when both m and m′ are greater than 1 and r = r′ = n. In the last case, Dm = C1⊕· · ·⊕Cm−1⊕Pm
andD′m′ = C ′1⊕· · ·⊕C ′m−1⊕P ′m. Now C1 = π(P1⊕Γ1) and C ′1 = π(P ′1⊕Γ ′1). Again, from Definition 8,
the probability that P1 ⊕ Γ1 equals P ′1 ⊕ Γ ′1 is at most 1/(2n − 1). From this a small calculation
shows that Pr[Dm = D′m′] ≤ 2 max(m,m′)/2n. ut

The disjointness probabilities can be bound in a similar manner and is given by the following
result.

Lemma 6. Let x and x′ be two distinct messages having m and m′ blocks respectively. Then

1. Pr[Dm = D′i] ≤ 2/2n for 1 ≤ i ≤ m′ − 1;
2. Pr[Dm = Di] ≤ 2/2n for 1 ≤ i ≤ m− 1;
3. Pr[Dm = str] ≤ 1/2n;
4. Pr[Dm = γ] ≤ 1/2n.
5. Pr[Dm = str′] ≤ 1/2n;
6. Pr[Dm = γ′] ≤ 1/2n.

Proof. First suppose m = 1. Then D1 = P1 ⊕ δ or D1 = P1 ⊕ δ ⊕ φγ(1) according as r = n or
r < n. Points 3 to 6 follow from this. For 1 ≤ i ≤ m′ − 1, D′i = P ′i ⊕ Γ ′i which is independent of δ.
So Pr[D1 = D′i] ≤ 2/2n which proves Point 1. For m = 1, Point 2 is vacuous.

If m > 1, then Dm = C1 ⊕ · · · ⊕Cm−1 ⊕ Pm or Dm = C1 ⊕ · · · ⊕Cm−1 ⊕ Pm ⊕ Γm according as
r = n or r > n. Here Γm = φγ(m) and m > 1. A straightforward analysis now shows the result. ut

Consequently, Pr[Pairwise-Disjoint(x, x′)] ≤ (m+m′)/2n and Pr[Self-Disjoint(x)] ≤ 2m/2n. Using
Theorem 2 with ε = ε1 = ε2 = 2/2n and noting that in this case π is a uniform random permutation
gives the following result.

Theorem 4. Let q and σ ≥ q be positive integers. Then

Advprf
iPMAC(q, σ) ≤ (7q + 2)σ

2n
.

As mentioned earlier, the modification in which the first n bits is fixed to fStr will be denoted by
iPMACπ,fStr. Using Proposition 4, the PRF-bound for iPMACπ,fStr is (7q + 2)(σ + q)/2n.

Table 5. Description of iPMAC and its modified version. Format(P, n) defines m and r.

iPMACπ(P):
1. (str, P1, . . . , Pm) = Format(P, n);
2. γ = π(str);
3. for i = 1, . . . ,m, Γi = φγ(i);
4. (C1, . . . , Cm−1)

= ECBπ(P1 ⊕ Γ1, . . . , Pm−1 ⊕ Γm−1);
5. sum = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm;
6. if (r < n) then sum = sum⊕ Γm;
7. if m = 1, then
8. δ = π(γ); sum = sum⊕ δ;
9. tag = π(sum);
return tag.

miPMACπ(P):
1. (str, P1, . . . , Pm) = Format(P, n);
2. γ = π(str);
3. for i = 1, . . . ,m, Γi = φγ(i);
4. (C1, . . . , Cm−1)

= ECBπ(P1 ⊕ Γ1, . . . , Pm−1 ⊕ Γm−1);
5. sum = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm;

6. if (r < n) then sum = sum⊕ Γm+1;

7. if m = 1, then
8. δ = π(γ); sum = sum⊕ δ;
9. tag = π(sum⊕ Γ1 ⊕ · · · ⊕ Γm−1);

return tag.

30

Table 5 provides an explicit description of iPMACπ. In the presentation of the algorithm, we
have chosen clarity over efficiency. For example, in actual implementation, the masks Γi are not
actually required to be pre-computed. These will computed as required and Γi will be computed
from Γi−1 with one application of ψ. Further, if the first n bits are fixed to fStr, then γ needs to
be computed only once per session and then cached. Similarly, δ will be computed only if messages
of lengths less than or equal to n are required to be processed and then also, it will be computed
only once per session.

This table also shows a variant called miPMAC. There is a reason for considering miPMAC.
Later when we consider authenticated encryption, we will show that the authentication function of
a particular construction becomes equal to miPMAC in a very natural manner.

The differences between iPMAC and miPMAC are small and are highlighted using boxes. It is
easy to argue that these changes do not affect security. The changes are in the masking of the last
block. Let ξm = Γ1⊕· · ·⊕Γm−1. In miPMAC, padded last blocks are masked by Γm+1⊕ ξm instead
of by Γm as in iPMAC; full last blocks are masked only by ξm while in iPMAC they are not masked
at all. The following observations show that the collision analysis is not affected by these changes.

1. The masking of single block messages by δ does not change and so the collision analysis for single-
block messages and blocks of other messages does not change. The XOR of a padded single-block
message and a full single-block message is P1 ⊕ Γ2 ⊕ P ′1, which is zero with probability 1/2n.

2. Suppose the number of blocks in the messages are m and m′ and by the first point assume that
both are greater than 1. Further suppose that str = str′, so that Γi = Γ ′i for all i. (If str 6= str′,
then the analysis is easier.)
(a) Consider the collision analysis of the last blocks. The structure of the last blocks are as

follows.

Dm =

{
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ ξm if r = n;
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ Γm+1 ⊕ ξm if r < n;

D′m′ =

{
C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ ⊕ ξm′ if r = n;
C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ ⊕ Γm′+1 ⊕ ξm′ if r′ < n;

If m = m′, then the mask ξm is used to mask the last block of both messages and has no
effect on the collision analysis of the last block irrespective of whether they are padded or
full. Suppose m > m′. There are, as before, four cases for the values of r and r′. The point
here is that the probability of Dm being equal to D′m′ can be shown to be small without
involving the Γ s. We consider r = r′ = n, the consideration for the other three cases being
similar. In this case,

Dm ⊕D′m′ = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ ⊕ Υ
= Y ⊕ Υ

where Υ is the XOR of all the terms which depend on γ and Y is other part. The analysis of
the distribution of Y is exactly the same as the case r = r′ = n in the proof of Theorem 4.
Further, Y does not depend on γ and hence Y and Υ are independent.
This shows that the collision analysis of the last blocks remain unaffected by the additional
masking done in miPMAC.

(b) Now consider the collision analysis of a last block (with m > 1) and an internal block. In
this case also, it can be argued that the additional masking does not make any difference.

31

Note that it is possible that for some m, Γm+1 ⊕ ξm = Γm+1 ⊕ Γ1 ⊕ · · · ⊕ Γm−1 is zero even
for a uniform random γ. This can happen if the minimal polynomial τ(x) of ψ over IF2 divides
xm+1⊕xm−1⊕· · ·⊕x1. But, this fact does not affect the collision analysis which remains unchanged
from that of iPMAC as argued above. In a nutshell, this happens because Γm+1 is used to rule out
collisions only when the number of blocks in the two messages are equal and the last block of one
is full while the last block of the other is partial. Since, the number of blocks in the two messages
are equal, ξms for both the messages are also equal and they cancel out leaving only Γm+1. We are
then back to the analysis of iPMAC.

By the above argument, the PRF-bound obtained for iPMAC also holds for miPMAC. Let q and
σ ≥ q be positive integers. Then

Advprf
miPMAC(q, σ) ≤ (7q + 2)σ

2n
. (25)

5.2 VPMAC

Fix positive integers ` and n with ` ≥ n and let U = {0, 1}` and Y = {0, 1}n. Let ρ : U → Y be
a uniform random function. The natural additive operation on equal length binary strings is ⊕.
If x and y are unequal length binary strings, we define x⊕→y to be the binary string obtained by
XORing the shorter string into the least significant bits of the longer string. For an n-bit string X,
by bot(X) we will mean the n least significant bits of X; by top(X) we will mean the (`− n) most
significant bits of X. We define a function VPMAC which can handle strings of lengths greater than
or equal to ` (and of length at most 2`/2).

Let φ be a function satisfying Definition 8. Given any binary string x, with len(x) ≥ `, let
(str, P1, . . . , Pm) be the output of Format(x, `) given in Table 2 which also defines the values of m
and r. Note that len(str) = ` and so it is possible that the other part consisting of P1, . . . , Pm is the
empty string. Let γ = ρ(str) ∈ Y and δ = ρ(γ||0`−n).

Define VPMACρ to be a function

VPMACρ : x 7→ Cm

where Ci = ρ(Di) for 1 ≤ i ≤ m and

Di =



φγ(i)⊕→Pi 1 ≤ i ≤ m− 1;
(C1 ⊕ · · · ⊕ Cm−1)⊕→Pm i = m > 1, r = `;
(C1 ⊕ · · · ⊕ Cm−1 ⊕ φγ(m))⊕→Pm i = m > 1, r < `;
δ⊕→P1 i = m = 1, r = `;
(δ ⊕ φγ(1))⊕→P1 i = m = 1, r < `.

(26)

Figure 2 shows how a 4-block message is processed using PCS and VPMAC. The message lengths,
however, are different. PCS processes 4n bits, while VPMAC processes 4` bits. In general, PCS
requires 1+dlen(x)/ne invocations of ρ to process a message x, while VPMAC requires 1+dlen(x)/`e
invocations of ρ. Thus, VPMAC requires approximately a fraction n/` of the invocations of PCS.

The following result is obtained in a manner similar to that of Theorem 4, the only difference
being the fact that the uniform random permutation π is replaced by the uniform random function
ρ. This results in a slightly better bound.

32

PCS VPMAC

B
BB

B
BB

B
BB

B
BB

B
BB

�
��

�
��

�
��

�
��

�
��

ρ ρ ρ ρ ρ

? ? ? ? ?

? ? ? ? ?

1||P ′1 2||P ′2 3||P ′3 4||P ′4 0||esum

T1 T2 T3 T4 tag

B
BB

B
BB

B
BB

B
BB

�
��

�
��

�
��

�
��

ρ ρ ρ ρ

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - - �Γ1 Γ2 Γ3 Λ sum

? ? ? ?

P1 P2 P3 P4

C1 C2 C3 tag

Fig. 2. Tag generation using PCS and VPMAC. In PCS, esum = T1 ⊕ T2 ⊕ T3 ⊕ T4. In VPMAC, Γi = φγ(i); Λ = 0n

if the last block is full and Λ = φγ(4) if the last block has been padded; and sum = C1 ⊕ C2 ⊕ C3.

Theorem 5. Let q and σ ≥ q be positive integers. Then

AdvVPMAC(q, σ) ≤ (6q + 2)σ
2n

.

As in the case of iPMAC, Proposition 4 tells us the following. By fixing the first ` bits to a fixed
string fStr, we obtain a PRF VPMACρ,fStr which can handle strings of lengths greater than or equal
to 0 and has advantage upper bounded by (6q + 2)(σ + q)/2n.

Remark. The masking strategy that we use for VPMAC is not the only possible one. In fact,
the tweak-based approach used for PMAC can be adapted to work with compressing functions.
However, this would also require discrete logarithm computations. Since one of the objectives of
this work is to do away with such computations, we do not adopt this approach.

6 Authenticated Encryption

Let N and X be finite non-empty sets of binary strings and let Fn[N ,X] be the set of functions
f : N × X → X × {0, 1}n such that if f(N,X) = (Y, tag), then len(X) = len(Y). Here N is called
the set of nonces. Typically, N will be the set of all binary strings of certain fixed length. Given a
f : N ×X → X × {0, 1}n, we define the following notions.

1. fmain : N ×X → X is defined to be fmain(N,X) = Y if f(N,X) = (Y, tag).
2. The function f is said to be an AE-function if for every N ∈ N , fmain

N (·) ∆= fmain(N, ·) is a
length preserving permutation. The invertibility of fmain

N ensures that decryption is possible,
i.e., given Y , it is possible to obtain X.

3. For an AE-function f , f̃ : N ×X → {0, 1}n is defined to be f̃(N,Y) = tag if f(N,X) = (Y, tag)
for some X ∈ X . Due to the invertibility of fmain

N , it follows that f̃ is well defined. The function
f̃ is said to be the authentication function associated with f .

4. For an AE-function f , f− : N × X → X × {0, 1}n is defined to be f−(N,Y) = (X, tag) if
f(N,X) = (Y, tag). Note that the tag is in fact equal to f̃(N,Y).

An AE-function is required to satisfy two security properties – privacy and authenticity.
Let f be a random AE-function and f∗ be a function distributed uniformly over Fn[N ,X].

Privacy is defined as indistinguishability from random strings. For defining privacy, an adversary A

33

is assumed to have oracle access to f , i.e., for 1 ≤ i ≤ q, A can adaptively query f on (N (s), P (s))
and get back (C(s), tag(s)) in return. There is, however, a restriction on A: the nonces of two different
queries cannot be equal. Such an adversary is called nonce-respecting. Finally, A outputs a bit. As
before, Af ⇒ 1 denotes the event that A produces 1 as output after interacting with the oracle f .

The advantage of A in breaking the privacy of f is defined to be

Advpriv
f (A) = Pr[Af ⇒ 1]− Pr[Af∗ ⇒ 1]. (27)

By a (q, σ)-adversary we mean an adversary A which makes at most q queries and has query com-
plexity at most σ. The resource bounded advantage Advpriv

f (q, σ) is the maximum of Advpriv
f (A)

taken over all (q, σ)-adversaries A.
We can think of privacy-advantage of f as the PRF-advantage of f with respect to nonce-

respecting adversaries. We also define the privacy-advantage of fmain in a manner similar to that
of (27). Note the following simple result.

Proposition 6. Let f be an AE function. Then

Advpriv

fmain(q, σ) ≤ Advpriv
f (q, σ).

In defining authenticity, an adversary A is given oracle access to f . Queries (N (s), X(s)) to f
are made adaptively by A with the restriction that no two queries are equal and that the nonces
N (i) are distinct. The responses (Y (s), tag(s)) to the queries are provided to A. Suppose that a total
of (q − 1) such queries are made. Finally, A outputs a forgery (N (q), Y (q), tag(q)). The restriction
on the forgery is that (N (q), Y (q), tag(q)) 6= (N (s), Y (s), tag(s)) for all 1 ≤ s ≤ q − 1. There is no
restriction on N (q) and it can be equal to one of the earlier N (s)’s.

If there is an X(q) such that f(N (q), X(q)) = (Y (q), tag(q)) then A is said to be successful. Let
succ(A) denote the event that A is successful. The advantage of A in breaking the authenticity of
f is defined to be

Advae-auth
f (A) = Pr[succ(A)]. (28)

The resource bounded advantage Advae-auth
f (q, σ) denotes the maximum of Advae-auth

f (A) taken
over all adversaries A making at most q queries and having query complexity at most σ.

The following result relates the authentication property of an AE-function to the privacy of
fmain and the authenticity of f̃ . The function f̃ maps N × X to {0, 1}n and its authenticity is
defined as in (13).

Proposition 7. Given an AE function f , we have

Advae-auth
f (q, σ) ≤ Advpriv

fmain(q, σ) + Advauth
f̃

(q, σ).

Proof. Consider an adversary A attacking the authenticity of the AE-function f . Queries by A are
of the form (N (s), X(s)) and the outputs of the oracle are of the form (Y (s), tag(s)), 1 ≤ s ≤ q − 1,
where q is the number of queries. The final query is a forging query of the type (N (q), Y (q), tag(q)).
Let p0 be the probability of succ(A).

Consider an adversary B which has f̃ as oracle. B simulates A’s queries as follows: given
(N (s), X(s)), B generates a uniform random string Y (s) of the same length as X(s) and queries

34

its oracle with (N (s), Y (s)); in return it gets tag(s) and sends (Y (s), tag(s)) to A. Finally, B outputs
whatever forgery that A outputs.

Let p1 be the probability of succ(A) when the queries of A are simulated by B as mentioned
above. Clearly, p1 is also equal to succ(B). The difference between p0 and p1 is that Y is chosen
uniformly at random instead of the being the output of f on (N,X). This shows that p0 − p1 ≤
Advpriv

fmain(q, σ). Now,

Advae-auth
f (q, σ) = p0 = (p0 − p1) + p1

≤Advpriv
f (q, σ) + succ(B)

≤Advpriv
f (q, σ) + Advauth

f̃
(q, σ).

ut
The advantage of Proposition 7 is that it reduces the task of proving the authenticity of an AE

function f to that of proving the privacy of f and the authenticity of f̃ . Separated in this manner,
the two individual tasks are easier to carry out compared to the monolithic task of directly proving
the authenticity of f . At the same time, we also note that this approach may give us a slightly
weaker security bound than what can be obtained directly: the degradation would be by at most a
factor of 2.

Proposition 8. Given an AE-function f , define another AE function h as follows: h(N,X) =
(Y, g(tag)), where f(N,X) = (Y, tag) and g : {0, 1}n → {0, 1}t is a regular function. Then

Advae-auth
h (q, σ) ≤ 1

2t
+ Advpriv

fmain(q, σ) + Advprf

f̃
(q, σ).

Proof. From Propositions 2, 3 and 7 we have

Advae-auth
h (q, σ) ≤Advpriv

hmain(q, σ) + Advauth
h̃

(q, σ)

= Advpriv

fmain(q, σ) + Advauth
g◦f̃

(q, σ)

=
1
2t

+ Advpriv

fmain(q, σ) + Advprf

g◦f̃
(q, σ)

=
1
2t

+ Advpriv

fmain(q, σ) + Advprf

f̃
(q, σ).

ut

Note. In analysing the PRF-property of f̃ we have not constrained the adversary to be nonce-
respecting. The security model for authentication of AE protocol, however, requires the nonces in
the queries to be distinct and only the nonce in the forgery attempt is allowed to be equal to one of
the nonces in the queries. So, requiring f̃ to be a PRF is an overkill. It is sufficient for f̃ to satisfy
a weaker security requirement as discussed below.

6.1 PRF Against Almost Nonce-Respecting Adversaries

Let f be an AE function and consider f̃ . An adversary attacking the PRF property of f̃ has
only one restriction on the queries, namely, two queries (N (s), Y (s)) and (N (t), Y (t)) cannot be the

35

same. Now suppose, that the following additional restriction is made: for 1 ≤ s < t ≤ q − 1,
N (s) 6= N (t). Note that there is no restriction on N (q) which may or may not be equal to one of
N (s) for 1 ≤ s ≤ q−1. Adversaries of the above type will be called almost nonce-respecting (ANR).
(If the restriction of distinctness is also imposed on N (q), then the adversary is nonce-respecting.)
The ANR-PRF-advantage of f with respect to an almost nonce-respecting adversary A is defined
to be

Advanr-prf
f (A) = Pr[Af ⇒ 1]− Pr[Af∗ ⇒ 1]. (29)

The resource bounded advantage is defined as usual to be Advanr-prf
f (q, σ). In the definition of

authentication security of an AE function, an adversary is actually restricted to be ANR. In view
of this, the following weaker version of Proposition 8 can be obtained.

Proposition 9. Given an AE-function f , define another AE function h as follows: h(N,X) =
(Y, g(tag)), where f(N,X) = (Y, tag) and g : {0, 1}n → {0, 1}t is a regular function. Then

Advae-auth
h (q, σ) ≤ 1

2t
+ Advpriv

fmain(q, σ) + Advanr-prf

f̃
(q, σ).

Suppose f1 : N×X → {0, 1}n and f2 : H → {0, 1}n are independent random functions. Consider
the function f3 : N ×H × X → {0, 1}n defined as f3(N,H,X) ∆= f1(N,X) ⊕ f2(H). Since f1 and
f2 are independent functions, it is easy to show that

Advprf
f3

(q, σ) ≤Advprf
f1

(q, σ) + Advprf
f2

(q, σ). (30)

Now consider the following more complicated scenario. Let

S = (N ×X)
⋃

(N ×H×X)

and consider a function f4 : S → {0, 1}n defined as follows:

f4(N,X) = f1(N,X);
f4(N,H,X) = f3(N,H,X) = f1(N,X)⊕ f2(H).

The f4 so defined is not a PRF and is easily demonstrated by four queries:

1. (N (1), X(1)) returning Y (1) = f1(N (1), X(1));
2. (N (1), H(1), X(1)) returning Y (2) = f1(N (1), X(1))⊕ f2(H(1));
3. (N (2), X(2)) with (N (2), X(2)) 6= (N (1), X(1)), returning Y (3) = f1(N (2), X(2));
4. (N (2), H(1), X(2)) returning Y (4) = f1(N (2), X(2))⊕ f2(H(1)).

Then f2(H(1)) = Y (1) ⊕ Y (2) = Y (3) ⊕ Y (4) showing that f4 is not a PRF. The problem arises
due to the fact that it is allowed to query f4 on (N (1), X(1)), (N (1), H(1), X(1)) and (N (2), X(2)),
(N (2), H(1), X(2)). Such an adversary is certainly not non-respecting and since two nonces have
been repeated, it is also not almost nonce-respecting. The following, however, can be proved.

Advanr-prf
f4

(q, σ) ≤Advprf
f1

(q, σ) + Advprf
f2

(q, σ). (31)

In other words, if we restrict to almost nonce-respecting adversaries, then the ANR-PRF-bound
for f4 is upper bounded by the sum of the PRF-bounds for f1 and f2. From Proposition 9, this is
sufficient to reason about the authentication security of an AE function.

36

Note. The discussion in this section will become relevant when we analyse the authentication of
AEAD constructions.

6.2 Constructions

Two schemes for block cipher based parallel authenticated encryption are described. As in the case
of authentication, the description is in terms of a uniform random permutation π of {0, 1}n. The
constructions are called PAE and PAE-1. Table 6 shows the encryption algorithms while Table 7
shows the decryption algorithms. By only PAE and PAE-1, we will denote the encryption algorithms
which are AE functions.

As in the case of presentation of the explicit algorithm for iPMAC, we have chosen clarity over
efficiency and the efficiency issues mentioned in that context are also applicable here. The Γis would
not be pre-computed, instead, Γi will be computed from Γi−1 by a single application of φ. If the
application requires to handle strings of length less than or equal to n, then only the value of δ will
be computed.

The difference between PAE and PAE-1 is marked by boxes and consists in applying either π−1

or π. The difference though small has two consequences.

1. The authentication function P̃AE of PAE is essentially the function miPMAC defined earlier. On
the other hand, the authentication function ˜PAE-1 is a different one. Thus, in the two cases, the
authentications are achieved in different ways.

2. The encryption algorithm of PAE requires both π and π−1, but, the decryption algorithm re-
quires only π−1. In contrast, the encryption algorithm of PAE-1 requires only π and the decryp-
tion algorithm requires both π and π−1. This can have consequences for actual implementation.
If the decryption module of the AE scheme is desired to be implemented in small size hardware
then PAE is preferable, whereas if the encryption module is desired to be implemented in small
size hardware, then PAE-1 is preferable.

Theorem 6. Let q and σ ≥ q be positive integers. Then Advpriv
PAE(q, σ) ≤ 2(σ + 2q)2

2n
.

Consequently, Advpriv

PAEmain(q, σ) ≤ 2(σ + 2q)2

2n
.

Proof. Let A be a (q, σ)-adversary, i.e., A makes a total of q queries and provides a total of σ
n-bit blocks in all the queries. This also includes the n-bit blocks for the nonces. Recall that A is
restricted to be nonce-respecting, i.e., A cannot repeat a nonce.

The s-th query is of the form (N (s), P (s)) and gets back (C(s), tag(s)) where len(P (s)) = len(C(s)).
Note that the output of Format(P (s), n) is (P (s)

1 , . . . , P
(s)

m(s)) and the output of Format(C(s), n) is

(C(s)
1 , . . . , C

(s)

m(s)).
For 1 ≤ s ≤ q and 0 ≤ i ≤ m(s) + 1, define

A
(s)
i =



γ(s) if i = 0;
P

(s)
i ⊕ Γ

(s)
i if 1 ≤ i ≤ m(s) − 1;

P
(s)

m(s) ⊕ Γ
(s)

m(s) if i = m(s) and r(s) = n;
P

(s)

m(s) ⊕D
(s)

m(s) if i = m(s) and r(s) < n;
tag(s) if i = m(s) + 1;

37

Table 6. Two schemes for parallel authenticated encryption. Here N is an n-bit string and P is a binary string of
length greater than or equal to 0. The call to Format(P, n) defines the values of m and r.

PAE.Encryptπ(N,P):
1. (P1, . . . , Pm) = Format(P, n);
2. γ = π−1(N); Γi = φγ(i) for 1 ≤ i ≤ m;
3. (C1, . . . , Cm−1) = ECBπ(P1 ⊕ Γ1, . . . , Pm−1 ⊕ Γm−1)

⊕(Γ1, . . . , Γm−1);
4. if (r = n) then
5. Cm = π(Pm ⊕ Γm)⊕ Γm;
6. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
7. else
8. tmp = π−1(binn(r)⊕ Γm);
9. Dm = Pm ⊕ tmp; Tm = Firstr(Dm);
10. Cm = Tm||(10n−r−1);
11. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm ⊕ Γm+1;
12. if m = 1, then
13. δ = π−1(γ); sum = sum⊕ δ;
14. tag = π−1(sum);
return (C1, . . . , Cm−1, Tm, tag).

PAE-1.Encryptπ(N,P):
1. (P1, . . . , Pm) = Format(P, n);

2. γ = π(N); Γi = φγ(i) for 1 ≤ i ≤ m;

3. (C1, . . . , Cm−1) = ECBπ(P1 ⊕ Γ1, . . . , Pm−1 ⊕ Γm−1)
⊕(Γ1, . . . , Γm−1);

4. if (r = n) then
5. Cm = π(Pm ⊕ Γm)⊕ Γm;
6. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
7. else

8. tmp = π(binn(r)⊕ Γm);

9. Dm = Pm ⊕ tmp; Tm = Firstr(Dm);
10. Cm = Tm||(10n−r−1);
11. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm ⊕ Γm+1;
12. if m = 1, then

13. δ = π(γ); sum = sum⊕ δ;

14. tag = π(sum);

return (C1, . . . , Cm−1, Tm, tag).

Table 7. Decryption algorithms for the two schemes shown in Table 6. The call to Format(C, n) defines the values of
m and r.

PAE.Decryptπ(N,C, tag):
1. (C1, . . . , Cm) = Format(C, n);
2. γ = π−1(N); Γi = φγ(i) for 1 ≤ i ≤ m;
3. (P1, . . . , Pm−1) = ECBπ−1(C1 ⊕ Γ1, . . . , Cm−1 ⊕ Γm−1)

⊕(Γ1, . . . , Γm−1);
4. if (r = n) then
5. Pm = π−1(Cm ⊕ Γm)⊕ Γm;
6. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
7. else
8. tmp = π−1(binn(r)⊕ Γm);
9. Sm = Firstr(Cm ⊕ tmp);
10. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm ⊕ Γm+1;
11. if m = 1, then
12. δ = π−1(γ); sum = sum⊕ δ;
13. tag′ = π−1(sum);
14. if (tag′ 6= tag) return ⊥;
return (P1, . . . , Pm−1, Sm).

PAE-1.Decryptπ(N,C, tag):
1. (C1, . . . , Cm) = Format(C, n);
2. γ = π(N); Γi = φγ(i) for 1 ≤ i ≤ m;
3. (P1, . . . , Pm−1) = ECBπ−1(C1 ⊕ Γ1, . . . , Cm−1 ⊕ Γm−1)

⊕(Γ1, . . . , Γm−1);
4. if (r = n) then
5. Pm = π−1(Cm ⊕ Γm)⊕ Γm;
6. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
7. else
8. tmp = π(binn(r)⊕ Γm);
9. Sm = Firstr(Cm ⊕ tmp);
10. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm ⊕ Γm+1;
11. if m = 1, then
12. δ = π(γ); sum = sum⊕ δ;
13. tag′ = π(sum);
14. if (tag′ 6= tag) return ⊥;
return (P1, . . . , Pm−1, Sm).

38

only full blocks last block is partial

π π π π π−1

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - -

?
Γ1 Γ2 Γ3 Γ4

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - -
Γ1 Γ2 Γ3 Γ4 ?

P1 P2 P3 P4 sum

C1 C2 C3 C4 tag

π π π π−1 π−1

⊕ ⊕ ⊕ ⊕ ⊕? ? ? ? ?

? ? ? ? ?

- - - - -
Γ1 Γ2 Γ3 Γ4 Γ5

⊕ ⊕ ⊕? ? ?

? ? ?

- - -
Γ1 Γ2 Γ3

?⊕-P4

?D4

Firstr

?
T4

?

P1 P2 P3 binn(r) sum

C1 C2 C3 tag

sum = P1 ⊕ P2 ⊕ P3 ⊕ C4 C4 = T4||(10n−r−1), sum = P1 ⊕ P2 ⊕ P3 ⊕ C4

Fig. 3. Encryption using PAE: γ = π−1(N); Γi = φγ(i).

only full blocks last block is partial

π π π π π

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - -

?
Γ1 Γ2 Γ3 Γ4

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - -
Γ1 Γ2 Γ3 Γ4 ?

P1 P2 P3 P4 sum

C1 C2 C3 C4 tag

π π π π π

⊕ ⊕ ⊕ ⊕ ⊕? ? ? ? ?

? ? ? ? ?

- - - - -
Γ1 Γ2 Γ3 Γ4 Γ5

⊕ ⊕ ⊕? ? ?

? ? ?

- - -
Γ1 Γ2 Γ3

?⊕-P4

?D4

Firstr

?
T4

?

P1 P2 P3 binn(r) sum

C1 C2 C3 tag

sum = P1 ⊕ P2 ⊕ P3 ⊕ C4 C4 = T4||(10n−r−1), sum = P1 ⊕ P2 ⊕ P3 ⊕ C4

Fig. 4. Encryption using PAE-1: γ = π(N); Γi = φγ(i).

B
(s)
i =



N (s) if i = 0;
C

(s)
i ⊕ Γ

(s)
i if 1 ≤ i ≤ m(s) − 1;

C
(s)

m(s) ⊕ Γ
(s)

m(s) if i = m(s) and r(s) = n;
binn(r(s))⊕ Γ (s)

m(s) if i = m(s) and r(s) < n;

A
(s)
1 ⊕ · · · ⊕A

(s)

m(s)−1

⊕Γ (s)
1 ⊕ · · · ⊕ Γ (s)

m(s)−1
⊕ C(s)

m(s)

 if i = m(s) + 1,m(s) > 1 and r(s) = n;

A
(s)
1 ⊕ · · · ⊕A

(s)

m(s)−1

⊕Γ (s)
1 ⊕ · · · ⊕ Γ (s)

m(s)−1
⊕ C(s)

m(s) ⊕ Γ
(s)

m(s)+1

 if i = m(s) + 1,m(s) > 1 and r(s) < n;

C
(s)
1 ⊕ δ(s) if i = 2,m(s) = 1 and r(s) = n;

C
(s)
1 ⊕ δ(s) ⊕ Γ

(s)
1 if i = 2,m(s) = 1 and r(s) < n.

39

If m(s) = 1, then δ(s) is required and is obtained as π−1(γ(s)) so that π(δ(s)) = γ(s). We let S be
the set of all such δ(s) corresponding to m(s) = 1 and let T be the set of corresponding γ(s). If m(s)

is different from 1 for every s, then the sets S and T are empty.
From the description of PAE it follows that B(s)

i = π(A(s)
i). We define the following sets of

random variables.

D(s) =
{
A

(s)
0 , . . . , Am(s)+1

}
; R(s) =

{
B

(s)
0 , . . . , B

(s)

m(s)+1

}
;

D = S ∪
q⋃
s=1

D(s); R = T ∪
q⋃
s=1

R(s).

The number of elements in either of D or R equals
∑q
s=1(m(s) + 2) + #S ≤ σ + 2q. Note that σ is

the query complexity which is the total number of n-bit blocks provided by the adversary in all its
queries and so σ =

∑q
s=1(m(s) + 1).

Assume that for any query, the quantities C(s)
1 , . . . , C

(s)

m(s) , tag
(s) are chosen uniformly at random

and independent of the previous choices. These are then returned to the adversary (only the first
r(s) bits of C(s)

m(s) is provided). Let Coll(D) be the event that two random variables in D take the
same value and similarly define Coll(R). Further, let Coll = Coll(D) ∨ Coll(R). As is standard, it is
possible to show that

Adv(A) ≤ Pr[Coll].

The task now reduces to bounding the probability of Coll. Note that, γ(s) = π(N (s)). Since the
adversary is nonce-respecting, the values N (s) are distinct so that applying the uniform random
permutation π on these q values ensures that each γ(s) is uniformly distributed over IF and the joint
distribution of the γ(s)s is uniform over χq(IF). So, the probability that two of the Γ s are equal is
at most 1/(2n − 1) ≤ 1/2n−1. Further, Γ (s)

i = φγ(s)(i), i.e., Γ (s)
i depends on the actual value of the

nonce N (s) provided in the s-th query. The XOR-universality of φ shows that for 1 ≤ i < j ≤ 2n−2
and for any β ∈ IF, Pr[Γ (s)

i ⊕ Γ
(s)
j = β] = 1/2n.

Using the randomness of the γs, the randomness of the Cs and the randomness of the tags, it
is possible to show that for any two elements in D, the probability that they are equal is at most
1/2n−1. This is a routine case analysis and depends on the XOR universality of φ. Since the number
of elements in D is σ+ 2q, the probability of Coll(D) is at most (σ+ 2q)(σ+ 2q− 1)/(2× 2n−1). In
a similar manner, the same bound on the probability of Coll(R) can be obtained so that Pr[Coll] ≤
(σ + 2q)2/2n−1. ut

Usually authentication of an AE scheme is difficult to analyse. Proposition 7, however, makes
the task easier. It reduces the task of arguing about authentication of the entire scheme to the
task of analysing the privacy of the scheme and the PRF-property of the associated authentication
function. Theorem 6 bounds the privacy advantage of PAEmain. So, we only have to analyse the
PRF-property of P̃AE.

This task is made easy by the simple observation that P̃AEπ is equal to miPMACπ−1 . In fact,
PAE was designed so as to achieve this equality. Checking this equality is quite routine and can
be carried out by an inspection of the algorithms given in Tables 6 and 5. Table 7 provides the
description of the decryption algorithm of PAE. Letting Ti = π−1(Ci ⊕ Γi), we have

P1 ⊕ · · · ⊕ Pm−1 = T1 ⊕ · · · ⊕ Tm−1 ⊕ Γ1 ⊕ · · · ⊕ Γm−1.

40

Thus the quantity Γ1 ⊕ · · · ⊕ Γm−1 is part of sum in both P̃AEπ and miPMACπ−1 The masking of
a padded block by Γm+1 is also present in both cases. In the algorithm in Table 7, consider only
the part required to regenerate the tag, i.e., to compute tag′. This means that Steps 8 and 9 can
be omitted and the algorithm ends at Step 13. Now, if we replace each occurrence of π−1 by π in
the reduced algorithm, then we get exactly miPMACπ−1 .

As a result of this observation, the PRF-bound for miPMAC (which is the PRF-bound for
iPMAC) is also the PRF bound for P̃AE. This is formally stated in the following result.

Proposition 10. For every N ∈ {0, 1}n and binary string C, with len(C) ≥ 0,

P̃AEπ(N,C) = miPMACπ−1(N,C).

Consequently, for q > 0 and σ ≥ q,

Advprf

P̃AE
(q, σ) = Advprf

miPMAC(q, σ) ≤ σ(7q + 2)
2n

.

This also answers a question attributed to Rivest in [34] which asks whether an AE scheme such
as OCB can be used for authentication. The answer in case of PAE is simple and straightforward.
Fix an n-bit string fStr and then the function P̃AEπ is a PRF. This function can be used for
authentication in the usual manner.

For 1 ≤ t ≤ n, let t-PAE denote the AE function obtained from PAE by truncating the tag to
(the first) t bits. So, n-PAE is in fact PAE. The privacy of t-PAE follows from the privacy of PAE.
The authenticity of t-PAE is given by the following result.

Theorem 7. Let σ ≥ q ≥ 1. Then

Advae-auth
t-PAE (q, σ) ≤ 1

2t
+

2(σ + 2q)2

2n
+
σ(7q + 2)

2n
.

Proof. Using Proposition 8, we have

Advae-auth
t-PAE (q, σ) ≤ 1

2t
+ Advprf

PAEmain(q, σ) + Advprf

P̃AE
(q, σ).

Now the result follows from Theorem 6 and Proposition 10. ut
The privacy of PAE-1 follow in a similar manner and the same bound holds. Following our

approach of authentication analysis, we need to study the PRF-property of ˜PAE-1. This function
is shown in Table 8. Note that ˜PAE-1 uses both π and π−1 which is unlike P̃AE which uses only
π−1. Thus, the authentication functions of P̃AE and ˜PAE-1 are different. In fact, the authentication
function for OCB is similar to that of ˜PAE-1 in the sense that OCB also uses both π and π−1 in the
decryption algorithm. This makes the manner in which authentication is achieved in OCB rather
different from the manner in which it is achieved in P̃AE.

The differences between P̃AE and ˜PAE-1 are in Steps 1, 8 and 9, where π is used instead of
π−1. For producing the masks γ and δ it does not matter whether π or π−1 is applied. For the two
functions, tag is produced by applying π−1 or π. This also does not cause any additional difficulty.
In each case, the argument boils down to showing that the different values of sum⊕Γ1⊕· · ·⊕Γm−1

are distinct and are also different from the different values of Ci ⊕ Γi. This analysis remains the
same for both algorithms and so we omit the details. The final result on PAE-1 is given below and
the bounds are the same as that of PAE.

41

Table 8. Description of ˜PAE-1. The call to Format(C, n) defines m and r.

˜PAE-1π(N,C):
1. γ = π(fStr);
2. for i = 1 to m Γi = φγ(i);
3. (C1, . . . , Cm) = Format(C, n);
4. (P1, . . . , Pm−1)

= ECBπ−1(C1 ⊕ Γ1, . . . , Cm−1 ⊕ Γm−1);
5. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
6. if (r < n) then sum = sum⊕ Γm+1;
7. if m = 1, then
8. δ = π(γ); sum = sum⊕ δ;
9. tag = π(sum⊕ Γ1 ⊕ · · · ⊕ Γm−1);
return tag.

Theorem 8. Let σ ≥ q ≥ 1. Then

Advpriv
PAE-1(q, σ) ≤ 2(σ + 2q)2

2n
,

Advae-auth
t-PAE-1(q, σ) ≤ 1

2t
+

(σ + 2q)2 + σ2

2n
+
σ(7q + 2)

2n
.

7 Authenticated Encryption with Associated Data

In many applications (such as encryption of IP packets), along with the message and the nonce,
there is an additional binary string called the associated data (or header). The requirement is to
authenticate the header but not to encrypt it. The input to the encryption algorithm is a triple
(H,N,P), where H is the header, N is the nonce, P is the message and the output is (C, tag),
where C is the encryption of P and tag authenticates both H and P .

The notion of AE can be easily extended to obtain the formal definition of an AEAD scheme. Let
H, N and X be sets of binary strings and let Fn[N ,H,X] be the set of functions f : N ×H×X →
X × {0, 1}n such that if f(N,H,P) = (C, tag), then len(P) = len(C). Here, H is the set of all
possible headers and N is the set of all possible nonces. Typically, H can consist of variable length
strings while N is {0, 1}n.

If we define N ′ = N × H to be the set of nonces, then we go back to the formal framework
for AE functions. In this case, we have the set of nonces N ′ to consist of possibly variable length
strings. The security notions of privacy and authentication for Fn[N ′,X] are exactly the notions for
Fn[N ,H,X]. These coincide exactly with the security notion of AEAD schemes introduced in [34].
We will use the notation Advaead-auth to denote the authentication security of an AEAD scheme.

In this case, the query complexity σ also counts the number of n-bit blocks formed from the
headers provided as part of the different queries. We divide the query complexity into two parts σH
and σP , where σH is the number of n-bit blocks obtained from the headers and σP is the number
of n-bit blocks obtained from the nonces and the actual messages.

A simple AEAD scheme can be obtained by combining PAE and iPMAC and we call this PAEAD.
A similar construction is also obtained by combining PAE-1 and iPMAC which we call PAEAD-1.
The descriptions are given in Tables 9 and 10. A t-bit tag is produced and consequently, we will

42

refer to the PAEAD scheme as t-PAEAD scheme and similarly for PAEAD-1. Considering PAE to be
an AE-function, the notation PAE− is defined as in Section 6. Similarly for PAE-1.

Note. PAEAD requires both π and π−1 during encryption and only π−1 during decryption; whereas
PAEAD-1 requires only π during encryption and both π and π−1 during decryption. This difference
is inherited from a similar difference between PAE and PAE-1 and the fact that iPMAC uses π−1 in
PAEAD whereas iPMAC uses π in PAEAD-1. For implementation in hardware or resource constrained
devices, the decryption algorithm of PAEAD will be smaller while the encryption algorithm of
PAEAD-1 will be smaller. The actual strategy to be adopted will depend on the application.

Table 9. Parallel AEAD schemes. PAEAD is obtained by combining PAE and iPMAC, while, PAEAD-1 is obtained
by combining PAE-1 and iPMAC. Here 1 ≤ t ≤ n is a fixed value; g : {0, 1}n → {0, 1}t is a regular function; and fStr
is a fixed n-bit string.

PAEAD.Encryptπ,fStr(N,H,P) PAEAD-1.Encryptπ,fStr(N,H,P)

1. if H is null, return PAE.Encryptπ(N,P);
2. (C, tag1) = PAE.Encryptπ(N,P);
3. υ = π−1(fStr);
4. tag2 = iPMACπ−1,υ(H);
5. return (C, g(tag1 ⊕ tag2)).

1. if H is null, return PAE-1.Encryptπ(N,P);
2. (C, tag1) = PAE-1.Encryptπ(N,P);
3. υ = π(fStr);
4. tag2 = iPMACπ,υ(H);
5. return (C, g(tag1 ⊕ tag2)).

Table 10. Decryption algorithms for the schemes shown in Table 9.

PAEAD.Decryptπ,fStr(N,H,C, tag) PAEAD-1.Decryptπ,fStr(N,H,C, tag)

1. if H is null then return PAE.Decryptπ(N,C, tag);
2. (P, tag1) = PAE−π (N,C);
3. υ = π−1(fStr);
4. tag2 = iPMACπ−1,υ(H);
5. if (tag 6= g(tag1 ⊕ tag2)) return ⊥;
6. return P .

1. if H is null then return PAE-1.Decryptπ(N,C, tag);
2. (P, tag1) = PAE-1−π (N,C);
3. υ = π(fStr);
4. tag2 = iPMACπ,υ(H);
5. if (tag 6= g(tag1 ⊕ tag2)) return ⊥;
6. return P .

Privacy of the construction is easy to obtain and the analysis is similar to that of PAE.

Theorem 9. Let q and σ ≥ q be positive integers. Then Advpriv
PAEAD(q, σ) ≤ 2(σ + 2q)2

2n
.

Consequently, Advpriv

PAEADmain(q, σ) ≤ 2(σ + 2q)2

2n
.

For authentication we need to consider the function ˜PAEAD. Let PAEADπ,fStr(N,H,P) =
(C, tag) and υ = π−1(fStr). Then from the definition of PAEAD, the following holds.

• If H is null, then

˜PAEADπ,δ(N,H,P) = P̃AEπ(N,P)
= miPMACπ−1(N,C).

}
(32)

• If H is not null, then

˜PAEADπ,fStr(N,H,P) = P̃AEπ(N,C)⊕ iPMACπ−1,υ(H)
= miPMACπ−1(N,C)⊕ iPMACπ−1(, υ,H)

}
(33)

43

Similar equations can be written for PAEAD-1.

The analysis of ˜PAEAD is based on ideas in Section 6.1. The functions miPMAC and iPMAC are
both PRFs. However, they are not independent functions in ˜PAEAD, since the same π−1 is used
for both of them. We will see how to tackle this difficulty a bit later and for the moment suppose
that these are independent. Then using (31), we get a upper bound on the ANR-PRF-advantage of˜PAEAD. Using Proposition 9 this is sufficient to show the authentication security bound of t-PAEAD.

Now we turn to the question of how the issue of non-independence of miPMAC and iPMAC can
be tackled. Let E be the event that the set of inputs to π−1 in miPMAC is disjoint from the set
of inputs to π−1 in iPMAC. (Consequently, the set of inputs to π in miPMAC will also be disjoint
from the set of inputs to π in iPMAC.) Then the PRF bounds for the individual functions would
hold and using standard arguments we obtain

Advanr-prf˜PAEAD
(q, σ) ≤Advprf

miPMAC(q, σ) + Advprf
iPMAC(q, σ) + Pr[E]. (34)

Proposition 9 gives

Advaead-auth
t-PAEAD (q, σ) ≤ 1

2t
+ Advpriv

PAEADmain(q, σ) + Advanr-prf˜PAEAD
(q, σ)

≤ 1
2t

+ Advpriv

PAEADmain(q, σ)

+Advprf
miPMAC(q, σ) + Advprf

iPMAC(q, σ) + Pr[E]. (35)

The task, thus, reduces to bounding Pr[E]. The event E represents the separation of the inputs for
π−1 in the message and header part. The literature provides different techniques for such separation
of inputs. These include using independent keys [34], and using tweakable block ciphers [35].

In our case, however, this is achieved differently. In the PAE part, the masks are obtained from
γ which is obtained as π−1(N). On the other hand, in iPMAC part the masks are obtained from
π−1(υ) = π−1(π−1(fStr)). Since, the probability that N is equal to π−1(fStr) is 1/2n, we obtain an
effective separation of the masks. We consider this in more details.

First consider the inputs and outputs to π−1 determined by miPMACπ−1(N (s), C(s)). For the
s-th query, let A(s)

i and B
(s)
i (1 ≤ i ≤ m(s)) be the different inputs and outputs to π, so that

π−1(B(s)
i) = A

(s)
i . The expressions for A(s)

i and B(s)
i are given in the proof of Theorem 6. Note that

each B
(s)
i is masked with either δ(s) or with the XOR of one or more of the Γ (s)

i s.

Next consider the inputs and outputs to π−1 determined by iPMACπ−1(υ,H(s)). Such calls are
made only if H(s) is non-null. Let the number of n-bit blocks in H(s) be k(s) and let the length of
the last block before padding be p(s). Denote the blocks as H(s)

1 , . . . ,H
(s)

k(s) . These blocks are the

output of Format(H(s), n) which also defines the values of k(s) and p(s). Let T (s)
i = π−1(H(s)

i) for
1 ≤ i ≤ k(s) − 1; and let iPMACπ−1(υ,H(s)) be denoted by htag(s).

Let ω = π−1(υ), ϑ = π−1(ω) and Ωi = φω(i). Since fStr does not depend on the queries, neither
do the Ωis or υ or ϑ. For 1 ≤ s ≤ q, if H(s) is non-null, then let E(s)

i for 1 ≤ i ≤ k(s) be the different
inputs to π and F

(s)
i be the different outputs of π (and so are inputs to π−1), i.e., π(E(s)

i) = F
(s)
i .

44

The different F (s)
i s are as follows.

H
(s)
1 ⊕ δ(s) if (k(s) = 1 and r(s) = n);

H
(s)
1 ⊕ δ(s) ⊕ Γ

(s)
1 if (k(s) = 1 and p(s) < n);

H
(s)
1 ⊕ Γ

(s)
1 , . . . ,H

(s)
ks−1 ⊕ Γ

(s)

k(s)−1
,

E
(s)
1 ⊕ · · · ⊕ E

(s)
ks−1 ⊕H

(s)

m(s)

 if (k(s) > 1 and p(s) = n);

H
(s)
1 ⊕ Γ

(s)
1 , . . . ,H

(s)
ks−1 ⊕ Γ

(s)

k(s)−1
,

E
(s)
1 ⊕ · · · ⊕ E

(s)
ks−1 ⊕H

(s)

k(s) ⊕ Γ
(s)

k(s)

 if (k(s) > 1 and p(s) < n).

Note that other than the case when k(s) > 1 and p(s) = n, in all other cases, either ϑ, or some Ωi
or a XOR of Ωs occur as a component of F (s)

i . We are interested in the event E which holds if one
of the following occur.

1. Some B(t)
j is equal to some F (s)

k(s) , where k(s) > 1 and p(n) = n.

2. Some B(t)
j is equal to some F (s)

i ,

3. Some B(t)
j is equal to either υ or ω or ϑ.

Each B
(t)
j has a component which is either δ(t), or Γ (t)

j or a XOR of some of the Γ (t)s. For a fixed

j, Γ (t)
j uniquely determines γ(t). Similarly, for a fixed i, Ωi uniquely determines ω. Here both i and

j are greater than 1.
Consider the event Γ (t)

j = υ, i.e., φγ(t)(j) = υ. If N (t) = fStr, then γ(t) = υ; since j ≥ 1, from
Definition 8, we have Pr[φγ(t)(j) = υ] = 1/2n. If N (t) 6= fStr, then since γ(t) = π−1(N (t)) and
υ = π−1(fStr), the pair (γ(t), υ) is uniformly distributed over χ2(IF). Again from Definition 8, it
follows that Pr[φγ(t)(j) = υ] = 1/(2n − 1). So, in both cases, Pr[Γ (t)

j = υ] ≤ 1/(2n − 1).

Now consider the event Γ (t)
j = ω, i.e., φγ(t)(j) = ω. The analysis is similar, the difference being

that in this case ω = π−1(υ) and so the event N (t) = υ holds with probability 1/2n. Using this it is
possible to show that Pr[Γ (t)

j = υ] ≤ 1/2n−1. A similar analysis holds for the events Γ (t)
j = ϑ and

Γ
(t)
j = Ωi.

These show that the events in Points 2 and 3 above hold with probability at most 1/2n−1. For
the event in Point 1, F (s)

k(s) = E
(s)
1 ⊕ · · · ⊕ E

(s)
ks−1 ⊕H

(s)

m(s) . Since k(s) > 1, there is at least one E(s)
i

in the expression for F (s)

k(s) . The probability that this is equal to Γ
(t)
j can again be shown to be

bounded above by 1/2n−1. So, the event in Point 1 also holds with probability at most 1/2n−1.
As a result of this analysis, we obtain Pr[E] ≤ σHσP /2n−1 ≤ σ2/2n−1. This finally leads to the

following result.

Theorem 10. Let σ ≥ q ≥ 1. Then

Advaead-auth
t-PAEAD (q, σ) ≤ 1

2t
+

1
2n−1

×
(
σ(2σ + 11q + 2) + 4q2

)
.

The analysis of PAEAD-1 is similar and results in the same bounds.

45

Theorem 11. Let σ ≥ q ≥ 1. Then

Advpriv
PAEAD-1(q, σ) ≤ 2(σ + 2q)2

2n
;

Advaead-auth
t-PAEAD-1(q, σ) ≤ 1

2t
+

1
2n−1

×
(
σ(2σ + 11q + 2) + 4q2

)
.

8 Discussion and Comparison

There are several [16, 12, 35] other single-pass schemes for authenticated encryption with or without
the option of supporting associated data. These include sequential as well as parallelizable designs.
Among these, the most famous is OCB [35] which is a parallelizable design. All parallel schemes,
including the ones proposed in this work, share a common feature. Each message block is masked
before being encrypted by the block cipher and the output is also masked. There are differences in
the manner that the masks are generated and in the way a possible partial last block is handled.

Authentication and authenticated encryption. Our basic premise is that the authentication
security of an AE scheme can essentially be derived from the PRF-property of an associated func-
tion. As a result, we first designed an authentication scheme and showed that it is a PRF. Then
the AE scheme was designed so that the authentication function of the AE scheme can be easily
seen to be (a simple modification of) the previously designed PRF. This makes the analysis of
authentication security of the AE scheme almost trivial. We note that in schemes such as IACBC,
IAPM [16] and OCB [35], it is the analysis of authentication security which is the complicated part.

Avoiding design stage discrete logarithm computation. It has already been mentioned that
our approach does not require the computation of any discrete logarithms. Further, avoiding this
computation does not cause any slow down in the generation of the masks. In any implementation,
the representation of IF as a tower field will be provided by two polynomials as described in Section 4.
Changing these to any other pair (subject to the second one being primitive over the intermediate
field) will provide a secure algorithm. Thus, the new AEAD schemes provide a family of easily
reconfigurable designs with the same efficiency.

Efficiency. The masks in the new AEAD schemes are to be generated using the word oriented
LFSR approach described in Section 4. OCB, on the other hand, uses the powering up method
which is about two times slower than the word oriented LFSR approach. As discussed in Section 4,
this leads to a small speed-up in the overall time for processing a message.

More Variants. For OCB, the encryption algorithm requires only EK and the decryption algo-
rithm requires both EK and E−1

K . Here two AE schemes have proposed – PAE and PAE-1 as also two
AEAD schemes – PAEAD and PAEAD-1. For PAE and PAEAD the encryption algorithms require
both EK and E−1

K whereas the decryption algorithms require only E−1
K . In contrast, for PAE-1 and

PAEAD-1 the encryption algorithms require only EK whereas the decryption algorithms require
both EK and E−1

K . OCB corresponds to the second case. For hardware and resource constrained
implementations, the first case will lead to a smaller decryption module whereas the second case
will lead to a smaller encryption module. Efficiency and security for both cases are same. This
aspect provides a designer with more flexible choices and underlines the fact that the new approach
has significant differences to OCB.

46

Handling of the last block. If the message consists of only full blocks, then the new schemes
do not distinguish between the last block and the other blocks. The distinction arises only when
the last block is partial. For many applications, messages consist of only full blocks and the new
schemes will be simpler to implement for such applications. In contrast, OCB handles the last block
differently irrespective of whether it is full or partial. Thus, an inherent asymmetry is built into
the design even when the application has messages consisting of only full blocks.

9 Conclusion

We have analysed pseudo-random functions for use in symmetric key message authentication. Start-
ing from a useful result by Vaudenay [40] and Bernstein [6], we proved a general result on bounding
the advantage of a PRF built using a uniform random permutation or a uniform random func-
tion. This result is used to analyse parallelizable PRF constructions which improve upon existing
constructions.

We took a re-look at the problem of constructing and analysing AE and AEAD schemes. On the
theoretical issue, we highlighted several subtle aspects of showing authentication of an AE scheme
and how to use a simple masking technique to securely combine an AE and a authentication
scheme. From a more practical point of view, the new constructions that we describe offer certain
improvements over the previously known constructions.

Acknowledgments

We would like to thank Mridul Nandi for pointing out Lemma 22 of [40] to us. We also thank the
anonymous reviewers for their comments.

References

1. http://csrc.nist.gov/CryptoToolkit/modes/.

2. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message authentication
code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

3. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2000.

4. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security Analyses for CBC MACs. In Victor
Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 527–545. Springer, 2005.

5. Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation. In Bimal K. Roy and Willi
Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 389–407. Springer, 2004.

6. Daniel J. Bernstein. How to stretch random functions: The security of protected counter sums. J. Cryptology,
12(3):185–192, 1999.

7. Daniel J. Bernstein and Peter Schwabe. New AES software speed records. In Dipanwita Roy Chowdhury,
Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365 of Lecture Notes in Computer Science,
pages 322–336. Springer, 2008.

8. John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authentication. In
Knudsen [19], pages 384–397.

9. Debrup Chakraborty and Palash Sarkar. A general construction of tweakable block ciphers and different modes
of operations. IEEE Transactions on Information Theory, 54(5):1991–2006, 2008.

10. Joan Daemen and Vincent Rijmen. The design of Rijndael: AES – The Advanced Encryption Standard (Infor-
mation Security and Cryptography). Springer, Heidelberg, 2002.

47

11. M. Dworkin. Recommendation for block cipher modes of operations: the CMAC mode for authentication, May
2005. National Institute of Standards and Technology, U.S. Department of Commerce. NIST Special Publication
800-38B.

12. Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authentication: XCBC encryption and XECB
authentication modes. In Mitsuru Matsui, editor, FSE, volume 2355 of Lecture Notes in Computer Science,
pages 92–108. Springer, 2001.

13. Shay Gueron. White paper on intel’s advanced encryption standard (AES) instructions set. April 2003. http:

//software.intel.com/en-us/articles/advanced-encryption-standard-aes-instructions-set/.
14. Version 4 Internet Protocol. From Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/IPv4.
15. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas Johansson, editor, FSE, volume

2887 of Lecture Notes in Computer Science, pages 129–153. Springer, 2003.
16. Charanjit S. Jutla. Encryption modes with almost free message integrity. In Birgit Pfitzmann, editor, EURO-

CRYPT, volume 2045 of Lecture Notes in Computer Science, pages 529–544. Springer, 2001.
17. Charanjit S. Jutla. PRF Domain Extension Using DAGs. In Shai Halevi and Tal Rabin, editors, TCC, volume

3876 of Lecture Notes in Computer Science, pages 561–580. Springer, 2006.
18. Jonathan Katz and Moti Yung. Complete characterization of security notions for probabilistic private-key en-

cryption. In STOC, pages 245–254, 2000.
19. Lars R. Knudsen, editor. Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory

and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings,
volume 2332 of Lecture Notes in Computer Science. Springer, 2002.

20. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications, revised edition. Cambridge
University Press, 1994.

21. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.

22. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM J. Comput., 17(2):373–386, 1988.

23. Stefan Lucks. Two-pass authenticated encryption faster than generic composition. In Henri Gilbert and Helena
Handschuh, editors, FSE, volume 3557 of Lecture Notes in Computer Science, pages 284–298. Springer, 2005.

24. Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation on Intel Core2 processor. In
Pascal Paillier and Ingrid Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 121–134. Springer, 2007.

25. Ueli M. Maurer. Indistinguishability of random systems. In Knudsen [19], pages 110–132.
26. David A. McGrew and John Viega. The security and performance of the Galois/Counter Mode (GCM) of

operation. In Anne Canteaut and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes
in Computer Science, pages 343–355. Springer, 2004.

27. Kazuhiko Minematsu and Toshiyasu Matsushima. New Bounds for PMAC, TMAC, and XCBC. In Alex Biryukov,
editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages 434–451. Springer, 2007.

28. Mridul Nandi. A simple and unified method of proving indistinguishability. In Rana Barua and Tanja Lange,
editors, INDOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages 317–334. Springer, 2006.

29. Mridul Nandi. Fast and secure CBC-type MAC algorithms. In Orr Dunkelman, editor, FSE, volume 5665 of
Lecture Notes in Computer Science, pages 375–393. Springer, 2009.

30. Mridul Nandi and Avradip Mandal. Improved Security Analysis of PMAC. Cryptology ePrint Archive, Report
2007/031, 2007. http://eprint.iacr.org/.

31. Erez Petrank and Charles Rackoff. CBC MAC for Real-Time Data Sources. J. Cryptology, 13(3):315–338, 2000.
32. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC.

Full version of the Asiacrypt 2004 paper available from the author’s home page, http://www.cs.ucdavis.edu/

~rogaway/papers/index.html.
33. Phillip Rogaway. OCB Mode. http://www.cs.ucdavis.edu/~rogaway/ocb/.
34. Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor, ACM Confer-

ence on Computer and Communications Security, pages 98–107. ACM, 2002.
35. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In

Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in Computer Science, pages 16–31. Springer,
2004.

36. Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of operation for efficient authenti-
cated encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403, 2003.

37. Palash Sarkar. A general mixing strategy for the ECB-Mix-ECB mode of operation. Inf. Process. Lett.,
109(2):121–123, 2008.

48

38. Palash Sarkar. A simple and generic construction of authenticated encryption with associated data. Cryptology
ePrint Archive, Report 2009/215, 2009. http://eprint.iacr.org/.

39. Serge Vaudenay. Decorrelation over Infinite Domains: The Encrypted CBC-MAC Case. In Douglas R. Stinson
and Stafford E. Tavares, editors, Selected Areas in Cryptography, volume 2012 of Lecture Notes in Computer
Science, pages 189–201. Springer, 2000.

40. Serge Vaudenay. Decorrelation: A theory for block cipher security. J. Cryptology, 16(4):249–286, 2003.
41. Kan Yasuda. A one-pass mode of operation for deterministic message authentication- security beyond the birthday

barrier. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer Science, pages 316–333.
Springer, 2008.

49

